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Introduction
The TR for the Rel-18 study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface [1] contains broad analysis of AI/ML-based CSI compression with a two-sided model and CSI prediction with a UE-sided model. However, there is no consensus on the recommendation for normative work for both sub-use cases. 
The new work item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface has been approved in [2]. The objectives of this work item include additional study on CSI feedback enhancement AI/ML sub-use cases: CSI compression with a two-sided model and CSI prediction with a UE-sided model. The additional study is mainly targeting to investigate AI/ML models complexity/performance improving the corresponding gains w.r.t. existing non-AI/ML-based solutions and other aspects requiring further study/conclusion captured in the TR [1]. 
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
· [bookmark: _Hlk152950038]For CSI prediction (one-sided model), further study performance gain over Rel-18 non-AI/ML based approach and associated complexity, while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843 (e.g., cell/site specific model could be considered to improve performance gain). 


In this contribution, we provide considerations and analyses on aspects related to AI/ML-based CSI prediction with UE-sided model including CSI prediction framework and baseline non-AI/ML CSI prediction algorithms. 
Discussion
CSI prediction framework
In the Rel-18 MIMO WI UE-side channel prediction support was enabled to enhance performance for UEs with high/medium velocities.  New codebooks for predicted PMI were specified with the corresponding prediction timing configuration and CQI determination mechanism. To avoid redundant work, AI/ML based CSI prediction shall reuse the specified CSI reporting mechanism of the new codebooks for predicted PMI.
Two codebooks for predicted PMI are currently supported: Enhanced Type II codebook for predicted PMI and Further enhanced Type II port selection codebook for predicted PMI. We propose to focus on the first one at least for the study. Furthermore, number of reported precoding matrixes in time, N4, can be fixed to N4 = 1 as it correspond to a basic case for PMI prediction.
Proposal 1: 
· CSI prediction with one-sided AI model at the UE side should be based on CSI reporting with the following PMI codebook at least for study phase of the Rel-19 AI/ML work item.
· Enhanced Type II codebook for predicted PMI with N4 = 1.
Non-AI/ML CSI prediction algorithms
Evaluations of AI/ML-based CSI prediction performance were carried out in Rel-18 AI/ML for NR air interface study item [1]. The performance was compared with two different benchmarks: CSI without prediction (benchmark 1) and CSI with non-AI/ML prediction algorithm (benchmark 2). Based on the results provided by companies, significant performance gains are observed for AI/ML-based CSI prediction over benchmark 1. However, observations from results shared by different companies differ for the comparison of AI/ML and non-AI/ML CSI prediction (benchmark 2). This can be explained by difference in implementation of both AI/ML models and conventional prediction algorithms. Furthermore, the complexity of AI/ML models used for CSI prediction has a wide range while the complexity of benchmark non-AI/ML solution was not discussed. 
Based on the above, it can be concluded that more discussion is required specifically to improve RAN1 understanding and align algorithms assumed in evaluations for non-AI/ML CSI prediction algorithms. 
Observation 1: 
· Discussion on non-AI/ML CSI prediction algorithms is required to understand the difference in performance results as well as associated complexity for comparison of AI/ML-base CSI prediction with benchmark 2.
Conventional approach for signal prediction assumes construction of a signal model and estimation of model parameters. Two signal models can be considered: autoregressive model and complex exponents model. For autoregressive model, the signal in time instance t is represented as a linear combination of signal in p previous time instances t – i∙∆t with gaussian noise n:  

For complex exponents model, signal is represented as a weighted sum of p complex exponents with different frequencies fi with error n: 

These models can be extended to represent a multi-dimensional channel matrix, or they can be applied separately per matrix element (per UE Rx antenna, per subband and per antenna element). To reduce UE complexity, channel prediction can be applied for a subset of matrix elements (K0 matrix elements) for channel matrix in angular-delay domain which is equivalent to pre-processing corresponding to spatial domain and frequency domain PMI compression for Enhanced Type II PMI codebook. 
Cosine similarity for prediction with autoregression model (AR) with Yule-Walker solution and complex exponents model (EXP) with OMP (Orthogonal Matched Pursuit) algorithm for frequency search evaluated for prediction with 1 slot time step in UMa scenario with LoS channel for a UE with 90 kmph at 4 GHz carrier frequency. We also considered a measurement window of 10 slots and 100 slots. 
[image: ]
Figure 1. Cosine similarity for non-AI/ML prediction methods.
The evaluation above shows that CSI prediction based on autoregression has a higher prediction accuracy relative to the performance of the complex exponent model.
Observation 2: 
· CSI prediction based on autoregressive model outperforms CSI prediction for complex exponents model with OMP (Orthogonal Matched Pursuit) algorithm for frequency searching.
In order to align RAN1 assumptions on non-AI/ML CSI prediction, we propose to consider CSI prediction based on autoregressive model as basic assumption for benchmark 2, details including pre-processing, model order and number of time instances for filter estimation shall be disclosed by companies. Further, complexity of non-AI/ML CSI prediction algorithm shall be provided. 
Proposal 2: 
· RAN1 considers CSI prediction based on autoregressive model as basic assumption for benchmark 2.
· Details including pre-processing, model order, and number of time instances for filter estimation should be disclosed by companies.
· Computational complexity of the assumed prediction algorithms should be provided by companies.
AI/ML CSI prediction
The CSI prediction performance depends on many factors including wireless channel properties, UE speed, properties of reference signals (CSI-RS) and AI-ML model used for CSI prediction at the UE. In general case all the above factors cannot be known at the gNB side. Thus, acceptable prediction performance cannot be guaranteed for all the cases which may lead to degradation of system performance if channel prediction is enabled. To avoid the performance loss, model performance monitoring is required for CSI prediction using one-sided AI model at the UE side. In our view model performance monitoring is one of the main aspects for specification support of the AI/ML CSI prediction sub-use case. Further, performance monitoring specified for AI/ML-based CSI prediction can be also applied to CSI prediction using conventional algorithms. 
The following types are considered for the model performance monitoring for AI/ML-based CSI prediction in [1]. 
· Type 1: UE calculates the performance metric(s), UE reports performance monitoring output that facilitates functionality fallback decision at the network.
· Type 2: UE reports predicted CSI and/or the corresponding ground-truth, NW calculates the performance metrics, NW makes decision(s) of functionality fallback operation.
· Type 3: UE calculates the performance metric(s), UE reports performance metric(s) to the NW, NW makes decision(s) of functionality fallback operation
If NW calculates the performance metrics, performance metrics accuracy mainly depends on two factors: 
1) quantization error for CSI with CSI prediction using UE-sided AI/ML model; 2) quantization error for the corresponding ground-truth CSI reported by the UE. Performance metrics calculated at the UE side is not impacted by the above factors. If type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side. Hence, we propose to prioritize model performance monitoring type 1 and type 3 for CSI prediction using UE-sided AI/ML model. 
Observation 3: 
· For CSI prediction using UE-sided AI/ML model, performance monitoring with calculation of performance metrics at the NW side (type 2) has lower performance metrics accuracy comparing to performance monitoring with calculation of performance metrics at the UE side.
· If type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side.
Proposal 3: 
· For CSI prediction using UE-sided AI/ML model, model performance monitoring with performance metrics calculated at the UE side (type 1 and type 3) is prioritized for discussion.
In order to calculate the performance metrics for model performance monitoring, AI-ML model shall be applied to predict CSI for a time instance in which CSI-RS measurements are available. Model performance monitoring for CSI prediction is illustrated in Figure 2 below.


