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Introduction
CSI prediction is identified as a sub-use case for further study in R19 [1]. Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 














In this paper, we discuss the evaluation methodology and potential specification impact of CSI prediction sub-use case.  
Discussion
Summary of R18 CSI prediction use case  
In R18 study of CSI prediction sub-use case, two benchmark was identified. 
For CSI-prediction: 
Both of the following are taken as baseline: 
-	The nearest historical CSI without prediction
-	Non-AI/ML or AI/ML with collaboration level x based CSI prediction for which corresponding details would need to be reported

In RAN1 #115, the following summary and recommendation are agreed for CSI prediction. 


The performance and potential specification impact were studied for AI/ML based UE side CSI prediction sub use case. 
· Evaluation has been performed to assess AI/ML based CSI prediction from various aspects, including performance compared to baseline, model input/output type, generalization over UE speed, etc. Some aspects are studied but lack observations, including scalability over various configurations and generalization over other scenarios and approach of fine tuning. Performance monitoring accuracy is not evaluated.  
· Performance compared with baseline is summarized in clause 6.2.2.8 of TR 38.843.
· Potential specification impact on data collection and performance monitoring are discussed in section 7.2.2 of TR 38.843. 
· Limited specification aspects were considered.

From RAN1 perspective, there is no consensus on the recommendation of CSI prediction for normative work.
· The reason for the lack of RAN1 consensus on the recommendation of CSI prediction for normative work is due to 
· Lack of results on the performance gain over non-AI/ML based approach and associated complexity
· Other aspects that require further study/conclusion are captured in the summary.






















In the evaluation, two performance benchmarks were studied: sample and hold benchmark, and the filter-based CSI predictor based on a statistical model. For filter-based predictor performance, there is no calibration of the filter performance in either R18 AI study, or in R18 MIMO.  In R19, the CSI prediction sub-use case can be further studied to address the main concern captured in the RAN1 summary.  
  
 Evaluation methodology  
For traditional filter-based predictor, the predictor performance highly depends on the adaptivity of the designed filter. The Weiner filter based predictor can be calculated as 

where Rxx. is the correlation between the past measurement, and rxy is the correlation between the past measurement and future predicted channel ground truth. 

To calculate the filter weight w, Rxx and rxy can be calculated per UE, per Tx/Rx antenna pair, per RB or subbands, per real and imagine value of the complex channel response. Based on the calculation, the filter coefficients can be optimized per UE, per subband, per Tx/Rx antenna pair, per real/imag value. This gives optimized performance at the expense of either high number of offline pre-calculated coefficients set, or large number of online matrix inversion for Rxx-1

To achieve fair comparison for AI based algorithm, similar assumption should be used. If one AI/ML model is offline trained for all UEs, across all subbands, Tx/Rx antenna pair and per real/imag value, similar assumption should be made for filter based method. 

Observation 1: For CSI prediction using non-AI based approach, complexity and performance varies with different assumption such as whether the filter is designed per UE, per subband, per Tx/Rx antenna pair, per real/imag part of the complex channel response.  

Proposal 1: For fair comparison of AI/ML based approach versus non-AI/ML based approach, similar assumption should be used. 

Proposal 2: When one genialized AI model is offline trained for all UEs, all subbands, all Tx/Rx pairs and all real/imag value, the non-AI based approach baseline is also one filter offline calculated for all UEs, all subbands, all Tx/Rx pairs and all real/imag value. 

 
Preliminary evaluation results 
Based on proposal 2, we compare the AI based approach and filter-based approach using NMSE and SGCS, following R18 AI based CSI prediction evaluation methodology.  

We evaluate the CSI prediction performance with 8 measurement window length in terms of sample. Assuming CSI-RS periodicity of 5ms, the measurement window length 8x5=40ms as shown in Fig. 1.  We predict four future samples at 2.5ms, 5ms, 7.5ms and 10ms. All UEs have 30kmph mobility. 

[image: ]
Fig. 1 CSI prediction using time domain channel responses


Table I shows the NMSE and SGCS of sample and hold methods. NMSE is averaged over all elements of the MIMO channel matrix, while SGCS is calculated per layer, up to four layers. It is observed that although the NMSE at 10ms is already de-correlated, the eigen-vectors are not deviated too far from the ground true. This can be due to the channel model where only Doppler spread is modelled, and large scale and small scale parameters are all the same. Therefore, the dominate spatial direction does not change although channel is fully de-correlated due to Doppler.  

