3GPP TSG RAN WG1 #47bis R1-070058

Sorrento, Italy

January 15-19, 2007
Agenda Item:

6.4
Souce:

Motorola
Title:
Eliminating tail bits in LTE channel coding
Document for:
Discussion

1. Summary

This document proposes that tail bits be eliminated in E-UTRA channel coding. The benefits of removing the tail bits are described. Tail elimination procedures for different channel coding schemes which are proposed for E-UTRA are described, including convolutional and turbo codes.
2. Impact of the tail bits
The Rel. 6 channel coding schemes (convolutional and turbo codes) add tail bits to the encoded sequence to ensure the constituent encoders (convolutional codes in either cases) end in the all-zero state. The tail ensures that the component encoders begin and end in a known state, a fact that helps in improving the decoder performance. However, adding tail bits have several disadvantages, including the following.
· Tail bits result in a waste of power and a loss of code rate. For the rate 1/2 convolutional code (CC), there are 16 bits of overhead; for rate 1/3 CC, there are 24 bits of overhead; for rate 1/3 turbo codes (TC), there are 12 bits of overhead. This overhead is especially wasteful when the information block size is small. For example, for Rel. 6 TC with K = 40, 12/(120+12) = 9% of the transmitted bits are tail bits.

· The rate-matching algorithm becomes complicated as the tail bits need to be treated differently from the rest of the encoded bits.

· Not all information bits are equally protected.
· The tail bits (interacting with Rel. 6 interleaver) result in small minimum distances of the Rel. 6 TC which leads to poor performance [3], especially at high code rates. The error floors of Rel. 6 TC for certain block sizes at rate-5/6 have found to be around 10-3~10-4, which is too high for data communications.

Therefore, it is proposed that the LTE channel coding be designed without tail bits. This would lead to several benefits including the ones listed below.

· Code rate the same as nominal rate is achieved as no tail bits need to be transmitted.

· No power is wasted on tail overhead since no tail bits are transmitted.

· It is possible to protect all bits with equal level of protection.

· A simple rate-matching algorithm can be developed as there are only systematic and parity bits corresponding to the information bits in the output sequences.

· Codes with equal or better performance (than codes with tail bits) can be developed as the edge effects of trellis termination can be avoided.
3. Tail Bits Removal

The tail-removal procedure is described below for the possible LTE channel coding techniques, beginning with a convolutional code.

3.1. Convolutional Code (CC)

One way of removing the tail bits of a convolutional code is to simply discard the tail bits after encoding the information block. However, this leads to significant performance degradation. Therefore, another method of tail removal that does not incur performance loss must be employed.

The preferred method of tail bits removal is by making the convolutional code tail-biting. Tail-biting ensures that the final state (after encoding an information block) of a constituent convolutional encoder is the same as the initial state. The 256-state convolutional code defined in [2] has a feed-forward encoder and hence it can be easily made tail-biting. This is done by initializing the shift register state with the last 8 bits of the information block, [bK-7, bK-6, …, bK-1, bK]. The tail-biting CC decoder can be implemented using the same low complexity decoding algorithms that exist to traverse the trellis, such as the Viterbi algorithm.

Convolutional codes are typically used for small information blocks, so any encoding and decoding operation is negligible compared to the advanced coding to be used for peak data rate (100+ Mbps) LTE operation. Tail biting can significantly reduce control channel overhead while incurring only a marginal increase in decoding complexity and slight performance degradation [7].
3.2. Turbo Code (TC)

Due to the recursive nature of the constituent CCs, the eight-state constituent encoder in Rel. 6 TC requires two encoding runs for each of the constituent CCs. For each constituent, the first run is performed to compute the initial state (using a LUT) and the second run is performed to produce the actual codeword bits. The encoding latency or encoding complexity increase is insignificant as the convolutional encoding is a simple operation of shift registers. At the decoder, the core operations are unchanged, with very little modification is required to handle tail-biting.
For TC, tail-biting operation can provide additional benefits, when used appropriately, than those in Section 2. For example, when the Rel. 6 interleaver is replaced with quasi-cyclic interleavers such as the almost regular permutation (ARP) interleavers, the resulting tail-biting TC can achieve very high minimum distances which lead to improved FER performance. Moreover, the quasi-cyclic property is useful to simplify the code design procedure, while the ARP enables high-speed turbo decoding due to its contention-free memory access properties.

For example, Table 1 lists some examples of the low minimum distances of the Rel 6 TC. It also shows the potential distances that can be achieved with a tail-biting procedure and an improved interleaver.

Table 1.
Minimum distance deficiency of Rel-6 TC.
	information block size K (bits)
	dmin (Rel-6 TC)
	Achievable dmin (tail-biting TC and ARP interleaver)

	647, 648
	13
	38

	1641, 1658
	17
	50

	4096, 4728
	21
	54

One caveat of using tail-biting TC is that it does not support information block sizes K that are multiples of 2m‑1, where m is the memory of the constituent convolutional code. Therefore, for the Rel 6 TC with eight-state (m = 3) constituents, K cannot be a multiple of 7. This can be avoided by using additional filler bits for any size K that is a multiple of 7. The interleavers will only be defined for sizes that is not a multiples of 7.
4. Conclusion

Tail bits cause a loss of code rate and also complicate the rate-matching algorithm. Therefore, it is proposed that the tail bits be eliminated in LTE channel coding schemes. For turbo codes, there is no decoder complexity increase for tailbiting.
References
[1]. 3GPP TR 25.814 V1.2.2 (2006-3): “Physical layer aspects for evolved UTRA (Release 7)”.

[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.

[3]. E. Rosnes and O. Ytrehus, “Improved algorithms for the determination of turbo-code weight distributions,” IEEE Transactions on Communications, Vol 53, No. 1, pp. 20 – 26, Jan. 2005.

[4]. Berrou C., Saouter Y., Douillard C., Kerouedan S., Jezequel M., “Designing good permutations for Turbo Codes: towards a single model”, in Proceedings of ICC 2004, vol. 1, pp. 341-345, June 2004.
[5]. R1-061050, Motorola, France Telecom, GET, Orange, “EUTRA FEC Enhancements,” 3GPP TSG RAN WG1#44bis, Athens, Greece. 27-31 March 2006.
[6]. R1-050164, Motorola, “Convolution Code Structure for E-AGCH,” 3GPP TSG-RAN2 Meeting #46, Scottsdale, AZ, USA,14 – 18 February , 2005
[7]. R1-70066, Motorola, “E-UTRA DL Coding Performance for Control Channel,” 3GPP TSG RAN1 #47-bis, Sorrento, Italy, January 15 – 19, 2006

 Page 1 of 3

