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Introduction
The study objectives with corresponding checkpoints in RAN#105 for CSI feedback enhancement have been approved in RAN#102. Specifically, for CSI compression use case with two-sided model, further study ways are discussed as follows [1]:
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach) etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843.
In this contribution, we will continue to discuss the evaluation methodology and potential specification impacts on AI/ML for CSI compression with cell/site specific models, and some preliminary evaluation results are provided.
Cell/site specific CSI compression
Evaluation methodology
The evaluation methodology has been discussed in Rel-18 for AI/ML based CSI feedback enhancement. An example of AI/ML based CSI compression inference procedure is depicted in Figure 1, where a CSI generation part and a CSI reconstruction part are deployed at the UE side and NW side, respectively. As discussed in Rel-18, CSI eigenvector obtained from channel estimation using CSI-RS is used as the input of CSI generation part. The output of CSI generation part and the input of CSI reconstruction part is a series of bitstream after quantization operation, e.g., scalar or vector quantization. The output of CSI reconstruction part is the recovered CSI eigenvector.



[bookmark: _Ref157953614]Figure 1 An example of AI/ML based CSI compression inference procedure
In Rel-18 discussion, a common model is assumed for many cells (namely cell-common model). The AI/ML model is trained based on dataset constructed from multiple cells. To further explore the potential performance gain of AI/ML based CSI compression, the cell-specific model is considered in Rel-19 evaluations, where the AI/ML model is trained based on the training data from one cell and then it is working for the same cell.
For both cell-common model and cell-specific model training phase, total 720k samples consisting of 720k UEs with 1 sample-per-UE are used as the training set, 60k samples consisting of 60k UEs with1 sample-per-UE are used as the test set. 
The same EVCsiNet-T (shown in Figure 2) with Transformer backbone is utilized for both cell-common model and cell-specific model. For CSI generation part model (also named as encoder), an embedding layer followed by 6 self-attention blocks and a mixed 3bit/2bit quantization layer is utilized. As for the CSI reconstruction part (also named as decoder), 6 self-attention blocks followed by a full-connection layer are used after the 3bit/2bit dequantization layer. The CSI feedback payload is set as 67bit in the following evaluations.


[bookmark: _Ref158040514][bookmark: _Ref158040510]Figure 2 EVCsiNet-T model for CSI compression
The primary different parameters between cell-common model and cell-specific model are listed in Table 1, other basic parameters follow the same EVM agreed in TR 38.843.
[bookmark: _Ref158036135]Table 1 Primary different parameters between cell-common model and cell-specific model
	Parameters
	Cell-common model
	Cell-specific model

	Scenario
	Dense Urban Macro, 19 cells
	Dense Urban Macro, 1 cell

	UE distribution
	80% indoor (3km/h)
20% outdoor (30km/h)
	100% outdoor (30km/h)

	Spatial consistency
	Off
	Off/On



Performance evaluation
The SGCS comparison between cell-common model and cell-specific model is shown in Table 2 and Table 3. The spatial consistency is not enabled for Table 2 and is enabled for Table 3. For outdoor UEs, we consider various LoS/NLoS ratios from 1:0 (pure LoS condition) to 0.03:0.97 (almost pure NLoS condition). Specifically, the LoS/NLoS ratio=0.53:0.47 follows the LoS probability defined in TR 38.901 Table 7.4.2-1 (shown in Figure 3), where the red point is the UE with NLoS channel and green point is the UE with LoS channel. The LoS probability increases when UE is near the cell central gNB. For other LoS/NLoS ratios, the LoS probability is re-defined specifically according to the distance from UE to gNB. 


