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Introduction
[bookmark: OLE_LINK4]In RAN#102 plenary meeting [1], a new WID on AI/ML for air-interface was approved for Release 19, where the study objectives on AI/ML for CSI compression are given below:
	Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· CSI feedback enhancement [RAN1]: 
· For CSI compression (two-sided model), further study ways to:
· Improve trade-off between performance and complexity/overhead
· e.g., considering extending the spatial/frequency compression to spatial/temporal/frequency compression, cell/site specific models, CSI compression plus prediction (compared to Rel-18 non-AI/ML based approach), etc.
· Alleviate/resolve issues related to inter-vendor training collaboration.
while addressing other aspects requiring further study/conclusion as captured in the conclusions section of the TR 38.843. 
…. 


This contribution discusses from the aspects of the extended cases of CSI compression including performance and complexity, issues related with inter-vendor training collaboration, and other remaining issues which are not concluded in Rel-18.
[bookmark: _Ref129681832]Improvement on performance and complexity
[bookmark: OLE_LINK40]Extending CSI compression to temporal-spatial-frequency (TSF) domain
The AI/ML-based temporal-spatial-frequency domain CSI compression, namely AI-TSF, can learn the additional temporal domain correlation of channel measurements on top of spatial-frequency domain compression. In particular, TSF in our contribution refers to the CSI compression using additional past CSI as model input, so that it is distinguished from the temporal compression for the future/predicted CSIs, which are captured in the extended case of CSI compression plus CSI prediction in Section 2.3.
Proposal 1: To distinguish from the CSI compression plus CSI prediction which uses the future/predicted CSI(s) as input, temporal-spatial-frequency (TSF) domain CSI compression refers to the CSI compression using past CSI as input.
[bookmark: OLE_LINK41]AI/ML model description for AI-TSF
The model description for AI-TSF is depicted in Figure 1. In our simulation, a LSTM module is chained on top of a Transformer backbone for both the CSI generation part and the CSI reconstruction part to achieve temporal domain compression.
[bookmark: _GoBack]Model inference
As shown in Figure 1, the AI/ML model can store past/historical information from previous slots and use this information to better compress/recover the CSI of the current slot. The past/historical information from previous slot(s) can be regarded as accumulated CSI information, and the CSI feedback over the air-interface for the current slot can be regarded as delta CSI information on top of the accumulated CSI information. That is to say, if the UE part model and the NW part model both have synchronized accumulated CSI information, and if the channel status of the current slot is time correlated with the previous slot(s), the CSI feedback overhead to carry the delta CSI information can be largely reduced compared to spatial-frequency domain only compression (namely AI-SF). Note that the accumulated CSI can be regarded as the self-input and self-output of the AI/ML model; for each slot, only the measured CSI (in forms of eigenvectors in our simulation) of the current slot is considered as the external input to the model, and only the recovery CSI of the current slot is considered as the external output of the model, which are similar to AI-SF.
 [image: ]
[bookmark: _Ref118149725]Figure 1 The procedure of AI-TSF CSI compression with additional past CSI as input
The functionalities for the CSI generation part and CSI reconstruction part are elaborated in below.
· Encoder: The model description for AI-TSF encoder is depicted in Figure 2. The external input of the encoder, denoted as , includes eigenvectors for N subbands of the current time instance t (t = 1, 2, 3,…).  is sent into the LSTM module as the input, where the accumulated CSI  from the last time instance t-1 is also leveraged in together to generate two outputs: one is the self-output of , which is the updated accumulated CSI to overwrite , and used as the self-input to the next time instance t+1 of the encoder; the other is the output to the Transformer module (before which a linear module is applied to adjust the tensor of the Transformer input), which can be regarded as the delta CSI information. After further compression of the Transformer module, the external output  is derived. Specifically, the compressed CSI of the AI-TSF can be formulated as , where  represents the function of the encoder, and  represents the accumulated CSI information at encoder of time instance t-1. Note that the accumulation of CSI can be stored in a dedicated buffer at the encoder side, and the inference or the accumulation of CSI at the encoder does not impact the weights of the AI-TSF encoder.
[bookmark: _Ref157441135][image: ]
[bookmark: _Ref158302036]Figure 2 The model description for AI-TSF Encoder
· Quantizer: The quantizer at the UE side maps the compressed CSI of a floating-point vector to a quantized bit sequence. In our simulation, vector quantization is used. The quantized CSI feedback can be formulated as  .
· De-Quantizer: The de-quantizer converts the feedback CSI bit sequence to a floating-point vector as a mirrored procedure of Quantizer, and sends it as the input to the decoder. The de-quantized CSI can be formulated as  .
· Decoder: The model description for AI-TSF encoder is depicted in Figure 3. As mirrored procedure of the encoder part, the LSTM module for the decoder is chained after the Transformer module to generate and make use of the accumulated CSI information at the decoder side. In particular, the external input  is sent to the Transformer module which will output the recovered delta CSI information as the input of the LSTM module. The LSTM module will leverage the accumulated CSI  from the last time instance t-1 as well as the delta CSI information of the current time instance t to generate two outputs: one is the self-output of , which will overwrite , and used as the self-input to the next time instance t+1 of the decoder; the other is the external output, representing the recovery CSI of the current slot, . As long as the CSI feedback  is successfully received, the accumulated CSI information between the encoder and the decoder will be synchronized, and the recovered  will be close to the input of the encoder . Specifically, the recovered eigenvectors can be formulated as , where  represents the function of the decoder, and  denotes the accumulated CSI information at decoder of time t-1. Similar to the encoder, the accumulation of CSI can be stored in a dedicated buffer at the decoder side, and the inference or the accumulation of CSI at the decoder does not impact the weights of the AI-TSF decoder.
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[bookmark: _Ref157450108]Figure 3 The model description for AI-TSF Decoder
Based on the elaborations for the model inference, the following proposal on the assumption of the TSF model is provided.
Proposal 2: For the EVM of TSF domain CSI compression, consider the following assumptions for the CSI generation part and CSI reconstruction part, respectively:
· CSI generation part (taking time instance t=2 for example): 
· Model input: original CSI of the current slot () and accumulated CSI information from the last time instance ().
· Model output: CSI feedback of the current slot () and accumulated CSI information for the next time instance ().
· CSI reconstruction part (taking time instance t=2 for example): 
· Model input: CSI feedback of the current slot () and accumulated CSI information from the last time instance ().
· Model output: recovery CSI of the current slot () and accumulated CSI information for the next time instance ().
· Note: after inference, the accumulated CSI information at the CSI generation part and CSI reconstruction part are updated from  to  and from  to , respectively. The update of the accumulated CSI information does not impact the weights of the models.
Model training
The generation of loss function for training should also take accumulated CSI reconstruction performance into consideration, as depicted in below Figure 4. One training CSI sample consists of 50 continuous CSIs each of which corresponds to a CSI measurement of a slot. For each CSI sample of a training batch, its 50 continuous CSIs are sequentially sent to the model, each of which will emulate an inference occasion; the loss function (SGCS in our simulation) for the training batch is calculated by averaging the SGCS over 50 continuous CSIs per CSI sample and all CSI samples per batch.
 [image: ]
[bookmark: _Ref157455089]Figure 4 The description for AI-TSF loss function
The assumptions for the generation of training dataset construction for both Section 2.1.2/2.1.3 and Section 2.1.4 are listed in the following table:
Table 1 Assumptions for training dataset construction for both field test and simulations of AI-TSF
	Parameters
	Value

