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Introduction
In RP-234039, the following objectives for NR AI/ML enhancement are agreed.
	Provide specification support for the following aspects:
· AI/ML general framework for one-sided AI/ML models within the realm of what has been studied in the FS_NR_AIML_Air project [RAN2]:
· Signalling and protocol aspects of Life Cycle Management (LCM) enabling functionality and model (if justified) selection, activation, deactivation, switching, fallback
· Identification related signalling is part of the above objective 
· Necessary signalling/mechanism(s) for LCM to facilitate model training, inference, performance monitoring, data collection (except for the purpose of CN/OAM/OTT collection of UE-sided model training data) for both UE-sided and NW-sided models
· Signalling mechanism of applicable functionalities/models

· Beam management - DL Tx beam prediction for both UE-sided model and NW-sided model, encompassing [RAN1/RAN2]:
· Spatial-domain DL Tx beam prediction for Set A of beams based on measurement results of Set B of beams (“BM-Case1”)
· Temporal DL Tx beam prediction for Set A of beams based on the historic measurement results of Set B of beams (“BM-Case2”)
· Specify necessary signalling/mechanism(s) to facilitate LCM operations specific to the Beam Management use cases, if any
· Enabling method(s) to ensure consistency between training and inference regarding NW-side additional conditions (if identified) for inference at UE 
NOTE: Strive for common framework design to support both BM-Case1 and BM-Case2

· Positioning accuracy enhancements, encompassing [RAN1/RAN2/RAN3]:
· Direct AI/ML positioning:
· (1st priority) Case 1: UE-based positioning with UE-side model, direct AI/ML positioning
· (2nd priority) Case 2b: UE-assisted/LMF-based positioning with LMF-side model, direct AI/ML positioning
· (1st priority) Case 3b: NG-RAN node assisted positioning with LMF-side model, direct AI/ML positioning
· AI/ML assisted positioning 		 
· (2nd priority) Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning	
· (1st priority) Case 3a: NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning
· Specify necessary measurements, signalling/mechanism(s) to facilitate LCM operations specific to the Positioning accuracy enhancements use cases, if any
· Investigate and specify the necessary signalling of necessary measurement enhancements (if any)
· Enabling method(s) to ensure consistency between training and inference regarding NW-side additional conditions (if identified) for inference at UE for relevant positioning sub use cases

· Core requirements for the above two use cases for AI/ML LCM procedures and UE features [RAN4]:
· Specify necessary RAN4 core requirements for the above two use cases.
· Specify necessary RAN4 core requirements for LCM procedures including performance monitoring.


Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 


· Necessity and details of model Identification concept and procedure in the context of LCM [RAN2/RAN1] 
· CN/OAM/OTT collection of UE-sided model training data [RAN2/RAN1]: 
· [bookmark: _Hlk152950182]For the FS_NR_AIML_Air study use cases, identify the corresponding contents of UE data collection
· Analyse the UE data collection mechanisms identified during the FS_NR_AIML_Air (TR 38.843 section 7.2.1.3.2) study along with the implications and limitations of each of the methods 
· Model transfer/delivery [RAN2/RAN1]: 
· [bookmark: _Hlk152950348]Determine whether there is a need to consider standardised solutions for transferring/delivering AI/ML model(s) considering at least the solutions identified during the FS_NR_AIML_Air study 

· Testability and interoperability [RAN4]: 
· Finalize the testing framework and procedure for one-sided models and further analyse the various testing options for two-sided models, in collaboration with RAN1, and including at least: 
· Relation to legacy requirements
· Performance monitoring and LCM aspects considering use-case specifics
· Generalization aspects 
· Static/non-static scenarios/conditions and propagation conditions for testing (e.g., CDL, field data, etc.)
· UE processing capability and limitations
· Post-deployment validation due to model change/drift
· RAN5 aspects related to testability and interoperability to be addressed on a request basis

NOTE: offline training is assumed for the purpose of this project. 
NOTE: the outcome of the study objectives should be captured in TR 38.843 for future reference. 
NOTE: Coordination with SA/SA WGs of the ongoing study/work as it may relate to their required work. 




