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1 Introduction
The peak-to-average power ratio (PAPR) is of primary importance for the uplink in Evolved UTRA. SC-FDMA [1] offers a lower PAPR than OFDMA, but further reduction of the PAPR is highly desirable. One way to reduce the PAPR is to apply spectrum shaping [1]. Another method for reducing PAPR is to use shifted π/4-QPSK or π/2-BPSK. 

In [2] we discussed the use of spectrum-shaping functions that were not Root-Raised Cosine (RRC) and showed that non-RRC could give the same throughput as RRC functions at lower transmitted peak power for a given spectral mask and spectral efficiency, because of a reduced PAPR.
 In the present contribution, we derive the criterion for optimum spectrum-shaping functions for PAPR reduction in SC-FDMA.  
2 Transmitter Structure Including Spectrum Shaping

Figure 1 shows the transmitter structure for DFT-spread OFDM when spectrum-shaping is applied [1-2]. Each block of M complex modulated symbols xn, n=0, 1, …, M-1, is transformed by a DFT and results in M coefficients Xk:
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The resulting signal is then subject to spectrum shaping by multiplying the output of the DFT component-wise with a spectrum-shaping sequence. In case the signal is mapped on a larger set of sub-carriers than the size of the DFT, the input to the spectrum-shaping block is periodically extended before multiplication with the spectrum-shaping sequence. Thus the spectrum shaping is described by the following equation,
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where Sk are the components of the spectrum shaping sequence and U  is the number of occupied sub-carriers. 
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Figure 1 DFT-spread OFDM transmitter structure with spectrum-shaping

The output from the DFT is mapped on equidistant sub-carriers
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, where l0 is a frequency offset, and L is the repetition factor that is greater than or equal to 1. The output of the IFFT is given by
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Finally, a cyclic prefix is inserted. A time window may be applied after the cyclic prefix to reduce out-of-band emissions. The cyclic prefix and the time window do not change the PAPR of the signal.

3 Optimum Functions for PAPR Reduction

In this section we will derive the criterion on a discrete function (sequence) for minimizing the PAPR in DFT-spread OFDM for a signal occupying a given number of sub-carriers. We will also consider the impact of the spectrum-shaping function on required signal-to-noise ratio (SNR).

The number of sub-carriers can be set to the number of symbols in the block, i.e. U=M, which implies that there is no loss in spectral efficiency. U can also be selected larger than M to allow for even lower PAPR but with decreased spectral efficiency. The function is not restricted to give a Nyquist pulse in the time domain after matched filtering, and hence it may induce inter-symbol interference. Inter-symbol interference does not increase the complexity of the receiver since it contains an equalizer anyway but it may increase the required average signal-to-noise ratio (SNR) for a given throughput. 

The required SNR increases with increasing main-lobe width of the Fourier spectrum of the spectrum-shaping function due to inter-symbol interference. On the other hand, by increasing the main-lobe width, the energy in the sidelobes can be decreased. As will be shown in the following, the PAPR decreases with decreasing energy in the sidelobes of the Fourier spectrum of the spectrum-shaping function.  Thus, there is a trade-off between required SNR and PAPR.
Consider the output signal y from the transmitter generated from a block of M modulated symbols, given by 
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where xn are modulated data symbols and s(t) is proportional to the Fourier series expansion (Fourier spectrum) of the spectrum shaping sequence Sk,
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. For phase shift keying xn is constant and equals A.  f is the centre frequency of the signal and T is the time duration of the useful signal in a block, i.e. the output signal from the IFFT, divided by L. 

 Then the power of y at time t is given by 

                                                  
[image: image8.wmf]2

2

)

(

å

÷

ø

ö

ç

è

æ

-

=

n

n

M

n

T

t

s

x

t

y

,                                                               (5)

where |∙| denotes absolute value. It follows from (5) that 
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The maximum of |y(t)| is obtained if the elements of the first sum are co-phased that will happen when the difference between the complex argument of xn and the complex argument of s(t/T-n/M) is the same for all n.  

