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[bookmark: _Ref111120162]Introduction
[bookmark: _Hlk510705081]In this contribution, we continue the study of AI/ML-based CSI prediction as begun in the Rel-18 study item on Artificial Intelligence and Machine Learning (AI/ML). The objective of the continued study is given in the Rel-19 AI/ML work item [1] as:
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
The following other aspects requiring further study were identified in the conclusions of TR 38.843 [2]:
· CQI/RI calculation
· Rank > 1 solutions
· Additional aspects of:
· Specification impact
· Training collaboration
· Performance monitoring
We will address each of the aspects identified for further study in the following sections.
Discussion
Trade-off between performance and complexity/overhead
Spatial/Temporal/Frequency Compression
Channel coherence, sampling, and compression
The purpose of CSI-RS signaling and CSI feedback is to provide the network node with channel state information that can be used, via MIMO precoding, to maximize the spectral efficiency of the downlink data channel. The channel is varying in dimensions of space (i.e. relative to antenna array geometry), frequency, and time.
The fundamental limits of how much upstream overhead is required to convey the channel state information with a desired level of accuracy increases as the variability of the channel increases (equivalently as the coherence decreases) in any of these three dimensions.
A low-complexity method to adapt the overhead to the coherence of the channel is through subsampling.  Spatial subsampling is accomplished by defining beam grids, frequency subsampling is via subband size, and temporal subsampling is accomplished by configuring the CSI-RS periodicity. 
When subsampling spacing is too large, in any dimension, the accuracy of the feedback is limited. When subsampling spacing is narrow enough, high accuracy can be achieved. 
Without compression, the overhead increases in inverse proportion to the subsample spacing. With ideal compression, the overhead becomes insensitive to the sampling interval as the sampling interval decreases, but at a cost of increasing complexity. As a rule of thumb, the sampling interval should be short enough to achieve good accuracy, but not so short as to increase the complexity of compression.
Channel prediction
Channel prediction can have two purposes in channel CSI feedback.
The first purpose can be to improve accuracy when the interval between measuring the channel with CSI-RS and using the CSI for downstream transmission is at or above the channel coherence. This time interval may be lower bounded due to standards limitations as well as by implementation constraints in devices. Prediction can help achieve the best accuracy possible in this scenario. Performance will vary depending on how fast the channel changes.
The second purpose of channel prediction can be to enable overhead reduction. For example, if zero-order hold is used for prediction (i.e. no prediction), then it may be necessary to set the CSI-RS period to half the temporal coherence to achieve good performance.  If a prediction scheme is able to achieve the same performance while doubling the CSI-RS period to be equal to the temporal coherence, then the prediction can be credited with cutting the overhead in half.
[bookmark: _Ref158966462]Observation 1: Channel prediction can serve two purposes in CSI feedback:
1. Improve accuracy
2. Enable overhead reduction

Separate space/frequency (SF) compression and prediction
For a given prediction scheme (be it learning-based or model-based), prediction and CSI-RS periodicity can be adjusted to give good accuracy of reconstruction in time, and then SF-based CSI compression based on space/frequency adjustment can be separately applied to give further overhead reduction.
The complexity of prediction can be concentrated on the UE-side or at the network side, or in principle, it could be distributed across both sides. Figure 1 gives an example of UE-side prediction, where PMI matrices at times and  , with  being the CSI-RS period, are used to predict the PMI at a future time, . This predicted PMI is compressed in space/frequency by an encoder, decoded at the network side, and used at network side. The time delay  ideally should match the time between the measurement of the CSI at the UE and the time that the CSI will first be used for downlink transmission. Alternatively, the channel state itself could be predicted and the PMI calculated from the predicted channel state. Figure 2 gives an example of network-side prediction, where the UE simply encodes the current PMI  and the network uses decoded PMI samples and . In this case, besides compensating for the delay ,the predictor can also be used to generate multiple predictions with a period  that is smaller than the CSI-RS reporting period  In principle, prediction at a finer granularity  could also be done at the UE side. However, this generates the same overhead as reducing the CSI-RS reporting period from  to , which would typically give better accuracy when that level of overhead is acceptable.
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[bookmark: _Ref158671983]Figure 1: UE-side CSI prediction.
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[bookmark: _Ref158672036]Figure 2: Network side CSI prediction.

