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Introduction
This document summarizes the discussions during RAN1#114 for the agenda item 9.2.4.1, Evaluation on AI/ML for positioning accuracy enhancement.

This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below.
	RP-213599 (SID):
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
…

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.
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Dataset, model complexity 
Impact of user density/size of the training dataset
	· Lenovo (R1-2307810)
Observation 2: Data collection impact on positioning accuracy is dependent on the AI/ML model design, which can aid in optimizing data collection techniques for enhanced AI/ML positioning accuracy.


	· China Telecom (R1-2306811)
Observation 2: The performance of AI/ML based positioning enhancement decreases when the training dataset size decreases, but it still significantly outperforms the traditional method.



Model complexity
	· Qualcomm (R1-2307920)
Observation 1: For direct AI/ML positioning evaluation and given model architecture, increasing model complexity (size and computation) improves the positioning accuracy gain until a point reached and then gain starts to reduce again.
Table 1 Evaluation results for AI/ML model deployed on UE-side, without model generalization, different model complexities with CIR measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	1.44M 
	894M FLOPs
	1.50

	CIR (18,1, 256)
	2D
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.084M
	124.4M FLOPs
	0.61

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.037M
	56.2M FLOPs
	0.37

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.029M
	29.7M FLOPs
	1.08

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.02

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.084M
	124.4M FLOPs
	1.81

	CIR (18,1, 256)
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M
	56.2M FLOPs
	1.45

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.029M
	29.7M FLOPs
	1.62







Model input
Measurements of paths vs samples, measurement selection
Measurements of paths vs samples
	· vivo (R1-2306744)
[image: ]
Figure 116	Illustration of channel path and channel sample
Table 89	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	 TRP number
	Length
	Training dataset
	Test dataset
	Positioning accuracy @90% (m)

	DP
	[bookmark: OLE_LINK104]Pos.
	6
	64
	 Path
	Sample
	>15

	DP
	Pos.
	6
	64
	 Path
	Path
	0.86

	PDP
	Pos.
	6
	64
	 Path
	Sample
	3.56

	PDP
	Pos.
	6
	64
	 Path
	Path
	0.68



Observation 48:	When the AI/ML model trained with path-wise input is tested on the dataset with sample-wise input, this inconsistency would severely degrade the positioning performance, specifically for DP. 
Observation 49:	When the AI/ML model trained with sample-wise input is tested on the dataset with path-wise input, this inconsistency would slightly degrade the positioning performance as compared to its counterpart.
Proposal 26:	The legacy path-wise reporting may be not adapted for the new feature of AI/ML based positioning, and new reporting frameworks are potentially required. 
Proposal 27:	Another option is to extend the legacy reporting framework to adapt it to the new feature, and the alignment of path-wise or sample-wise between NW and UE side may be necessary to ensure the positioning performance.

Table 91	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	 TRP number
	Length
	Training dataset
	Test dataset
	Positioning accuracy @90% (m)

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 Additional paths with the highest power
	1.89

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 Additional paths with the minimal delay
	3.77

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 random Additional paths
	9.11



Observation 50:	 Regardless of the number of TRPs, the inconsistency of component (path) determination has a greater impact on the performance of DP as the model input than PDP.
Observation 51:	When legacy reporting framework is used for AI/ML based positioning, the inconsistency of component (path)  determination would severely degrade the positioning performance, specifically for these cases with small number of TRPs. 
Proposal 28:	When legacy reporting framework is used for AI/ML based positioning, it is necessary to align the understanding between UE side and NW side on how to determine these additional paths or samples, such as based on power sorting and delay sorting.


	· Qualcomm (R1-2307920)
Observation 2: Path is used to describe trajectory between TRP and UE while time-domain sample is a signal processing quantity that can be used to convey timing, power, and/or phase information for a potential path.
Proposal 1: For TR and agreement description, consider using the terminology “measurement” to replace sample and/or path when discussing reporting from UE/TRP to LMF.

We compare the performance gains for two selection methodologies of N’t measurements: strongest power measurements selection and a proprietary measurement selection (i.e., flexible). For the flexible measurement selection, the UE/TRP can apply a proprietary algorithm to select the best measurements that better represent the underlying multipath propagation in the wireless environment.