The square of (6) gives
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Since s is band-limited, the first term of the right-hand side of (7) is proportional to an approximate value of the energy E of s (
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Hence, the peak power |y(t)|2 is proportional to the energy of s plus cross-terms 
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. To minimize the peak power we need to minimize the sum of all cross-terms in (7). Now it would be useful to recollect that s(t) is the Fourier spectrum of Sk, which means that s(t), |t|<W , where W is of the order 1/2M, is the main-lobe of the spectrum, while s(t), |t|>W contains the sidelobes of the spectrum. Thus to minimize the sum of cross-terms in (7) we need to minimize the energy in the sidelobes of the Fourier spectrum of the spectrum-shaping sequence.

 Therefore, in order to find the minimum PAPR one should find the index-limited spectrum-shaping sequence of length U, whose Fourier spectrum is such that the energy in a finite interval is maximized, i.e. the energy outside the finite interval is minimized.

The spectrum-shaping sequence that fulfils this criterion is the zeroth discrete prolate spheroidal sequence, also labelled discrete prolate spheroidal window (DPSW) [3]. This index-limited sequence maximizes the energy in a finite interval of its Fourier spectrum.

The discrete prolate spheroidal sequences S(l)(U,W) are the normalized eigenvectors that satisfy 
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The discrete prolate spheroidal window is the eigenvector S(l) that corresponds to the largest eigenvalue λ(l). W is an adjustment parameter, which allows adjustment of the main-lobe width in the Fourier spectrum of the spectrum-shaping function. While increasing U and keeping the product UW constant, the discrete prolate spheroidal sequences approximate the (continuous) prolate spheroidal wave function. 
 Simple approximations to these sequences/functions are the Kaiser windows, defined by [4]
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where γ =(U-1)/2 and I0(·) represents the zeroth-order modified Bessel function of the first kind, which is defined by
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The Kaiser window is thus a suboptimum spectrum-shaping function with a simple analytical form. Like the discrete prolate spheroidal window, the Kaiser window has an adjustment parameter β, which allows adjustment of the main-lobe width in the Fourier spectrum of the spectrum-shaping function. 
As already mentioned, the width of the main-lobe has opposite impacts on the required SNR and the PAPR. The adjustment of the parameters W and β allows for trade-off between the PAPR and the required average signal-to-noise ratio (SNR) for a certain throughput in DFT-spread OFDM systems.
4 Simulation Results
We have investigated the discrete prolate spheroidal window and the Kaiser window and compared their performance to Root-Raised Cosine (RRC) functions, both for QPSK and π/4-shifted QPSK, like in [2]. The performance measure is the throughput as a function of peak transmit power (99.9 percentile), which is proportional to the average received SNR plus PAPR (99.9 percentile) given that the average channel loss and the noise power is constant. The latter is ensured by keeping both noise bandwidth and noise spectral density constant in all simulations. 
The parameters of the DPSW and the Kaiser window have been optimized for each modulation to minimize the required peak transmit power for a given throughput but do not depend on the coding. The DPSW has the same maximum component to minimum component ratio as the Kaiser window. The modulation and coding are fixed throughout the simulation, i.e. there is no link adaptation. For each modulation, two information bit rates, RI are simulated. The coded bit rate RC is selected such that the modulated symbol rate equals the 3 dB bandwidth of the RRC function that depends on the roll-off factor α. The non-RRC functions have been evaluated for the same coded bit rates as for the different RRC functions.

The simulation setup is the same as in [2]. An MMSE frequency-domain equalizer is utilized in the receiver. The total bandwidths and hence the number of sub-carriers of the spectrum-shaping functions are selected to give similar out-of-band leakage for all functions. The parameters W and β for the discrete prolate spheroidal window and the Kaiser window are given in Table 1 and the number of sub-carriers and the PAPR values are given in Table 2.
Table 1 Spectrum-shaping function-dependent parameters

	Spectrum-shaping function
	Kaiser window

β
	Discrete prolate spheroidal window: W

	QPSK
	2 
	0.737/U

	π/4-shifted QPSK
	2.5
	0.905/U


Table 2 Peak-to-average power ratios for different spectrum-shaping functions and coded bit rates