Joint space/frequency/time (SFT) compression
Separation of SF compression and prediction is convenient but is not necessarily optimal. By combining both functions together, it may be possible to further reduce overhead for a given accuracy requirement.  Another benefit of joint SFT compression may be to reduce the need for adapting the CSI-RS periodicity to the temporal coherence of the channel. That is, in principle a good temporal compression scheme will be overhead efficient even if the CSI-RS period is shorter than necessary (not optimized).  On the other hand, joint SFT compression schemes are likely to be significantly more complex to train and implement than separate SF compression and prediction. Interoperability challenges that have been discussed in the context of SF compression are still relevant when the time dimension is added.
Two general setups for joint SFT CSI compression are depicted in Figure 3 and Figure 4.
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[bookmark: _Ref158672122]Figure 3: Feed-forward architecture for joint SFT CSI compression.
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[bookmark: _Ref158672127]Figure 4: Recurrent architecture for joint SFT CSI compression.

In a feedforward architecture, the encoder input is augmented with past values of PMI , and the decoder input is augmented with past values of CSI feedback . The encoder output is the CSI feedback  and the decoder output can be a predicted PMI matrix, or a sequence of PMI matrices at a periodicity  smaller than the CSI-RS reporting period .
In a recurrent architecture, the encoder produces a state vector , which is then fed back with delay as an additional input. Likewise, the decoder produces a state vector  which with delay provides an additional input to the decoder. This structure was described in [3].  In the AI/ML setting, the feedback structure is typical of recurrent neural networks, including LSTMs.  Mixtures of these two approaches are also possible – for example a recurrent encoder and feedforward decoder. We next compare these approaches qualitatively in a few dimensions.
Inference Complexity: 
Recurrent networks have the potential to leverage temporal correlation with lower complexity than feedforward approaches, particularly when the temporal coherence is much longer than the CSI-RS periodicity. However, if the CSI-RS periodicity is close to the temporal coherence, complexity of the two approaches may be similar. This is analogous with IIR and FIR filters, where an IIR filter can implement a long impulse response more efficiently than an FIR filter can.
Training Complexity:
Feedforward networks are generally easier to train than recurrent networks.
Error propagation and stability:
Because recurrent networks and systems depend on their entire past history of inputs, their behavior is harder to analyze and control. Care must be taken to ensure that systems are stable under all realistic inputs, and that errors do not propagate excessively, for example if an encoder model differs slightly from the encoder model that a decoder was designed to work with.
Interoperability:
An important area of current study for SF-based CSI compression remains interoperability, and how functions are specified. In the context of SFT CSI compression, explicitly specifying an encoder or decoder function would be straightforward for either a feedforward or a recurrent ML implementation. The problem is more complex if using a dataset to implicitly characterize an encoder or decoder, similar to Type 3 separate training methods studied for SF CSI compression.  The concepts of encoder/decoder specification are discussed in Section 2.2 of this contribution.  For a feedforward architecture, it is still straightforward to specify the function via a data set. For example, a decoder could be specified by a data set of  triples. For a recurrent architecture, dataset based specification is more challenging, as the output in principle depends on the infinite past, though it may still be possible to do using data sets of long sequences of inputs and outputs. For these reasons, in a network-first Type 3 scenario, it may be advantageous to specify a feedforward decoder. The encoder, which does not need to be specified, could then be feedforward or recurrent. In a UE-first Type 3 scenario, it may be advantageous to specify a feedforward encoder, while allowing the decoder to be feedforward or recurrent.
[bookmark: _Ref158966614]Proposal 1: SFT CSI compression schemes should be evaluated in comparison with separate SF CSI compression and prediction as a baseline, in two scenarios: accuracy improvement and overhead reduction.
[bookmark: _Ref158966620]Proposal 2: In comparing SFT compression with SF CSI compression and prediction for overhead reduction, optimization of the CSI-RS periodicity with respect to the temporal coherence should be taken into account.
[bookmark: _Ref158966630]Proposal 3: In comparing SFT compression with SF CSI compression and prediction for accuracy improvement, the CSI-RS periodicity should be fixed, and temporal coherence should be at or below the CSI-RS period.
[bookmark: _Ref158966634]Proposal 4: If recurrent networks are considered for SFT CSI compression, methods for ensuring stability, controlling error propagation, and achieving interoperability should be addressed.

Cell/Site-specific models
In Release 18, the generalization and scaling capability, specifically the ability to utilize a single model applicable across diverse scenarios, configurations, and sites, has been extensively investigated and evaluated for CSI compression in the following aspects:
-	Various deployment scenarios (e.g., UMa, UMi, InH)
-	Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
-	Various carrier frequencies (e.g., 2GHz, 3.5GHz)
-	Various antenna spacing
-	Various antenna virtualization (TxRU mapping),
-	Various ISDs
-	Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
-	Various sizes of CSI feedback payloads
-	Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)