Observation 6: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that the positioning performance depends on the selection methodology of N't measurements. Selecting N't measurements based on the strongest power on most cases (i.e., different N't values, measurement types, and model complexities) does not provide the best performance. For example,
•	For 4 out of 16 evaluations, positioning error with strongest power N’t measurements is 0.88 to 0.94 of the case with a proprietary N’t measurements selection.
•	For 12 out of 16 evaluations, positioning error with strongest power N’t measurements is 1 to 1.24 of the case with a proprietary N’t measurements selection.

Proposal 2: For direct AI/ML positioning, the selection of the N't measurements to be reported should be made flexible.




Measurement selection
	· Qualcomm (R1-2307920)
We compare the performance gains for two selection methodologies of N’t measurements: strongest power measurements selection and a proprietary measurement selection (i.e., flexible). For the flexible measurement selection, the UE/TRP can apply a proprietary algorithm to select the best measurements that better represent the underlying multipath propagation in the wireless environment.

Observation 6: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that the positioning performance depends on the selection methodology of N't measurements. Selecting N't measurements based on the strongest power on most cases (i.e., different N't values, measurement types, and model complexities) does not provide the best performance. For example,
•	For 4 out of 16 evaluations, positioning error with strongest power N’t measurements is 0.88 to 0.94 of the case with a proprietary N’t measurements selection.
•	For 12 out of 16 evaluations, positioning error with strongest power N’t measurements is 1 to 1.24 of the case with a proprietary N’t measurements selection.

Proposal 2: For direct AI/ML positioning, the selection of the N't measurements to be reported should be made flexible.


	· vivo (R1-2306744)
Table 91	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	 TRP number
	Length
	Training dataset
	Test dataset
	Positioning accuracy @90% (m)

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 Additional paths with the highest power
	1.89

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 Additional paths with the minimal delay
	3.77

	DP
	Pos.
	4
	128
	First path + 8 Additional paths with the highest power 
	First path + 8 random Additional paths
	9.11



Observation 50:	 Regardless of the number of TRPs, the inconsistency of component (path) determination has a greater impact on the performance of DP as the model input than PDP.
Observation 51:	When legacy reporting framework is used for AI/ML based positioning, the inconsistency of component (path)  determination would severely degrade the positioning performance, specifically for these cases with small number of TRPs. 
Proposal 28:	When legacy reporting framework is used for AI/ML based positioning, it is necessary to align the understanding between UE side and NW side on how to determine these additional paths or samples, such as based on power sorting and delay sorting.



1st round discussion
Based on the input from vivo and QC, it is necessary to clarify what are used as model input in the evaluations, path-wise measurements or sample-wise measurements. Moderator's understanding is, the companies have used sample-wise measurements as model input, unless otherwise stated (e.g., in vivo (R1-2306744)) . Thus, it is proposed to clarify it as shown below, so that this can be captured in the TR to avoid confusion.

Proposal 3.1.1-1
For evaluation of AI/ML based positioning, when CIR, PDP, DP measurements are used as model input, they are time-domain sample-wise measurements, unless explicitly stated otherwise.
Offline discussion:
For evaluation of AI/ML based positioning, when CIR, PDP, DP measurements are used as model input, they are time-domain sample-wise measurement values, unless explicitly stated otherwise.

	
	Company

	Support
	Mtk, ZTE，Xiaomi, Apple

	Not support
	



	[bookmark: _Hlk103701956]Company
	Comments

	mtk
	It is known that, since the path delay may not be always possible to be at a single sampling point, it is usually to have several sampling points to represent a path delay, due to pulse shaping. The close path delays may share some sampling points. Using sample may be a better consideration

	HW/HiSi
	[Not support – some clarification is needed]
Can the intention of this proposal please be clarified? 
We think the model input regardless whether it is CIR, PDP or DP is to some extent decoupled from the measurement itself.
For example the model input could be PDP with 256 time-domain samples. For e.g. Case 2b/3b, the measurement report could be 9 delay paths with power and then the model input PDP with 256 time-domain samples is constructed based on the measurement. Could it be clarified if/how this approach is covered by the proposal?

	Qualcomm
	From specification/evaluation perspective, it is still confusing to mention “time-domain sample wise measurements” without providing details on how those samples are processed and obtained.  Due to time limit left for this study, we propose to use wording “measurements” to describe model input and avoid mentioning sample vs path. 

Suggestion:
For evaluation of AI/ML based positioning, when CIR, PDP, DP measurements are used as model input, they are time-domain sample-wise measurements, unless explicitly stated otherwise.




