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Introduction
Referring to the findings presented during the RAN1 meeting's discussion on AI for physical layer use cases in Rel18 [1], it is evident that leveraging AI for predicting candidate beams yields significant advantages, as indicated by the evaluation results from companies’ contributions. The following is the core part of the further normative work for AI-based beam management. 
	· Beam management - DL Tx beam prediction for both UE-sided model and NW-sided model, encompassing [RAN1/RAN2]:
· Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams (“BM-Case1”)
· Temporal DL Tx beam prediction for Set A of beams based on the historic measurement results of Set B of beams (“BM-Case2”)
· Specify necessary signalling/mechanism(s) to facilitate LCM operations specific to the Beam Management use cases, if any
· Enabling method(s) to ensure consistency between training and inference regarding NW-side additional conditions (if identified) for inference at UE 
NOTE: Strive for common framework design to support both BM-Case1 and BM-Case2


In this paper, we will explore the potential specification impact of AI-based beam management, focusing on three key aspects: model generation, model inference, and model monitoring. 
AI/ML model generation 
Model training  
In fact, model finetuning and updating also fall under the category of model training, which can be performed either online or offline. In this section, we will discuss solutions for model training, finetuning, and updating. With the advancement of AI technology, one approach to facilitate model training is through the distillation of a large model. Under this solution, the training data includes not only simple RSRP or other measurement results but also data flowing out from the intermediate layers of the model. This method can be used for NW to assist UE in training the model. Another approach for model training involves Federated Learning. In this case, UEs deployed in different scenarios can train a specific model locally, report it to the NW, and then NW will merge these models from different UEs to generate a highly generalized model that is then distributed to individual UEs. This solution can also help protect some privacy information for UEs, but it also needs gNB to configure RS resources set for UE measurement, collecting training data for local model training based on model input and output settings. In general, NW or other entities should be allowed to assist UE in training the model based on UE requests. 

Proposal 1 : Support the NW in assisting UE model training based on UE requests.
Proposal 2 [bookmark: _Hlk157607494]: Support collecting training data from legacy measurement schemes based on model input & output settings.

Model update 
For UE-side models, model updates can be orchestrated by other devices or the cloud, including gNB or devices deployed in the network. This collaborative approach ensures a comprehensive updating mechanism that leverages external resources for enhanced efficiency and accuracy. In this situation, UE should report the difference between expected predicted results and the current model predicted results to other devices or the cloud. The expected predicted results represent actual optimal beam based on UE measurements, which can be obtained through traditional beam sweeping, as illustrated in Figure 1. Additionally, other devices or the cloud should have a clear understanding of the structure and parameters of the current UE-side model to assist in finetuning the model, and this information can also be obtained from UE reports.

[image: ]
Figure 1. Traditional beam sweeping

Proposal 3 : For the UE-side models, UE can report the difference between the predicted results and the traditional beam measurement-based results to the NW, when requesting assistance in model updates.

In the work item, it is necessary to define new mechanisms to facilitate Lifecycle Management (LCM) operations, including model activation, deactivation, selection, switching, fallback, etc. This section will specifically focus on model activation. In the legacy mechanism, gNB periodically or aperiodically configures the CSI-RS/SSB resources set for UE to obtain beam measurement results, and beam switching relies on UE reporting these measurement results. However, as AI replaces the legacy mechanism, a reduction in the frequency of SSB/CSI-RS measurements is expected. 
In use case 1, where the AI model operates in the spatial domain and lacks temporal information, determining when to initiate a new round of predictions becomes a challenge unless triggered by beam failure. However, when beam failure occurs, legacy beam failure recovery mechanism takes precedence over using AI for recovery. Beam failure recovery will result in higher latency and power consumption for UE, and AI-based beam management is unnecessary. Therefore, defining and communicating the model activation period is crucial for both gNB and UE. On the other hand, in use case 2, although the AI model can capture temporal information, it still requires a certain time for collecting and filtering input data. Hence, whether in use case 1 or use case 2, the model activation period needs to be defined, indicating when the model should be active. 

Proposal 4 [bookmark: _Hlk157616229]: Model activation period should be defined and known by both gNB and UE.