[bookmark: _Ref158110745]Figure 3 An example of outdoor UE distribution with LoS/NLoS ratio=0.53:0.47
[bookmark: _Ref158109308]Table 2 SGCS comparison between cell-common model and cell-specific model without spatial consistency
	SGCS
(Spatial consistency off)
	 Outdoor LoS/NLoS ratio

	
	1:0
	0.53:0.47
	0.4:0.6
	0.2:0.8
	0.03:0.97

	Rel-16 eType II
	0.924
	0.769
	0.736
	0.673
	0.610

	Cell-common model
	0.930
	0.796
	0.765
	0.712
	0.657

	Cell-common relative gain
	0.63%
	3.53%
	4.00%
	5.78%
	7.75%

	Cell-specific model
	0.945
	0.820
	0.792
	0.745
	0.684

	Cell-specific relative gain
	2.28%
	6.65%
	7.58%
	10.70%
	12.20%



[bookmark: _Ref158109310]Table 3 SGCS comparison between cell-common model and cell-specific model with spatial consistency
	SGCS
(Spatial consistency on)
	 Outdoor LoS/NLoS ratio

	
	1:0
	0.53:0.47
	0.4:0.6
	0.2:0.8
	0.03:0.97

	Rel-16 eType II
	0.920
	0.765
	0.731
	0.669
	0.606

	Cell-common model
	0.924
	0.796
	0.763
	0.709
	0.656

	Cell-common relative gain
	0.46%
	3.97%
	4.33%
	6.07%
	8.22%

	Cell-specific model
	0.952
	0.826
	0.793
	0.750
	0.700

	Cell-specific relative gain
	3.47%
	7.88%
	8.54%
	12.15%
	15.57%


Firstly, for different outdoor LoS/NLoS ratios, cell-specific model achieves higher SGCS than cell-common model with and without spatial consistency. Specifically, without/with spatial consistency, cell-common model achieves 0.63%~7.75%/0.46%~8.22% relative gain compared to Rel-16 eType II baseline. Cell-specific model achieves 2.28%~12.20%/3.47%~15.57% relative gain compared to Rel-16 eType II baseline.  Moreover, for outdoor UEs with higher NLoS ratio, cell-specific model can provide larger performance gain compared to Rel-16 eTypeII and cell-common model. 
Observation 1: regarding the SGCS of CSI compression, cell-specific model outperforms cell-common model and Rel-16 eTypeII baseline, especially for outdoor NLoS heavy scenarios.
Observation 2: regarding the SGCS of CSI compression, cell-specific model has larger performance gain when spatial consistency in considered.
In addition, we further have evaluated the performance gain for different UEs within a cell, as shown in Table 4. Here, the spatial consistency is enabled. Two different statistical methods are adopted as follows:
(1) K% users with highest cell-specific performance gain,
where K% users with highest cell-specific performance gain are utilized as test set, to verify whether any user within the cell can obtain CSI compression gain greater than the average gain level, and the corresponding UE distribution by LoS/NLoS ratio.
(2) K% users with worst performance of Rel-16 eTypeII,
where K% users with worst baseline performance are utilized as test set, to verify whether users who perform the worst in CSI compression through Rel-16 eTypeII method within a cell can obtain AI/ML based CSI compression gain greater than the average gain level, and the corresponding UE distribution by LoS/NLoS ratio.
Simulation results are shown in Table 4, where K% is set as [50%, 20%, 5%], the whole LoS/NLoS ratio with in the cell is set as [1:0, 0.4:0.6, 0.2:0.8]. The absolute value of SGCS and relative gain compared to Rel-16 eTypeII baseline are given for both cell-common model and cell-specific model.
[bookmark: _Ref159163996]Table 4 SGCS comparison between cell-common model and cell-specific model, for K% users with highest cell-specific performance gain, and for K% users with worst performance of Rel-16 eTypeII
	SGCS
(LoS/NLoS ratio 1:0)
	 K% users with highest cell-specific performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users
	100%
	100%
	100%
	100%
	100%
	100%