Regarding Qualcomm (R1-2307920) proposal that the N't measurements should be flexible, this refers to a proprietary algorithm ("apply a proprietary algorithm to select the best measurements that better represent the underlying multipath propagation in the wireless environment"). A related input is from vivo, where vivo investigated the PDP/DP path selection based on highest power vs minimum delay vs random selection. 
Moderator's suggestion is to clarify this point for the study item evaluations, and leave this issue for future investigation (e.g., work item phase). It should be sufficient to stay with the agreement below for the study item. The proposal is presented below so that this can be captured in the TR to avoid confusion.
Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Proposal 3.1.1-2
For evaluation of AI/ML based positioning, when CIR, PDP, DP measurements are used as model input, when sub-sampling is applied, the selection of N't measurements is based on the strongest power, unless explicitly stated otherwise.
· Training dataset and test dataset use the same measurement selection method (e.g., strongest power) unless explicitly stated otherwise.

	
	Company

	Support
	ZTE

	Not support
	



	Company
	Comments

	Hw/HiSi
	[Support the intention]
To leave no doubt about the N’t it should be additionally stated that the N’t measurements are not necessarily time-consecutive.
Updated Proposal 3.1.1-2
For evaluation of AI/ML based positioning, when CIR, PDP, DP measurements are used as model input, when sub-sampling is applied, the selection of N't measurements is based on the strongest power implying that the N’t measurement are not necessarily time-consecutive , unless explicitly stated otherwise.
Training dataset and test dataset use the same measurement

	Qualcomm
	Alignment on measurement selection seems unfortunately too late this stage and requires more evaluation and inputs from other companies. We suggest concluding that the selection of measurements can affect the performance. This is something we can follow up in the Work Item stage.




Timing format (TOF, TOA, RSTD)
	· vivo (R1-2306744)
The distance (TOA) between the ith source node and the target node is given by

	.
…
Assuming the first source node is a reference node, subtracting the TOA measurement at the reference from the measurement at the ith source node yields the RSTD measurement, which is given by

	

Table 81	Evaluation results for TOA based positioning and RSTD based positioning, UE distribution area = [120x60 m]
	Measurement for location calculation
	UE timing error
	Model input
	Model output
	Number of TRP for location calculation
	Positioning accuracy(m) @90% CDF=90%

	TOA
	10ns
	CIR
	TOA
	6
	1.51

	RSTD
	10ns
	CIR
	TOA
	6
	4.04

	TOA
	50ns
	CIR
	TOA
	6
	9.20

	RSTD
	50ns
	CIR
	TOA
	6
	>15



Observation 44:	AI/ML based TOA estimation enjoys better positioning performance than AI based RSTD estimation in the presence of small/middle UE timing errors, synchronization errors and ideal conditions.
Observation 45:	AI/ML based TOA estimation can effectively address the impact of UE timing error via mix-training, and achieve superior positioning accuracy compared to its counterpart in the presence of large UE timing error (e.g., 50ns). 
Observation 46:	AI/ML based TOA estimation has less reliance on the number of available TRPs, and achieves less than 2m@90% positioning accuracy when only 3TRPs are available, which is greatly better than its counterpart (>15m@90%).
Observation 47:	AI/ML based TOA estimation is robust to middle UE timing error (10ns) even if there are 3 TRPs available.
Proposal 25:	Support TOA as an intermediate measurement for reporting from UE side to LMF side or from gNB side to LMF side directly.


	· MediaTek (R1-2308056)
The “RSTD reference” TRP already specified in the 3GPP 37.355 may be reused for the differenced CIR/PDP/DP reference TRP.
[image: ]
Figure 9. Timing of differenced CIR/PDP/DP based on TOA
Table 26. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param, mix
	Timing format of CIR/PDP/DP
	Horizontal pos. Accuracy at CDF=90% (m)

	
	
	
	Training
	test
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOF
	TOF
	1.05

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOF
	TOF
	1.56

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOF
	TOA
	19.27

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOF
	TOA
	13.0

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOA
	TOA
	1.42

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOA
	TOA
	2.02


Observation 28:	The timing format of CIR/PDP/DP based on TOF cannot be used as model input in real implementation.
Proposal 3	: Support differenced CIR/PDP/DP based on TOA as model input for AI/ML positioning.