AI/ML model inference 
Model input and output

In legacy mechanisms, each serving beam may have different dwelling time in the temporal domain. Therefore, in AI-based beam management, the output involving the dwelling time of candidate beams is also anticipated, particularly in use case 2. Historical data is employed to predict multiple candidate beams for N future time instances which is the target of use case 2, where N is greater than or equal to 1. This can be illustrated in Figure 2, where T2 represents the time window of AI/ML output, and there are N time instances corresponding to different best-predicted beams. And D1, D2, ..., Dn are representing the dwelling time of each predicted best beam.
 If the gNB has clear information about the dwelling time of these candidate beams at each time instance, gNB can directly perform beam switching at the end of the dwelling time, potentially reducing the frequency of beam failures. However, for use case 1, which operates in the spatial domain, the model may not obtain temporal information. Hence, it becomes challenging for the model to output the dwelling time of candidate beams.


Figure 2. the output of AI/ML model in BM-Case2

Proposal 5 : For use case 2, model input and output should include the dwelling time of predicted candidate beams.  

The frequent beam failures in mmWave due to mobility can result in increased latency and higher power consumption at the UE, as mentioned earlier. The introduction of AI-based beam management is anticipated to address and mitigate these challenges. 
For the AI-based beam management, a set of candidate beams with higher probabilities of being the best beams in future time instances can be predicted. In Figure 3, we draw the number of beam measurements over different η, where η denotes the sum probabilities of a subset with candidate beams. As time increases, the trained AI/ML model becomes more accurate in predicting the subset of candidate beams with high probability of being best beam. With less candidate beams to track in the beam management process, the complexity of beam measurement is also reduced significantly.
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Figure 3. Number of beam measurements over time
Based on this solution, UE can make measurements only on this subset of candidate beams which have higher probabilities to be selected. According to this solution, UE doesn’t need to measure more RS or trigger BFR mechanism frequently. 

Proposal 6 	: For the output of AI/ML, the criterion associated with the predicted beam ID in BM-case1 and BM-case2 can be the sum of probabilities of being the best beams being higher than a threshold.

As the previous discussion, gNB will configure a set of beams for UE to measure to collect input data. Hence, Set C has been introduced. Set B as the model input can be chosen from Set C. Drawing from our background knowledge, we understand that model input data can be filtered based on specific rules, such as ensuring that the RSRP obtained through measurement is higher than a predefined threshold. 
However, a challenge arises when there might not be sufficient data in Set C that satisfies these specific rules. In other words, there may not be enough high-quality input data available for the model. This can lead to two possible outcomes: firstly, inputting inadequate data into the model, resulting in a decline in predicted accuracy. If the predicted accuracy decreases significantly, the predicted beams are unsuitable for link communication. Alternatively, even if there is a decline in predicted accuracy, the results may still satisfy the link quality requirements. No matter which outcome, the gNB needs to understand the reason of the decline in model performance and provide guidance.  
Hence, when the UE does not collect enough high-quality data for Set B from Set C, it should report the event to the gNB. Subsequently, the gNB can configure a new set for collecting input data when the predicted accuracy declines significantly. If the UE still cannot obtain high-quality data in the new set, it indicates that the scenario has changed and is no longer applicable for the current serving model. Model switching or fallback can be considered afterward. 

Proposal 7 : At the inference stage, the UE should report the quality of input data to the gNB when the measurement results fail to meet the model's input requirements.

 Additional application
The UE moving speed is a significant factor in evaluating the time channel feature. The coherence time of the channel has an inverse relationship with UE speed, meaning that a fast-fading channel has a shorter coherence time compared to a slow-fading channel. To achieve better predictive performance of the AI model, it is desirable for the input and output data to exhibit a strong correlation. In other words, it is expected that the input and output are within a coherence period, and collecting data beyond the coherence time has a minimal impact on this prediction instance. As shown in Figure 4, predicted accuracy is represented by the Root Mean Square Error (RMSE) between the predicted best beam ID and the actual best beam ID. The UE speed is set to 12 km/h, and the horizontal axis represents the amount of historical data collected. When the historical data volume increases, the RMSE levels off, and it remains nearly stable.
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Figure 4. RMSE of Tx beam ID between predicted best beam and actual best beam with a UE speed of 12km/h

Therefore, the optimal time window size for collecting input data should be defined. Accordingly, we can determine the optimal time window size for data collection based on the UE speed. When the UE speed is increasing, the time window can be shrunk to avoid unnecessary measurement overhead [2]. Therefore, we advocate for UE reporting its movement speed to assist model inference in use case 2. 

Proposal 8 : For use case 2, gNB can indicate to the UE the duration of the time window for collecting input data based on the UE's movement speed. 