Table I: NMSE and SGCS of Sample and hold baseline

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-5.8958
	-0.4079
	2.2325
	3.4643

	SGCS Layer 1 
	0.9304
	0.8154
	0.7479
	0.7256

	SGCS Layer 2
	0.8993
	0.7653
	0.6978
	0.6796

	SGCS Layer 3
	0.8326
	0.5932
	0.4677
	0.4386

	SGCS Layer 4
	0.7958
	0.5025
	0.352
	0.3143



Table II shows the NMSE and SGCS for non-AI based prediction, where one set of Wiener filter coefficients are calculated for all the UEs, across all subbands, Tx/Rx antennas and real/imag value, using the same assumption as the AI based approach. Comparing to sample and hold bench, the NMSE is clearly improved particularly for 2.5ms and 5ms prediction time. However, SGCS improvement is marginal at 2.5ms and 5ms, with SGCS loss at 7.5ms and 10ms comparing to sample and hold baseline. SGCS is calculated based on the eigen-vector of the predicted channel per layer per subband. The prediction error in channel matrix impacts the dominate spatial beam direction, making SGCS performance much more sensitive to the NMSE of the channel comparing to the sample and hold method.  




Table II: NMSE and SGCS of Weiner filter based performance  

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-20.4
	-10.93
	-5.43
	-2.2265

	SGCS Layer 1 
	0.9431
	0.8202    
	0.6355    
	0.4135

	SGCS Layer 2
	0.9112    
	0.7156    
	0.4538    
	0.2821

	SGCS Layer 3
	0.9007    
	0.6547    
	0.4082    
	0.2511

	SGCS Layer 4
	0.9063    
	0.6877    
	0.4522    
	0.2846




Table III shows the NMSE and SGCS for LSTM based prediction with 8 samples in the measurement window. The SGCS and NMSE relationship in AI based prediction follows similar trends as non-AI based prediction. 

Table III: SGCS of AI base prediction 

	
	2.5ms
	5ms
	7.5ms
	10ms

	NMSE
	-30.3729
	-20.359
	-13.5788
	-9.0573

	SGCS Layer 1 
	0.9978
	0.9803
	0.9211
	0.8013

	SGCS Layer 2
	0.9968
	0.972
	0.8892
	0.7354

	SGCS Layer 3
	0.9943
	0.9566
	0.8469
	0.6618

	SGCS Layer 4
	0.9945
	0.9578
	0.8471
	0.6535




Observation 2: Comparing to sample and hold benchmark, LSTM based prediction achieve 20dB NMSE gain at 5ms prediction time, and roughly 20% SGCS performance gain. 

Observation 3: Wiener filter-based CSI predictor outperform sample and hold method by 10dB in NMSE at 5ms prediction time, however marginal gain of 1% is observed in terms of SGCS. 

Observation 4: Comparing to Wiener filter-based CSI predictor, LSTM based prediction achieve 10dB NMSE gain at 5ms prediction time, and 19% SGCS performance gain at 5ms predict time.  

 Potential specification impact  
Data collection and performance monitoring are the two main potential specification impact aspects that were studied for CSI prediction. In the TR summary of section 8, it was pointed out that the performance monitoring accuracy was not evaluated. 
Three types of performance monitoring were proposed. In type 1 and type 3 performance monitoring, UE calculates the performance metrics by comparing the predicted channel versus the ground truth CSI-RS measurement. For type 2, UE reports predicted CSI and/or the corresponding ground truth back to NW, so NW can calculate the performance metric. The performance monitoring accuracy is mainly related to the ground truth and predicted CSI accuracy. Since type 2 performance monitoring incur large overhead without clear benefit over type 1 and type 3, we recommend deprioritizing type 2 performance monitoring, and corresponding accuracy evaluation.   
Proposal 3: For potential specification impact, deprioritize type 2 performance monitoring and corresponding accuracy evaluation.  

Conclusion
In this contribution, we discussed the evaluation methodology of CSI prediction and its potential specification impact, based on R18 CSI prediction use case summary. Based on the discussion, the following proposals have been proposed.
Observation 1: For CSI prediction using non-AI based approach, complexity and performance varies with different assumption such as whether the filter is designed per UE, per subband, per Tx/Rx antenna pair, per real/imag part of the complex channel response.  

Proposal 1: For fair comparison of AI/ML based approach versus non-AI/ML based approach, similar assumption should be used. 

Proposal 2: When one genialized AI model is offline trained for all UEs, all subbands, all Tx/Rx pairs and all real/imag value, the non-AI based approach baseline is also one filter offline calculated for all UEs, all subbands, all Tx/Rx pairs and all real/imag value. 

Observation 2: Comparing to sample and hold benchmark, LSTM based prediction achieve 20dB NMSE gain at 5ms prediction time, and roughly 20% SGCS performance gain. 

Observation 3: Wiener filter-based CSI predictor outperform sample and hold method by 10dB in NMSE at 5ms prediction time, however marginal gain of 1% is observed in terms of SGCS. 

Observation 4: Comparing to Wiener filter-based CSI predictor, LSTM based prediction achieve 10dB NMSE gain at 5ms prediction time, and 19% SGCS performance gain at 5ms predict time.  

Proposal 3: For potential specification impact, deprioritize type 2 performance monitoring and corresponding accuracy evaluation.  
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