1st round discussion
Based on vivo and MediaTek contribution, there is some confusion about the definition of TOA and RSTD. For the absolute amount of time a path travels, vivo (R1-2306744) refers to it as TOA, while MediaTek (R1-2308056) refers to it as TOF. When the timing of a path is in the format of a time difference (or relative time) vivo (R1-2306744) refers to it as RSTD, while MediaTek (R1-2308056) refers to it as TOA. 
Also, vivo (R1-2306744) discussion focuses on model output (TOA vs RSTD), while MediaTek (R1-2308056) discussion focuses on model input (e.g., timing format of CIR/PDP/DP is TOF vs TOA).
Moderator’s understanding is, these issues cannot be resolved in the study item stage given the limited time. If there is a need, RAN1 can further investigate the question of absolute time vs relative time for model input and model output in work item stage. For the evaluations performed in study item, it is only necessary to clarify that training dataset and test dataset used the same (i.e., both are absolute time, or both are relative time) unless explicitly stated otherwise. Thus the following is proposed so that this can be captured in the TR to avoid confusion. 
Proposal 3.2.1-1
For evaluation of AI/ML based positioning, when timing information is included in model input (e.g., in CIR/PDP/DP), training dataset and test dataset use the same timing format (i.e., both are absolute time, or both are relative time) unless explicitly stated otherwise.

Offline discussion:
Model output is a separate issue. Model output can be easily converted to relative time if necessary.


	
	Company

	Support
	mtk

	Not support
	



	Company
	Comments

	mtk
	TOF may mean the propagation time for the distance between TX and RX.
TOA may mean the signal arrival time to RX. From receiver view, there is a reference point defined as t=0 for receiving the signal to observe the time delay. The value of TOA may be relative to a reference point t=0. The reference point t=0 is the FFT window boundary for the receiver.

In our view, unless RX boundary is the same as the TX boundary, otherwise UE may not observe TOF. This is why the DL-RSTD for downlink technique is used to mitigate the impact of RX boundary, or RTT technique is used to cancel the mismatch of TX boundary and RX boundary through the combination of downlink and uplink measurements.

We worry that the CIR/PDP/DP provided in the dataset for training and that measured by UE for test may be based on different RX boundary for observation, and we believe it will be always so. We have results to show the significant performance degradation that, if the CIR/PDP/DP in dataset assume same TX boundary and RX boundary timing then the LOS first path delay could represent TOF. For UE to test without assuming a same timing for TX boundary and RX boundary, the LOS first path delay can’t represent TOF.

So we reuse the concept of RSTD, which is the first path delay difference between signal from a target TRP to reference TRP. It is equivalent to shift the CIR/PDP/DP of observed signal from reference TRP to have first path at t=0, and this is equivalent to TS37.355 said that the RSTD value of reference TRP is 0.

The CIR/PDP/DP of observed signal from a target TRP is also shifted with the same amount that the signal from reference TRP shifts. Then the first path delay of the target TRP is equivalent to the RSTD between a target TRP and the reference TRP.  When we try using this for training and test, the performance could be maintained


	ZTE
	This is also applied to model output(especially for AI/ML assisted positioning). It’s better to clarify that the training labels for AI/ML assisted positioning are TOF or RSTD.

	Qualcomm
	We are generally fine with the proposal. Maybe we call it “timing type” instead of timing format.



Measurement size / signaling overhead for model input
In the following, selected inputs from companies’ contributions are provided. 

	· Qualcomm (R1-2307920)
The first option considers no differential reporting while the second option considers representing timing information using a bit map. The third option is aligned with current reporting specified in specifications in which additional timing and power information of additional measurements for a given link between a UE and TRP can be expressed in a differential fashion relative to a reference measurement.
Table 4 Options for calculating measurement reporting size for different measurement types (option3 is aligned with existing measurement reporting measurement size)
	
	CIR
	PDP
	DP

	Option1
	N'TRP * Nport * N't * (Bt + 2 * Breal,CIR) bits
	N'TRP * Nport * N't * (Bt + 1 * Breal,PDP) bits
	N'TRP * Nport * N't * (Bt) bits

	Option2
	N'TRP * Nport * Nt  + N'TRP * Nport * N't * (2 * Breal,CIR) bits
	N'TRP * Nport * Nt + N'TRP * Nport * N't * (1 * Breal,PDP) bits
	N'TRP * Nport * Nt bits