	Rel-16 eType II
	0.879
	0.785
	0.665
	0.857
	0.736
	0.570

	Cell-common model
	0.903
	0.834
	0.763
	0.880
	0.779
	0.636

	Cell-common relative gain
	2.73%
	6.16%
	14.75%
	2.70%
	5.87%
	11.72%

	Cell-specific model
	0.937
	0.884
	0.840
	0.909
	0.814
	0.647

	Cell-specific relative gain
	6.68%
	12.62%
	26.26%
	6.04%
	10.60%
	13.55%

	SGCS
(LoS/NLoS ratio 0.4:0.6)
	 K% users with highest cell-specific performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users
	13.4%
	8.5%
	6%
	6.8%
	3.6%
	2.4%

	Rel-16 eType II
	0.606
	0.534
	0.456
	0.554
	0.452
	0.358

	Cell-common model
	0.674
	0.643
	0.626
	0.609
	0.513
	0.440

	Cell-common relative gain
	11.36%
	20.45%
	37.34%
	9.82%
	13.68%
	22.86%

	Cell-specific model
	0.721
	0.707
	0.706
	0.646
	0.551
	0.478

	Cell-specific relative gain
	19.12%
	32.37%
	54.94%
	16.58%
	21.99%
	33.54%

	SGCS
(LoS/NLoS ratio 0.2:0.8)
	 K% users with highest cell-specific performance gain
	K% users with worst 
 performance of Rel-16 eTypeII

