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Introduction
In RAN #102, normative work on AI/ML for NR Air Interface with some additional studies which have not been finalized during study phase has been approved [1] and it builds on the previous Rel-18 studies in FS_NR_AIML_Air [2].
For the CSI enhancement use case, the objective of the study is to address some of the outstanding issues identified during the Rel-18 Study Item, as summarized in TR 38.843 [3].
With reference to CSI compression, the study objectives listed in the Rel-19 WID are shown below [1].
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 



This contribution discusses aspects of CSI compression performance, including impact of pre-processing methods on the overall compression performance, complexity, as well two-sided model monitoring.  Additionally, we provide simulation results for beam domain processing and TSF-based compression.
Considerations on AI/ML-based CSI compression
CSI compression performance improvements 
During the Rel-18 SI, the performance benefit and potential specification impact were studied for the AI/ML-based CSI compression sub-use case. With respect to the performance benefit of AI/ML-based CSI compression, the conclusion section of TR 38.843 [3] identified the trade-off between performance and complexity/overhead as one area that requires further study.  
Aspects that impact complexity include ML model complexity, model size, as well as the number of ML models that a UE may need to support, to name a few. The evaluation of model scalability over Tx port numbers, summarized in Section 6.2.2.3 of TR 38.843 [3], shows significant performance degradation for generalization Case2. While this degradation may be partially mitigated using a mixed training dataset, along with a zero-padding approach to ensure same input dimensionality, the results for generalization Case3 show that moderate (and sometimes severe) performance loss may still be experienced.  In such cases, a potential solution may consist of UE-side model switch. However, the UE-side model switch incurs signalling overhead and has an associated latency.  
Beam domain processing for further compression performance improvement
Pre-processing in the beam domain (discussed in [7]) may be used effectively to reduce the need for model switching in this scenario. Beam domain processing (BDP) is a dimensionality reduction step that transforms the high-dimensional antenna domain channel to a low-dimensional beam domain channel, possibly with a minor loss of information. This can be considered as an efficient feature extraction step that captures most of the spatial information in a few beams that need to be carefully selected from a predefined codebook. The beam-frequency channel can then be compressed and decompressed using an AE model that operates on low-dimensional channel samples. Then, at the output of the decoder, a beam domain postprocessor may be used to transform the channel back to the spatial domain using the selected beams. 

The BDP alleviates the need for using complex/large-size AE models with large input dimensionality, which in turn results in a reduction in the memory and computational requirements relative to the spatial-domain AE. In addition, BDP results in AE models that are agnostic to the number of antennas, so one model operating in the beam domain can handle different configurations with variable antenna sizes. This provides more flexibility from a system perspective and may reduce the need for model switching. 

Observation 1: Beam domain processing results in low-dimensional channel samples that may be compressed using low complexity Autoencoder models, resulting in reduction in both memory and computational requirements relative to spatial domain Autoencoders.
Observation 2: Beam domain processing exhibits good generalization capabilities as a single beam domain AE model can deal with multiple antenna configurations, potentially reducing the need for model switching.

TSF compression for further compression performance improvement
Another way to further improve the performance of the spatial-frequency (SF) compression is to leverage the temporal correlation properties of the channel in the compression process, namely temporal-spatial-frequency (TSF) compression. The past CSI may be used as a prior information along with the current CSI to further improve the performance of the SF compression. The improvement may be in terms of overhead reduction, namely how much reduction in the overhead can the temporal prior information provide, while achieving the same reconstruction performance (e.g., NMSE or SGCS) as SF. The improvement can also occur in the reconstruction performance at a given overhead, namely how much improvement in the reconstruction performance can the temporal prior information yield at the same overhead as SF. The SF compression can be viewed as a special case of TSF where the prior information is neglected. From a complexity perspective, TSF models may be more complex, depending on how the prior information is utilized. For example, one way to incorporate the prior information in the compression process is to use AI/ML models with recurrent neural network architecture, e.g., LSTM, where the prior information may be used at the encoder side, or decoder side, or both. This results in a complexity-performance trade-off that needs to be considered for study.  
Observation 3: While TSF compression may potentially result in further improvement in the compression performance relative to SF compression, it may require more complex AE models with higher computational and memory requirements relative to SF. 
Proposal 1: The performance-complexity trade-off of TSF should be considered for study. 