	Data source
	3GPP Dense urban channel model generated dataset

	Number of UEs to generate data
	1000

	Sample construction
	50 continuous CSIs as one training sample

	TTI interval between neighboring CSIs inside one sample
	5ms

	Samples generated from per UE
	350 samples per UE

	Training set size
	350K

	Testing set size
	5K

	Training input type (for LSTM)
	Eigenvector(s) of the channel


TSF specific simulation assumptions
For the EVM for AI-TSF, we should focus on discussing the TSF specific EVM aspects on top of what we have already agreed for SF domain CSI compression in Rel-18.
As one example of the TSF specific EVM aspects, the UCI missing may need to be considered to the simulation. As we elaborated previously, the accumulated CSI information between the encoder and the decoder will be synchronized if the CSI feedback is successfully received at the gNB. However, if UCI missing occurs for the UL transmission (UE dropping CSI, or gNB failing to decode CSI), UE has updated the accumulated CSI while NW fails to update the accumulated CSI, the accumulated CSI between two sides will be mismatched for the next time instance of inference. E.g., as shown in the following figure, gNB fails to receive the CSI feedback  reported by UE at time instance t=2, then the accumulated CSI at the encoder has been updated to   , while the accumulated CSI at the decoder is still kept as the status of the last time instance t=1, i.e., . Such mismatch will impact the inference for t=3. 
Note that in the model training of AI-TSF in our simulation, we assume that the accumulated CSI of the encoder  and the accumulated CSI of the decoder  can be updated synchronously since the availability of the training data is easy to be guaranteed.
 [image: ]
Figure 5 Impact of UCI missing under AI-TSF
Though the UCI missing can be realistically modeled by the transmission/failure of PUSCH, it may be difficult to align the probability of UCI missing, since the failure of PUSCH may be impacted by various factors of link adaptation, scheduling, interference, etc., which are hard to be calibrated over companies. As a simple way, we can consider a UCI missing rate (e.g., 10%) for each individual CSI report occasion, which is referred to the modeling for the BLER of data channel in previous evaluations.
In addition, the benchmark may also be discussed. As we have already evaluated SF domain CSI compression in Rel-18, it can be considered as an additional benchmark for better comparing TSF domain CSI compression with the SF domain CSI compression.
Moreover, as TSF domain CSI compression leverages the temporal domain correlation, various UE speeds may be optionally considered for outdoor UEs, e.g., 10km/h, 60km/h, 90km/h and 120km/h. On the other hand, as the indoor UE ratio is 80% for the dense urban case, the outdoor UE performance may not significantly contribute to the overall performance, thus this aspect may not be mandatorily considered.
For other EVM aspects, the principle for evaluating Rel-18 SF domain CSI compression may be reused, e.g., quantization methods, ground-truth CSI format for training, generalization/scalability cases, training collaboration types, monitoring methods, etc. As the performances over these aspects for AI-SF have been observed in Rel-18, and these aspects are not temporal domain related, it is straightforward that AI-TSF would have similar trend with AI-SF. Thus, these aspects may be considered with relatively lower priority.
Proposal 3: For the EVM of TSF domain CSI compression, consider the following additional EVM aspects on top of the EVM of SF domain CSI compression agreed in Rel-18:
· UCI missing, which may be modelled with a missing rate (e.g., 10%) for each individual CSI report occasion.
· Benchmark: besides Rel-16 eType II CB, Rel-18 SF CSI compression is also considered as benchmark.
· UE speeds for outdoor UEs: besides 30km/h, may optionally consider 10km/h, 60km/h, 90km/h and 120km/h.
· Other EVM aspects, if needed, may follow the principle of Rel-18 SF domain CSI compression, e.g., quantization methods, ground-truth CSI format for training, generalization/scalability cases, training collaboration types, monitoring methods, etc.
Preliminary simulation results
The simulation assumptions of evaluations below are based on Table 6.2.1-1 of TR 38.843 [2] and the additional aspects discussed above. 3 aspects are evaluated: AI-TSF under 1-on-1 joint training without UCI missing to show the upper bound of the performance; AI-TSF under NW first separate training without UCI missing to show the impact of different training manners; AI-TSF under 1-on-1 joint training considering UCI missing to show the performance impact under mismatched accumulated CSI.
AI-TSF CSI under 1-on-1 joint training without considering UCI missing
The following part provides the evaluation results of the AI-TSF compression scheme, where rank=1 and rank=2 with rank adaptation is considered. 
Figure 6 illustrates the SGCS of AI-TSF with feedback overhead of 60bits (CSI payload X), 120bits (CSI payload Y) and 240bits (CSI payload Z) for both rank=1 and rank=2. It can be seen that AI-TSF has improved SGCS over Rel-16 eType II CB as well as AI-SF CSI compression over different CSI payload sizes and over different layers. 
Figure 7 illustrates the throughput performance under full buffer traffic. It can be seen that AI-TSF can provide 18.3%-25.4% gain for rank=1 and 23.3%-30.2% gain for rank=2 over Rel-16 eType II CB, and outperforms Rel-18 SF CSI compression by 7.57%-14.84% for rank=1 and 10.3%-15.4% for rank=2 accordingly.
Figure 8 illustrates the mean UPT performance under FTP traffic at RU=80%. It can be seen that AI-TSF can provide 7.6%-14.9% gain for rank=1 and 17.0%-28.6% gain for rank=2 over Rel-16 eType II CB, and outperforms Rel-18 SF CSI compression by 1.3%-6.1% for rank=1 and 6.1%-14.1% for rank=2 accordingly.
Figure 9 illustrates the 5% UPT performance under FTP traffic at RU=80%. It can be seen that AI-TSF can provide 10%-28.4% gain for rank=1 and 17%-39.2% gain for rank=2 over Rel-16 eType II CB, and outperforms Rel-18 SF CSI compression by 1.6%-12.1% for rank=1 and 4.9%-15.5% for rank=2 accordingly. 
As shown in Figure 10, the UPT corresponding to the ideal CSI is provided as the upper bound and the performances of Rel-16 eType II CB, AI-SF, and AI-TSF are provided as the ratio to the ideal CSI. Take rank=2 for instance, compared to the mean UPT corresponding to the ideal CSI and under the payload size of 80/163/341 bits, respectively: Rel-16 eType II CB has 37%/25%/19% margin; AI-SF has 28%/19%/10% margin; AI-TSF has 19%/13%/5% margin.
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[bookmark: _Ref118360516]Figure 6  SGCS between AI/ML-based output CSI and the target CSI
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[bookmark: _Ref118360540]Figure 7  Throughput gain over Rel-16 eType II CB for full buffer traffic
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[bookmark: _Ref118360552]Figure 8 Mean UPT gain over Rel-16 eType II CB for FTP traffic at 80% RU
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[bookmark: _Ref118360579]Figure 9 5% UPT gain over Rel-16 eType II CB for FTP traffic at 80% RU
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[bookmark: _Ref127366976]Figure 10 UPT performance compared with ideal CSI for FTP traffic at 80% RU
Observation 1: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of cell average throughput under full buffer traffic, AI/ML based TSF domain CSI compression achieves:
· 18.3%-25.4% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 7.57%-14.84% accordingly.
· 23.3%-30.2% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 10.3%-15.4% accordingly.
Observation 2: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of mean UPT under FTP traffic at RU=80%, AI/ML based TSF domain CSI compression achieves:
· 7.6%-14.9% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 1.3%-6.1% accordingly.
· 17.0%-28.6% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 6.1%-14.1% accordingly.
Observation 3: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of 5% UPT under FTP traffic at RU=80%, AI/ML based TSF domain CSI compression achieves:
· 10%-28.4% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 1.6%-12.1% accordingly.
· 17%-39.2% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 4.9%-15.5% accordingly.
AI-TSF CSI under training collaboration Type 3
In Rel-18, we have evaluated the performance of training collaboration Type 3 (separate training) for SF domain CSI compression, where the 1-on-1 joint training is taken as the baseline of performance comparison. For TSF domain CSI compression, it is similar in theory to the SF domain CSI compression that dataset sharing from NW side to UE side or from UE side to NW side can be carried out to facilitate the opposite side to do the training. As the dataset additionally contains the temporal domain information, we perform the simulation also for AI-TSF to verify whether the same trend can be observed.
In our preliminary results, 1 NW part model to 1 UE part model for NW first training is considered, and two simulation cases are assumed between the UE side CSI generation part and the NW side virtual CSI generation part model: same AI-TSF model structure, and different AI-TSF model structures but the same backbone (both are LSTM+Transformer). For the same backbone case, the structure difference between NW part and UE part lies on the number of layers for both the LSTM module and the Transformer module.
Table 2 illustrates that AI-TSF under separate training shows only minor SGCS loss (up to -0.14%) as compared with AI-TSF under 1-on-1 joint training, regardless same structure or different structures but same backbone is adopted at the UE side.
[bookmark: _Ref158024840]Table 2 Evaluation results for AI-TSF CSI under Type 3 training in terms of SGCS
	Cases
	60 bits
	120 bits
	240 bits

	1-on-1 joint training
	0.8694
	0.9347
	0.9688

	Type 3 NW first, same structure
	0.8702 (+0.09%)
	0.9336 (-0.12%)
	0.9686 (-0.02%)

	Type 3 NW first, same backbone 
	0.8705 (+0.1%)
	0.9334 (-0.14%)
	0.9683 (-0.05%)


Observation 4: For the evaluation of TSF domain CSI compression, compared with 1-on-1 joint training, adopting NW first separate training between 1 NW part model and 1 UE part model would cause negligible performance loss (less than -0.14%) if the same backbone is considered between NW side and UE side, which is similar trend with Rel-18 SF domain CSI compression.
TSF CSI considering UCI missing
As analyzed in the previous section, the accumulated CSI information between the encoder and the decoder will be mismatched if the gNB fails to receive the UCI reported from UE, and such mismatched CSI accumulation may impact the inference for the next/future time instance(s). To evaluate how large impact such mismatch will cause to the eventual performance of throughput, we consider the following cases. Note that 1-on-1 joint training is considered, and the SLS simulation is run over a single cell which is different from “AI-TSF CSI under 1-on-1 joint training without considering UCI missing”.
· Case 1 (benchmark#1): Rel-16 eType II CB. We do not model UCI missing for this case. The throughput of Case 1 is assumed as 100%, while throughput of other cases are normalized by taking Case 1 as the baseline.
· Case 2 (benchmark#2): Rel-18 AI-SF. This benchmark is adopted to evaluate whether the performance loss of AI-TSF would degrade the performance to be lower than the benchmark of SF domain CSI compression.
· Case 3: AI-TSF without considering UCI missing. This can be achieved when UL link is robust, e.g., when the TPC and beta-offset are configured with reliable values. 
· Case 4: AI-TSF with UCI missing, and no special handling is performed. As mentioned in the previous section, 10% UCI missing rate is assumed for each individual UL CSI feedback. The NW side accumulated CSI and UE side accumulated CSI would be mismatched after UCI missing occurs. 
· Case 5: AI-TSF with UCI missing, and solution to re-align the accumulated CSI for both sides are considered. In realistic network, the re-alignment can be triggered by gNB, as the gNB can identify the UCI missing by verifying the CRC of UCI. In this simulation, CSI buffer resetting is considered.
Table 3 illustrates that AI-TSF with 10% UCI missing rate will cause performance loss compared with the AI-TSF without UCI missing (but would still slightly outperform AI-SF). On the other hand, by introducing solutions for re-aligning the accumulated CSI between NW side and UE side, the performance loss can be significantly alleviated.
[bookmark: _Ref158027893]Table 3 Evaluation results for AI-TSF considering UCI missing (Rank 1, full buffer, CSI payload = 240bits)
	Cases
	Throughput

	Case 1: Rel-16 eType II CB, no UCI missing
	100%

	Case 2: Rel-18 AI-SF, no UCI missing
	112%

	Case 3: AI-TSF, no UCI missing
	136%

	Case 4: AI-TSF with UCI missing (10% missing rate), no special handling
	113%

	Case 5: AI-TSF with UCI missing (10% missing rate), reset accumulated CSI information at both sides after UCI missing
	127%


Observation 5: For the evaluation of TSF domain CSI compression, when UCI missing is considered for TSF domain CSI compression, performance loss is observed compared with the case without modeling UCI missing due to mismatched accumulated CSI information between NW side and UE side.
· When adopting solutions to re-align the accumulated CSI information for both sides, the performance loss can be largely alleviated.
Field test scenario and results
Field test scenario
To comprehensively assess whether/how the AI-TSF can achieve better performance than legacy CSI CB in the realistic network, we performed field test to the AI-TSF to compare with Rel-16 eType II CB. The MU-MIMO field test is conducted in dense urban scenario as shown in Figure 11. The blue points with numbering 1~7 are 7 candidate UEs for multi-user pairing. These 7 UEs are all outdoor and dropped at randomly selected spots in the coverage of the cell. For each testing time point, all of the 7 UEs are pairing for MU transmission, and the downlink cell throughput is the summation of the throughputs for all 7 UEs.
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[bookmark: _Ref158306483]Figure 11 Test scenario of MU-MIMO test
The field test configurations are listed in the following table.
Table 4 Field test configurations for AI-TSF
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Frequency Range
	2.1GHz

	Antenna setup at gNB
	32 ports: (8,8,2,1,1,2,8)

	Antenna setup at UE
	4RX: (1,2,2,1,1,1,2)

