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1	Introduction
In RAN1#114bis, TR 38.843 v1.1.0 has been endorsed, which captures RAN1 progress up to RAN1#114 meeting for the study item of AI/ML for air interface.
In RAN1#114bis, further agreements/conclusions were also made for the positioning use case. The agreed text proposals to TR38.843 are expected to be incorporated on top of TR 38.843 v1.1.0.
In this contribution, we discuss the remaining aspects for the evaluation of positioning accuracy enhancement. 
2	AI/ML complexity for positioning evaluations
2.1	Capture the AI/ML complexity in TR text
For the AI/ML evaluation work, AI/ML complexity (including model complexity and computational complexity) for model inference is an important KPI.  Companies have reported the complexity values of the models used their simulations. In this section, figures are drawn to summarize the model inference complexity for the positioning use case as reported by participating companies. It is noted that in RAN1#114bis, complexity plots have been adopted for the CSI use case (both CSI compression and CSI prediction) and the beam management use case.
Specifically, Figure 1-5 show the reported range of complexity values by companies. Figure 1-4 each show the range of complexity for a given scheme: (1) direct positioning; (2) assisted positioning with multi-TRP; (3) assisted positioning with single-TRP and one-model for N TRPs; (4) assisted positioning with single-TRP and N models for N TRPs. Figure 5 collects the complexity data of all schemes in one plot. The complexity values shown correspond to those in the Excel sheets of POS_Table 1, with the corrections listed in section 2.2 incorporated. All unique complexity values reported by companies are included in the figures, i.e., duplicates are removed which occur when the same model is used by a company for multiple evaluations.

[bookmark: _Toc146721189][bookmark: _Toc149930846]Capture in TR 38.843 the model inference complexity figures for the positioning use case, which shows the (a) model complexity in number of real parameters (millions) and (b) computational complexity in FLOPs (millions). 

Additionally, there is already an observation made on complexity, which is currently captured under "6.4.2.2 Generalization Aspects" sub-section "Direct AI/ML positioning". This observation is misplaced, i.e., it is not about Generalization Aspects; also it is generic and not limited to Direct AI/ML positioning. Thus this observation should be moved to be together with the complexity plots.
The text proposal is shown below to reflect the points above.


	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
[bookmark: _Toc135002580][bookmark: _Toc137744872]6.4.2	Performance results
<Unchanged text is omitted>
Model monitoring
For AI/ML assisted positioning, evaluation results have been provided by sources for label-based model monitoring methods. With TOA and/or LOS/NLOS indicator as model output, the estimated ground truth label (i.e., TOA and/or LOS/NLOS indicator) is provided by the location estimation from the associated conventional positioning method. The associated conventional positioning method refers to the method which utilizes the AI/ML model output to determine target UE location. 
For both direct AI/ML and AI/ML assisted positioning, evaluation results have been provided by sources to demonstrate the feasibility of label-free model monitoring methods.
Model complexity and computational complexity
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 

In Figure 6.4.2-1 to Figure 6.4.2-4 below, the model inference complexity for the positioning use case as reported by companies are shown, including (a) on the x-axis: model complexity in number of real parameters (millions) and (b) on the y-axis: computational complexity in FLOPs (millions). Figure 6.4.2-1 to Figure 6.4.2-4 each show the range of complexity for a given scheme: (1) direct positioning; (2) assisted positioning with multi-TRP; (3) assisted positioning with single-TRP and one-model for N TRPs; (4) assisted positioning with single-TRP and N models for N TRPs. Figure 6.4.2-5 collects the complexity data of all schemes in one plot. For the complexity values corresponding to the figures, please see POS_Table 1.
For the three schemes of AI/ML assisted positioning, the complexity is calculated according to Table 6.4.1-2. Both model complexity and computational complexity values are as reported by participating companies. There is no effort to align the procedure across companies on how the complexity values are obtained. Optimizing AI/ML complexity (i.e., model complexity and computational complexity) is out of scope of the study item.
[image: ]
Figure 6.4.2-1. Model complexity and computational complexity for AI/ML direct positioning, based on companies' evaluations.

[image: ]
Figure 6.4.2-2. Model complexity and computational complexity for AI/ML assisted positioning with multiple-TRP, based on companies' evaluations.
[image: ]
Figure 6.4.2-3. Model complexity and computational complexity for AI/ML assisted positioning with single-TRP and one-model for N TRPs, based on companies' evaluations.