UE-part model monitoring for AI/ML-based CSI compression 
With reference to a two-sided AI/ML model for the CSI compression sub-use case, the model may be trained jointly or separately. Once the trained model is deployed at the UE, the UE-part AI/ML encoder performs inference based on received over-the-air transmissions that may have different statistics compared to the statistics of the training datasets. While the models may use mixed datasets for training and validation, it is still possible that the AI/ML encoder does not generalize well across all realistic channel conditions. 
The generalization performance for CSI performance was evaluated during the Rel-18 SI, and the results summarized in Section 6.2.2.2 of TR 38.843 show that even with generalization Case3, there are scenarios where moderate performance loss is observed.  This suggests model monitoring is needed to enable the mitigation of potential performance degradation due to poor model generalization. 
Furthermore, the Rel-18 SI investigated UE-side performance monitoring, whereby the UE monitors the model performance and reports, e.g., intermediate KPI to the NW, while the NW makes the LCM decisions (of model/functionality activation/deactivation/updating/switching). 
One of the options for UE-side model monitoring (using intermediate KPI) that was discussed is based on the output of the CSI reconstruction model (proxy model) at the UE-side.  In this approach, the UE could use the proxy decoder to reconstruct the CSI (based on the compressed CSI which is reported back to the NW), and compare the reconstructed CSI to the CSI measured by the UE. However, the availability of proxy decoders at the UE side may not always be possible.  Moreover, the need for the UE to support different gNB Tx antenna port configurations, or variable BW size may result in the need for the UE to support multiple UE-side ML encoders, and potentially multiple proxy decoders. This may excessively increase the UE complexity and the memory storage; it may also increase the UE power consumption, since the UE may need to run the proxy decoder solely for monitoring the performance of the UE-side ML encoder.  
Therefore, lower complexity solutions are needed for the UE to determine the compression performance for ML encoder performance monitoring. 

For UE-side monitoring, the UE may need to report the monitoring metric, for example if the selected metric is an intermediate KPI such as the SGCS, NMSE or other; the reporting may be periodic or aperiodic. For this example, triggers for monitoring metric reporting may also need to be considered. The triggers may be time-based and/or event-based. Examples of event-based triggers include: measurements of intermediate KPIs meeting configured thresholds, PDSCH ACK/NACK performance, change in scenario (including channel conditions such as Doppler), change in beams, TRP change, cell change, etc. Lastly, signaling the UE-side monitoring metrics may need to be specified.
Proposal 2:	For UE-side monitoring, study both time- and event-based triggers for reporting the monitoring metrics. 
The monitoring metric needs to be carefully studied to avoid unnecessary overhead due to model updating or switching. For example, in some scenarios, SCGS used as an intermediate KPI may not be a good indicator of the eventual KPI performance. For example, in the simulation results in our contribution [8], a 25% gap in the SGCS performance of two different models only translated to a throughput gap of 5% between the models, which may not justify model switching. 
Proposal 3:	For UE-side monitoring, study appropriate monitoring metrics to avoid unnecessary model updating or switching. 
As discussed above, model monitoring based on intermediate KPIs may not be indicative of the system performance. At the same time, system KPIs may not be sufficient to identify the cause of performance degradation.  UE-side performance monitoring based on data distribution may be considered, where out-of-distribution metrics UE measured by the UE may increase the accuracy of the model monitoring. 
Proposal 4:	Study the benefits of using out-of-distribution metrics for UE-side monitoring. 
While model monitoring is important for the detection of potential model performance degradation, reporting the UE-side metrics (e.g. intermediate KPIs such as SGCS and/or NMSE) may introduce additional feedback overhead. Further study of the monitoring metrics report size, quantization of the metrics, frequency of reporting, and thresholds for triggering reports is needed to avoid increasing the feedback overhead.
Proposal 5: 	For UE-side monitoring, study the UE-side monitoring metrics (including report size, metrics quantization, report frequency) to avoid increasing the feedback overhead. 
For UE-side monitoring based on the output of the CSI reconstruction model, the reconstructed CSI needs to be indicated by the NW or obtained from the network side. The format of this indication needs to be specified; in addition to the reconstructed CSI, the indication may include information such as the type of CSI (full channel matrix or eigenvector), as well as means to identify the CSI report associated to the reconstructed CSI. While this monitoring method has the advantage of not requiring a CSI reconstruction model at the UE-side, it may result in additional downlink signaling overhead. 
Observation 4: 	UE-side monitoring based on the output of the NW-side CSI reconstruction model may increase the downlink overhead, because the output CSI reconstructed at the NW needs to be indicated by the NW to the UE.

