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1. Summary

In 3GPP TSG RAN WG1 Meeting #46, it was decided that Rel-6 turbo codes upgraded with a contention-free interleaver (such as almost regular permutation (ARP) interleaver) will be used for LTE. This document proposes a set of ARP interleavers for turbo codes in LTE. 
The proposed interleaver design has several advantages, including

· Contention-free (CF) property for various degrees of parallelism in decoder, thus allowing LTE to achieve or exceed the target peak throughput. 
· CF design allows efficient parallelization inside turbo decoder, thus leading to low latency.
· Different classes of UE capabilities can be supported using the same interleaver definition.
· Simple algebraic description  leads to efficient hardware implementation. 
· Performance similar to or better than Rel. 6 turbo codes (see Figure 1, details on p. 4, Section 2.4). 
[image: image1.wmf]
Figure 1. Comparison of SNR Required to achieve FERs of 10%, 1%, 0.1% and 0.01% for proposed E-UTRA Turbo code tailed (“ARP+tail”) or tail-biting (“ARP+TB”) vs. Rel. 6 Turbo Code (“Rel. 6 Intlvr”) with rate 1/3.
2. Almost Regular Permutation (ARP) interleaver

2.1. Interleaver description
Given an information block size K, an “almost regular” permutation (ARP) interleaver [4] of size K is defined by the following.
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where 0 ( i ( K-1 is the sequential index of the bit position after interleaving, (i) is the bit index before interleaving corresponding to position i, K is the information block size, P0 is a number that is relatively prime to K, A is a constant, C is a small number (divisor of K) called the cycle length, and d(i) is a “dither” vector of length C. For all block sizes, d(i) assumes the form
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where ((() and ((() are both vectors of length C, periodically applied for 0 ( i ( K-1. Both ((() and ( (() are composed of multiples of the cycle length C. 
When an ARP interleaver is used in a tail-biting turbo code, the overall code becomes quasi-cyclic (i.e., periodic properties), which greatly simplify the code design process. However, ARP interleavers can also be desgined for tailed turbo codes as defined in [2], but the tail may induce lower minimum distance (dmin) and may lead to performance degradation. Therefore, it is proposed to make the constituent convolutional codes in the EUTRA turbo code tail-biting [6]. 

The ARP interleaver belongs to the class of CF interleavers that have good properties from a design perspective [4]

 REF _Ref149136446 \r \h 
[7]. For an ARP interleaver of length K and cycle length C, any window size W, where W is a multiple of C and a factor of K, can be used for high-speed decoding without memory access contentions. This flexibility in choosing parallelism can be used advantageously in hardware design. For instance, suppose K = 6144-bit ARP interleaver is designed with C = 8, then any number from the set {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768} is a valid choice for the number of processors M = K/W to obtain contention-free memory access. 

Next section discusses implementation and CF property of the ARP interleaver using an example.
2.2. Example
Consider an ARP interleaver for K = 128 defined using following parameters (see first row of Table 1):

C = 4, P0=81, A=3, ( = [4 0 0 4]; (= [0 20 120 68].

Note that ((() and ( (() are both vectors of length C=4, and each contain integers that are multiples of C=4. The ARP interleaver is thus realized with the following C=4 equations:
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where 0<=j<=31 (=K/C-1). This illustrates that the ARP implementation uses simple operations and small storage. As i increments, the address (i) is generated by cycling through the 4 equations in (3). Moreover, as i increments, the i×P0 term can be obtained by adding P0. 
This example is also useful to illustrate the CF property.  In (3), the following congruence is observed (illustrated again in Figure 2)
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[image: image6.emf]Congruence class before interleaving   4j 4j+1 4j+2 4j+3 

 

 

 

Congruence class after interleaving   4j 4j+1 4j+2 4j+3 


Figure 2. Congruence mapping of addresses before and after interleaving.