The evaluation results of the AI/ML model generalization and scalability for CSI compression study are outlined in TR 38.843 [2], alongside the accompanying spreadsheets, namely CSI_Table 2 and CSI_Table 3. In Table 1, we have consolidated the evaluation findings and associated them with the methods employed for achieving generalizability.     
[bookmark: _Ref158312512][bookmark: _Ref158312500]Table 1. Generalization/Scalability Case 3 Evaluation Results Summary (ML model trained on mixed datasets and inferenced on specific datasets).
	Configurations
	Positive Gain or Minor Loss 
	Moderate Loss
	Significant Loss
	Methods

	Deployment Scenarios
	25 sources
	8 sources
	4 sources
	Mixed datasets

	UE Distributions
	9 sources
	2 sources
	0
	Mixed datasets
or indoor UEs

	Carrier Frequency
	8 sources
	0
	1 source
	Mixed datasets 
or High Carrier Frequencies

	TxRU Mapping
	5 sources
	1 source
	0
	Mixed Datasets 
or Model Switching

	CSI Payloads 
	15 sources
	7 sources
	2 sources
	Truncation/Padding or 
Various Quantization Granularities 
or Adaptation Layer

	Bandwidth
	4 sources
	2 sources
	1 source
	Model Architecture 
or Wide to Narrow Bands

	TX Port Numbers
	13 sources
	4 sources
	2 sources
	Truncation/Padding
or Adaptation Layer



Based on Table 1, it is evident that the ML model demonstrates generalizability across various scenarios and configurations, achieving either positive gain/minor loss or moderate loss using different methods. This indicates that both BS and UE could utilize a general/master ML model across diverse scenarios and configurations, ensuring relatively good performance. 
However, there are instances, as highlighted in Table 1, where scenario or configuration-specific models, including those tailored to site-specific configurations or channel conditions, may offer performance benefits, particularly when UEs have the capability to store all relevant specific models. Hence, there is value in further exploration to determine the extent of performance benefits derived from employing specific models.
To facilitate better understanding and comparison, it is imperative to select a few specific scenario/configurations that are representative and crucial for all companies to study. For instance, consider scenarios with fewer reported evaluation results, such as TxRU mapping and different bandwidth. Additionally, since many companies observed moderate or significant loss in cases of deployment scenarios and with CSI payloads, conducting additional studies in these scenarios is also deemed necessary.
[bookmark: _Ref158966640]Proposal 5: Selecting a few representative specific scenarios/configurations to investigate the advantages of employing cell/site-specific models. Preferably, focus should be on evaluating SLS results, while not excluding intermediate KPIs like SGCS.
It is worth nothing that, emphasizing the benefits of cell/site-specific models may require generating datasets from ray tracing techniques or in-field measurements rather than relying solely on statistical channel models. Unlike datasets generated from statistical channel models, which are not spatially specific and result in “identical” CSI data for each cell/site, datasets generated from ray tracing provide spatially specific information, allowing for a more accurate representation of real-world scenarios. Therefore, when studying the advantages of cell/site-specific models, utilizing datasets from ray tracing techniques can better demonstrate the effectiveness and applicability of such models in real-world environments.  To get comparable results from different companies using ray tracing techniques would likely require some agreement on details of the ray tracing scenarios.  
We also consider two alternatives to ray tracing which yield conditions specific to classes of cells, but not specific to single cells.  The first alternative is utilizing a heterogeneous network (het-net) environment, incorporating both macro and microcell deployments. In this setting, channel models differ between UEs attached to microcells and macrocells due to variations in propagation characteristics, antenna configurations, and deployment scenarios. Evaluating cell/site-specific models in a het-net environment allows for a comprehensive assessment of their performance across different cell types.  The second alternative is to compare the effectiveness of cell/site-specific models using mixed scenario datasets versus single scenario datasets. Mixed scenario training involves training the models on datasets that incorporate multiple scenarios, such as UMa and InH, to capture a broader range of channel conditions. On the other hand, single scenario training focuses on training models using datasets specific to a particular scenario. Investigating both training approaches provides insights into the adaptability and generalization capabilities of cell/site-specific models across diverse deployment scenarios.
[bookmark: _Ref158966651]Proposal 6: To further investigate and evaluate cell/site-specific models, the following alternatives could be considered:
Option 1: Ray-Tracing Analysis
Option 2: Het-Net Environment
Option 3: Mixed Scenario Training vs. Single Scenario Training