[image: ]
Figure 6.4.2-4. Model complexity and computational complexity for AI/ML assisted positioning with single-TRP and N models for N TRPs, based on companies' evaluations.


[image: ]
Figure 6.4.2-5. Model complexity and computational complexity for four schemes of AI/ML based positioning. 
<Unchanged text is omitted>

6.4.2.2	Generalization Aspects
Observations:
Direct AI/ML positioning
...
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 
...

<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.1.0 ====================




2.2	Update to the positioning evaluation excel sheets
Thanks to careful checking of proponent companies (Fraunhofer, Apple, China Telecom, Nokia), some typos and errors are corrected for the positioning evaluation excel sheets. The following corrections are made to the positioning evaluation tables attached to TR38.843 v1.1.0. 
· From Fraunhofer: in POS_Table1, tab “Direct AIML”, previous rows 461-475 (new rows 475-489 after moving the 2nd block of Nokia results)
· Changes: Source tdoc# is corrected to be R1-2307325 in all the rows of 462-476.  Previously source tdoc# was incorrectly incremented by excel.
· From Apple: in POS_Table1, tab “Assisted,single-TRP,N models”, rows 20-25
· Changes: unit G (as in GFLOPs) is removed from computational complexity values. It should be the default unit of MFLOPs.
· From China Telecom: in POS_Table1, tab “Direct AIML”, rows 3-10
· Changes: Complexity entries (145.9, 2.8) are corrected to (2.8, 145.9). That is, it should be: model complexity=2.8 M parameters, computational complexity = 145.9 MFLOPs.
· From Nokia, computational complexity values are updated in the following:
· in POS_Table1, tab “Direct AIML”, new rows 281-323 
· Note: the 2nd block of Nokia results previously in row 476-489 is merged with the 1st block of Nokia results previously in row 281-309.
· in POS_Table1, tab “Assisted, multi-TRP”, rows 193-216
· in POS_Table2, tab “Direct AIML”, rows 467-470
· in POS_Table2, tab “Assisted, multi-TRP”, rows 458-463
· in POS_Table4, tab “Direct AIML”, rows 89-95
· in POS_Table4, tab “Assisted, multi-TRP”, rows 32-56
· From Nokia, in POS_Table1, tab “Direct AIML”, previous rows 293-309 (new rows 307-323 after moving the 2nd block of Nokia results), 
· Changes: Source tdoc# is updated to R1-2304685
In the attachment, the track-change version of the excel sheets and the clean version of the excel sheets are provided. It is proposed that the updated excel sheets (POS_Evaluations_spreadsheets.zip) are adopted in the next version of TR 38.843.

[bookmark: _Toc149930847]Update the attachment "POS_Evaluations_spreadsheets.zip" of TR 38.843 to reflect the corrections identified by proponent companies. 

3	Additional summary for evaluation of positioning accuracy enhancement
In RAN1#114bis, a text proposal was agreed for the summary of performance results for the positioning use case. However, some remaining bullets (e.g., those related to generalization) were delayed for discussion at RAN1#115. 
In the text proposal below, the remaining bullets in red font are updated to take into account of companies' feedback. The text proposal endorsed in RAN1#114bis is provided in blue font.

[bookmark: _Toc149930848]Adopt the text proposal for additional high-level summary of evaluations of AI/ML based positioning in the study item.

	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
6.4.2.6	Summary of Performance Results for Positioning accuracy enhancements
Editor’s note: Section for FL to summarize the evaluations. 

For the use case of positioning accuracy enhancement, extensive evaluations have been carried out. Both direct AI/ML positioning and AI/ML assited positioning are evaluated using one-sided model. The following areas are investigated.
· Performance evaluation without generalization consideration, where the AI/ML model is trained and tested with dataset of the same deployment scenario. 
· AI/ML vs RAT-dependent positioning methods. For the basic performance without generalization consideration, AI/ML based positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods. For example, in InF-DH with clutter parameter setting {60%, 6m, 2m}, AI/ML based positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method.
· Impact of training data sample density (i.e., training dataset size for a given evaluation area). Evaluation with uniform UE distribution shows that, the larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· AI/ML complexity. For a given company’s model design, in terms of model inference complexity (model complexity and computational complexity), a lower complexity model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model.
· Generalization study. Evaluations are carried out to investigate various generalization aspects, where the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. The generalization aspects include: different drops; different clutter parameters; different InF scenarios; network synchronization error; UE/gNB RX and TX timing error; SNR mismatch; channel estimation error; time varying changes.