The Rel-18 SI also investigated NW-side performance monitoring, whereby the NW monitors the performance and make decisions of model/functionality activation/ deactivation/updating/switching.  As indicated in Section 7.1.2 of TR38.843, the metric for monitoring and comparison includes intermediate KPI and eventual KPI.  To calculate the intermediate KPI at the NW-side may require an existing CSI feedback scheme as the reference, which may result in higher than desired overhead.
To enable NW-side monitoring with lower feedback overhead, another option may be to use a set of reference vectors (predefined and available at both NW-side and UE-side), such that metrics relative to the reference vectors and output CSI, as well as reference vectors and input CSI may be measured both at the NW-side and UE-side, respectively. 
Proposal 6:	In case of NW-side monitoring, study monitoring approaches with low signaling overhead.

Performance evaluation for AI/ML-based CSI compression with different pre-processing
AI/ML Model architecture 
For the CSI compression use case, we utilize multiple neural network models with varying configurations to accomplish the compression task. The discussed neural network models can be broadly classified as CNN based or transformer based. 
CNN based models 
For CNN based models, we utilize two different architectures. The first is based on the CSI-Net model proposed in [4] and the second is based on the EVCsiNet model proposed in [5]. Next, we provide architectural details of the two models.
· Input CSI Type: 
· raw channel matrix estimated by UE
· eigenvectors derived from the raw channel matrix
· Output CSI type: compressed channel matrix and compressed eigenvectors
· Pre-processing – for the full channel compression
To effectively compare the performance of the existing CSI feedback and precoding methods with the deep learning-based methods, we utilize the following pre-processing strategy:
· we average the channel matrix across 2 resource blocks and across 1 time slot. Therefore, if the size of the raw channel is 624x2x16, representing 52 RBs,  = 16 and  = 2, the pre-processed channel will have a dimension of 26x2x16, respectively.
· Additionally, we normalize the channels to zero mean and unit variance.
· Pre-processing – for the eigenvector based compression
· Similar to the full channel case, first, we average the channel across 2 resource blocks and across 1 time slot. Thus, getting a channel of dimensions 26x2x16.
· Next, we evaluate the SVD of the channel for each of the 26 sub-bands to evaluate the  = 16 dimensional eigenvectors. The  = 2, eigenvectors are then ordered based on their eigenvalues, from the largest to the smallest. Depending on the training configuration, the eigenvectors corresponding to a specific ordering, or a group of ordering may be selected for training.  
· Quantization
The output of the encoder is quantized using a uniform quantizer. The encoder output is passed through a tanh layer to restrict the range of the encoder output for uniform quantization. The quantization operation is included during the training so that the encoder and decoder can learn appropriate weights while taking into account the quantization impact.
· Model Information:
1) CSI-Net based Model  
· Base Model: For our evaluation we use the CSI-Net [4] autoencoder model. The model has 3 main functional blocks. Encoder block, Quantization, Decoder block
· Encoder architecture: CNN->BN->FC->FC
· Quantizer: Linear quantization
· Decoder architecture: FC-> FC -> RN->RN->CNN, where:
· FC: Fully connected layer,
· CNN: Convolutional Neural Network 
· BN: Batch Normalization
· RN: CNN->BN->CNN->BN->CNN->BN with a skip connection from the input to the RN block
· Feedback size: 64, 96, 128, 192 or 256 bottleneck elements with 2 bits per element 
· Loss function
· We utilize the mean squared error loss function for training. The mean squared error is calculated between the input to the encoder and the output of the decoder.
· Additional information:
· Optimizer: ADAM with adaptive learning rate starting from a rate of = 0.0001 and scale it down by a factor of 0.87 every 5 epochs. 