	Option3
	N'TRP * Nport * 1* (Bt_f + 2 * Breal,CIR_f) + N'TRP * Nport * (N't -1) * (Bt_a + 2 * Breal,CIR_a) bits
	N'TRP * Nport * 1 * (Bt_f + 1 * Breal,PDP_f) + N'TRP * Nport * N't * (Bt_a + 1 * Breal,PDP_a) bits
	N'TRP * Nport * 1 * (Bt_f) + N'TRP * Nport * (N't -1) * (Bt_a)  bits


Table 5 Measurement reporting size (bits) of timing, power, and/or phase information for one TRP and antenna port (N’TRP=1, Nport=1, Bt = 13 bits, Bt_f = 16 bits, Bt_a = 9 bits, Breal,CIR = Breal,PDP = 6 bits, Breal,CIR_f = Breal,PDP_f = 6 bits, Breal,CIR_a = Breal,PDP_a = 5 bits, Nt = 256)
	
	N't = 256
	N't = 64
	N't = 32
	N't = 16
	N't = 8

	CIR: option1
	6400
	1600
	800
	400
	200

	CIR: option2
	3328
	1024
	640
	448
	352

	CIR: option3
	4873
	1225
	617
	313
	161

	PDP: option1
	4864
	1216
	608
	304
	152

	PDP: option2
	1792
	640
	448
	352
	304

	PDP: option3
	3592
	904
	456
	232
	120

	DP: option1
	3328
	832
	416
	208
	104

	DP: option2
	256
	256
	256
	256
	256

	DP: option3
	2311
	583
	295
	151
	79


Observation 4: For evaluation of model input measurement size and reporting overhead, multiple reporting options and measurement quantities are considered and the reporting overhead/measurement size for different measurement types observed as follows:
•	The average measurement size/reporting overhead for CIR can be 1.38 of the PDP
•	The average measurement size/reporting overhead for CIR can be 2.84 of the DP
•	The average measurement size/reporting overhead for PDP can be 1.92 of the DP

Observation 6: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that the positioning performance depends on the selection methodology of N't measurements. Selecting N't measurements based on the strongest power on most cases (i.e., different N't values, measurement types, and model complexities) does not provide the best performance. For example,
•	For 4 out of 16 evaluations, positioning error with strongest power N’t measurements is 0.88 to 0.94 of the case with a proprietary N’t measurements selection.
•	For 12 out of 16 evaluations, positioning error with strongest power N’t measurements is 1 to 1.24 of the case with a proprietary N’t measurements selection.

Proposal 2: For direct AI/ML positioning, the selection of the N't measurements to be reported should be made flexible.
Observation 9: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show the required measurement size/reporting overhead need to be almost exponentially increased to maintain linear enhancement in positioning accuracy. 
Proposal 3: For direct AI/ML positioning and due to huge reporting overhead and limited accuracy enhancement, deprioritize reporting beyond N’t =8 measurements.


	· vivo (R1-2306744)
As shown in Figure 94, we have the following observations:
· DP has the least bit overhead for reporting;
· The overhead of PDP reporting is slightly larger than that of RSRPP reporting without delay (only report 9 RSRPPs without the corresponding path delay); 
· The overhead of RSRPP reporting with delay is greatly larger than that of PDP reporting and slightly larger than that of CIR reporting. 
· With the increase of TRP number, the overhead linearly increases. 
Observation 36:	The bit overhead of CIR reporting is acceptable when the number of TRPs used for positioning is relatively small, such as 4 TRPs.
[image: ]
Figure 94	Evaluation of overhead of different measurement reports
Observation 37:	Regardless of the number of TRPs, adopting DP/PDP/CIR as model input can always achieve better positioning accuracy compared to adopting RSRPP as model input when the number of taps is 64.
Observation 38:	Adopting CIR and PDP as model input outperforms DP in terms of positioning accuracy, especially when there is relatively less information contained in model input, such as TRP number = 4.
Observation 39:	Compared to PDP, adopting CIR with phase information as model input can achieve more than 10% performance gain regardless the number of TRPs.
Observation 40:	Sub-meter positioning accuracy can be reached with only several hundreds of bits overhead when adopting DP/PDP/CIR as model input.
Proposal 22:	CIR reporting should be supported in the cases where high positioning accuracy is required.