	
	50%
	20%
	5%
	50%
	20%
	5%

	LoS ratio within K% users 






	4.5%
	3.1%
	2.1%
	2.7%
	1.6%
	1.1%

	Rel-16 eType II
	0.569
	0.509
	0.425
	0.516
	0.429
	0.337

	Cell-common model
	0.647
	0.625
	0.606
	0.573
	0.495
	0.432

	Cell-common relative gain
	13.85%
	23.08%
	42.84%
	10.85%
	15.33%
	28.30%

	Cell-specific model
	0.707
	0.702
	0.702
	0.622
	0.546
	0.484

	Cell-specific relative gain
	24.42%
	38.22%
	65.31%
	20.43%
	27.18%
	43.64%


It can be observed that for [50%, 20%, 5%] users with highest cell-specific performance gain and [50%, 20%, 5%] users with worst performance of Rel-16 eTypeII, both cell-common model and cell-specific model can achieve higher performance gain over Rel-16 eType II baseline compared with average level in the whole cell. Moreover, for both two statistic methods, we also find the performance gap between cell-common model and cell-specific model of top-K% users also grow larger when K% is decreased from 100% (seen in Table 3) to 5%. Meanwhile, with more NLoS users in the cell, the performance gap from cell-common model to cell-specific model increases obviously. 
We can find that the performance gain between cell-specific model, cell-common model and Rel-16 eType II baseline is user-specific. For part of users, AI/ML based CSI compression with both cell-common model and cell-specific model can obtain higher performance gain than average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users. While for another part of users, the performance gain may be smaller or AI/ML performs inferior than Rel-16 eTypeII baseline, the AI/ML functionality/model can be disabled. 
Based on above results and discussions, we have the following observations and proposals:
[bookmark: _Ref158281989][bookmark: _Ref159248678]Observation 3: for users with worst performance of Rel-16 eTypeII baseline, both cell-common model and cell-specific model achieve higher performance gain compared with average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users.
[bookmark: _Ref159248680]Observation 4: for users with K% users with highest performance gain and K% users with worst performance of Rel-16 eTypeII baseline, the performance gap between cell-specific model and cell-common model grows larger when smaller K% users are selected.
[bookmark: _Ref158281995]Proposal 1: suggest to study AI/ML based CSI compression with cell-specific model in Rel-19, and discuss the EVM including the following aspects:
· Impact of spatial consistency
· Different scenarios, e.g., indoor/outdoor UE distributions, LoS/NLoS ratios. 
Spec impact 
As we have discussed and evaluated above, CSI compression with cell-specific model brings more performance gain from the perspective of intermediate KPI SGCS. Therefore, some cell-specific related aspects should be further considered, including the data collection and some LCM procedures such as model training, model performance monitoring, model switching and other possible issues.
Regarding the data collection, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage. For the “condition information” part, some CSI-related information should be considered, such as the CSI type to be compressed, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks. For the “additional condition information” part, some cell/site/scenario related information should be considered, such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
[bookmark: _Ref158281999]Proposal 2: regarding the data collection for CSI compression, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage
· Condition information including CSI-related information such as the CSI type, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks.
· Additional condition information including cell/site/scenario related information such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
Regarding the model training procedure, three types of training collaboration levels including Type 1, Type 2 and Type 3 have been discussed in Rel-18 study phase. As we have claimed in Rel-18, Type 1 and Type 3 should be studied in priority, Type 2 should be deprioritized for further study on two-sided CSI compression topic in Rel-19.
For the model training of cell/site/scenario-specific model, two possible ways can be considered. 
(1) the model can be directly trained on dataset with amount of cell/site/scenario-specific data samples. This way is potential to providing cell/site/scenario-specific model with higher performance gain. However, the problem is that the data collection overhead for obtaining various kinds of large scale cell/site/scenario-specific datasets may be very huge. 
(2) the model is finetuned based on a cell-common model with small cell/site/scenario-specific datasets. The data collection issue of the second way can be relaxed. The possible problem is that the model may be not good enough to provide sufficient cell/site/scenario-specific performance gain. 
Therefore, to obtain the cell/site/scenario specific model, the trade-off between potential performance gain and complexity/overhead of model training procedure should be further considered.
[bookmark: _Ref158282005]Proposal 3: regarding the cell/site/scenario specific model training, two ways can be considered, including
· Direct training based on large cell/site/scenario-specific datasets
· Finetuning based on cell-common model with small cell/site/scenario-specific datasets
The trade-off between potential performance gain and complexity/overhead should be further studied.
Conclusion
In this contribution, we provide some discussions and preliminary results about additional study on AI/ML based CSI compression. Based on the discussions and evaluations, we have following observations and proposals:
Observation 1: regarding the SGCS of CSI compression, cell-specific model outperforms cell-common model and Rel-16 eTypeII baseline, especially for outdoor NLoS heavy scenarios.
[bookmark: _GoBack]Observation 2: regarding the SGCS of CSI compression, cell-specific model has larger performance gain when spatial consistency in considered.
Observation 3: for users with worst performance of Rel-16 eTypeII baseline, both cell-common model and cell-specific model achieve higher performance gain compared with average level within the cell. The functionality/model of AI/ML based CSI compression can be enabled for this part of users.
Observation 4: for users with K% users with highest performance gain and K% users with worst performance of Rel-16 eTypeII baseline, the performance gap between cell-specific model and cell-common model grows larger when smaller K% users are selected.
Proposal 1: suggest to study AI/ML based CSI compression with cell-specific model in Rel-19, and discuss the EVM including the following aspects:
· Impact of spatial consistency
· Different scenarios, e.g., indoor/outdoor UE distributions, LoS/NLoS ratios. 
Proposal 2: regarding the data collection for CSI compression, cell/site/scenario related “condition information” and “addition condition information” should be considered during the data collection stage.
· Condition information including CSI-related information such as the CSI type, e.g. raw channel or precoding matrix, and the CSI configurations, e.g. number of antenna ports, number of sub-bands, ranks.
· Additional condition information including cell/site/scenario related information such as cell/site/scenario ID, indoor/outdoor indication, LoS/NLoS flag and UE ID.
Proposal 3: regarding the cell/site/scenario specific model training, two ways can be considered, including
· Direct training based on large cell/site/scenario-specific datasets
· Finetuning based on cell-common model with small cell/site/scenario-specific datasets
The trade-off between potential performance gain and complexity/overhead should be further studied.
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