2) EVCsiNet based Model  
· Base Model: For our evaluation we use a modified version of the EVCsiNet [5] autoencoder model. The model has 3 main functional blocks. Encoder block, Quantization, Decoder block
· Encoder architecture: FC->BN->FC
· Quantizer: Linear quantization
· Decoder architecture: FC-> followed by CNN layers and skip connections,
· FC: Fully connected layer,
· CNN: Convolutional Neural Network 
· BN: Batch Normalization

Transformer based models
· Base Model: For our evaluation we use a modified version of the Transformer architecture proposed in [6]. The utilized model has 3 main functional blocks. Encoder block, Quantization, Decoder block
· Encoder architecture: CNN->Tf-block-> Tf-block -> Tf-block -> Tf-block ->FC
· Decoder architecture: FC->Tf-block-> Tf-block -> Tf-block -> Tf-block ->CNN
· Quantizer: Linear quantization
· FC: Fully connected layer,
· CNN: Convolutional Neural Network 
· Tf-block: Multiheaded-attention block->FC->FC->LN with skip connections. 

Datasets for model training 
To evaluate the performance of the AI/ML models, we consider the dataset per the simulation assumptions in [3].  More details on the dataset and the configurations used can be found in the Appendix.
For beam-domain AE and spatial-domain AE training, a dataset containing 25k channel samples, using UMi channel scenario, has been utilized; 80% of the dataset is used for model training, while 20% is used for validation.  For BDP, a DFT codebook is used with oversampling factors  and  are set to 2,  with double polarization. The number of selected beams ( is varied from 2 to 6.   
For the TSF model training, a dataset with 210k channel samples, generated based on the configurations listed in the Appendix; 80% of the dataset is used for model training, while 20% is used for validation.
CSI compression baseline: Rel-16 Type II 
Rel-16 type II codebook will be used as the performance baseline to show the gain of AI/ML based CSI compression. Table 6.3.2.1.2-1 of TS 38.212 shows the details about how to calculate PMI payload of each rank for Rel-16 Type II codebook. Given N1 = 4, N2 = 2, O1 = O2 = 4, and the number of subbands = 13, the PMI overhead of paramCombination from 1 to 6 is shown in Table 1.
[bookmark: _Ref127469606]Table 1 PMI overhead for Rel-16 Type II codebook
	paramCombination
	Rank 1
	Rank 2
	Rank 3
	Rank 4

	1
	61
	111
	98
	109

	2
	89
	167
	154
	165

	3
	107
	203
	183
	203

	4
	164
	315
	295
	315

	5
	221
	427
	467
	507

	6
	275
	535
	523
	563



For the rank > 1 transmission cases in system-level simulation, we use the weighted overhead based on the rank distribution during the simulation to find the final overhead.

CSI compression simulation configuration
The common parameters for dataset generation and for performance evaluation are as shown in [3]; for convenience, the common parameters table is also included in the Appendix.  

Evaluation on CSI compression performance improvement
BDP-based CSI compression simulation results
In this section, we evaluate the performance of the AE with beam domain processing. First, it is important to highlight that the performance of this two-step compression approach (BDP + AE) is dependent on the reconstruction quality of both BDP and AE together. For BDP, the key driver of the performance is how to find the set of beams that results in a minimal loss of information. While increasing the number of beams may improve the reconstruction performance, it incurs additional overhead as each beam needs to be signalled for transforming the beam-domain channel back to the antenna domain. The overhead associated with the BDP is given by , where L is the number of selected beams,  and  is the number of antennas in the horizontal and vertical domain, respectively,   are the associated oversampling factors. For example, by using the following configuration for BDP  , , then each beam introduces 8 bits of overhead. It is then important to find the minimum number of beams that results in an acceptable reconstruction performance from a BDP perspective. The beams are selected based on the wideband channel which is obtained through averaging out the spatial-frequency channels across all RBs. In addition, it is assumed that the beams are selected across one of the polarizations and reused across the other polarization. This reduces the signalling overhead associated with the selected beams. Once the beams are selected, the beam-frequency channel may be obtained by projecting the channel associated with each subband on the selected beams. The size of the transformed beam-frequency channel is , where  is the number of sub-bands in the frequency domain and each sub-band represents the averaged channel over a number of RBs, e.g., 2. 
Figure 1 shows the impact of the beam selection algorithm on the BDP reconstruction performance. Three different algorithms are evaluated and can be briefly described as follows. Algorithm A projects the covariance matrix of the channel on the oversampled codebook and picks the  beams that preserve most of the information through minimizing the BDP reconstruction error. Algorithm B is a more efficient low-complexity greedy method that picks the beams that preserve most of the energy while minimizing the redundancy between the selected beams. Algorithm C employs an exhaustive search procedure to select the best L beams but it has high computational requirements. From Figure 1, it can be seen that different algorithm can result in different BDP reconstruction performance. We observe that selecting the beams that preserve most of the spatial information while eliminating the redundancy (overlapping information) between the selected beams is a reasonable criterion that results in a minimal loss of information using a few beams.
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[bookmark: _Ref158910837]Figure 1 BDP NMSE reconstruction performance as a function of the number of selected beams for three different beam selection algorithms
Algorithm B is adopted to generate the evaluation results in the remainder of this section. Since the criteria used in Algorithm B is to perform the selection in a way that eliminates redundancy across the selected beams, it makes the feature extraction step using BDP more efficient and in line with the goal of the compression task in general. This, however, will leave the AE to handle the frequency domain compression but not too much room for compressing the beam domain information.  While increasing the number of beams will improve the reconstruction performance of the BDP, it negatively impacts the AE reconstruction performance as the number of AE inputs scales up with the number of beams.
 