	· InterDigital (R1-2307582)
Table 7. Comparison between horizontal accuracy, measurement size and signaling overhead (direct AI/ML positioning)
	Model input
	Measurement Size
	90% horizontal positioning accuracy

	UE position (2D horizontal)
	2
	NA

	RSRP (Per beam RSRP from multiple TRPs, 18 TRPs, 6 beams per TRP)
	108
	3.35

	Per beam RSRP from multiple TRPs (18 TRPs, 6 beams per TRP) and per TRP RSTD value (18 RSTD values)
	126
	1.69

	CIR (18 TRPs, 256 taps per TRP, Complex Number=2)
	9216
	0.98

	PDP (18 TRPs, 256 taps per TRP)
	4608
	1.59

	CIR (6 TRPs, 256 taps per TRP, Complex Number=2, as per approach 1-A)
	3072
	1.70

	CIR (18 TRPs, 32 taps per TRP, Complex Number=2, as per approach 1-A)
	1152
	1.85


Proposal 1: For direct AI/ML based positioning, adopt RSRP+RSTD measurement input as one of the options for AIML input due to lower signalling overhead.

	· CATT (R1-2308205)
In most of our simulations, for the evaluation of AI/ML based positioning method, CIR of all (NTRP = 18) TRPs with all (NT = 256) taps are used as the model input, and single port (Nport = 1) is assumed. Each sample is represented by double float type (8 Byte, i.e. 64 bits). Thus, the measurement size is NTRP*Nport*NT*2*64 = 294912bit per UE, unless otherwise stated, e.g. in Section 3.1.6, 3.2.6 and 3.2.7. We do not optimize the signaling overhead for AI/ML model at LMF side, and thus it can be viewed as the same with the measurement size.
…
In this simulation, since NTRP = 9, the measurement size is NTRP*Nport*NT*2*64 = 147456bit per UE.

	· Lenovo (R1-2307810)
Observation 6: There are trade-offs in terms of measurement size of signalling overhead and positioning accuracy degradation in terms of the number of time domain samples used for PDP, DP and CIR as part of AI.ML-assisted positioning.
Observation 7: The importance of selecting appropriate model inputs, e.g., PDP, DP or CIR, considering AI/ML complexity, and optimizing the number of time domain samples for accurate UE location inference on Direct AI/ML positioning methods is highlighted.




1st round discussion
For the topic of measurement size / signaling overhead for model input, several companies provided detailed analysis. The observation below seems to reflect companies' view still, which is revised from the draft observation presented at RAN1#113.
Observation 3.3.1-1
For evaluation of AI/ML based positioning with multipath measurement for model input, 
· For a given set of parameters (N'TRP, Nt, N't, Nport)
· CIR has the largest measurement size, where CIR is composed of a list of measurements where each measurement contains the information of: (a) delay, (b) power and (c) phase.
· PDP has smaller measurement size than CIR, where PDP is composed of a list of measurements where each measurement contains the information of: (a) delay and (b) power.
· DP has the smallest measurement size, where DP is composed of a list of measurements where each measurement contains the information of: (a) delay.
· For each model input type (CIR, PDP, DP)
· The measurement size increases (approximately) linearly as N'TRP increases, where N'TRP is the number of active TRPs that provide measurements for the positioning.
· The measurement size increases (approximately) linearly as Nport increases, where Nport is the number of transmit/receive antenna port pairs that provide measurements for the positioning.
· If N’t (N’t < Nt) measurements are selected as model input, measurement size for model input increases (approximately) linearly with N’t; 
· For model input type CIR and PDP, if the full set of Nt measurements in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt;
· Note: if DP is used as model input, DP does not use full set of of Nt measurements in time domain (i.e., N’t < Nt always).
· Note: for Case 2b and 3b, measurement size of model input has impact to signaling overhead for model inference, data collection, and monitoring.

Offline discussion:
Add two Notes:
Note: the phase information maybe perturbed by the term that is not related to the geographical location
Note: There are trade-offs between measurement size of signalling overhead and positioning accuracy degradation in terms of different sets of parameters (N'TRP, Nt, N't, Nport)


	
	Company

	Support
	mtk (but some revision is considered), Xiaomi

	Not support
	



	Company
	Comments

	mtk
	Just a small concern on the phase part within CIR. What can phase information bring to us? The phase part is perturbed by several impairment terms, especially the phase difference value between TX and RX oscillator. Different UE may have different value for this, even at the same geographical location. We prefer to add a note that 

“Note: the phase information maybe perturbed by the term that is not related to the geographical location”

