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1. Introduction
In this contribution we describe the link to system level mapping we use for the MIMO HSDPA system-level simulation results presented in the companion contributions [1-2]. For both the single-antenna and per-antenna rate control (PARC) transmissions, we assume that the receiver employs a linear MMSE frequency domain equalizer. 

We provide detailed analysis to justify the accuracy of the symbol SIR models. Two types of symbol SIR are derived: the SIR used for BLER lookup (termed the actual SIR) and the SIR for CQI computation. We include the following impairments in the analysis:

· Maximum CIR: due to the receiver impairment
· Channel estimation error: due to multi-code interference and noise on the common pilot channel

We also use the following idealized assumptions to simplify our analysis:

· Degradation due to UE mobility is ignored in channel estimation (since we only simulate low to moderate mobility in [1])
· Perfect noise variance estimate at each of the receive antennas (which involves assuming the perfect knowledge of pilot power)
Throughout this document, the number of transmit and receive antennas are denoted as P and Q, respectively. The number of multi-path components is denoted as L. The chip-level channel impulse response corresponding to the p-th transmit and q-th receive antennas is written as:
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In this analysis we assume that the average total channel energy is 1 for each antenna. That is, 
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2. Impairment 1: maximum CIR
The effect of CIRMAX on the equivalent SIR can be included in the noise variance. That is, the total noise variance for the q-th receive antenna can be written as
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Here 
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denotes the contribution from inter-cell interference as well as the thermal noise. Note that the inter-cell interference is assumed to be temporally white but spatially colored. The spatial correlation of the inter-cell interference can be determined from the SCM model. The other noise components (thermal noise and the additional offset due to CIRMAX, however, are assumed to be spatially and temporally white. Hence, the noise component can be characterized with a QxQ spatial covariance matrix R. 
3. Impairment 2: channel estimation error
The effect of channel estimation error is incorporated in 
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using a perturbation model. Since we only consider low to moderate UE speeds (3 and 30 kmph), Doppler spread should not significantly affect the channel estimation performance. Hence, we ignore this effect for simplicity. The perturbation model is given below (please see Appendix A for detailed derivation) with v denoting a zero-mean unit-variance AWGN term:
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The parameters are defined as follows:

· 
[image: image7.wmf]PIL

r

= fraction of Node B power allocated to CPICH (=0.1)

· 
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f

 = fraction of pilot power allocated to the p-th antenna (=1 for single-antenna and 0.5 for 2-antenna)
· 
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 = CPICH spreading factor (=256)
· 
[image: image10.wmf]M

= number of pilot symbols for averaging (=40: typically 4-slot averaging is done for low to moderate UE speed)
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is defined in (2). In addition to the channel, the spatial covariance matrix 
[image: image12.wmf]R

 needs to be estimated. Although an estimate of R can be obtained via the sample covariance matrix, estimates of the diagonal terms of R (the noise variances at all the Q receive antennas) are more reliable. This is because the off-diagonal terms of R tend to be smaller in value. For simplicity, we assume that the diagonal terms of R can be estimated perfectly. That is:  
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In general, this assumption is optimistic since estimating q2 not only involves estimating the noise variance but also the pilot power.
4. Equivalent symbol SIR analysis
We now give the equivalent SIR expression for 1x2 and 2x2 MIMO with LMMSE FDE receiver. Since 1x2 is a special case of 2x2 for the SIR analysis, we derive the equivalent SIR for the general PxQ MIMO system. We assume the following:

· N-point LMMSE frequency domain equalization (FDE) is used.

· Equalizer coefficients are computed using the estimated channel response from the common pilot channel.
· The receiver employs Q receive antennas (Q=2). The number of transmit antennas is denoted as P (P=1, 2)
Let 
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 denote the p-th transmit, q-th receive antenna channel frequency response at the n-th “tone”:
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We also define the estimated version as
[image: image16.wmf]n
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. There are 2 expressions that we need to derive:

1. The actual symbol-level SIR experienced by the system: This is used to look up the BLER as a function of the channel, which involves both the actual and estimated channel coefficients.