Figure 2. Model performance monitoring for CSI prediction

In the above figure intermediate metrics (e.g., SGCS) is calculated based on measured channel H(n+3P) and predicted channel Hp(n+3P), where P corresponds to the CSI-RS periodicity. We propose to consider model performance monitoring based on SGCS calculated from the measured CSI-RS and predicted channel at the UE side.
Proposal 4: 
· Consider model performance monitoring based on metrics (e.g., SGCS) calculated from the measured CSI-RS and predicted channel at the UE side.
For the CSI prediction problem, another major area is the configuration of the observation window and the prediction window. Depending on where the model resides, one or both may need to be configured to the UE. Furthermore, depending on model implementation and if the model is transferred one node to another, it may also be required to configure model selection at the inference node based on different prediction and/or observation window lengths. For Rel-18 Enhanced Type II codebook for predicted PMI, in case of periodic and semi-persistent CSI-RS, size and initial timing of observation window is not configured for the UE. For the case of aperiodic CSI-RS, it corresponds to transmission of multiple CSI-RS instances (CSI-RS burst) triggered by a DCI. Prediction window is configured to a UE for the Rel-18 PMI codebook as it is important to align this assumption between UE and gNB so that precoding matrix is applied at the right time. Slot offset, time interval duration and number of time intervals (N4) are configured to the UE for prediction window, where precoding matrix is reported per each time interval. For AI/ML based CSI prediction, RAN1 may consider changes for observation window and prediction window configurations, including introduction of observation window configuration for CSI with periodic and semi-persistent CSI-RS, changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS, and changes of configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
Proposal 5: 
· RAN1 to consider at least the following changes for observation window and prediction window configurations for AI/ML-based CSI prediction:
· Support of observation window configuration for CSI with periodic and semi-persistent CSI-RS.
· Changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS.
· Changes to configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
Conclusion
In this contribution, we have provided our views on sub use cases for AI/ML CSI including potential specification impact. The following observations and proposals were made. 

Observation 1: 
· Discussion on non-AI/ML CSI prediction algorithms is required to understand the difference in performance results as well as associated complexity for comparison of AI/ML-base CSI prediction with benchmark 2.
Observation 2: 
· CSI prediction based on autoregressive model outperforms CSI prediction for complex exponents model with OMP (Orthogonal Matched Pursuit) algorithm for frequency searching.
Observation 3: 
· For CSI prediction using UE-sided AI/ML model, performance monitoring with calculation of performance metrics at the NW side (type 2) has lower performance metrics accuracy comparing to performance monitoring with calculation of performance metrics at the UE side.
· If type 2 model performance monitoring is considered, additional study is required for accuracy of performance metrics calculated at the NW side.
Proposal 1: 
· CSI prediction with one-sided AI model at the UE side should be based on CSI reporting with the following PMI codebook at least for study phase of the Rel-19 AI/ML work item.
· Enhanced Type II codebook for predicted PMI with N4 = 1.
Proposal 2: 
· RAN1 considers CSI prediction based on autoregressive model as basic assumption for benchmark 2.
· Details including pre-processing, model order, and number of time instances for filter estimation should be disclosed by companies.
· Computational complexity of the assumed prediction algorithms should be provided by companies.
Proposal 3: 
· For CSI prediction using UE-sided AI/ML model, model performance monitoring with performance metrics calculated at the UE side (type 1 and type 3) is prioritized for discussion.
Proposal 4: 
· Consider model performance monitoring based on metrics (e.g., SGCS) calculated from the measured CSI-RS and predicted channel at the UE side.
Proposal 5: 
· RAN1 to consider at least the following changes for observation window and prediction window configurations for AI/ML-based CSI prediction:
· Support of observation window configuration for CSI with periodic and semi-persistent CSI-RS.
· Changes to CSI-RS burst configuration for CSI with aperiodic CSI-RS.
· Changes to configuration for prediction window (e.g., value range for slot offset, time interval duration and number of time intervals).
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