Model monitoring 
Performance monitoring
For the performance metrics of AI/ML monitoring, we have four alternatives. Beam prediction accuracy is more reliable than others; however, in our understanding, it should perform exhaustive sweeping to find the actual Top-K/1 beam and then evaluate the accuracy of the predicted beam. Considering the time latency and measurement overhead, we do not think it is the best choice. The performance metric based on the input/output data distribution of AI/ML is not clear to us. If we want to extract the features of data distribution based on input and output, whether a large amount of data is needed or not is uncertain. As for link quality, the worse link quality may not be caused by using a predicted beam, but it can be the condition to trigger monitoring. Using L1-RSRP difference, evaluated by comparing measured RSRP and predicted RSRP as the prediction performance of the AI/ML model, is more feasible and has lower complexity. Once the Top-K/1 prediction beams are inferred by the AI/ML model, the UE just needs to measure the corresponding K/1 beams instead of the full set. Based on the above analysis, we support the L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 

Proposal 9 : Considering the trade-off between measurement overhead and monitoring accuracy, the L1-RSRP difference between the predicted and actual value should serve as the performance metric.

In the existing specification, there is a well-established beam failure mechanism. We propose introducing a similar model failure mechanism because similar issues may be encountered. For example, during the process of model switching, the phenomenon known as the "ping-pong effect" may also occur. To guarantee robustness and account for external influences, the initiation of model failure should take into consideration multiple detection results. 
When the performance metric of a model drops below a pre-defined threshold, it can be marked as one failure and then, the UE/gNB will start a failure count with a specific timer activated. Upon reaching the maximum allowable failure count within the timer's duration, model failure can then be triggered. This ensures a comprehensive approach to handling model failures, aligning with the principles established for beam failure mechanisms. 

Proposal 10 : Model failure detection mechanism can be defined according to the process of the beam failure mechanism.

Model selection/switching 
In situations where diverse models are deployed to cater to a common functionality, each specifically designed for distinct scenarios, the initiation of model switching becomes necessary in the event of a failure in the serving model. Model failure is defined by the serving model's incapacity to meet the communication requirements of the link. As discussed in the SI, the NW possesses the capability to manage UE-side models. This entails the NW's ability to indicate the UE-side model to execute various LCM operations, such as model activation, deactivation, update, switching, fallback, and so on. The decisions made by the NW also rely on various pieces of information reported by the UE.
Two situations may arise: one is when the NW possesses detailed information about the UE-side models, including their structures, parameters, and application scenarios, among other details. In this case, the NW can make decisions solely based on the UE reporting certain measurement results or channel estimation results such as RSRP, SINR, or other channel-related information [3]. The other situation is when the NW lacks specific information about the application scenarios of candidate models at the UE-side. In such cases, individual evaluations of the performance of these models are necessary. The UE reports the performance metrics of these candidate models, which can be all or only a subset of them. Subsequently, the selection of the target model is based on their performance.

Proposal 11 : For known models within the NW, model selection can rely on channel-related measurements like RSRP, SINR, or other relevant information.
Proposal 12 : For unknown models within the NW, select the target model based on the performance of the candidate models obtained through detection.

Conclusions
Finally, allow us to repeat our proposals to draw attention.

Proposal 1 : Support the NW in assisting UE training models based on UE requests.
Proposal 2 : Support collecting training data from legacy measurement schemes based on model input & output settings.
Proposal 3 : For the UE-side models, UE can report the difference between the predicted results and the traditional beam measurement-based results to the NW, when requesting assistance in model updates.
Proposal 4 : Model activation period should be defined and known by both gNB and UE.
Proposal 5 : For use case 2, model input and output should include the dwelling time of predicted candidate beams.  
Proposal 6 : For the output of AI/ML, the criterion associated with the predicted beam ID in BM-case1 and BM-case2 can be the sum of probabilities of being the best beams being higher than a threshold.
Proposal 7 : At the inference stage, the UE should report the quality of input data to the gNB when the measurement results fail to meet the model's input requirements.
Proposal 8 : For use case 2, gNB can indicate the UE on the duration of the time window for collecting input data based on the UE's movement speed. 
Proposal 9 : Considering the trade-off between measurement overhead and monitoring accuracy, the L1-RSRP difference between the predicted and actual value should serve as the performance metric.
Proposal 10 : Model failure detection mechanism can be defined according to the process of the beam failure mechanism.
Proposal 11 : For known models within the NW, model selection can rely on channel-related measurements like RSRP, SINR, or other relevant information.
Proposal 12 : For unknown models within the NW, select the target model based on the performance of the candidate models obtained through detection.
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