	MIMO scheme
	MU-MIMO 

	CSI feedback periodicity
	10 ms

	Traffic model
	Full buffer

	Training approach
	1-on-1 joint training

	Number of ranks
	Rank 1


Field test results
The field test results are shown in Figure 12  for the downlink cell throughput. We first run the system under the Rel-16 eType II CB as the CSI feedback approach, then the CSI feedback approach is switched to the AI-TSF sheme to compare the throughput gain over Rel-16 eType II CB. And after that, the CSI feedback approach is switched back to Rel-16 eType II CB to verify again.
Note that for Rel-16 eType II CB, we adopted PC#6, i.e., 279 bits in the test, while for AI-TSF, we adopted a comparable CSI feedback payload of 240 bits (same as our simulation assumption for CSI payload Z) to align the CSI payload between Rel-16 eType II and AI-TSF to some extent. In addition, fixed Rank=1 is considered in the field test.
[image: ]
[bookmark: _Ref158306499]Figure 12 Field test results in terms of the downlink cell throughput
The field test results are provided in the following Table 5. It is illustrated that AI-TSF feedback with overhead of 240bits can provide 22.29% gain for rank=1 over Rel-16 eType II CB with overhead of 279bits in terms of cell throughput under full buffer traffic. This performance gain is consistent with our simulation results in Section 2.1.3, which is 18.3% gain.
[bookmark: _Ref158028068]Table 5 Field test results for AI-TSF
	Cases
	Throughput gain

	Rel-16 eType II CB @279bits
	22.29%

	AI-TSF@240bits
	


Observation 6: For the field test of TSF domain CSI compression under MU-MIMO, with comparable overhead of CSI feedback and in terms of cell average throughput under full buffer traffic and Rank 1, AI/ML based TSF domain CSI compression (with overhead of 240bits) can achieve 22.29% gain over Rel-16 eType II CB (with overhead of 279bits), which is consistent with SLS results.
Complexity alleviation
For how to alleviate/resolve the complexity of CSI compression, the detailed methods and corresponding simulation results are presented in the following.
Complexity reduction method
On one hand, complexity can be alleviated with extended solution, e.g., TSF CSI compression. That is because the LSTM module could extract the correlated temporal domain information, thus eliminating some space-frequency domain extraction complexity for the Transformer module. Hence, the AI-TSF could reduce the complexity of CSI compression compared with AI-SF.
On the other hand, complexity during the inference phase can be alleviated with implementation method, e.g., knowledge distillation. Distillation is the process of learning a small model (often called the student model) from a large model (often called the teacher model). The teacher model can be the original AI-TSF model, and the student model can be the compressed AI-TSF model. Through the process of knowledge distillation, the compressed AI-TSF model could learn the compression knowledge well from the original AI-TSF model, achieving similar performance and in a much lower complexity.
Simulation results for the complexity
The results in terms of complexity and GCS of high complexity model vs low complexity model under 1-on-1 joint training are listed in the following table. We consider 3 cases: Case 1 is AI-SF which is adopted in our Rel-18 evaluation; Case 2 is the AI-TSF model without special handling of complexity reduction (namely original model or teacher model); Case 3 is the AI-TSF model with knowledge distillation, where the teacher model of Case 2 is compressed to a student model under Case 3.
From the following table, it can be seen that compared with Case 1, the FLOPs and number of parameters of Case 2 are reduced from 1600M to 1200M and from 13M to 5M, respectively (taking the encoder model as example). This is due to the fact that the LSTM module can achieve the performance gain from temporal domain to a large extent, so that the Transformer module does not need to be developed as so sophisticated.
Furthermore, when knowledge distillation is applied for Case 3, the complexity can be further significantly reduced on top of Case 2 - the FLOPs and number of parameters of Case 3 are reduced further from 1200M to 113M (compression ratio ~90%) and from 5M to 1.7M (compression ratio ~66%), respectively (taking the encoder model as example). On the other hand, the model performance in terms of GCS is still close to the original model. That is to say, the model complexity can be largely alleviated by implementation methods with negligible performance loss. 
Table 6 Complexity results for AI-SF CSI model, original AI-TSF CSI model, and compressed AI-TSF CSI model
	
	Model Size (M Bytes [FP32])
	Param# (M)
	FLOPs (M)
	GCS

	
	
	
	
	60bits
	240bits

	Case 1: AI-SF
	Encoder
	52
	13
	1600
	/
	/

	
	Decoder
	68
	17
	2200
	/
	/

	Case 2: AI-TSF, original model
	Encoder
	19
	5
	1200
	0.9147
	0.9786

	
	Decoder
	28
	7
	1270
	
	

	Case 3: AI-TSF, compressed model
	Encoder
	7
	1.7
	113
	0.9162
	0.9734

	
	Decoder
	7
	1.7
	113
	
	


Observation 7: Compared with SF domain CSI compression, the complexity can be alleviated with extended solution, e.g., TSF CSI compression, since the Transformer part of the model for achieving SF domain CSI compression may not need to be so sophisticated.
Observation 8: The method to achieve complexity reduction can be further achieved based on implementation, e.g., knowledge distillation, with negligible performance loss.
Potential specification impact
Similar to the principle of discussing EVM, the potential spec impact of the extended cases should focus on the additional aspects on top of Rel-18 AI/ML based SF CSI compression for which the potential spec impacts have been widely discussed.
As one point that is analyzed and evaluated from previous sections, AI-TSF performance may degrade if no special handling is performed to cope with the UCI missing. One candidate to resolve this issue is to specify the signaling to re-align the accumulated CSI, e.g., triggering the reset of accumulated CSI.
Other aspects for AI-TSF can reuse the potential spec impact discussed for Rel-18 SF CSI compression to a large extent, e.g., data collection, inference, monitoring, etc.
Proposal 4: For the additional potential spec impact of TSF domain CSI compression on top of Rel-18 SF domain CSI compression, consider methods to handle the misalignment of the accumulated CSI between NW part model and UE part model due to UCI missing.
Extending CSI compression to cell/site specific models
Evaluation methodology
For the evaluation of cell/site specific models, the key point for EVM is how to model the channel to reflect the correlation of the data feature between the training phase and the inference phase from per site basis. Three candidates for channel modelling are provided and analysed in below.
Candidate 1: Ray-tracing model, where the deterministic topology and fading is modeled based on digital map.
The method for channel generation is described in Section 8 of TR 38.901 [3]. On one hand, as it highly relies on digital map per cell/site, we may need to first select an appropriate digital map. On the other hand, as the Ray-tracing model has not been evaluated in previous NR releases, it may take some time for different companies to calibrate the channel model before starting the evaluation.
Candidate 2: Spatial consistency modelling in 3GPP 38.901, where UEs/links between training and inference are subject to the same drop. This assumes that the channel status for UEs located in the same area are very similar; therefore, the training phase and the inference phase need to be under the same drop, otherwise the spatial consistency between training and inference would disappear due to the re-dropping of UEs. As an extreme example, if the UE for inference is dropped at the same location as the UE for training, the channel status between training and inference are exactly the same.
In Rel-18 AI/ML evaluations, spatial consistency modelling has been adopted for beam management and positioning, respectively. For BM-Case2, the spatial consistency is modelled in together with trajectory so that the model can learn the mobility feature of UEs for beam selection; in the BM-Case2 evaluation, the spatial consistency is applied separately for training and inference, i.e., training UEs and inference UEs are subject to different drops, so this cannot be borrowed to spatial consistency of the cell/site specific model in Rel-19. 
For positioning, the spatial consistency modelling approach is similar to the cell/site specific model in Rel-19, where the training UE and inference UE are subject to the same drop. The AI/ML model learns the fingerprint of the channel measurement and the ground-truth label, so when a different drop is applied for inference, the positioning accuracy degrades severely. In addition, it should be noted that the evaluation for Rel-18 AI/ML based positioning is indoor factory, which is different from the dense urban deployment scenario for the CSI use case.
Candidate 3: Different deployment scenarios/configurations for different sites. E.g., partial cells are assumed with UMa, while other cells are assumed with UMi.
This candidate is similar to the generalization cases evaluated in Rel-18, where the model trained and inference both under the cell of the same scenario/configuration can be regarded as generalization Case 1 to reflect the cell/site specific gain, while the model trained with mixed dataset over scenarios/configurations while inference under a specific cell with a certain scenario/configuration can be regarded as generalization Case 3 to be taken as baseline of generalized model for comparison.
Proposal 5: For the EVM of cell/site specific models, start the discussion with the following candidates for channel modeling to reflect the correlation of the scenario between the training phase and the inference phase for per cell/site.
· Candidate 1: Ray-tracing model.
· Candidate 2: Spatial consistency, where UEs between training and inference are subject to the same drop.
· Candidate 3: Different deployment scenarios/configurations for different sites.
It should be noted that for Candidate 1 and Candidate 2, promising performance is expected due to the overfitting gain, since the inference data is highly similar to the fingerprint of the training data (e.g., exactly the same fingerprint when the locations of inference UE and training UE are the same). However, the assumption of the same drop between training and inference is different from the realistic network, which means over-optimistic performance in evaluation. E.g., as the time scale for model training may last a couple of hour/days/weeks, the time gap between the generation of the training data and the inference may be too large to keep strong correlation between training data and inference data especially in terms of small scale fading. The variation of channel status may be especially large for outdoor UEs due to medium/high mobility and drastically changed outdoor radio propagation environment. 
To avoid overfitting model and over-optimistic performance for Candidate 1 and Candidate 2, we may need to further consider reflecting the variation of the channel (especially small scale fading) between training phase and inference phase, e.g., modelling the updates of the digital map for Candidate 1 or modelling the updates of the fading parameters for Candidate 2.
Observation 9: For the EVM of cell/site specific models, the channel features between the training data and the inference data in the real network may vary a lot considering the time gap between training and inference may be large scale (e.g., days, weeks).
Proposal 6: For the EVM of cell/site specific models, it needs to discuss how to reflect the variation of the channel between the training phase and the inference phase to avoid overfitting model and over-optimistic performance.
For other EVM aspects, the principle for evaluating Rel-18 SF domain CSI compression may be reused.
Potential specification impact
The potential spec impact for supporting cell/site specific model is similar to the potential spec impact discussed for Rel-18 SF CSI compression, except for the spec impact related with model transfer/delivery. Since the feasibility and solutions for model transfer/delivery is discussed in agenda 9.1.3.3 [4], we may not need to discuss them in the CSI agenda in duplication.
Proposal 7: The particular potential spec impact to support cell/site specific models can refer to model transfer/delivery, which is better to be discussed in 9.1.3.3.
Extending CSI compression to CSI compression plus CSI prediction
Evaluation methodology
For the evaluation of CSI compression plus CSI prediction, we should also address the additional aspects on top of the Rel-18 SF CSI compression.
For the benchmark of performance comparison, similar to our discussion for AI-TSF, Rel-18 SF CSI compression may be considered as the AI/ML benchmark for CSI compression plus CSI prediction. Moreover, as we also evaluated the CSI prediction in Rel-18 AI/ML, AI/ML based CSI prediction may also be considered as the AI/ML benchmark.
In addition, for the non-AI/ML based benchmark, besides Rel-16 eType II CB which we considered as the benchmark for CSI compression as well as CSI prediction in Rel-18, we may also consider the Rel-18 Doppler CB which is introduced in Rel-18 MIMO. In particular, Rel-16 eType II CB is adopted as the benchmark if the AI/ML solution predicts one future instance, i.e., no compression in temporal domain; Rel-18 Doppler CB is adopted as the benchmark if the AI/ML solution predicts multiple future instances for compression.
Moreover, as CSI compression plus CSI prediction makes use of the prediction gain, the EVM should also follow the Rel-18 CSI prediction specific assumptions; e.g., the UE distribution assumes 100% outdoor; UE speed considers 10km/h, 30km/h, 60km/h, and 120km/h; spatial consistency Procedure A with 50m decorrelation distance could be optionally used. Accordingly, the applicable case of CSI compression plus CSI prediction is also consistent with the applicable case of CSI prediction only, i.e., outdoor UEs with medium/high mobility; for the indoor or low speed UEs, as the prediction gain would shrink as opposed to sample-and-hold, it will fall back to CSI compression only.
Proposal 8: For the EVM of CSI compression plus CSI prediction, consider the following additional EVM aspects on top of the EVM of SF domain CSI compression agreed in Rel-18:
· Non-AI/ML benchmark: 
· Opt1: Rel-16 eType II CB (AI/ML solution predicts one future instance)
· Opt2: Rel-18 Doppler CB (AI/ML solution predicts multiple future instances)
· AI/ML benchmark: Rel-18 SF domain CSI compression, Rel-18 AI/ML based CSI prediction
· For UE distribution, UE speed, and spatial consistency modelling, it can adopt the EVM for Rel-18 AI/ML based CSI prediction.
Observation 10: For the applicable cases, CSI compression plus CSI prediction is consistent with CSI prediction, i.e., applicable to outdoor UEs with medium/high mobility.
Potential specification impact
The major particular issue for the potential spec impact of CSI compression plus CSI prediction is whether the two features (i.e., compression and prediction) are considered as one model or two separate models from the LCM perspective.
If the two features are regarded as two separate models, the LCM procedures are simply the joint operation of two individual features: for model control, the two models are individually activated/deactivated, e.g., it is possible to keep one model running while switch off the other one; for data collection, the data for CSI compression (e.g., precoding matrix for the current slot as input and label) and/or for CSI prediction (e.g., channel matrix for the current slot as input and channel matrix for the future slot as label) can be reported separately; for monitoring, the two models are separately monitored based on the ground-truth CSI of current slot for CSI compression and ground-truth CSI of future slot for CSI prediction, respectively.
On the other hand, if the two features are regarded as one single model, the LCM procedures may be different from either CSI compression or CSI prediction, e.g.: for model control, the compression plus prediction feature is activated/deactivated as a single model; for data collection, it may introduce a new combination of input and label (e.g., channel matrix for the current slot as input and precoding matrix for the future slot as label); for inference, whether/how to derive CQI/RI may need further discussion: as the output of the model, or calculated based on some intermediate output of the model; for monitoring, the ground-truth CSI for the future slot is considered for monitoring.
Proposal 9: For the particular potential spec impact to support CSI compression plus CSI prediction it may need to be discussed whether these two features are regarded as one model or two separate models from the LCM perspective.
· The impacted LCM procedures include, e.g., data collection, monitoring, inference, model control (activation/deactivation/switching/fallback), etc.
Inter-vendor training collaboration
 As listed in TR 38.843 [2], the training collaborations types include the following: 
	For CSI compression using two-sided model use case, considered AI/ML model training collaborations include: 
-	Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
-	Type 2: Joint training of the two-sided model at network side and UE side, respectively.
-	Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the NW-side CSI reconstruction part are trained by UE side and network side, respectively.
-	Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
-	Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training
-	Note: training collaboration Type 2 over the air interface for model training (not including model update) is concluded to be deprioritized in Rel-18 SI. 