When model switching is not considered, methods are evaluated which have been shown to be able to handle generalization issues, including:
· Better training dataset construction (i.e., mixed dataset), where the training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset.  
· Fine-tuning/re-training, where the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset. The impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model is evaluated for the various generalization aspects. Evaluation results are obtained for two experiments: 
· The AI/ML model is (a) previously trained for scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under scenario B and the horizontal positioning accuracy at CDF=90% is E meters.
· The AI/ML model is (a) previously trained for scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under scenario A and the horizontal positioning accuracy at CDF=90% is E meters.
· Model input size reduction. Evaluations are carried out to examine various ways to change the model input size and its impact on positioning accuracy:
· Different measurement type, for example, CIR, PDP, DP.
· Different number of consecutive time domain samples, Nt.
· Different number of non-zero samples N't selected from the Nt consecutive time domain samples (N't < Nt)..
· Different number of active TRPs, N'TRP. 
The model input size for various measurement type (CIR, PDP, DP) and dimensions (N'TRP, Nt, N't, Nport) is analyzed. Evaluation results show that, model input of different measurement type and dimensions can have different reporting overhead and positioning accuracy.
Fixed TRP pattern vs dynamic TRP pattern. Evaluation results show that, approaches supporting dynamic TRP pattern may be able to achieve comparable horizontal positioning accuracy as approaches supporting fixed TRP pattern, when other design parameters are held the same. 
· Model output of AI/ML assisted positioning. For AI/ML assisted positioning, evaluations are carried out where the model output includes timing information and/or LOS/NLOS indicator, in the format of hard- or soft- value.
· Non-ideal label in the training dataset. Evaluations are carried out to show the impact of:
· Label error, where the label in the training dataset is degraded from ground truth label by an error. 
· For direct AI/ML positioning and AI/ML assisted positioning with timing information as model output, location error in each dimension of x-axis and y-axis is modelled as a truncated Gaussian distribution. 
· For AI/ML assisted positioning where the model output includes the LOS/NLOS indicator, random LOS/NLOS label error is applied.
· Absent label, where some data samples in the training dataset do not have associated labels. Semi-supervised learning is evaluated for this case.
· Model monitoring. Preliminary evaluation of model monitoring methods are provided by individual companies. The following methods are shown to be feasible:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).

Based on RAN1 evaluations of AI/ML based positioning, 
· It is beneficial to support both direct AI/ML and AI/ML assisted positioning approaches since they can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods in the evaluated indoor factory scenarios. 
· Both UE-side model and NW-side model can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods.
· When model switching is not considered, it is recommended to apply methods to handle generalization aspects (e.g., model fine-tuning/re-training). 
· It is recommended to consider training data collection requirements (e.g., size of training dataset and UE uniform distribution, label error, mixed training dataset and/or scenario-specific training dataset).
· If AI/ML based positioning is to be specified, it is recommended to further investigate the model input type (e.g., CIR, PDP, DP), dimension (e.g., parameters N'TRP, Nt, N't, Nport) and related format (e.g., for the timing information: absolute time or relative time) considering the tradeoff of positioning accuracy, signaling overhead, and AI/ML complexity.

=======================  End of text proposal to TR 38.843 v1.1.0 ====================



4	Other text proposals to TR 38.843
4.1	Correct the placement of observations for direct and assisted approaches
	
In section 6.4.2, some observations misplaced. 
· In section 6.4.2, the observation on PDP/DP vs CIR should be moved to section 6.4.2.4 Model-input Size Reduction and put under “AI/ML assisted positioning”.
· For section 6.4.2.1, heading "Direct AI/ML positioning" should be deleted, since the observations are generic.
· For section 6.4.2.2 and 6.4.2.4, the performance results are grouped under “Direct AI/ML positioning” and “AI/ML assisted positioning”. On the other hand, some agreements are made to cover both. A new heading "Both direct AI/ML positioning and AI/ML assisted positioning" can be created for such observations. 
· For section 6.4.2.5, some observations are made for semi-supervised learning or labels from existing NR-RAT methods. Such observations should be put under a new heading rather than “Direct AI/ML positioning”.

A text proposal is provided below to reflect the comments above.
[bookmark: _Toc149930849]Adopt the text proposal to TR 38.843 to better group the results for “Direct AI/ML positioning”, for “AI/ML assisted positioning”, and for both. 

	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
6.4.2	Performance results
<Unchanged text is omitted>
For AI/ML assisted positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· The positioning error of PDP as model input is 1.17 ~ 1.63 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 1.33 ~ 2.01 times the positioning error of CIR as model input.