In addition to variations in scenarios and configurations, the performance of an ML model is significantly influenced by the state of experienced channels. This implies that within the same scenario/configuration, differences in channel conditions also impact performance. The trade-off between performance and complexity/overhead is intricately tied to the perception of the channel environment and corresponding adaptation strategies. As a solution, we propose a vector-diversity-based channel categorization metric and corresponding model selection approach to better balance among CSI feedback performance, model complexity, and feedback overhead. 
Recognizing the inherent properties of the channel itself, we recognize that the performance of CSI compression depends not only on the quality of the AI model but also on the diversity of the channel environment. To address this challenge, we propose a simple yet effective monitoring/categorizing scheme to assess the diversity of CSI. Subsequently, we incorporate corresponding model selection to balance feedback performance, feedback overhead, and computational complexity. 
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[bookmark: _Ref158632708]Figure 5. Vector-diversity-value-based approach to categorize CSI data in a specific cell/site/scenario.  
The CSI matrix is composed of Nsub (frequency subbands) eigenvectors and can be conceptualized as a cluster of vectors. The intensity of frequency selectivity within a given channel is reflected in the angular disparities/spreads among eigenvectors of all subbands, subsequently impacting the overall performance of CSI feedback. We refer to the metric evaluating overall angular disparity as the "vector diversity value". A larger vector diversity value indicates a more diverse range of CSI data, necessitating either a more complex AI model or higher CSI feedback overhead to accommodate the scenario. 

The approach based on vector diversity value categorization is illustrated in Figure 5 and can be summarized as follows:
· Vector Diversity-Based Input Categorization: We propose a rule-based dataset categorization scheme that classifies training and in-field data into N categories (e.g., 3 as the X, Y, Z CSI feedback range in Rel-18) by assessing the overall dispersion of all eigenvectors in the CSI matrix. For a normalized CSI sample, a straightforward indicator to evaluate its diversity level is the negative of the L1 norm of the average vector formed by taking the mean of each element across all subbands.
· Category-Specific Model Training: For each data category, a distinct model (both UE and NW parts of the two-sided model) is trained, characterized by its model complexity and feedback overhead. Different models yield varied reconstruction performances at the NW. By adopting a per-category model training approach, a set of models are obtained, each customized to accommodate different channels with varying levels of vector diversity.
· Category-based model management: As CSI data in each category is characterized by a specific vector diversity level and served by an individual model, the categorization rule also acts as the monitoring rule to generate monitoring measurements for model management. Following the categorization rule, the UE can classify the observed in-field CSI matrices into their corresponding categories, resulting in a category sequence as the monitoring measurements. The NW makes decisions on model selection or switching (refer to selecting/switching a pair of UE-parts and NW-parts) based on the reported category sequence. A simple policy is to select the model corresponding to the category with the highest count.
We evaluate the performance in the UMa scenario using 630K samples as outlined in Rel-18 [2]. Following the implementation scheme described above, both training dataset and testing dataset (considering only the rank 1 case in this contribution) are divided into 3 sub-datasets, each corresponding to the vector diversity level range of [-1/3, 0], [-2/3, -1/3], and [-1, -2/3]. Within each sub-dataset, 80% of the samples are used for training and the remaining 20% are reserved for testing. Table 2 outlines the configuration of each model and presents the corresponding category. For comparison, we also provide the performance of the category-independent models (Model #0), which are trained without categorization. Models # 1-3 represent cases with high, medium, and low overhead (X, Y, Z cases), respectively.  
[bookmark: _Ref158634461]Table 2. Category-specific datasets and models with different overhead bits and complexities.
	Category ID
	Model ID
	Encoder/decoder model structure
	Feedback overhead

	w/o categorization
	Model #0
	Transformer with 6 attention layers and 128 embedding dimensions
	128bits

	Category #1
([-1/3,0])
	Model #1
	Transformer with 6 attention layers and 128 embedding dimensions
	300 bits

	Category #2
([-2/3,-1/3])
	Model #2
	Transformer with 4 attention layers and 128 embedding dimensions
	210bits

	Category #3
([-1,-2/3])
	Model #3
	Transformer with 2 attention layers and 32 embedding dimensions
	32bits



CSI feedback performance of different models with respect to each dataset is presented in Table 3. Model #0 is trained without data categorization at the medium overhead of 128 bits and can achieve an average SGCS of 0.812 across the entire testing dataset. With category-specific models (with model #1-3 for each data categorized sub-dataset, respectively), an average SGCS of 0.832 is achieved with no additional overhead bits.
[bookmark: _Ref158635825]Table 3. Category-specific Model performance in SGCS.
	Category ID
	SGCS 
with model #0
	SGCS 
with model #1
	SGCS 
with model #2
	SGCS 
with model #3