Figure 2 shows the reconstruction performance as a function of the number of beams, for the BDP only (blue curve), beam domain AE only (green curve), and the end-to-end/combined performance of BDP and AE.  The simulation results show that aggressively reducing the number of beams will result in a high combined NMSE, that is dominated by the poor performance of the BDP.  Moreover, the results show that significantly increasing the number of beams will also result in a high combined NMSE, that is dominated by the poor performance of the beam domain AE. It can be seen that choosing two beams serves as a sweet-spot for the end-to-end performance.
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[bookmark: _Ref158993988]Figure 2 NMSE reconstruction performance as a function of the number of selected beams for BDP only, beam domain AE only, and combined performance

Figure 3 shows the reconstruction performance of the AE using beam domain processing using two beams, compared to a spatial domain AE. The results show that the AE with beam domain processing outperforms the AE with spatial domain processing (it has lower reconstruction error/NMSE at the same feedback overhead, and lower overhead for the same reconstruction error). For the two-step approach (BDP+AE), red curve in Figure 3, the number of bits is calculated based on the sum of the BDP overhead and the beam-domain AE overhead. 
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[bookmark: _Ref158922601]Figure 3 Reconstruction performance of the spatial-domain AE compared to the end-to-end performance of AE with beam domain processing
Observation 5: AE with beam domain processing outperforms the AE with spatial domain processing in terms of intermediate KPI.
Lastly, the complexity of the AE with beam domain processing for different number of beams is compared to the complexity of the spatial-domain AE, in terms of number of model parameters and number of floating-point operations (FLOPs). The data is summarized in Table 2, and it can be seen that the beam-domain AE has lower complexity than the spatial-domain AE, in terms of number of model parameters and FLOPs, even when a relatively large number of beams is used. In Table 2, the number of flops for the two-step approach include the sum of the number of FLOPs of the beam domain AE in addition to the number of FLOPs associated with the beam selection algorithm (Algorithm B).   

[bookmark: _Ref158973287]Table 2 Complexity and memory comparison of spatial domain AE and BDP + AE
	Approach
	Number of selected beams
	Number of parameters (x1e5)
	Number of FLOPs (x1e6)

	BDP + AE
	1
2
3
4
5
6
	2.35
	1.89

	
	
	4.49
	3.74

	
	
	6.62
	5.59

	
	
	8.75
	7.45

	
	
	10.88
	9.3

	
	
	13.01
	11.15

	Spatial-domain AE
	N/A
	68.44
	46.6



Observation 6: AE with beam domain processing has lower complexity and memory requirements compared to the AE with spatial domain processing.