Consider a turbo decoder that utilizes M=32 processors (i.e., windows), where each processor processes W=4 trellis steps. During decoding, in each cycle, M=32 extrinsic LLRs are produced to be written to M=32 memory banks concurrently. The congruence property (4) guarantees that no memory contentions occur during these (de)interleaving operations.  Let it be assumed that the i-th memory bank (i=0,1….32-1) stores indices given by C×i to C×(i+1)-1. In each step described below, both (de) interleaving can be performed without memory contentions.
Step 1. 32 LLRs of indices 4j+3 (before interleaving) are fetched from 32 memory banks, processed in parallel for trellis steps of indices 4j (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 2. 32 LLRs of indices 4j (before interleaving) are fetched from 32 memory banks, processed in parallel for trellis steps of indices 4j+1 (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 3. 32 LLRs of indices 4j+1 (before interleaving) are fetched from memory, processed in parallel for trellis steps of indices 4j+2 (after interleaving), and the output LLRs are placed back in the respective memory banks.

Step 4. 32 LLRs of indices 4j+2 (before interleaving) are fetched from memory, processed in parallel for trellis steps of indices 4j+3 (after interleaving), and the output LLRs are placed back in the respective memory banks.
Any window size that is a multiple of C also follows similar congruence property, and hence allows CF memory access. For example, using window size W=2(C=8, relationships similar to (4) exist:
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Thus 16 processors (i.e., windows) with a window size of 8 can be used for parallel processing, where at each step 16 output LLRs are generated in parallel. 

2.3. ARP Interleaver For LTE

For LTE, it is not essential to define CF interleaver for each block size between 40 and 5114 bits. A limited or a small set of well-designed CF interleavers is sufficient to cover all the block sizes. For undefined block sizes (i.e., for which CF interleavers are not defined), the addition of filler bits can be used effectively. This has several advantages, including, reduced interleaver storage, better parallelism since some block sizes may not be suitable for parallelization (e.g., block sizes that are prime). Note that the performance of new scheme is still near or better than that of Rel. 6 turbo code.  
A complete set of CF ARP interleavers suitable to cover block sizes for EUTRA is shown in Table 1 using the following information block size definitions :


[image: image8.wmf],

15

,

,

9

,

8

;

9

,

,

5

,

4

,

2

K

K

=

=

´

=

f

p

f

K

p


( LISTNUM equat \l1
covering K from 128 to 7680.  The last three sizes (f=13, 14, 15) corresponding to p=9 are removed such that Kmax = 6144, and Kmin =128. 

Tail-biting encoding of the constituent convolutional codes is assumed [6]. Therefore, block sizes defined by (6) and that are multiples of 7 (invalid size for tailbiting) are modified by subtracting 2(C (C=4 or 8). The modified sizes are highlighted in Table 1. The cycle length C=4 is used for K<1024, C=8 for K (1024. A larger cycle length C leads to better minimum distance dmin at larger block sizes while it also results in increased storage. 
2.4. Performance

Table 2 lists the simulator setup for examining the turbo code performance using ARP interleavers defined in Table 1. The rate-1/3 3GPP turbo code with existing constituent code definitions is used as baseline reference in the study. Simulation results are shown in Figure 1 and Figures 3 to 5. 
Figure 1 compares the Eb/N0 (dB) required to achieve FERs of 10%, 1%, 0.1% and 0.01% for three turbo code configurations at rate 1/3. The three configurations are: (a). Rel-6 turbo code defined in [2]; (b) proposed ARP interleaver in Table 1 with tail-biting constituent convolutional codes; (c) proposed ARP interleaver in Table 1 with tailed constituent convolutional codes as defined in [2]. The simulation results show that the proposed interleaver design provide better to similar FER performance compared to Rel-6 turbo codes [2] for both tailed and tail-biting constituent codes.