2. The computed chip-level CIR for CQI calculation and feedback: This only involves the estimated channel coefficients.

The actual symbol-level SIR corresponding to the p-th transmit antenna assuming LMMSE FDE is given as follows (please see Appendix B for detailed derivation):
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The data spreading factor and number of codes are denoted as FDATA (=16) and K (≤ 10), respectively. Here 
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denotes the (p,p’)-th element of matrix n in equation (7) below. The same holds for
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 which is the p-th diagonal element of matrix n. 
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The computed chip-level CIR can be derived from (5) and (6) by simply replacing 
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For a single-antenna transmission (P=1) with Q antennas at the receiver, it can be shown from (6)-(8) that:
· The actual symbol-level  SIR can be written as:
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· The computed chip-level CIR can be written as:
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5. Conclusions
We presented the link to system level mapping models for a PxQ MIMO system with linear LMMSE frequency domain equalizer. The models are used to model the link behavior and CQI feedback for the system level evaluation in [1-2]. 
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Appendix A: Derivation for the channel estimation error
Here 
[image: image31.wmf]s

 and 
[image: image32.wmf]n

 are the transmitted chips (length-NP) and length-NQ zero mean noise vector with covariance
We denote the spreading factor of the common pilot channel (CPICH)as FPIL (=256). From the perspective of CPICH, the received signal at the q-th receive antenna in 1 CDMA pilot symbol can be written as:
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where 
[image: image34.wmf]l

p
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 is the code vector in 1 pilot symbol corresponding to the p-th transmit antennas and the l-th delay. The noise term 
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 consists of the interference from the other CDMA codes (e.g. for HS-PDSCH, voice, control) as well as the noise variance at the q-th receive antenna. The representation in (3) assumes that the inter-symbol interference in CPICH is negligible. From the property of the short and long codes, we have
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An estimate of 
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 can be obtained by correlating the received signal with 
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From (13), we can compute the per symbol pilot SNR which is given below
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Note that the interference coming from the multi-path components of the CPICH codes is small compared to the interference caused by the other codes. Hence the approximation in (14) should be sufficiently accurate.
Further improvement in channel estimation accuracy can be obtained by averaging the estimates over multiple pilot symbols. Assuming an M-symbol averaging, the overall pilot SNR can be written as follows:
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The perturbation model in (3) follows from (15).
Appendix B: Derivation for the symbol-level SIR 
The chip-level received signal within 1 equalizer block/window can be written in a length-KQ vector 
[image: image42.wmf]r

(where Q=number of receive antennas) as follows:
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Here 
[image: image44.wmf]s

 and 
[image: image45.wmf]n

 are the transmitted chips (length-NP) and length-NQ zero mean noise vector with covariance matrix of 
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denotes the Kronecker/tensor matrix product). H is the NQxNP block Toeplitz channel matrix corresponding to the length-L QxP channel impulse response. When N>>L, H can be approximated as a block circulant Toeplitz matrix (that is, we ignore the degradation due to edge effect). Therefore, 
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 admits the following eigen-decomposition:
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 is the (unitary) N-point IFFT matrix. The same decomposition can be applied to the estimated version 
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Note that 
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 and 
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are block diagonal, hence 
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and
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are block diagonal and can be written as:
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where n and n are given in (7). We now compute the chip-level CIR for transmit antenna p corresponding to the n-th chip. Due to the symmetry in the time-domain, it can be inferred that the CIR values for all the N chips corresponding to a transmit antenna are uniform. In that case it suffices to compute the CIR’s corresponding to the first chip, which can be derived from (18) as follows
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Since 
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… (22)

Substituting (21) and (22) to (20), the chip-level CIR corresponding to the p-th transmit antenna can be written as
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… (23)

Finally, the symbol-level SIR corresponding to the p-th transmit antenna (assuming the data spreading gain of FDATA and K codes) is:
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… (24)
Combining (22) and (23) we obtain (6).
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