In this contribution, we provide some discussion on AI/ML based CSI compression.
Discussion
CSI Report content
Based on the previous agreements, the AI/ML based CSI compression can be used to compress the channel, channel eigenvector, or W2. If the input for AI/ML based CSI compression is channel, then the UE only needs to report a L1-SINR in addition to the compressed channel. The network can calculate the corresponding precoder and select the MCS based on the reported information. If the input for AI/ML based CSI compression is the channel eigenvector, the UE can also report the compressed full rank channel eigenvector to the network and the network can transmit a set of precoded CSI-RS resources for the UE to measure RI and CQI, where the network applies the reconstructed channel eigenvector to the precoded CSI-RS. If the input for AI/ML based CSI compression is W2, the UE can report the wideband beam index W1 and compressed W2 to the network. The network can transmit a set of precoded CSI-RS resources for the UE to measure RI and CQI, where the network applies the channel eigenvector based on the received W1 and reconstructed W2 to the precoded CSI-RS.
Proposal 1: Support the following types of CSI report for CSI compression:
· Type 1 (Compression of channel): UE reports subband L1-SINR and compressed channel
· Type 2 (Compression of channel eigenvector): UE reports compressed channel eigenvector for a configured rank
· Type 3 (Compression of W2): UE reports W1 and compressed W2 for a configured rank
Priority of AI/ML based CSI report
Usually, the non-ML based CSI could provide more stable CSI, which can be used for performance monitoring. For example, the gNB can configure a non-ML based CSI with higher overhead to monitor the performance for the ML based CSI. Therefore, the priority for the non-ML based CSI should be higher than the priority of the ML based CSI.
Proposal 2: The priority for non-ML based CSI report should be higher than the priority of ML based CSI report.
CSI Processing Unit
The ML based CSI measurement should include the following two steps.
· Step 1: Channel estimation and pre-processing
· Step 2: Compression/prediction based on the ML (Inference)
The two steps may be handled by different hardware. Thus, the CPU occupancy rule should define two types of units: one is measurement processing unit (MPU) which is used for step 1 related aspects and the other one is the inference processing unit (IPU), which is used for the step 2 related aspects.
Proposal 3: Support the CPU occupancy rule for ML based CSI based on two types processing unit
· Type1 CPU: a measurement processing unit (MPU) used for channel estimation and pre-processing
· Type2 CPU: an inference processing unit (IPU) used for inference for ML based CSI
AI/ML model monitoring
For model monitoring, the first issue could be to identify the KPI. The SCS and hypothetical BLER could be the possible KPI for model monitoring. However, sometimes the SCS cannot reflect the performance status. Figure 1 illustrates the simulation results on the SCS and corresponding SE offset for two precoders. It can be observed that low SCS does not always produce large performance gap. Therefore, although the SCS can be considered as an intermediate KPI, it should not be used for model performance monitoring. Therefore, a KPI other than SCS can be considered. Currently, the hypothetical BLER is used for RLM/BFD, which can be considered as one KPI for model monitoring.
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Figure 1: Simulation results on SCS vs SE offset for two precoders
Then the next issue is to identify the baseline for the model monitoring. There can be two options for the baseline for model monitoring:
· Option 1: Ground-truth CSI
· Option 2: CSI based on existing codebook that the UE supports (non-ML based CSI)
There can be the following cases regarding the performance for the Ground-truth CSI, ML based CSI and non-ML based CSI:
· Case 1: Ground-truth CSI > ML based CSI > non-ML based CSI
· The performance gap between Ground-truth CSI and ML based CSI may be large
· Case 2: Ground-truth CSI > non-ML based CSI > ML based CSI
For Case 1, although the performance gap between Ground-truth CSI and ML based CSI may be large, the ML based CSI still outperforms non-ML based CSI. Thus, there is no better CSI feedback scheme to replace the ML based CSI. Such case should not be considered as a model performance failure. On the other hand, in case 2, the non-ML based CSI outperforms the ML based CSI. Then such case could be considered as a model performance failure. Therefore, compared to the Ground-truth CSI, the non-ML based CSI should be considered as the baseline for model performance monitoring.
The next issue is whether the non-ML based CSI report is needed for model monitoring. This may depend on the periodicity for the model monitoring. There can be the following 3 options for the model monitoring:
· Option 1: The model monitoring is performed based on the similar periodicity as RLM/BFD, e.g., every N ms.
· Option 2: The model monitoring is performed with a larger periodicity, e.g., every N second 
· Option 3: The model monitoring is performed after each prediction.
If option 1 or option 3 are selected, the model monitoring should not require the UE to report non-ML based CSI, since this would increase the overhead for the CSI report, and there would be no benefit for the ML based CSI compression. However, if option 2 is selected, it requires the model should be robust enough. From previous simulation results, although there can be overall performance gain for ML based CSI compared to eType2 codebook, there are still certain UEs with performance loss. Therefore, with regard to the UL overhead and performance, the model monitoring should not require the UE to report a non-ML based CSI.
The remaining issue should be the procedure for the model monitoring. The hypothetical BLER is usually measured based on CSI-RS. As shown in Figure 2, the NW can transmit the precoded CSI-RS for model monitoring. The UE can calculate the hypothetical BLER based on a non-ML CQI and the CSI-RS for model monitoring. The non-ML CQI is measured based on a CSI-RS for CQI acquisition and existing codebook. If the hypothetical BLER is above the BLER threshold for CQI selection, a model performance failure can be declared.
[image: ]
Figure 2: Procedure for model monitoring
Proposal 4: Do not support to use SGCS as the metric for ML performance monitoring.
Proposal 5: Support the hypothetical BLER as the metric for ML performance monitoring.
Proposal 6: Support the baseline for model performance monitoring based on the non-ML based CSI, i.e. the CSI based on existing codebook that the UE supports.
· A model performance failure is identified if the hypothetical BLER measured based the ML based CSI and the CQI from the non-ML based CSI is above a threshold
· ML based CSI compression should not mandate the UE to support eType2 codebook