Figure 3 shows the minimum distance dmin of the proposed turbo scheme (ARP interleavers and tail-biting) vs the actual dmin of the Rel-6 turbo code [3]. The substantially high dmin of ARP suggests that the proposed turbo code will not exhibit premature error floors. 
Figure 4 and Figure 5 shows FER vs Eb/N0 (dB) for a representative set of proposed turbo codes confirming the good performance ( good waterfall/ no error floor till 1e-4).
Simulations show that the proposed interleaver designs also perform well at high code rates such as rate 5/6. This is mainly due to the substantially higher minimum distance of the proposed interleaver.
3. Conclusions

This document describes a design example of a contention-free interleaver suitable for LTE channel coding. The proposed interleaver has a performance close to or better than the Rel. 6 Turbo code. The ARP interleaver is one candidate from the class of CF interleavers that have i) good performance, ii) support for various degrees of parallelism, and iii) have a very simple algebraic description. This design example illustrates that turbo interleavers designed for efficient implementation architecture can also achieve superior coding performance.
Code performance at other code rate and modulation levels will be studied to confirm that turbo codes with such an interleaver upgrade can be successfully integrated into the LTE system for all scenarios. 
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Table 1. Parameters of the set of ARP interleavers defined for LTE. A constant offset A=3 is used for all cases.
	K
	C
	P0
	(
	(

	128
	4
	81
	4
	0
	0
	4
	
	
	
	
	0
	20
	120
	68
	
	
	
	

	144
	4
	91
	4
	0
	4
	0
	
	
	
	
	0
	76
	20
	52
	
	
	
	

	160
	4
	123
	4
	4
	0
	0
	
	
	
	
	0
	4
	8
	12
	
	
	
	

	176
	4
	127
	4
	4
	0
	0
	
	
	
	
	0
	12
	112
	44
	
	
	
	

	192
	4
	169
	4
	0
	4
	0
	
	
	
	
	0
	8
	4
	16
	
	
	
	

	208
	4
	37
	4
	0
	4
	0
	
	
	
	
	0
	68
	20
	164
	
	
	
	

	216
	4
	121
	4
	4
	0
	0
	
	
	
	
	0
	68
	12
	28
	
	
	
	

	240
	4
	161
	0
	0
	4
	4
	
	
	
	
	0
	16
	196
	212
	
	
	
	

	256
	4
	31
	0
	0
	4
	4
	
	
	
	
	0
	60
	8
	68
	
	
	
	

	288
	4
	131
	0
	4
	0
	4
	
	
	
	
	0
	80
	144
	36
	
	
	
	

	320
	4
	69
	0
	0
	4
	4
	
	
	
	
	0
	4
	8
	12
	
	
	
	

	352
	4
	35
	4
	0
	0
	4
	
	
	
	
	0
	48
	96
	152
	
	
	
	

	384
	4
	91
	0
	0
	4
	4
	
	
	
	
	0
	4
	20
	24
	
	
	
	

	416
	4
	31
	4
	4
	0
	0
	
	
	
	
	0
	24
	28
	60
	
	
	
	

	440
	4
	53
	0
	4
	4
	0
	
	
	
	
	0
	4
	20
	216
	
	
	
	

	480
	4
	53
	0
	4
	4
	0
	
	
	
	
	0
	72
	192
	12
	
	
	
	

	512
	4
	273
	0
	0
	4
	4
	
	
	
	
	0
	20
	8
	24
	
	
	
	

	576
	4
	29
	0
	0
	4
	4
	
	
	
	
	0
	64
	120
	68
	
	
	
	

	640
	4
	147
	0
	0
	4
	4
	
	
	
	
	0
	24
	12
	4
	
	
	
	

	704
	4
	309
	0
	0
	4
	4
	
	
	
	
	0
	4
	12
	8
	
	
	
	

	768
	4
	241
	0
	0
	4
	4
	
	
	
	
	0
	4
	12
	8
	
	
	
	

	832
	4
	53
	0
	0
	4
	4
	
	
	
	
	0
	4
	12
	8
	
	
	
	

	888
	4
	77
	0
	4
	4
	0
	
	
	
	
	0
	48
	64
	140
	
	
	
	

	960
	4
	143
	0
	0
	4
	4
	
	
	
	
	0
	4
	12
	8
	
	
	