	w/o category
(Mixed CSI)
	0.812
	X
	X
	X

	Category #1
([-1/3, 0])
	0.684
	0.813
	0.758
	0.541

	Category #2
([-2/3, -1/3])
	0.754
	0.850
	0.820
	0.623

	Category #3
([-1, -2/3])
	0.923
	0.947
	0.934
	0.851



Despite achieving an average SGCS of 0.812 without distinguishing categories, Model #0 falls short when delving into each category. It is observed that this model is inadequate for handling data from category #1 and category #2, which together constitute more than 65% of the dataset.
By training models separately for each category, more efficient and accurate feedback can be achieved. Given that data in category #1 exhibits the highest vector diversity level, the most complex model with the maximum feedback overhead (300 bits) is employed, reaching an average SGCS of 0.813. Similarly, when the vector diversity level is lower, a medium-complexity model with medium feedback overhead is employed to accommodate CSI in category #2. When the vector diversity level is the lowest, the simplest model with the lowest feedback overhead is used for data in category #3.
[bookmark: _Ref158966521]Observation 2: The proposed data categorization scheme along with the model selection approach effectively distinguishes channel complexity, guiding model selection, training, adjustment, and performance monitoring. This approach leads to a better balance among CSI feedback performance, model complexity, and feedback overhead.
[bookmark: _Ref158966661]Proposal 7: In addition to cell/site specific models, the use of specific model/feedback overhead within the same cell/site should also be studied.

[bookmark: _Ref158969879]Interoperability and inter-vendor training collaboration aspects
It should be noted that there are close relationships between actual models being used for training and inference at the UE-side and at the gNB side, training collaboration types, test decoder, and interoperability [4]. As AI/ML-enabled CSI compression is a two-sided model case, it is expected to entail humongous efforts for both parties, i.e., UE/receiver modem vendors (representing the encoder side) as well as gNB vendors (representing the decoder side), to ensure interoperability across multiple network and device vendors with various training collaboration types and the associated testing mechanism being taken into account, in case we intend to impose no (or minimum) restrictions on encoder/decoder design possibilities and training collaboration types. We need to determine a kind of anchor point to guarantee manageable interoperability, which we propose in short to focus on the following case only, (at least partially) standardized decoder to be used with NW-first training collaboration types (Type 2 sequential or Type 3 separate).
In this section, the reasoning behind the above proposal is to be laid out.
Measures to impose restrictions on encoder/decoder design possibilities
One way to reduce the complexity of interoperability is to limit possible variations of models of either encoder or decoder (or both) via (partial) standardization. If we would be hypothetically asked to choose one side to fix/limit possible variations of the model between the encoder or the decoder side, what can be a better choice? We think (partial) standardization of the decoder side would make more sense, due to the following reasons.
· It is more in line with the legacy scheme.
In the legacy 3GPP CSI feedback mechanism, there is no or very little room for ambiguity on how to interpret CSI (PMI) feedback at NW side. In this sense, an attempt to standardize a decoder can be seen to be more in line with the legacy scheme. 
· gNB should handle multiple UEs simultaneously during its operation.
In case there are multitudes of possible encoder models and corresponding matching decoder models, it is prohibitive for gNB vendors to support all of these possible combinations and switching of models during its operations. This can be alleviated by restricting the decoder design possibilities by partial standardization of the decoder. As a result of partial standardization of the decoder, the decoder ends up with a limited number of underlying model backbone architectures, which consequently regulate associated encoder models as well to some extent. It is therefore anticipated that the gNB vendors need to maintain a few numbers of (or single) decoder model(s) only, with possibly a limited number of trained parameter sets associated with the encoder model groups (common decoder approach) and/or cell-specific scenarios.
Note that the training collaboration type plays a role here. When a NW-first training type is adopted, the burden at gNB side of having to deal with multiple UE side encoder models can be greatly alleviated, as the decoder models are to be trained first and it is up to the UE vendors to train their encoder models to be compatible with the fore-trained decoder models. The task of the encoder side is rendered less burdensome as well, thanks to the limited degree of flexibility in model design at the decoder side. Development of a common encoder or dedicated encoder would be more straightforward with partially standardized decoders.
· UE does not have to deal with multiple gNB vendors (and corresponding decoder models) at the same time in the camped state, but UE may need to switch to a different decoder-compatible encoder model/parameter set in case of handover.
This would not be problematic for UE vendors in case of UE-first training type, but it could turn out to be burdensome in case of NW-first training type. As pointed out already in the previous bullet point, limiting possible variations of the decoder models via partial standardization of the decoder can be beneficial for UE vendors. 
· Consideration of model monitoring and test equipment development aspects
A partial standardization of the decoder would make it easier to develop a proxy decoder or intermediate KPI estimator for model monitoring. Development of a test decoder for interoperability tests can be simplified as well.
Another way to reduce complexity of interoperability is to limit possible variations of the model training collaboration types. Pros and cons of the training collaboration type 1 and that of type 2 and type 3 can be found in Table 5.1-1 and Table 5.1-2 in [2], respectively. Based on observations of these tables, we would like to propose to deprioritize type 1 due to its lack of support for proprietary models, and type 2 simultaneous training due to its lack of support for extendibility. As a result, we would like to propose to focus on investigation of the following training collaboration types, i.e., Type 2 Sequential, Type 3 NW-first, and Type 3 UE-first. Note here that the Type 3 UE-first approach may have some scalability issues (Extendibility: to train new UE-side model compatible with NW-side model in use (No consensus) in Table 5.1-2 [2]). Unless we can otherwise find a solution for scalability, we would like to propose to prioritize NW-first approaches, i.e., Type 2 Sequential and Type 3 NW-first, over Type 3 UE-first.
[bookmark: _Ref158966667]Proposal 8: For support of interoperability in CSI compression using a two-sided model, RAN1 shall consider partial standardization of the decoder models at the gNB side. As regards model training collaboration types, RAN1 shall focus on NW-first approaches, i.e., Type 2 Sequential and Type 3 NW-first. Type 3 UE-first can be also considered, provide that its potential scalability issue of training a new UE-side model with a NW-side model in use can be resolved.
For (partial) standardization of the decoder, we need to make sure that this approach would not limit end-to-end performance by imposing restrictions on the decoder design. Also, as pointed out in [4], it would be worthwhile to identify which side, i.e., encoder or decoder, is more critical to end-to-end performance. In case the encoder performance governs the overall E2E performance, the standardized decoder can be boiled down to the relatively simple model as long as it satisfies certain performance requirements. Otherwise, we may end up with pre-defined multiple classes of decoder in accordance with corresponding performance requirements. Hence we propose the following.
[bookmark: _Ref158966670]Proposal 9: In CSI compression using a two-sided model, RAN1 shall evaluate which side, i.e., encoder or decoder, is more critical to E2E model inference performance as a preparation step for partial standardization of the decoder model.
It requires in-depth investigation and alignment to determine which aspects of the decoder model needs to be standardized, and which aspects can be excluded. Should the AI/ML model backbone, e.g., CsiNet family, TF architecture, etc., be standardized? If so, how about more detailed model-structure related parameters like convolutional kernel size (relevant for CsiNet type model) or the number of multi-head self-attention blocks (for TF model)? We need to find the sweet spot which allows the ecosystem to benefit from a standardized decoder while nurturing decoder model differentiations wherever still possible.
[bookmark: _Ref158966675]Proposal 10: In CSI compression using a two-sided model, RAN1 shall investigate which aspects can be standardized and which aspects can be left out when it comes to partial standardization of the decoder.