NW side data collection
In RAN1 #113, the following on NW side data collection is agreed.
	Agreement
In CSI compression using two-sided model use case, further study the necessity, complexity, overhead, latency and potential specification impact on ground truth CSI report for NW side data collection for model performance monitoring, including:   
· Scalar quantization for ground-truth CSI
· FFS: any processing applied to the ground-truth CSI before scalar quantization
· Codebook-based quantization for ground-truth CSI
· FFS: Parameter set enhancement of existing eType II codebook, based on evaluation results in 9.2.2.1
· RRC signaling and/or L1 signaling procedure to enable fast identification of AI/ML model performance
· Aperiodic/semi-persistent or periodic ground-truth CSI report.




The NW side data collection should be similar to existing CSI feedback. Therefore, the existing CSI report configuration should be the starting point. For model performance monitoring, the NW should configure the reported rank. One possible way is to report the ground-truth CSI for the maximum number of layers, but it could require unnecessarily high overhead. It is better that the number of layers for the ground truth CSI report can be configured by the NW. 
Further, to compare the performance between the ground truth CSI and ML based CSI, the singular value could be important. For example, the weighted SGCS can be used for the performance comparison, which requires the singular value. 
In addition, the ground-truth CSI is also beneficial for CSI acquisition. Thus, the NW can also configure the UE to report the CQI based on the ground-truth CSI. The UE can also report a RI to indicate the rank for the CQI calculation. Then the first RI+1 layers for the ground-truth CSI can be used for the CQI calculation. Then the NW can perform the scheduling for the PDSCH based on the ground-truth CSI and CQI/RI. 
The UE should process the report for NW side data collection based on the similar approach as existing CSI report. Thus, it is possible to reuse the existing CPU framework to handle the UE complexity for the measurement and report for NW side data collection. 
Proposal 7: Support to configure the number of layers for the report for NW side data collection for performance monitoring.
Proposal 8: Support to report singular values for the ground-truth CSI.
Proposal 9: Support to report CQI/RI in addition to the ground-truth CSI. 
Proposal 10: Reuse the existing CPU framework to handle the UE complexity for the measurement and report for NW side data collection.