As summarized in the TR, the training collaboration Type 2 over the air-interface for model training has been deprioritized in Rel-18 SI. 
From the concluded pros/cons table from Rel-18, for the item “Feasibility of allowing UE side and NW side to develop/update models separately”, it is concluded as “Infeasible” for simultaneous training, and “No consensus” for NW first sequential training. From our view, even for the NW first sequential training, the engineering isolation cannot be guaranteed either, due to the real-time interaction of FP/BP iterations between NW and UE during the training. 
Moreover, at least the following information needs to be aligned between the two sides: training/validation dataset, format of the BP/FP parameters, protocol/procedure of the BP/FP interaction, number of batches/training loops, conditions for convergence, etc. Such complicated interaction would cause significant burden regardless they are aligned with specified manner or offline interoperation manner. Considering the limited working budget for the CSI compression discussion in Rel-19 and there are lots of controversy on whether/how it is feasible to achieve training collaboration Type 2, it is suggested that training collaboration Type 2 over the 3GPP signaling is deprioritized in Rel-19.
Proposal 10: Deprioritize training collaboration Type 2 over the 3GPP signaling in Rel-19.
In the rest of this section, we will focus on training collaboration Type 1 and training collaboration Type 3.
Training collaboration Type 1
For Type 1, the two-sided AI/ML model can be jointly trained at NW side as shown in Figure 13(a), after which the NW delivers the trained CSI generation part to the UE; alternatively, the two-sided AI/ML model can be jointly trained at UE side as shown in Figure 13(b), after which UE delivers the trained CSI reconstruction part to NW.
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	(a) Joint training at NW side
	(b) Joint training at UE side


[bookmark: _Ref110631031]Figure 13 Joint training of the two-sided model at a single side/entity 
[bookmark: _Hlk134800398]As the feasibility and potential spec impact for model transfer/delivery (including the comparison between known model and unknown model) is discussed in RAN2 and 9.1.3.3, we may not need to discuss the prioritization of whole Type 1 at the CSI agenda to avoid duplication.
On the other hand, for the comparison between NW side training and UE side training, cons of joint training at UE side include follows:
· Flexibility on scenario-specific model: For the joint training at NW side, NW vendor can flexibly perform cell/scenario specific model training based on specific network planning, site types, down-tilt angles, TxRU mapping, etc. That is to say, it is easier for NW to categorize the training data to match the NW side additional condition. As a comparison, for the joint training at UE side, training dataset collected by UE vendors may not match the specific NW side additional condition, since it is not likely for NW to disclose the above proprietary information to the UE. As a result, the model may be suboptimal. On the other hand, the proprietary of UE side additional condition (e.g., UE height, antenna type) may not impact the data distribution as much as the NW side additional condition - as they are not evaluated in Rel-18, the impact is not justified yet.
· Model updating flexibility: The model update for joint training at NW side is much easier (which can train the model at the gNB with on-demand manner) than model update at the UE side, which cannot train the model at the UE device due to the limitation of UE capability. This is also captured in item “Model update flexibility after deployment” of the pros/cons table in TR 38.843 [2], where “Type 1: UE side” is “less flexible than Type 1 NW side” than “Type1: NW side” irrespective of “Unknown model structure” or “Known model structure”. 
· Burden on model inference/storage/maintenance at NW side: For joint training at the NW side, UE side may need to store/maintain multiple CSI generation parts from different NW vendors. But such effort is imposed on the UE side server, while for per UE basis, it only needs to store/maintain/inference on a single CSI generation part from the cell being camped on. However, for joint training at the UE side, gNB, rather than a NW side server, may need to conduct inference/storage/maintenance on multiple CSI reconstruction parts delivered from different UE vendors, as various UEs from these UE vendors may all camp on this gNB. That is to say, joint training at the UE side has more severe burden of inference/storage/maintenance of multiple NW part models from different UE vendors.
Observation 11: For training collaboration Type 1 of CSI compression, compared with joint training at NW side, performing joint training at UE side and delivering the model to the NW incur extra challenges for NW due to the following reasons:
· Inconvenience of training cell/scenario specific models.
· Less flexible model update.
· Burden of inference/storage/maintenance of multiple NW part models at gNB delivered from different UE vendors.
Training collaboration Type 3
For Type 3, we have achieved the following agreement on the procedure for evaluation of separate training in Section 6.2.1 of TR 38.843 [2]. The corresponding procedures of Type 3 for NW first training and UE first training are illustrated in Figure 14 (a) and Figure 14 (b), respectively. However, for the information to be shared from NW to UE under NW first training and from UE to NW under UE first training has not been concluded in the spec impact agenda.
	For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
-	Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
[bookmark: _Hlk156902514]-	Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· [bookmark: _Hlk156902985][bookmark: _Hlk156903021]Companies to report Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable. Also report the Quantization behaviour, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
-	Step3: UE side trains the UE side CSI generation part based on the received set of information
-	Other Type 3 NW-first training approaches are not precluded 
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with UE side training (UE-first training):
-	Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
[bookmark: _Hlk156902873]-	Step2: After UE side training is finished, UE side shares NW side with a set of information (e.g., dataset) that is used by the NW side to be able to train the CSI reconstruction part
· [bookmark: _Hlk156903036]Companies to report Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable. Also, report the Quantization behaviour, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.
-	Step3: NW side trains the NW side CSI reconstruction part based on the received set of information
-	Other Type 3 UE-first training approaches are not precluded
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(a) NW first training
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(b) UE first training