TSF-based CSI compression simulation results
In this section, we present simulation results for the TSF-based CSI compression and compare it to the SF-based CSI compression, in terms of intermediate KPIs (specifically the NMSE reconstruction performance.). The simulations assume error free CSI reporting.
Figure 4 shows the reconstruction performance (NMSE) of the TSF-based compression (orange curve) as a function of the average CSI report size bits, where the average is calculated over two consecutive CSI reports. The TSF performance is compared to the SF, where the SF CSI compression uses a constant report size of 64 bits; the NMSE performance of the SF-based CSI compression is represented by the blue dotted line.  The results show that as long as the average CSI report size of the TSF exceeds a threshold, the TSF outperforms the SF in terms of the reconstruction performance (NMSE), while having lower feedback overhead.  Specifically, for the example of Figure 4, the CSI report size for SF is 64 bits; the average size of the report size for TSF can be reduced to about 43 bits while having a better NMSE performance compared to the 64-bit SF, thus reducing the feedback overhead.  However, if the CSI report (TSF latent) size is reduced too aggressively (in this example, below 43 bits), the TSF NMSE performance degrades compared to SF.  
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[bookmark: _Ref158925808][bookmark: _Ref158925790]Figure 4 TSF performance vs SF using 64 latent bits
Figure 5 shows a similar set of results for a SF CSI report size of 128 bits. In this example, the average size of the TSF CSI report can be reduced up to about 85 bits while still outperforming the 128 bit SF in terms of the reconstruction performance. 
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[bookmark: _Ref158925816]Figure 5 TSF performance vs SF using 128 latent bits

Observation 7: For the scenarios investigated, TSF-based CSI compression can reduce the CSI feedback overhead by up to 33% compared to SF-based CSI compression, with a smaller reconstruction error.

Conclusion 
In this contribution, we discussed aspects of CSI compression performance, complexity, pre-processing, as well as two-sided model monitoring. We also provided simulation results for beam domain CSI compression and TSF-based CSI compression.
We provide the following observations and proposals.
Observation 1: Beam domain processing results in low-dimensional channel samples that may be compressed using low complexity Autoencoder models, resulting in reduction in both memory and computational requirements relative to spatial domain Autoencoders.
Observation 2: Beam domain processing exhibits good generalization capabilities as a single beam domain AE model can deal with multiple antenna configurations, potentially reducing the need for model switching.
Observation 3: While TSF compression may potentially result in further improvement in the compression performance relative to SF compression, it may require more complex AE models with higher computational and memory requirements relative to SF. 
Observation 4: 	UE-side monitoring based on the output of the NW-side CSI reconstruction model may increase the downlink overhead, because the output CSI reconstructed at the NW needs to be indicated by the NW to the UE.
Observation 5: AE with beam domain processing outperforms the AE with spatial domain processing in terms of intermediate KPI.
Observation 6: AE with beam domain processing has lower complexity and memory requirements compared to the AE with spatial domain processing.
Observation 7: For the scenarios investigated, TSF-based CSI compression can reduce the CSI feedback overhead by up to 33% compared to SF-based CSI compression, with a smaller reconstruction error.

Proposal 1: The performance-complexity trade-off of TSF should be considered for study. 
Proposal 2:	For UE-side monitoring, study both time- and event-based triggers for reporting the monitoring metrics. 
Proposal 3:	For UE-side monitoring, study appropriate monitoring metrics to avoid unnecessary model updating or switching. 
Proposal 4:	Study the benefits of using out-of-distribution metrics for UE-side monitoring. 
Proposal 5: For UE-side monitoring, study the UE-side monitoring metrics (including report size, metrics quantization, report frequency) to avoid increasing the feedback overhead. 
Proposal 6:	In case of NW-side monitoring, study monitoring approaches with low signaling overhead.
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Appendix 
The common parameters used for the considered suite of simulations are based on the assumptions agreed in [2] and is shown below for convenience. 

Table 3 Common parameters used in all Scenarios/Configurations
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Uma, Umi

	Frequency Range
	FR1 only, 2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	16 ports ; configuration specific

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS Tx power
	41 dBm 

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15 kHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	MU-MIMO with rank adaptation

	Number of users
	6 UE per BS

	Max number of MU layers
	12

	CSI feedback
	Feedback assumption at least for baseline scheme
· CSI feedback periodicity (full CSI feedback) :  5 ms,
· Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Traffic model
	Full buffer, Non full buffer (FTP Model 1), packet size 0.5 Mbytes

	UE distribution
	CSI compression: 80% indoor (3 km/h), 20% outdoor (30 km/h)

	UE receiver
	MMSE-IRC as the baseline receiver

	Feedback assumption
	4ms delay, ideal

	Channel estimation         
	ideal channel estimation

	Evaluation Metric
	Throughput and CSI feedback overhead as baseline metrics.

	Baseline for performance evaluation
	Rel-16 Type II CSI
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