	

	1024
	8
	245
	8
	0
	8
	8
	0
	0
	8
	0
	0
	8
	40
	16
	96
	80
	56
	88

	1152
	8
	119
	0
	0
	8
	0
	8
	0
	8
	8
	0
	8
	40
	64
	80
	48
	24
	88

	1280
	8
	897
	0
	0
	8
	0
	8
	0
	8
	8
	0
	8
	96
	88
	32
	16
	48
	40

	1408
	8
	593
	0
	8
	0
	8
	8
	0
	8
	0
	0
	8
	96
	48
	32
	16
	80
	40

	1536
	8
	1139
	0
	0
	8
	0
	8
	0
	8
	8
	0
	16
	56
	88
	80
	24
	72
	64

	1664
	8
	1451
	0
	8
	0
	8
	8
	0
	8
	0
	0
	16
	40
	96
	88
	80
	32
	48

	1776
	8
	115
	8
	0
	0
	0
	0
	8
	8
	8
	0
	88
	56
	40
	152
	120
	128
	200

	1920
	8
	233
	8
	0
	8
	8
	8
	0
	0
	0
	0
	16
	24
	88
	64
	8
	32
	40

	2048
	8
	77
	0
	0
	8
	8
	0
	8
	8
	0
	0
	64
	136
	160
	48
	192
	24
	120

	2304
	8
	1631
	0
	0
	8
	0
	8
	0
	8
	8
	0
	24
	80
	40
	16
	96
	64
	32

	2560
	8
	2249
	0
	0
	8
	0
	8
	0
	8
	8
	0
	8
	72
	40
	88
	48
	32
	96

	2816
	8
	1235
	8
	8
	0
	0
	0
	8
	0
	8
	0
	16
	88
	96
	56
	24
	48
	64

	3072
	8
	671
	0
	0
	8
	0
	8
	0
	8
	8
	0
	8
	48
	32
	64
	88
	40
	56

	3328
	8
	1459
	0
	0
	8
	0
	8
	0
	8
	8
	0
	32
	8
	56
	80
	16
	72
	48

	3568
	8
	147
	0
	0
	8
	0
	8
	0
	8
	8
	0
	72
	64
	48
	88
	8
	184
	248

	3840
	8
	3721
	8
	0
	8
	8
	8
	0
	0
	0
	0
	16
	48
	24
	8
	32
	40
	88

	4096
	8
	83
	8
	8
	0
	0
	0
	8
	8
	0
	0
	16
	120
	152
	24
	216
	64
	240

	4608
	8
	181
	0
	8
	0
	8
	0
	8
	8
	0
	0
	32
	176
	216
	136
	64
	224
	248

	5120
	8
	3629
	0
	8
	0
	8
	8
	0
	8
	0
	0
	16
	40
	96
	88
	80
	32
	48

	5632
	8
	211
	0
	0
	8
	0
	8
	0
	8
	8
	0
	24
	208
	112
	224
	168
	184
	48

	6144
	8
	4355
	8
	0
	8
	8
	8
	0
	0
	0
	0
	8
	16
	64
	24
	48
	80
	32


Table 2. Simulator setup for examining ARP interleaver performance.

	Baseline Code
	Rel. 6 Turbo Code 

	Proposed code
	3GPP Turbo code + ARP Interleaver + Tail-biting

	Iterations
	8

	Decoding algorithm
	Max-Log-MAP (Non-genie for Tail-biting)

	Modulation
	BPSK

	Channel
	Static AWGN


[image: image9.wmf]
Figure 3. Minimum distance comparison of Rel. 6 Turbo code Vs 3GPP Turbo code with Proposed ARP interleaver and tail-biting.

[image: image10.wmf]
Figure 4.
FER performance of proposed E-UTRA TC in AWGN channel with rate 1/3 and smaller frame sizes.

[image: image11.wmf]
Figure 5.
FER performance of proposed E-UTRA TC in AWGN channel with rate 1/3 and larger frame sizes.
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