Case study: (partially) standardized decoder with selected training collaboration types
In this subsection, the selected training collaboration types, i.e., Type 2 Sequential, Type 3 NW-first, and Type 3 UE-first, are re-visited in view of the partially standardized decoder with extendibility (of training new UE-side model compatible with NW-side model in use) under consideration, and depicted in Figure 6, Figure 7, and Figure 8, respectively. Note that two possibly different encoder models, i.e., “ENC A” and “ENC B”, are depicted whereas only one decoder model (“DEC”) is shown in the figures to visualize the impact of the standardized decoder. We can observe the following.
· NW-first training types (Type 2 Sequential, Type 3 NW-first)
· The decoder at gNB side remains the same at the model training phase and at the inference (deployment) phase. Thanks to standardization of the decoder, decoder model variation over gNB-vendors would not be significant. This allows UE vendors to maintain a single encoder model being associated with the decoder model.
· Extendibility of training new UE-side model compatible with NW-side model in use is supported.
· This holds true for Type 3 NW-first, as long as the UE-provided input CSI data set remains unchanged.
· This holds true for Type 2 Sequential, irrespective of possible device-specific variations (thanks to re-training capability via API sharing of the frozen DEC model).
· Common decoder development is feasible by UE vendors sharing input CSI data sets.
· Possible difference between the hypothetical encoder (“ENC* X”) and the actual encoder (“ENC X”) can lead to subtle E2E performance degradation, but the encoder model variation is implicitly regulated by the standardized decoder specifics. Its impact can be considered non-significant.  
· UE-first training type (Type 3 UE-first)
· The hypothetical decoder at UE side training phase (“DEC*”) can be different than the actual decoder model (“DEC”) at the gNB side. However, as deviation of DEC* to DEC is expected to be marginal thanks to partial standardization of the decoder, a common DEC can be developed without significant performance penalty.
· Extendibility of training a new UE-side model compatible with the NW-side model in use does not seem to be supported easily, as a new UE-side model most likely entails a new training data set [image: A black background with a black square

Description automatically generated with medium confidence], which in principle should be taken into account for decoder training.


[bookmark: _Ref158673286]Figure 6: Type 2 (NW-first) Sequential training with a standardized decoder.


[bookmark: _Ref158673294]Figure 7: Type 3 NW-first training with a standardized decoder.