Figure 14 Examples of separate training for CSI compression
From the Rel-18 evaluations and observations in Section 6.2.2.5 of the TR (also shown in below), the set of information used for Step 2 of NW first training is widely considered as the input and output of the NW side CSI generation part, and the set of information used for Step 2 of UE first training is widely considered as the input and label of the UE side CSI reconstruction part. From evaluation perspective, this is equal to sharing the output of the NW side CSI generation part only/the input of the UE side CSI reconstruction part only, for NW first training/UE first training, respectively. However, from realization perspective, the post-trained dataset of NW first training/UE first training may be generated from the data collected from multiple UEs/NWs, so it is more convenient to deliver both the input and output/label to the other side for studying the potential spec impact.
For the quantization behavior, the Rel-18 observations (referred in below) show that the performances are similar regardless whether the shared output of the NW side CSI generation part is before or after quantization (for NW first training), and regardless whether the shared input of the UE side CSI reconstruction part is before or after quantization (for UE first training). Therefore, whether the shared dataset is before or after quantization can be FFS.
	[bookmark: _Toc149657155]6.2.2.5	Separate training for CSI compression
NW first training, 1 NW part model to 1 UE part model, same backbone
For the evaluation of Type 3 NW first separate training with dataset sharing manner for CSI compression for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
-	For the NW first separate training case where the same backbone is adopted for both the NW part model and the UE part model, minor degradation is observed for both the cases where the shared output of the Network side CSI generation part is before or after quantization:
-	For the case where the shared output of the Network side CSI generation part is after quantization, 9 sources observe -0%~-0.5% degradation, 10 sources observe -0.5%~-1% degradation, and 2 sources observe -1%~-1.3% degradation.
-	For the case where the shared output of the Network side CSI generation part is before quantization, 6 sources observe -0%~-0.8% degradation, and 1 source observes -1%~-1.5% degradation.
-	Note: the dataset sharing behaviour from above sources follows the example of the agreement “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
……
UE first training, 1 NW part model to 1 UE part model, same backbone
For the evaluation of Type 3 UE first separate training with dataset sharing manner for CSI compression for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
-	For the UE first separate training case where the same backbone is adopted for both the UE part model and the NW part model, minor degradation is observed in general for both the cases where the shared input of the UE side CSI reconstruction part is before or after quantization:
-	For the case where the shared input of the UE side CSI reconstruction part is after quantization, 9 sources observe -0%~-0.42% degradation, 2 sources observe -0.7%~-0.9% degradation, and 3 sources observe -1.05%~-1.8% degradation.
-	For the case where the shared input of the UE side CSI reconstruction part is before quantization, 3 sources observe -0%~-0.8% degradation, and 2 sources observe -1.3%~-2.9% degradation.
-	Note: the dataset sharing behaviour from above sources follows the example of the agreement where “the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only”.
……


Proposal 11: For the content of dataset delivery under training collaboration Type 3, consider the following typical behaviors (which have been widely considered in the Rel-18 evaluation) as the baseline for studying potential spec impact:
· For NW first training, NW side shares UE side with a dataset (generated after joint training of the NW side CSI generation part and the NW side CSI reconstruction part) that is used by the UE side to be able to train the UE side CSI generation part.
· The dataset includes the input and output of the NW side CSI generation part.
· FFS the quantization behavior, e.g., whether the shared output of the NW side CSI generation part is before or after quantization.
· For UE first training, UE side shares NW side with a dataset (generated after joint training of the UE side CSI generation part and the UE side CSI reconstruction part) that is used by the NW side to be able to train the NW side CSI reconstruction part.
· The dataset includes the input and label of the UE side CSI reconstruction part.
· FFS the quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.
As the feasibility and potential spec impact for dataset delivery is a separate discussion (as analyzed in Section 4.1.2), we may not need to discuss the prioritization of whole Type 3 before the feasibility of dataset delivery is concluded.
On the other hand, for the comparison between NW first training and UE first training, cons of joint training at UE side include follows: 
· Flexibility on scenario-specific model: Similar to Type 1, NW side can flexibly perform cell/scenario specific model training to match the NW side additional condition under NW first training, while for the UE first training, training dataset collected by UE side may not match the specific NW side additional condition.
· Burden on model inference/storage at NW side: For the NW first training, if the generalized UE part model pairing to multiple NW vendors cannot be achieved, it would not bring burden to UE device as it only stores one AI/ML model corresponding to the cell being camped on. However, for the UE first training, if the generalized NW part model pairing to multiple UE vendors cannot be achieved, the gNB may need to conduct inference/storage/maintenance of multiple NW part models to separately pair with UE part models subject to different UE vendors. This incurs extra burden at the NW side.
Observation 12: For training collaboration Type 3 of CSI compression, compared with NW first training, performing UE first training incurs extra challenges for the NW due to the following reasons:
· Inconvenience of training cell/scenario specific models subject to NW additional conditions.
· Burden of inference/storage/maintenance of multiple NW part models at gNB to pair with multiple UE vendors, if generalized NW part model cannot be achieved.
Other aspects with respect to further studies
Aspects of data collection, monitoring, and inference have been discussed in Rel-18, but the necessity/feasibility/details of some issues are still controversial. In this section, we will continue the discussion of these controversial issues.
Data collection
NW side data collection
In Rel-18, following agreements are achieved on the NW side data collection, for which the feasibility/necessity is to be confirmed, and the type and format of the ground-truth CSI are to be further discussed.
	Agreement (#112)
……
In CSI compression using two-sided model use case, further discuss the necessity, feasibility, and potential specification impact for NW side data collection including at least:   
· Enhancement of SRS and/or CSI-RS measurement and/or CSI reporting to enable higher accuracy measurement. 
· Contents of the ground-truth CSI including:  
· Data sample type, e.g., precoding matrix, channel matrix etc.
· Data sample format: scaler quantization and/or codebook-based quantization (e.g., e-type II like). 
· Assistance information (e.g., time stamps, and/or cell ID, Assistance information for Network data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc., and data quality indicator)
· Latency requirement for data collection
· Signaling for triggering the data collection


For the feasibility and necessity of NW side data collection from the real network, it should be noted that the ground-truth CSI collected from the real network could match the environment of the network best as opposed to the simulated data which may not capture the scenario specific data distribution, or the offline collected data (e.g., from field test) which may not fully reflect the scenario of the commercially deployed site. Offline collecting the real network data from UE vendors may be also an alternative, but that incurs severe offline interoperation between the two sides. Therefore, the necessity and feasibility to enable the NW side data collection from UE report in the real network should be confirmed in Rel-19. In the following, we will discuss the type and format of the ground-truth CSI reported from UE separately.
Type of ground-truth CSI
From the Rel-18 observation captured in TR 38.843 as shown in below [2], it can be seen that the majority of companies have considered precoding matrix as the model input type (which can be also regarded as ground-truth CSI). As the performance of using the channel matrix as model input is not well justified, and the overhead of reporting the whole channel matrix is overhead consuming, it is then suggested that precoding matrix is considered with higher priority in Rel-19.
	Note: For the evaluations of CSI compression with 1-on-1 joint training, 22 sources take precoding matrix without angular-delay domain conversion as the model input/output; 2 sources take precoding matrix with angular-delay domain representation as the model input/output. No company submitted explicit channel matrix as input.


Format of ground-truth CSI
For the format of ground-truth CSI, both Rel-16 eType II CB based quantization with legacy/new parameters and scalar quantization have been evaluated in Rel-18.
For model training, as observed from TR in below [2], majority companies show that ground-truth CSI format of Rel-16 eType II CB with new/larger parameter(s) outperforms Rel-16 eType II CB with legacy parameter (PC8) by obvious gain (0.7%~5.4% SGCS gain), and is almost close to the upper-bound performance of Float32. On the other hand, the overhead of Rel-16 eType II CB with new/larger parameter(s) is significantly reduced (94%~97.5%) than unquantized ground-truth CSI of Float32. Considering the training data collection is non-real time (days/months level frequency), the average overhead for training data collection is negligible.
	High resolution ground-truth CSI for training
For the evaluation of high-resolution quantization of the ground-truth CSI for the training of CSI compression, compared to the upper-bound of Float32, quantized high resolution ground-truth CSI can achieve significant overhead reduction with minor performance loss if the parameters are appropriately selected.
……
-	For high resolution R16 eType II-like quantization, 
……
-	For R16 eType II CB with new parameters:
-	R16 eType II CB with new parameter of 1000-1400bits CSI payload size achieves 95%~97.5% overhead reduction (3~4.1 times overhead compared to PC8) with performance gain of 0.7%~4.3% over PC#8 from 4 sources.
-	R16 eType II CB with new parameter of 1500-2100bits CSI payload size achieves 94%~96.2% overhead reduction (4.8~6.1 times overhead compared to PC8) with performance gain of 1.3%~5.4% over PC#8 from 3 sources.
-	Note: it is observed by 1 source that using R16 eType II-like quantization with legacy PC may achieve close performance to Float32 by dataset dithering.
-	Note: the new parameters include at least one from the follows:
-	L= 8, 10, 12;
-	pv = 0.8, 0.9, 0.95;
-	reference amplitude = 6 bits, 8 bits; differential amplitude = 4bits; phase = 5 bits, 6 bits;


For model monitoring, as observed from TR in below [2], majority companies show that ground-truth CSI format of Rel-16 eType II CB with new/larger parameter(s) outperform legacy parameter (PC8) in general, e.g., by 12.2%~76% monitoring accuracy gain under threshold 0.02. As opposed to scalar quantization, the spec effort of expanding the Rel-16 eType II CB for quantization has relatively smaller spec effort and smaller overhead. On the other hand, considering the monitoring data collection may be infrequently triggered, the average overhead for monitoring data collection is also negligible.
	Monitoring for intermediate KPI, NW side monitoring
For the evaluation of intermediate KPI based monitoring mechanism for CSI compression, for monitoring Case 1, in terms of monitoring accuracy with Option 1,
-	For ground-truth CSI format of R16 eType II CB, monitoring accuracy is increased with the increase of the resolution for the ground-truth CSI (number of bits for each sample of ground-truth CSI) in general, with the impact of increased overhead, wherein
……
-	for ground-truth CSI format of R16 eType II CB with new parameter of 580-750bits CSI payload size, 2 sources observe KPIDiff as 35.4%~63%/ 77.9%~93.0%/ 99.5%~99.9% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.7%~20%/ 13.9%~29.8%/ 8%~31.1% gain over PC#8.
-	for ground-truth CSI format of R16 eType II CB with new parameter of around 1000bits CSI payload size, 4 sources observe KPIDiff as 34.9%~89%/ 82.9%~100%/ 99.9%~100% for KPIth_1=0.02/0.05/0.1, respectively, which have 12.2%~68%/ 18%~43.62%/ 2.9%~31% gain over PC#8 from 3 sources and 4.67%~10.6%/ 0%~5.88%/ 0%~0.49% gain over PC#6 from 1 source.
-	for ground-truth CSI format of R16 eType II CB with new parameter of around 1600bits CSI payload size, 2 sources observe KPIDiff as 89.1%~97%/ 99.9%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively, which have 76%/33%/3% gain over PC#8 from 1 source.
-	For ground-truth CSI format of 4 bits scalar quantization, 2 sources observe KPIDiff as 9.4%~47%/ 96.3%~100%/ 100% for KPIth_1=0.02/0.05/0.1, respectively.