6.4.2.1	Training Data Collection
Observations:
Direct AI/ML positioning
...
6.4.2.2	Generalization Aspects
Observations:
Direct AI/ML positioning
...
AI/ML assisted positioning
...
Both direct AI/ML positioning and AI/ML assisted positioning
For both direct AI/ML and AI/ML assisted positioning, evaluation results submitted show that with CIR model input for a trained model,
-	For two SNR/SINR values S1 (dB) and S2 (dB), S1 ≥ S2 + 15 dB, positioning error of a model trained with data of S1 (dB) and tested with data of S2 (dB) is more than 5.75 times that of the model trained and tested with data of S1 (dB).
-	For two SNR/SINR values S1 (dB) and S2 (dB), S1 ≤ S2 – 10 dB, the generalization performance of a model trained with data of S1 (dB) and tested with data of S2 (dB) is better than the performance of a model trained with data of S2 (dB) and tested with data of S1 (dB). Positioning error of a model trained with data of S2 (dB) and tested with data of S1 (dB) is more than 2.97 times that of the model trained with data of S1 (dB) and tested with data of S2 (dB).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

6.4.2.3	Fine-tuning
...
6.4.2.4	Model-input Size Reduction
Observations:
Direct AI/ML positioning
...
AI/ML assisted positioning
For AI/ML assisted positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· The positioning error of PDP as model input is 1.17 ~ 1.63 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 1.33 ~ 2.01 times the positioning error of CIR as model input.
For AI/ML assisted positioning, with Nt consecutive time domain samples used as model input, evaluation results show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
...
Both direct AI/ML positioning and AI/ML assisted positioning
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: identification of the active TRPs is beneficial for Approach 2-B. Otherwise, the model suffers from poor performance in terms of positioning accuracy.
For example, evaluation results from 4 sources show that the horizontal positioning accuracy is greater than 10 m if TRP identification is not included as model input. 
6.4.2.5	Non-ideal label(s)
Observations:
Direct AI/ML positioning
Evaluation shows that direct AI/ML positioning is robust to certain label error based on evaluation results of L in the range of (0, 5) meter. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.
Regarding ground truth label generation for AI/ML based positioning, multiple sources submitted evaluation results on the impact of ground truth label for training obtained by existing NR RAT-dependent positioning methods. Feasibility and performance benefit of utilizing ground truth label for training estimated by existing NR RAT-dependent positioning methods are observed.
· Source 1 evaluated in InF-DH {40%, 2, 2} and showed that AI/ML model can be trained with noisy labels along with the corresponding quality estimated by the legacy positioning methods, to improve positioning performance from 3.73m@90% (5k ideal label) to 1.72m @90% (5k ideal label + 20k noisy label). It also showed that the performance benefit compared to semi-supervised training of 2.78m @90% (5k ideal label + 20k unlabeled data). Note that training data weighting is used with label quality indicator.
· Source 2 evaluated in InF-DH {60%, 6, 2} and showed that the performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method. Note that the label error is up to 3.5m. 
· Source 3 evaluated in both InF-DH {60%, 6, 2} and InF-DH {40%, 2, 2} and showed performance loss when compared to all ideal label case. For example it showed in InF-DH {40%, 2, 2} the accuracy degrades from 0.39m @90% (100% ideal label) to 2.10m @90% (50% ideal label and 50% label obtained by existing DL-TDOA scheme). Note that noisy label is treated the same as ideal label in training.
...
AI/ML assisted positioning
...
Other
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.
Regarding ground truth label generation for AI/ML based positioning, multiple sources submitted evaluation results on the impact of ground truth label for training obtained by existing NR RAT-dependent positioning methods. Feasibility and performance benefit of utilizing ground truth label for training estimated by existing NR RAT-dependent positioning methods are observed.
· Source 1 evaluated in InF-DH {40%, 2, 2} and showed that AI/ML model can be trained with noisy labels along with the corresponding quality estimated by the legacy positioning methods, to improve positioning performance from 3.73m@90% (5k ideal label) to 1.72m @90% (5k ideal label + 20k noisy label). It also showed that the performance benefit compared to semi-supervised training of 2.78m @90% (5k ideal label + 20k unlabeled data). Note that training data weighting is used with label quality indicator.
· Source 2 evaluated in InF-DH {60%, 6, 2} and showed that the performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method. Note that the label error is up to 3.5m. 
· Source 3 evaluated in both InF-DH {60%, 6, 2} and InF-DH {40%, 2, 2} and showed performance loss when compared to all ideal label case. For example it showed in InF-DH {40%, 2, 2} the accuracy degrades from 0.39m @90% (100% ideal label) to 2.10m @90% (50% ideal label and 50% label obtained by existing DL-TDOA scheme). Note that noisy label is treated the same as ideal label in training.