[bookmark: _Ref158673305]Figure 8: Type 3 UE-first training with a standardized decoder.
CQI/RI calculation
[bookmark: _Hlk158909924]In 3GPP, legacy methods for calculating the channel quality index (CQI) involve measuring received signal strength and interference levels to estimate the channel quality. However, with the advent of AI/ML techniques, there is growing interest in exploring alternative approaches for CQI estimation. RAN1 aims to gain insights into the effects of different CQI calculation assumptions on the performance of cellular networks. Additionally, the investigation will provide an opportunity to compare the performance of traditional CQI and rank indicator (RI) calculation methods with emerging AI/ML-based techniques. The findings from these investigations can inform the development of improved CQI calculation methods and enhance the overall efficiency and reliability of wireless communication systems.
In Rel-18 [2], the following options are agreed for CQI calculations:
Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including:
Option 1a: CQI is calculated based on target CSI with realistic channel measurement 
Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment 
Option 1c: CQI is calculated based on legacy codebook
Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including:
Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustments:
o	Option 2a-1: The CSI reconstruction part for CQI calculation at the UE same as the actual CSI reconstruction part at the NW.
o	Option 2a-2: The CSI reconstruction part for CQI calculation at the UE is a proxy model, which is different from the actual CSI reconstruction part at the NW.
Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.
Option 1c requires that the UE calculates not only the AI/ML-based compressed CSI feedback, but also a legacy codebook entry in order to calculate the CQI.  Because the legacy codebook entry is otherwise unused, this option is undesirable due to the additional computation.  Option 2b adds additional delay to the CSI process since the compressed CSI must be fed back to the gNB, then the gNB must transmit UE-specific precoded CSI-RS, and the UE must then calculate and feed back the CQI based on the precoded CSI-RS.  In addition to the added delay, additional overhead is required for the UE-specific CSI-RS transmission.  Therefore, Option 2b is also undesirable.  Options 1a and 1b make use of the target CSI which is of course known at the UE and do not introduce additional delay, overhead, or computation.  The main disadvantage is that the target CSI will not exactly match the reconstructed CSI at the gNB.  Options 2a-1 and 2a-2 attempt to alleviate the mismatch in the CSI inherent in Options 1a and 1b.  In both cases, an additional decoding operation is required at the UE in order to obtain the reconstructed CSI.  However, this is meant to improve the accuracy of the CQI and may be acceptable depending on the performance gain.  Option 2a-2 allows the decoder model to remain proprietary at both sides (the gNB decoder and the proxy decoder).  RAN1 should focus on evaluation of Options 1a and 2a-1 since these options are the most straightforward to compare across company results.  Results for Options 1b and 2a-2 can also be evaluated to indicate the potential of these approaches.  
[bookmark: _Ref158966680]Proposal 11: RAN1 to focus on the evaluation of Options 1a and 2a-1 for CQI calculation, also considering proposals for Options 1b and 2a-2.
Currently, the legacy methods for calculating rank indicators involve assessing the number of spatial layers used for transmission based on received signal characteristics. AI/ML-based methods, on the other hand, could possibly leverage machine learning algorithms to infer the optimal rank indicator based on past channel state information and transmission performance data. In addition, the gNB at times finds reasons to override the recommended RI fed back by the UE. In these cases, the gNB may make its scheduling decisions based on an assumed, but imperfect CQI for the selected rank since the UE-supplied value only applies to the RI which has been fed back. For these situations, there may be an advantage to using AI/ML-based methods for determining the CQI for different rank hypotheses in order to improve the scheduling decisions.
[bookmark: _Hlk158694292][bookmark: _Ref158966684]Proposal 12: RAN1 to study the feedback of CQI for different rank hypotheses.
Rank > 1 solutions
In [5], the following proposal was made indicating four different options for the model architecture for CSI compression with rank greater than one:
Proposal 3.3.1: For the evaluation of the AI/ML based CSI compression sub use cases with rank >=1, companies are encouraged to report the specific option adopted for AI/ML model settings to adapt to ranks/layers.
· Option 1 (rank specific): Separated AI/ML models are trained per rank value and applied for corresponding ranks to perform individual inference.
· Option 2 (rank common): A unified AI/ML model is trained and applied for adaptive ranks to perform inference. 
· Option 3 (layer specific): Separated AI/ML models are trained per layer value and applied for corresponding layers to perform individual inference.
· Option 4 (layer common): A unified AI/ML model is trained and applied for each layer to perform individual inference.
· Other options not precluded.
· FFS further down selection for the above options