With respect to the above analysis, the ground-truth CSI format of Rel-16 eType II CB with new/larger parameter(s) could be considered for model training and model performance monitoring. The candidate parameters for expansion can refer to the Rel-18 evaluation.
Number of layers for ground-truth CSI
In Rel-18, the following agreement is achieved with one FFS on whether the number of layers of the ground-truth CSI is determined by UE or NW.
	Agreement (#112bis-e)
In CSI compression using two-sided model use case, further study the necessity and potential specification impact of the following aspects related to the ground truth CSI format for NW side data collection for model training:   
· Scalar quantization for ground-truth CSI
· FFS: any processing applied to the ground-truth CSI before scalar quantization, based on evaluation results in 9.2.2.1
· Codebook-based quantization for ground-truth CSI
· FFS: Parameter set enhancement of existing eType II codebook, based on evaluation results in 9.2.2.1
· Number of layers for which the ground truth data is collected. And whether UE or NW determine the number of layers for ground-truth CSI data collection.


From our view, as a difference from legacy RI/PMI reporting, the number of ranks and the index(es) of layer(s) for the report of ground-truth CSI can be designated by the gNB rather than autonomously calculated and reported by UE as in the legacy CSI feedback; this will benefit gNB to collect the data of the wanted layers for efficient data collection, e.g., the higher layers which may be rarely reported by UE at relatively medium/low SINR region subject to legacy RI/PMI reporting mechanism. 
Proposal 12: For the NW side data collection, confirm the necessity and feasibility of UE report of the ground-truth CSI.
· For the data sample type, prioritize precoding matrix over channel matrix.
· For the data sample format, prioritize Rel-16 eType II CB based quantization with new parameters, and take the following new parameters (captured in the Rel-18 observation) as candidates for discussion.
· L= 8, 10, 12; pv = 0.8, 0.9, 0.95; reference amplitude = 6 bits, 8 bits; differential amplitude = 4bits; phase = 5 bits, 6 bits.
· For the number/index(es) of layers for the collected ground truth CSI, it can be indicated by NW.
Dataset delivery for training collaboration Type 3
Content of dataset delivery
In Rel-18, following agreement is achieved on the dataset delivery:
	Agreement (#114bis)
In CSI compression using two-sided model use case with training collaboration type 3, for sequential training, at least the following aspects have been identified for dataset delivery from RAN1 perspective, including:   
· Dataset and/or other information delivery from UE side to NW side, which can be used at least for CSI reconstruction model training
· Dataset and/or other information delivery from NW side to UE side, which can be used at least for CSI generation model training
· Potential dataset delivery methods including offline delivery, and over the air delivery
· Data sample format/type 
· Quantization/de-quantization related information


NW side and the UE side need to align the understanding of the delivered dataset for Type 3 sequential training. In addition to data sample format/type and quantization/de-quantization related information, the following aspects could also be considered for the dataset delivery:
· Dataset ID, which is used to differentiate the models to be trained at the opposite side.
· Dataset size, e.g., the number of data samples contained in the delivered dataset.
Proposal 13: In CSI compression with training collaboration Type 3, the following aspects could be further studied for over the air dataset delivery from RAN1 perspective, including:
· Dataset ID, which is used to differentiate the models to be trained at the opposite side.
· Dataset size, e.g., the number of data samples contained in the delivered dataset.
Overhead analysis
As per the discussions in Rel-18, one concern of dataset delivery over the air-interface is the enormous size of the training dataset that may lead to an excessive UE power consumption and air-interface overhead.
However, it should be clarified that the overall dataset is not necessarily sent from a single gNB to a single UE. On the other hand, the original dataset can be split into subsets each with a limited number of data samples. Considering that the model training currently at UE side is usually performed at a non-3GPP entity belonging to the UE vendor, each UE may only need to receive one subset of the original dataset and the non-3GPP entity can recombine all subsets received and uploaded by many UEs to recover the original dataset, which is then used for model training. All subsets of the original dataset are associated with a common dataset ID to facilitate the dataset re-combination.
As shown in Figure 15, for NW first training, the NW side can split the overall dataset into K*N subsets, each of which is delivered from a gNB to a UE, that is, the overall dataset can be delivered by K gNBs, each sending N subsets to N UEs. Thus, the delivered dataset size per UE can be reduced by K*N times. Assuming K*N=10000 UEs are used to share this dataset delivery and the size of the overall dataset is 40 MB by using Rel-16 eType II-like quantization method, the per UE overhead is only 4KB which is comparable to a piece of RRC message; it contributes a negligible overall overhead especially when considering per month/per week/per day level dataset delivery frequency.
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Proposal 14: For the dataset delivery of CSI compression over air-interface, NW can split the overall dataset into many subsets each with a limited number of data samples (e.g., with an overhead comparable to the RRC signaling). The subsets can be separately sent to different UEs, and all subsets are associated with a common dataset ID for the UE side re-combination.
UE side data collection
In Rel-18, the following agreement on data collection was achieved. The “necessity, feasibility” is part of the study since it is controversial whether to support the assistance information for data categorization of the other side.
	Agreement (#112)
In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact of UE side data collection enhancement including at least  
· Enhancement of CSI-RS configuration to enable higher accuracy measurement.
· Assistance information for UE data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc.
· The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.
· Signaling for triggering the data collection
……


For the data categorization ID for the UE side data collection, in our understanding, the motivation is not clear yet and may need to be further clarified. 
· If the data categorization ID is a kind of antenna layout/TxRU mapping information, it is our understanding that UE side can train a generalized model to adapt to various TxRU mapping patterns for which the evaluation results have been provided with good performance. The feasibility of achieving generalized model has also been concluded from Rel-18 evaluation/observation on generalization over deployment scenarios and over TxRU mappings as captured in the TR.
· If the data categorization ID is intended for identifying scenario/area/zone information, it may not be necessary either since the UE can autonomously identify such information without being notified by the gNB. For instance, it can obtain its geographic position with its own positioning functionality to identify UMa/UMi, or obtain its speed based on a Doppler shift calculation. 
· In addition, as the UE vendor may have a different data categorization principle from the NW vendor, it needs to be clarified how to harmonize the understanding of the indicated data categorization ID between the NW vendor and the UE vendor. For instance, how a NW vendor can make the categorization of the scenarios/antenna layouts without knowing the generalization capability of the UE model? To achieve aligned understanding of the data categorization ID, the offline interpretation of the physical meaning of the scenarios/antenna layouts may be unavoidable; that is to say, proprietary preservation is not likely to be achieved even though such assistance information is in forms of implicit ID.
Observation 13: The motivation of introducing the assistance information for assisting UE side data categorization is not clear considering the following points:
· UE can train a generalized model that is applicable to multiple scenarios/antenna layouts.
· UE can autonomously identify the scenario without the need for gNB notification.
· The categorization principle and granularity of the scenarios identified by NW side may not match the categorization principle of the UE side.
· To achieve aligned categorization rule, offline interoperation of the physical meaning (e.g., scenarios, antenna layouts) of the categorization ID between NW side and UE side may be inevitable, which harms the engineering isolation and may probably disclose the proprietary in the end.
Monitoring
In Rel-18, the following agreement on monitoring metrics and monitoring modes on intermediate KPI were achieved.
	Agreement (#110bis-e)
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

	Agreement (#112)
In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.