4.2	Text proposal on generalization description
In TS 38.843 v1.1.0, the following three issues are also investigated as part of the generalization capability. This is reflected in TR 38.843 section 6.4.2.2 which provides the simulation results on generalization aspects.
· SNR mismatch
· Time varying changes
· Channel estimation error

However, due to the incremental manner the RAN1 agreements were made, the TR description text do not clearly list the above three as generalization aspects. Thus it is necessary to update the TR text so that the three aspects above are listed the same way as "different drops", "Clutter parameters", etc. 
Also, with regard to identify the generalization aspects where model fine-tuning/mixed training dataset/model switching is necessary, companies have studied it for both direct AI/ML approach and AI/ML assisted approach. Thus, it is suggested to add "both direct AI/ML approach and" as shown in the text proposal below.
[bookmark: _Toc149930850]Adopt the text proposal to TR 38.843 to improve the description of model generalization. 

	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
6.4	Positioning accuracy enhancements
[bookmark: _Toc135002579][bookmark: _Toc137744871]6.4.1	Evaluation assumptions, methodology and KPIs
<Unchanged text is omitted>
Model generalization:
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
-	Different drops: Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N≥1.
...
-	Other aspects are not excluded.
-	Companies can evaluate the impact of at least tThe following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error

[bookmark: _Hlk149656147]For both direct AI/ML approach and AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching is necessary.

<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.1.0 ====================




4.3	Text proposal on labelling error
With regard to the evaluation assumptions and evaluation results for labelling error, several improvements to the TR are suggested.
· Unsupervised learning was mentioned in the early agreement made in the study item. However, no companies ever provided evaluations for unsupervised learning. Thus, "unsupervised learning" should be deleted to avoid confusion.
· Regarding the impact of labelling error to model monitoring, no evaluation results are provided in the study item. Thus, it is suggested to remove the two bullets, which are put in brackets in TR 38.843 v1.1.0.
· Regarding the definition of m% and n% for LOS/NLOS error, it is suggested to move it from the evaluation results section to the evaluation assumption/methodology section, where the variables were introduced.

[bookmark: _Toc149930851]Adopt the text proposal to TR 38.843 to improve the description of labelling error. 

	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
6.4.1	Evaluation assumptions, methodology and KPIs
<Unchanged text is omitted>
Labels:
The performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels) is to be studied. The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is to be reported by participating companies and, when providing evaluation results, data labelling details need to be described, including:
-	Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
-	Percentage of training data without label, if incomplete labelling is considered in the evaluation
-	Imperfection of the ground truth labels, if any
Whether, and if so how, an entity can be used to obtain ground truth label and/or other training data is to be studied. 

For direct AI/ML positioning, the impact of labelling error to positioning accuracy is studied considering:
-	The ground truth label error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. Value L is up to sources. 
-	[Whether/how to study the impact of labelling error to label-based model monitoring methods]
-	[Whether/how to study the impact of labelling error for AI/ML assisted positioning.]
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
-	The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
-	Value L is up to sources.
-	Other models of labelling error are not precluded
-	Other timing information, e.g., RSTD, as model output is not precluded.
For AI/ML assisted positioning with LOS/NLOS indicator as model output, study the impact of labelling error to LOS/NLOS indicator accuracy and/or positioning accuracy.
-	The ground truth label error of LOS/NLOS indicator can be modelled as m% LOS label error and n% NLOS label error. -	Value m and n are up to sources.
· m%=FN/NLOS is false negative rate of the training data label, where FN (False Negative) is the number of actual LOS links which are incorrectly labelled as NLOS, and NLOS is the total number of actual LOS links; 
· n%=FP/NNLOS is the false positive rate of the training data label, FP (False Positive) is the number of actual NLOS links which are incorrectly labelled as LOS, and NNLOS is the total number of actual NLOS links.
-	Companies consider at least hard-value LOS/NLOS indicator as model output.
<Unchanged text is omitted>