	ZTE
	OK with the general information. Perfer to add another note:
Note: There are trade-offs between measurement size of signalling overhead and positioning accuracy degradation in terms of different sets of parameters (N'TRP, Nt, N't, Nport)


	Xiaomi
	Generally OK

	Hw/HiSi
	[Not support – need some clarification]
For example, we do not agree with the last sub-bullet and would like to get a clarification on  “For model input type CIR and PDP, if the full set of Nt measurements in time domain is used as model input, measurement size for model input increases (approximately) linearly with Nt” or at least need a clarification.
We think that model input size and measurement size do not necessarily need to be related to each other. For example, the model input could be CIR, PDP or DP and the size could be fixed, e.g. 256 time-domain samples. These samples could be set by default to all zero. Then, depending on the size of the measurement, for example if 8 or 16 paths are used, 8 or 16 samples from the 256-PDP model input are overridden by the measurements. So the measurement size would increase, but the model input size stays the same.
Could it please be explained if this is covered by the proposal?

	Apple
	Current discussion has always been without impairments (except for label error). To add impairment on only phase may be misleading. Impairments may occur in delay, power and phase so additional note suggested by MTK either needs to be generalized or not included.




Sampling period used in the evaluations
Regarding the sampling period used in companies' evaluations, the conclusion was made in RAN1#110bis.
Conclusion (RAN1#110bis)
For evaluation of AI/ML based positioning, the sampling period is selected by proponent companies. Each company report the sampling period used in their evaluation. 

It is suggested that companies each fill in the information in Table 1. Then this information can be captured in the TR.
[bookmark: _Ref143186718]Table 1. Sampling period used in companies' evaluations for the positioning use case
	Source
	Sampling period used in companies' evaluations

	Ericsson (R1-2306454)

	" For the FR1 scenario with carrier frequency of 3.5 GHz, the received signals are sampled at  MHz. A sampling tap is hence 8.14 ns or equivalently 2.44 m at speed of light."

	NVIDIA (R1-2306479)
	Sampling period is 8.14ns for FR1

	Huawei (R1-2306515)
	Unclear
For the FR1 simulation assumption of  =30 KHz and 100 MHz bandwidth, sampling period = , where  according to 38.211, and  =30 KHz is subcarrier spacing. The sampling period is 8.14ns

	vivo (R1-2306744)
	For FR1, sampling rate 4096x30kHz=122.88MHz with period = 8.14ns

	ZTE (R1-2306799)
	For the FR1 simulation assumption of  =30 KHz and 100 MHz bandwidth, sampling period = , where  according to 38.211, and  =30 KHz is subcarrier spacing. The sampling period is 8.14ns.

	China Telecom (R1-2306811)
	Sampling period is 8.14ns for FR1

	Google (R1-2306961)
	Unclear

	CMCC (R1-2307187)
	Unclear

	Fraunhofer (R1-2307235)
	100 MHz bandwidth, fs = 122.88MHz, sampling period = 8.138ns 

	Nokia (R1-2307242)
 
	Sampling period is 8.14ns for Carrier Frequency 3.5 GHz and NFFT=4096. This setting remains the same for all datasets

	Apple (R1-2307272)
	"for the FR1 simulation assumption of ∆f =30 KHz and 100 MHz bandwidth, sampling period = 1/(Nf×∆f), where Nf=4096 according to 38.211, and ∆f =30 KHz is subcarrier spacing. Similar calculation applies for FR2 simulation assumption of ∆f =120 KHz and 400 MHz bandwidth"
The above means: sampling period = 8.14ns for FR1, and 2.03 ns for FR2

	xiaomi (R1-2307379)
	Sampling period is 8.14ns for FR1

	OPPO (R1-2307568)
	Sampling period is 8.14ns for FR1

	InterDigital (R1-2307582)
	8.14ns for FR1 (SCS 30kHz, Nf=4096 in TS 38.211)

	Samsung (R1-2307672)
	Unclear

	Lenovo (R1-2307810)
	Unclear

	Qualcomm (R1-2307920)
	Unclear

	MediaTek (R1-2308056)
	"Sampling period in dataset is 8.138ns." for FR1

	IIT (R1-2308161)
	Sampling period is 8.14ns for FR1

	CATT (R1-2308205)
	Sampling period = 4.069 ns. ("The sampling interval of all simulations is 4 ns.")



1st round discussion

Proposal 3.1.1-1
Capture the sampling period used in companies' evaluations in TR 38.843.