In the following of this section, we will discuss our views on the preferred metrics (#110bis-e agreement) and monitoring modes for intermediate KPI, which includes monitoring based on the signaling of CSI (1st and 2nd main bullet of the #112 agreement) and monitoring based on proxy model (3rd main bullet of the #112 agreement).
Monitoring metrics
In our view, intermediate KPI and eventual KPI should be considered with higher priority over the candidates of metrics, since they have been widely evaluated in Rel-18. For the reporting mode, both per sample reporting and statistic reporting over a number of monitored samples can be considered. In particular, for the type of intermediate KPI, the preference between SGCS and NMSE may be related to the flavor of the input type between precoding matrix and channel matrix. As we are in favor of the precoding matrix as the model input/ground-truth CSI, we may consider SGCS for monitoring metric with higher priority. 
For legacy CSI based monitoring, as the performance of AI/ML based CSI compression would in general be different from the legacy eType II CB, calculating the bias between the legacy CSI and the AI/ML based recovery CSI may not address useful information for monitoring performance. E.g., smaller SGCS (i.e., larger bias) between AI/ML based recovery CSI and legacy CSI may either reflect a much higher performance or a much lower performance of AI/ML based CSI compression over the legacy. In contrast, the SGCS gap between AI/ML based recovery CSI and ground-truth CSI would better reflect the performance – smaller SGCS gap must mean better performance.
For input or output data based monitoring, since it does not reflect the end-to-end KPIs of AI/ML model but only monitors the distribution of the input/output data, it could not be used to directly identify whether the AI/ML model works well or not. E.g., the AI/ML model may fail due to unmatched NW part model and UE part model even when the distribution of the input/output data is not changed. In addition, as per our knowledge, there is little evaluation on the effect of input/output data in Rel-18 SI. Having that in mind, how the AI/ML performance is reflected by the input/output data distribution, what metrics can be adopted for evaluating the feature of monitored data (e.g., how to quantize the bias between training set and monitor set), and how to generate the distribution of data (e.g., the distribution of SGCS/NMSE for monitored samples?) should be evaluated before further discussing their spec impacts. As the limited working budget for the CSI compression discussion in Rel-19 and the evaluations on input/output distribution are quite limited to justify this metric, it is then suggested that the spec impact discussion on input/output data distribution is deprioritized in Rel-19.
Proposal 15: For monitoring metrics, consider intermediate KPI and eventual KPI as the starting point in Rel-19.
· Further discuss the reporting mode, e.g., per sample reporting and statistic reporting over a number of monitored samples.
· Legacy CSI based monitoring and input distribution-based or output distribution-based monitoring can be deprioritized in Rel-19.
Intermediate KPI based monitoring
In Rel-18, some company raised the point that the gNB can perform the NW side monitoring by relying on the monitoring and report of the intermediate KPI from UE based on a proxy model at UE. However, it should be noted that the proxy model has the following drawbacks:
· Generalization performance of the proxy model. Since the proxy CSI reconstruction model is different from the actual NW part CSI reconstruction model, e.g., with smaller size/simpler architecture and weaker learning capability, the generalization performance of the proxy model will be different from (e.g., worse than) the actual NW part CSI reconstruction model. For example, when the test scenario changes, the actual CSI reconstruction model may still work well (even though it has not been trained with the unseen data subject to the test scenario) but the proxy model will degrade significantly and therefore fail to mimic the actual model. As shown in our Rel-18 evaluation contribution [5], the proxy model has an imbalanced generalization performance from the NW side CSI reconstruction part model and its monitoring accuracy would degrade when the scenario changes from UMa to InH. That is to say, the reliability of the proxy model cannot be guaranteed.
· Additional LCM of the UE side proxy model. Considering the proxy model is used to monitor the performance of actual model, then a coming up issue is how to monitor and manage the proxy model. Since the proxy model is one-sided model at UE side, one potential way is that it is up to UE implementation and transparent to the NW side; otherwise, for a CSI compression feature, it will bring a huge burden at the NW side to additionally identify/monitor/manage the proxy model besides the actual two-sided models being monitored. Due to this, even if the proxy model is adopted, it is very likely that it will operate under level x collaboration manner, i.e., the UE side proxy model is transparent to NW side.
· In particular, different from other use cases with one-sided model (such as BM and PoS) where the UE can monitor the UE side model by using the measured label and model input, for CSI compression, the UE cannot obtain the end-to-end SGCS without receiving the recovery CSI from the gNB; it means the UE cannot monitor the proxy model either, due to lack of labels.
Observation 14: The imbalanced generalization performances between the proxy model at UE and the actual CSI reconstruction part at NW will lead to a degraded monitoring accuracy at the UE side when the channel environment changes.
Observation 15: UE side proxy model is likely to operate under collaboration level x, since its additional LCM will impose huge burden on NW, including model/functionality identification, monitoring, activation/deactivation/switching/fallback, etc., of the UE side proxy model. Without such additional LCM, the performance and robustness of the proxy model are not trustable at NW.
· In particular, how to monitor the performance of the UE side proxy model is not clear.
In summary, from monitoring perspective, the proxy model (either to mimic the CSI reconstruction part at NW or to directly output the intermediate KPI) can be operated under level x manner, and there is no need to consider specification impact on the proxy model. 
Proposal 16: There is no strong motivation for specifying the UE side proxy model for monitoring.
On the other hand, monitoring based on the signaling of CSI between NW and UE could be more robust and simpler for LCM. For NW side monitoring, NW can calculate the intermediate KPI between the ground-truth CSI (i.e., target CSI with realistic channel estimation) reported by UE and the recovery CSI. For UE side monitoring, UE can calculate the intermediate KPI between the ground-truth CSI and the recovery CSI (i.e., output of the CSI reconstruction model) indicated by NW. As the accuracy of measured ground-truth CSI is testable at RAN4, the reliability of the monitored results could be guaranteed regardless of the change of environment.
Proposal 17: For the intermediate KPI based monitoring, consider the signaling of ground-truth CSI/recovery CSI between NW and UE to assist the calculation of the intermediate KPI.
· NW side monitoring based on the ground-truth CSI (target CSI with realistic channel estimation) reported by the UE.
· UE side monitoring based on the recovery CSI (output of the CSI reconstruction model) indicated by NW.
CSI inference aspects
Quantization methods for CSI report
In Rel-18, it has been identified that the quantization alignment is needed between UE and NW, either via model pairing or via standardized quantization scheme, and it has been studied with two quantization schemes: scalar quantization (SQ) and vector quantization (VQ). For quantization alignment using standardized quantization scheme, it includes configuration/reporting/updating of the quantization related codebook/parameters. For SQ, the configuration of quantization granularity and the quantization range can be further studied. For VQ, as it is usually trained together with the AI/ML models and it is hard to specify a fixed dictionary, a realistic way for vector quantization is to indicate its dictionary (including format and size) to the other side. E.g., for training collaboration Type 1, the training entity/side can send the dictionary to the other side in together with the model. For training collaboration Type 3, the entity/side performing the first step training can send the dictionary to the opposite side which performs the second step training, while the opposite side only trains the model but keeps the dictionary unchanged. As the dimension of the direct output of the encoder (i.e., the latent space) could be large, it is unlikely to generate the VQ dictionary with super long VQ vector/super large codebook size to directly map the whole latent space; in contrast, it would be beneficial to further study the segmentation of the latent space, so that the long latent space can be split to segments, each of which is then mapped to the VQ dictionary with short VQ vectors.
In addition, considering the varying channel status, it is also possible that the AI/ML model is unchanged but the dictionary is updated and indicated to the other side to adapt to the varying channel, e.g., only reconfigure quantization granularity for SQ, or only re-indicate the dictionary for VQ. 
Proposal 18: For quantization methods of the CSI report, further study potential specification impact on quantization alignment using standardized quantization scheme.
· For vector quantization,
· Configuration/reporting/updating of the quantization dictionary.
· Segmentation of the CSI generation model output to map with short VQ vector.
· For scalar quantization,
· The configuration of the quantization granularity/range.
Model pairing
In Rel-18, model pairing options have been studied. From our understanding, different options are related with specific training collaboration type, e.g., Option 1/2/3 are applicable for training collaboration Type 1, Option 4 is applicable for training collaboration Type 3, and Option 5 is applicable for training collaboration Type 2. In addition, the model pairing procedure is related with the model identification procedure which is more likely subject to higher layer protocol. Therefore, it is suggested the model pairing is discussed after other aspects of model identification and training collaboration types have more progress.
Proposal 19: The down selection of the model pairing options can be discussed in Rel-19 after other aspects are clearer, e.g., model identification, training collaboration types.
CQI determination
For AI/ML-based CSI compression, except for Type 1 joint training at the UE side, UE does not have the CSI reconstruction part and thus does not know the output channel matrix/eigenvector at the NW. Therefore, Option 1 (CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation) should be the starting point. A straightforward way is that the UE adopts the original eigenvectors for CQI calculation which is different from what will be recovered by NW. Such misalignment between the original eigenvectors and recovered eigenvectors would lead to a CQI misalignment between NW and UE, and the CQI calculated by UE would be overestimated. To report a more accurate CQI, a simple way is that UE compensates the CQI calculated with the original eigenvectors. As the UE may not have information of the recovery CSI, the CQI compensation can be derived based on some NW indicated assistance, e.g., NW to indicate a previous output-CSI-UE to UE for calculating the compensation value.
Proposal 20: For the study of CQI determination in inference, consider Option 1 (CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation) as a starting point.
Legacy CSI reporting principles
In legacy CSI reporting framework, the priority rules among different CSI report is based on periodicity, type of content, cell ID, report configuration ID, etc. If AI/ML based CSI feedback is specified, the priority rule may need to differ whether it is AI/ML based CSI report or legacy codebook based CSI report. Moreover, for AI/ML based CSI feedback, some AI/ML specific contents should be considered for the priority rule, e.g., ground-truth CSI, inference CSI report, monitoring metrics, etc. In addition, for the priority rules within single AI/ML based CSI report for model inference, since the content is a bit sequence without any physical meaning, how to specify the priority rules of this bit sequence to achieve a similar effect of Group 0/1/2 of legacy CSI codebook needs further study.
For CSI processing Unit, the legacy determination method is based on the reportQuantity and number of CSI-RS resources in the CSI-RS resource set; e.g., different  values are specified for the quantity types of ‘none’, RSRP/SINR, and CQI/PMI/RI. For AI/ML based CSI feedback, as different UE part models may have different complexity or equivalently required CPU values, it may hardly specify a fixed value of CPU for the AI/ML based CSI compression report. As a candidate method, the UE can report and calculate the needed  values for per UE part model basis. For those UE part models without sufficient CPU, the corresponding CSI reports could be dropped.
For CSI mapping, it has been agreed that the framework of two parts CSI is considered.  For inference CSI report, CSI part 1 includes information representing the part 2 size, while CSI part 2 includes the content of the CSI generation part output. From our view, as the size of the of the CSI generation part output is impacted by selected rank value, quantization granularity, selected pre-quantization CSI payload size for per layer (i.e., size of latent space from scalable dimensions for each layer), etc., these factors can be carried by CSI part 1. For the mapping of CSI part 2, per layer based mapping of the CSI generation part output can be further studied. In addition, besides the inference CSI, the mapping of ground-truth CSI and monitoring metrics may also be further studied.
Proposal 21: For CSI report in inference, on top of the legacy CSI reporting principles, the following AI/ML specific aspects may be additionally studied:
· The CSI priority rules, e.g., priority rules by considering the AI/ML specific reporting type, priority rules within the bit sequence of per AI/ML specific inference CSI report.
· The CSI processing unit (CPU), e.g., the required CPU value may consider difference of UE part model complexity.
· The CSI mapping, e.g., factors representing the part 2 size in CSI part 1, mapping of the CSI generation part output in CSI part 2, etc.
Conclusions
In this contribution, we have discussed extended cases of CSI compression, issues related with inter-vendor training collaboration, and other remaining issues which are not concluded in Rel-18. Based on the discussions, we have the following observations and proposals.
Observation 1: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of cell average throughput under full buffer traffic, AI/ML based TSF domain CSI compression achieves:
· 18.3%-25.4% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 7.57%-14.84% accordingly.
· 23.3%-30.2% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 10.3%-15.4% accordingly.
Observation 2: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of mean UPT under FTP traffic at RU=80%, AI/ML based TSF domain CSI compression achieves:
· 7.6%-14.9% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 1.3%-6.1% accordingly.
· 17.0%-28.6% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 6.1%-14.1% accordingly.
Observation 3: For the evaluation of TSF domain CSI compression, with the same overhead of CSI feedback and in terms of 5% UPT under FTP traffic at RU=80%, AI/ML based TSF domain CSI compression achieves:
· 10%-28.4% gain over Rel-16 eType II CB on rank 1, and outperforms AI/ML based SF domain CSI compression by 1.6%-12.1% accordingly.
· 17%-39.2% gain over Rel-16 eType II CB on rank 2, and outperforms AI/ML based SF domain CSI compression by 4.9%-15.5% accordingly.
Observation 4: For the evaluation of TSF domain CSI compression, compared with 1-on-1 joint training, adopting NW first separate training between 1 NW part model and 1 UE part model would cause negligible performance loss (less than -0.14%) if the same backbone is considered between NW side and UE side, which is similar trend with Rel-18 SF domain CSI compression.
Observation 5: For the evaluation of TSF domain CSI compression, when UCI missing is considered for TSF domain CSI compression, performance loss is observed compared with the case without modeling UCI missing due to mismatched accumulated CSI information between NW side and UE side.
· When adopting solutions to re-align the accumulated CSI information for both sides, the performance loss can be largely alleviated.
Observation 6: For the field test of TSF domain CSI compression under MU-MIMO, with comparable overhead of CSI feedback and in terms of cell average throughput under full buffer traffic and Rank 1, AI/ML based TSF domain CSI compression (with overhead of 240bits) can achieve 22.29% gain over Rel-16 eType II CB (with overhead of 279bits), which is consistent with SLS results.
Observation 7: Compared with SF domain CSI compression, the complexity can be alleviated with extended solution, e.g., TSF CSI compression, since the Transformer part of the model for achieving SF domain CSI compression may not need to be so sophisticated.
Observation 8: The method to achieve complexity reduction can be further achieved based on implementation, e.g., knowledge distillation, with negligible performance loss.
Observation 9: For the EVM of cell/site specific models, the channel features between the training data and the inference data in the real network may vary a lot considering the time gap between training and inference may be large scale (e.g., days, weeks).
Observation 10: For the applicable cases, CSI compression plus CSI prediction is consistent with CSI prediction, i.e., applicable to outdoor UEs with medium/high mobility.
Observation 11: For training collaboration Type 1 of CSI compression, compared with joint training at NW side, performing joint training at UE side and delivering the model to the NW incur extra challenges for NW due to the following reasons:
· Inconvenience of training cell/scenario specific models.
· Less flexible model update.
· Burden of inference/storage/maintenance of multiple NW part models at gNB delivered from different UE vendors.
Observation 12: For training collaboration Type 3 of CSI compression, compared with NW first training, performing UE first training incurs extra challenges for the NW due to the following reasons:
· Inconvenience of training cell/scenario specific models subject to NW additional conditions.
· Burden of inference/storage/maintenance of multiple NW part models at gNB to pair with multiple UE vendors, if generalized NW part model cannot be achieved.
Observation 13: The motivation of introducing the assistance information for assisting UE side data categorization is not clear considering the following points:
· UE can train a generalized model that is applicable to multiple scenarios/antenna layouts.
· UE can autonomously identify the scenario without the need for gNB notification.
· The categorization principle and granularity of the scenarios identified by NW side may not match the categorization principle of the UE side.
· To achieve aligned categorization rule, offline interoperation of the physical meaning (e.g., scenarios, antenna layouts) of the categorization ID between NW side and UE side may be inevitable, which harms the engineering isolation and may probably disclose the proprietary in the end.
Observation 14: The imbalanced generalization performances between the proxy model at UE and the actual CSI reconstruction part at NW will lead to a degraded monitoring accuracy at the UE side when the channel environment changes.
Observation 15: UE side proxy model is likely to operate under collaboration level x, since its additional LCM will impose huge burden on NW, including model/functionality identification, monitoring, activation/deactivation/switching/fallback, etc., of the UE side proxy model. Without such additional LCM, the performance and robustness of the proxy model are not trustable at NW.
· In particular, how to monitor the performance of the UE side proxy model is not clear.