Our view of Options 1-4 are illustrated in Figure 9 through Figure 12 from the point of view of the encoder assuming a maximum rank of 4 (for simplicity). At first glance, the choice of architecture might be left to implementation. However, we must ensure that the training procedures and assumptions allow compatible encoders and decoders to be designed. In addition, the choice of architecture may have an effect on the method for specifying the CSI feedback bits. If the number of bits fed back are a simple multiple of the bits for the first layer, then any of the four architectures can be used. If the number of bits fed back per layer for larger rank indicators is less than the number of bits for a rank indicator of 1, then the compatible architectures are limited. For example, the layer common architecture (Option 4 in Figure 12) uses a unified model for each layer. This architecture does not support different numbers of fed back bits per layer, while the architectures in Options 1-3 do. Whether this type of optimization is desirable has not yet been studied in RAN1. 
[bookmark: _Ref158966688]Proposal 13: RAN1 to study the specification effect of layer common, layer specific, rank common, and rank specific architectures to determine how specifications affect which architectures are supported.
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[bookmark: _Ref158932068]Figure 9: Option 1 -- Rank specific architecture
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Figure 10: Option 2 – Rank common architecture

[image: ]
Figure 11: Option 3 – Layer specific architecture

[image: ]
[bookmark: _Ref158932074]Figure 12: Option 4 – Layer common architecture

Conclusion
In this contribution, we have addressed AI/ML-based CSI compression.  Our observations and proposals are:
Observation 1: Channel prediction can serve two purposes in CSI feedback:
1. Improve accuracy
2. Enable overhead reduction

Observation 2: The proposed data categorization scheme along with the model selection approach effectively distinguishes channel complexity, guiding model selection, training, adjustment, and performance monitoring. This approach leads to a better balance among CSI feedback performance, model complexity, and feedback overhead.

Proposal 1: SFT CSI compression schemes should be evaluated in comparison with separate SF CSI compression and prediction as a baseline, in two scenarios: accuracy improvement and overhead reduction.
Proposal 2: In comparing SFT compression with SF CSI compression and prediction for overhead reduction, optimization of the CSI-RS periodicity with respect to the temporal coherence should be taken into account. 
Proposal 3: In comparing SFT compression with SF CSI compression and prediction for accuracy improvement, the CSI-RS periodicity should be fixed, and temporal coherence should be at or below the CSI-RS period.
Proposal 4: If recurrent networks are considered for SFT CSI compression, methods for ensuring stability, controlling error propagation, and achieving interoperability should be addressed.
Proposal 5: Selecting a few representative specific scenarios/configurations to investigate the advantages of employing cell/site-specific models. Preferably, focus should be on evaluating SLS results, while not excluding intermediate KPIs like SGCS.
Proposal 6: To further investigate and evaluate cell/site-specific models, the following alternatives could be considered:
Option 1: Ray-Tracing Analysis
Option 2: Het-Net Environment
Option 3: Mixed Scenario Training vs. Single Scenario Training

Proposal 7: In addition to cell/site specific models, the use of specific model/feedback overhead within the same cell/site should also be studied.
Proposal 8: For support of interoperability in CSI compression using a two-sided model, RAN1 shall consider partial standardization of the decoder models at the gNB side. As regards model training collaboration types, RAN1 shall focus on NW-first approaches, i.e., Type 2 Sequential and Type 3 NW-first. Type 3 UE-first can be also considered, provide that its potential scalability issue of training a new UE-side model with a NW-side model in use can be resolved.
Proposal 9: In CSI compression using a two-sided model, RAN1 shall evaluate which side, i.e., encoder or decoder, is more critical to E2E model inference performance as a preparation step for partial standardization of the decoder model.
Proposal 10: In CSI compression using a two-sided model, RAN1 shall investigate which aspects can be standardized and which aspects can be left out when it comes to partial standardization of the decoder.
Proposal 11: RAN1 to focus on the evaluation of Options 1a and 2a-1 for CQI calculation, also considering proposals for Options 1b and 2a-2.
Proposal 12: RAN1 to study the feedback of CQI for different rank hypotheses.
Proposal 13: RAN1 to study the specification effect of layer common, layer specific, rank common, and rank specific architectures to determine how specifications affect which architectures are supported.
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Appendix
[bookmark: _Ref131537366]Table 4:  System Level Simulation Assumptions for CSI Compression Datasets
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban

	Carrier Frequency
	4 GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8.8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4 Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	BS Tx power
	44 dBm (20 MHz bandwidth)

	BS antenna height
	25m

	UE antenna height & gain
	According to TR 36.873

	UE receiver noise figure
	9 dB

	Modulation
	Up to 256QAM

	Subcarrier spacing
	30kHz

	Simulation bandwidth
	20 MHz

	UE distribution
	80% indoor (3km/h), 20% outdoor (3 km/h)

	Channel estimation
	Ideal
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