6.4.2.5	Non-ideal label(s)
<Unchanged text is omitted>
AI/ML assisted positioning
Evaluations show that AI/ML assisted positioning with timing information (e.g., ToA) as model output is robust to certain label error based on evaluation results of L in the range of (0, 5) meter. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.
Based on evaluation results from 3 sources, for AI/ML assisted positioning where the model output includes the LOS/NLOS indicator, when the model is trained with dataset containing random LOS/NLOS label error, the models have no or minor degradation for LOS/NLOS identification accuracy up to at least m%=20% and at least n%=20%. When the training dataset has up to m%=20% and n%=20%, evaluation results show that the LOS/NLOS identification accuracy is PlablErr = PnoLablErr – d (percentage), where d is in the range of (1.2%~3.1%).
· PnoLablErr (percentage) is the LOS/NLOS identification accuracy when m%=0% and n%=0%;
· m%=FN/NLOS is false negative rate of the training data label, where FN (False Negative) is the number of actual LOS links which are incorrectly labelled as NLOS, and NLOS is the total number of actual LOS links; 
n%=FP/NNLOS is the false positive rate of the training data label, FP (False Positive) is the number of actual NLOS links which are incorrectly labelled as LOS, and NNLOS is the total number of actual NLOS links.
<Unchanged text is omitted>
=======================  End of text proposal to TR 38.843 v1.1.0 ====================



4.4	Text proposal on evaluation assumption and methodology
Regarding the TR texts on evaluation and methodology of AI/ML positioning, several issues are identified.
· The description texts on InF scenarios other than InF-DH are scattered in two places. It is better to put them together under "Evaluation assumptions".
· Reference to Table 6.4.1-1 is erroneously given as a reference to Table 6-5. In addition, the numbering of Table 6.4.1-1 is erroneously written as 6-4.1-1. Reference to Table 6.4.1-2 is erroneously given as a reference to Table 6-6.
These issues are addressed by the text proposal below.

[bookmark: _Toc149930852]Adopt the text proposal to TR 38.843 to improve the description on evaluation assumption and methodology. 

	======================= Start of text proposal to TR 38.843 v1.1.0 ====================
6.4	Positioning accuracy enhancements
6.4.1	Evaluation assumptions, methodology and KPIs
<Unchanged text is omitted>
Model generalization:
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
...
-	InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)
-	If an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF). Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901. 
...
Evaluation assumptions:
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. Specifically, InF-DH sub-scenario is prioritized for FR1 and FR2. 
Reuse the common scenario parameters defined in Table 6-1 of TR 38.857. For evaluation of InF-DH scenario, the parameters are modified from TR 38.857 Table 6.1-1 as shown in Table 6-56.4.1-1. The parameters in the table are applicable to InF-DH at least. If other InF sub-scenario is prioritized evaluated in addition to InF-DH, some parameters in Table 6-5 may be updated:.  If an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF). Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901.
Table 6.4.1-1: Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1) for AI/ML based positioning evaluations 
<Unchanged text is omitted>

When single-TRP construction is used for the AI/ML model, companies report at least the AI/ML complexity (Model complexity, Computation complexity) for N TRPs, which are used to determine the position of a target UE considering the various constructions in Table 6-66.4.1-2 below.
Table 6.4.1-2: Model complexity and computational complexity to support N TRPs for a target UE 

<Unchanged text is omitted>

=======================  End of text proposal to TR 38.843 v1.1.0 ====================




Conclusion
Based on the discussion in the previous sections we propose the following:
Proposal 1	Capture in TR 38.843 the model inference complexity figures for the positioning use case, which shows the (a) model complexity in number of real parameters (millions) and (b) computational complexity in FLOPs (millions).
Proposal 2	Update the attachment "POS_Evaluations_spreadsheets.zip" of TR 38.843 to reflect the corrections identified by proponent companies.
Proposal 3	Adopt the text proposal for additional high-level summary of evaluations of AI/ML based positioning in the study item.
Proposal 4	Adopt the text proposal to TR 38.843 to better group the results for “Direct AI/ML positioning”, for “AI/ML assisted positioning”, and for both.
Proposal 5	Adopt the text proposal to TR 38.843 to improve the description of model generalization.
Proposal 6	Adopt the text proposal to TR 38.843 to improve the description of labelling error.
Proposal 7	Adopt the text proposal to TR 38.843 to improve the description on evaluation assumption and methodology.
 
[bookmark: _In-sequence_SDU_delivery]References
[bookmark: _Ref146572949][bookmark: _Ref174151459][bookmark: _Ref189809556]R1-2310163, TR 38.843 v1.1.0 (2023-10). 
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