Proposal 1: To distinguish from the CSI compression plus CSI prediction which uses the future/predicted CSI(s) as input, temporal-spatial-frequency (TSF) domain CSI compression refers to the CSI compression using past CSI as input.
Proposal 2: For the EVM of TSF domain CSI compression, consider the following assumptions for the CSI generation part and CSI reconstruction part, respectively:
· CSI generation part (taking time instance t=2 for example): 
· Model input: original CSI of the current slot () and accumulated CSI information from the last time instance ().
· Model output: CSI feedback of the current slot () and accumulated CSI information for the next time instance ().
· CSI reconstruction part (taking time instance t=2 for example): 
· Model input: CSI feedback of the current slot () and accumulated CSI information from the last time instance ().
· Model output: recovery CSI of the current slot () and accumulated CSI information for the next time instance ().
· Note: after inference, the accumulated CSI information at the CSI generation part and CSI reconstruction part are updated from  to  and from  to , respectively. The update of the accumulated CSI information does not impact the weights of the models.
Proposal 3: For the EVM of TSF domain CSI compression, consider the following additional EVM aspects on top of the EVM of SF domain CSI compression agreed in Rel-18:
· UCI missing, which may be modelled with a missing rate (e.g., 10%) for each individual CSI report occasion.
· Benchmark: besides Rel-16 eType II CB, Rel-18 SF CSI compression is also considered as benchmark.
· UE speeds for outdoor UEs: besides 30km/h, may optionally consider 10km/h, 60km/h, 90km/h and 120km/h.
· Other EVM aspects, if needed, may follow the principle of Rel-18 SF domain CSI compression, e.g., quantization methods, ground-truth CSI format for training, generalization/scalability cases, training collaboration types, monitoring methods, etc.
Proposal 4: For the additional potential spec impact of TSF domain CSI compression on top of Rel-18 SF domain CSI compression, consider methods to handle the misalignment of the accumulated CSI between NW part model and UE part model due to UCI missing.
Proposal 5: For the EVM of cell/site specific models, start the discussion with the following candidates for channel modeling to reflect the correlation of the scenario between the training phase and the inference phase for per cell/site.
· Candidate 1: Ray-tracing model.
· Candidate 2: Spatial consistency, where UEs between training and inference are subject to the same drop.
· Candidate 3: Different deployment scenarios/configurations for different sites.
Proposal 6: For the EVM of cell/site specific models, it needs to discuss how to reflect the variation of the channel between the training phase and the inference phase to avoid overfitting model and over-optimistic performance.
Proposal 7: The particular potential spec impact to support cell/site specific models can refer to model transfer/delivery, which is better to be discussed in 9.1.3.3.
Proposal 8: For the EVM of CSI compression plus CSI prediction, consider the following additional EVM aspects on top of the EVM of SF domain CSI compression agreed in Rel-18:
· Non-AI/ML benchmark: 
· Opt1: Rel-16 eType II CB (AI/ML solution predicts one future instance)
· Opt2: Rel-18 Doppler CB (AI/ML solution predicts multiple future instances)
· AI/ML benchmark: Rel-18 SF domain CSI compression, Rel-18 AI/ML based CSI prediction
· For UE distribution, UE speed, and spatial consistency modelling, it can adopt the EVM for Rel-18 AI/ML based CSI prediction.
Proposal 9: For the particular potential spec impact to support CSI compression plus CSI prediction it may need to be discussed whether these two features are regarded as one model or two separate models from the LCM perspective.
· The impacted LCM procedures include, e.g., data collection, monitoring, inference, model control (activation/deactivation/switching/fallback), etc.
Proposal 10: Deprioritize training collaboration Type 2 over the 3GPP signaling in Rel-19.
Proposal 11: For the content of dataset delivery under training collaboration Type 3, consider the following typical behaviors (which have been widely considered in the Rel-18 evaluation) as the baseline for studying potential spec impact:
· For NW first training, NW side shares UE side with a dataset (generated after joint training of the NW side CSI generation part and the NW side CSI reconstruction part) that is used by the UE side to be able to train the UE side CSI generation part.
· The dataset includes the input and output of the NW side CSI generation part.
· FFS the quantization behavior, e.g., whether the shared output of the NW side CSI generation part is before or after quantization.
· For UE first training, UE side shares NW side with a dataset (generated after joint training of the UE side CSI generation part and the UE side CSI reconstruction part) that is used by the NW side to be able to train the NW side CSI reconstruction part.
· The dataset includes the input and label of the UE side CSI reconstruction part.
· FFS the quantization behavior, e.g., whether the shared input of the UE side CSI reconstruction part is before or after quantization.
Proposal 12: For the NW side data collection, confirm the necessity and feasibility of UE report of the ground-truth CSI.
· For the data sample type, prioritize precoding matrix over channel matrix.
· For the data sample format, prioritize Rel-16 eType II CB based quantization with new parameters, and take the following new parameters (captured in the Rel-18 observation) as candidates for discussion.
· L= 8, 10, 12; pv = 0.8, 0.9, 0.95; reference amplitude = 6 bits, 8 bits; differential amplitude = 4bits; phase = 5 bits, 6 bits.
· For the number/index(es) of layers for the collected ground truth CSI, it can be indicated by NW.
Proposal 13: In CSI compression with training collaboration Type 3, the following aspects could be further studied for over the air dataset delivery from RAN1 perspective, including:
· Dataset ID, which is used to differentiate the models to be trained at the opposite side.
· Dataset size, e.g., the number of data samples contained in the delivered dataset.
Proposal 14: For the dataset delivery of CSI compression over air-interface, NW can split the overall dataset into many subsets each with a limited number of data samples (e.g., with an overhead comparable to the RRC signaling). The subsets can be separately sent to different UEs, and all subsets are associated with a common dataset ID for the UE side re-combination.
Proposal 15: For monitoring metrics, consider intermediate KPI and eventual KPI as the starting point in Rel-19.
· Further discuss the reporting mode, e.g., per sample reporting and statistic reporting over a number of monitored samples.
· Legacy CSI based monitoring and input distribution-based or output distribution-based monitoring can be deprioritized in Rel-19.
Proposal 16: There is no strong motivation for specifying the UE side proxy model for monitoring.
Proposal 17: For the intermediate KPI based monitoring, consider the signaling of ground-truth CSI/recovery CSI between NW and UE to assist the calculation of the intermediate KPI.
· NW side monitoring based on the ground-truth CSI (target CSI with realistic channel estimation) reported by the UE.
· UE side monitoring based on the recovery CSI (output of the CSI reconstruction model) indicated by NW.
Proposal 18: For quantization methods of the CSI report, further study potential specification impact on quantization alignment using standardized quantization scheme.
· For vector quantization,
· Configuration/reporting/updating of the quantization dictionary.
· Segmentation of the CSI generation model output to map with short VQ vector.
· For scalar quantization,
· The configuration of the quantization granularity/range.
Proposal 19: The down selection of the model pairing options can be discussed in Rel-19 after other aspects are clearer, e.g., model identification, training collaboration types.
Proposal 20: For the study of CQI determination in inference, consider Option 1 (CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation) as a starting point.
Proposal 21: For CSI report in inference, on top of the legacy CSI reporting principles, the following AI/ML specific aspects may be additionally studied:
· The CSI priority rules, e.g., priority rules by considering the AI/ML specific reporting type, priority rules within the bit sequence of per AI/ML specific inference CSI report.
· The CSI processing unit (CPU), e.g., the required CPU value may consider difference of UE part model complexity.
· The CSI mapping, e.g., factors representing the part 2 size in CSI part 1, mapping of the CSI generation part output in CSI part 2, etc.
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