UE side data collection
The UE can also perform data collection for UE-side model training, finetuning, monitoring and so on. Such data collection could require additional UE complexity. But different from the NW side data collection, the UE does not need to report the data to the NW. However, the NW still needs to know when the UE needs to perform the measurement for UE side data collection, as the NW needs to aware the additional UE complexity, e.g., additional CPU, for measurement for UE side data collection. Therefore, it is necessary to maintain the same understanding between the NW and UE on when to perform the measurement for UE side data collection, which can be based on NW configuration or UE request CSI-RS for data collection.
Proposal 11: Support to maintain the same understanding between the NW and UE on when to perform the measurement for UE side data collection based on the following options:
· Option 1: The measurement for UE side data collection is configured by the NW
· Option 2: UE request CSI-RS for data collection

Hybrid AI/ML based and non-AI/ML based CSI measurement and report
The AI/ML based CSI compression can provide accurate CSI with smaller payload size than eType2 CSI. Usually the NW schedules MU-MIMO operation for low rank case and schedules SU-MIMO operation for high rank case. For MU-MIMO operation, the CSI quantization error could have significant impact on the performance. For SU-MIMO operation, the CSI quantization error could not be critical, especially for high rank case. Therefore, with regard to the UE complexity and CSI report overhead, one possible way is to hybrid AI/ML based and non-AI/ML based CSI, where the UE reports the CSI based on AI/ML if it reports a small RI and the UE can report the CSI based on Type1 codebook if it reports a large RI.
Proposal 12: Support hybrid AI/ML based and non-AI/ML based CSI measurement and report
· UE reports the CSI based on AI/ML if it reports a small RI and the UE can report the CSI based on Type1 codebook if it reports a large RI
Conclusion
In this contribution, we provided discussion on AI/ML based CSI compression. Based on the discussion, the following proposals are provided.
Proposal 1: Support the following types of CSI report for CSI compression:
· Type 1 (Compression of channel): UE reports subband L1-SINR and compressed channel
· Type 2 (Compression of channel eigenvector): UE reports compressed channel eigenvector for a configured rank
· Type 3 (Compression of W2): UE reports W1 and compressed W2 for a configured rank
Proposal 2: The priority for non-ML based CSI report should be higher than the priority of ML based CSI report.
Proposal 3: Support the CPU occupancy rule for ML based CSI based on two types processing unit
· Type1 CPU: a measurement processing unit (MPU) used for channel estimation and pre-processing
· Type2 CPU: an inference processing unit (IPU) used for inference for ML based CSI
Proposal 4: Do not support to use SGCS as the metric for ML performance monitoring.
Proposal 5: Support the hypothetical BLER as the metric for ML performance monitoring.
Proposal 6: Support the baseline for model performance monitoring based on the non-ML based CSI, i.e. the CSI based on existing codebook that the UE supports.
· A model performance failure is identified if the hypothetical BLER measured based the ML based CSI and the CQI from the non-ML based CSI is above a threshold
· ML based CSI compression should not mandate the UE to support eType2 codebook
Proposal 7: Support to configure the number of layers for the report for NW side data collection for performance monitoring.
Proposal 8: Support to report singular values for the ground-truth CSI.
Proposal 9: Support to report CQI/RI in addition to the ground-truth CSI. 
Proposal 10: Reuse the existing CPU framework to handle the UE complexity for the measurement and report for NW side data collection.
Proposal 11: Support to maintain the same understanding between the NW and UE on when to perform the measurement for UE side data collection based on the following options:
· Option 1: The measurement for UE side data collection is configured by the NW
· Option 2: UE request CSI-RS for data collection
Proposal 12: Support hybrid AI/ML based and non-AI/ML based CSI measurement and report
· UE reports the CSI based on AI/ML if it reports a small RI and the UE can report the CSI based on Type1 codebook if it reports a large RI
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