	Coded bit rate 
	7.2 Mbps
	6.12 Mbps

	Spectrum-shaping function
	RRC
α=0
	Kaiser
	DPSW
	RRC
α=0.22
	Kaiser
	DPSW

	Number of sub-carriers, U
	300
	300
	300
	312
	300
	300

	PAPR (dB): QPSK
	5.8
	4.7
	4.7
	4.5
	3.9
	3.9

	PAPR (dB): π/4-shifted QPSK
	5.6
	3.8
	3.8
	4.0
	3.2
	3.2


The simulation results are shown in Figures 2 to 5. The difference between the discrete prolate spheroidal window and the Kaiser window is negligible. From the figures it is clear that the DPSW and the Kaiser windows outperform the RRC functions with the same coded bit rate (i.e. the same achievable spectral efficiency
), both for RC =7.2 Mbps and for RC =6.12 Mbps, because of a reduced PAPR. The peak power gain is very similar for AWGN and Vehicular A channels. For QPSK, the peak power gain is 0.5-0.7 dB at RI=2 Mbps and 0.4-0.6 dB at RI=4 Mbps. For π/4-shifted QPSK the gain is 0.7-1.2 dB at RI=2 Mbps and 0.4-0.8 dB at RI=4 Mbps. The gain is larger for the higher coded bit rate RC =7.2 Mbps.
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Figure 2 Throughput for QPSK modulation in AWGN channel
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Figure 3 Throughput for π/4-shifted QPSK modulation in AWGN channel
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Figure 4 Throughput for QPSK modulation in Vehicular A channel
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Figure 5 Throughput for π/4-shifted QPSK modulation in Vehicular A channel

Comparing the figures with the PAPR values in Table 2 one can notice an increase in the required average SNR of the DPSW and the Kaiser window compared to the RRC function. The average transmit power increase comes from the introduced inter-symbol interference, and varies from a few tenths of a dB to one dB for the same coded bit rate. It should be noted however, that the MMSE receiver used in simulations is not optimum for combating inter-symbol interference. More advanced receivers like the MMSE decision-feedback equalizer are likely to further mitigate the increase of the average transmit power. 
5 Conclusion

The family of discrete prolate spheroidal windows is optimum for reducing the PAPR for a given spectral mask and spectral efficiency. These functions are eigenvectors to a matrix and are obtained numerically. A simpler and almost optimum spectrum-shaping function is the Kaiser window function, for which there is an analytical expression. Both functions have an adjustment parameter that allows for trade-off between the PAPR and the required average signal-to-noise ratio (SNR) for a certain throughput in DFT-spread OFDM systems.
Based on the analytical derivation and simulation results we propose to use the discrete prolate spheroidal windows or their suitable approximations, such as Kaiser windows, for spectrum shaping in SC-FDMA.
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---------------------------------------------- Start of text ------------------------------------------------

9.1.1.6
Peak-to-Average Power Ratio (PAPR) Reduction

Single-carrier transmission allows for further PAPR reduction, e.g., through the use of PAPR-reducing modulation or coding schemes, clipping, spectral filtering, etc.

For example, modifications to the basic modulation schemes in section 9.1.1, such as per-symbol phase rotations ((/4-QPSK, (/2-BPSK) and I/Q-offsetting (offset-QPSK, offset-QAM), should be considered.

For example, frequency-domain spectrum shaping can be applied between the output of the DFT and the input of the sub-carrier mapping in Figure 9.1.1-1. The selection of the filter shape is a trade-off between spectrum efficiency and PAPR reduction. For a given spectral efficiency, different spectrum-shaping functions can provide different PAPR reductions. Different spectrum shaping functions should be further studied and optimized for different uplink modulation formats considered.
The spectrum shaping functions should be optimized for different uplink modulation formats considered, in order to find the optimum balance between the PAPR and the required SNR for certain throughput. The required SNR increases with increasing main-lobe width of the Fourier spectrum of the spectrum-shaping function, while the PAPR decreases with decreasing energy in the sidelobes of the Fourier spectrum of the spectrum-shaping function. As the family of discrete prolate spheroidal windows provides maximized ratio of the energy in the main lobe to the energy in the sidelobes of the Fourier spectrum, it follows that it is an optimum family of spectrum-shaping functions for PAPR optimization in SC-FDMA.

-----------------------------------------------End of text ------------------------------------------------
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� The spectral efficiency is the throughput divided by the available bandwidth given by the spectral mask.
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