Offline discussion
Proposal 3.1.1-1A
Capture the sampling period used in companies' evaluations in TR 38.843 as follows:
· N sources (a, b, c …) used: For FR1, sampling rate 4096x30kHz=122.88MHz with period = 8.14ns
· 1 source (CATT) used:  sampling period = 4.069 ns

	
	Company

	Support
	mtk

	Not support
	



	Company
	Comments

	HW/HiSI
	Modified the table for HW input
For the FR1 simulation assumption of  =30 KHz and 100 MHz bandwidth, sampling period = , where  according to 38.211, and  =30 KHz is subcarrier spacing. The sampling period is 8.14ns

	IIT Madras
	Modified Table 1 with the sampling period. 



Other
	· Samsung (R1-2307672)
[image: ]
Fig. 10 illustration of log-signature transform based processing over CIR
[image: ]
Fig.11 comparison of CIR-based and SIG based in MLP
[image: ][image: ]
Fig.12 comparison of CIR and SIG in ResNet   Fig.13 illustration of complexity reduction and Data size reduction
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).


	· Google (R1-2306961)
Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.




Evaluation of Direct AI/ML positioning: generalization issues 
In this meeting, a large amount of evaluation work has been performed by companies for direct AI/ML positioning. These valuable results are very important to help RAN1 to make progress.
Selected results submitted by companies are copied below.
Evaluation without generalization considerations (same setting for training and testing)

	· CMCC (R1-2307187)
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.



	· Fraunhofer (R1-2307235)
Observation 2: 	For AI/ML direct positioning, evaluations show that the CIR reporting outperforms PDP reporting: 
	- The 90th percentile positioning error improves from 1.17m to 0.84m for DH662 
	- The 90th percentile positioning error improves from 1.14m to 0.97 m for DH442
Observation 3: 	For the used model the additional input data of 2x2MIMO do not provide a performance gain. Further model adaptation may be required to achieve the additional performance gain.
Observation 4: 	Using the same amount of training data but a smaller area results in a higher training data density. The observed performance gain may result from the higher training data density or the reduced area. 
Observation 5: 	In AI/ML direct positioning, evaluations show that the denser training data improves the performance from 0.84m to 0.37m w.r.t. the 90th percentile positioning error 
Observation 6: 	The consistency of LOS/NLOS states significantly impacts performance, with higher degradation observed when LOS/NLOS state of the training and test data are uncorrelated. 
Observation 7: 	Using the “toggle method” maintains the spatial consistency for the NLOS/LOS state for the not affected links. A significant degradation if the state of one or two links change is still observed. 
Observation 8: 	The current assumptions don’t allow for a definitive conclusion on generalization without taking into account the spatial consistency assumptions for LOS/NLOS state change.

	· Nokia (R1-2307242)
Observation 10: For direct AI/ML positioning, it is observed that the performance is not impacted when the number of TRPs are reduced from 18 to 10 for scenarios with clutter density 40% and 60%. 
Observation 11: For direct AI/ML, the model input CIR outperforms the scenarios with PDP. However, the AI/ML complexity is increased when the input is CIR to achieve a desired accuracy.


	· InterDigital (R1-2307582)
[image: ]
Figure 2. Direct AIML positioning with channel estimation error.
Observation 20: After performing training and testing with dataset of 10 dB SNR more complex AI/ML model achieves ~ 1.2 m horizontal accuracy for 90% UEs, which is ~0.22 m worse than noiseless dataset.
Observation 21: After performing training and testing with dataset of 0 dB SNR more complex AI/ML model achieves ~ 2.07 m horizontal accuracy for 90% UEs, which is ~1.09 m worse than noiseless dataset.
Observation 22: After performing training and testing with dataset of 10 dB SNR less complex AI/ML model achieves ~ 2.00 m horizontal accuracy for 90% UEs, which is ~0.59 m worse than noiseless dataset.
Observation 23: After performing training and testing with dataset of 0 dB SNR less complex AI/ML model achieves ~ 3.55 m horizontal accuracy for 90% UEs, which is ~2.14 m worse than noiseless dataset.
Observation 24: AI/ML model with a larger complexity is less susceptible to channel estimation error compared to less complex AI/ML model (~1.09 m accuracy degradation for more complex AI/ML model vs ~2.14 m accuracy degradation for less complex AI/ML model).



Evaluation of various generalization aspects (different setting for training and testing)
For this meeting, the focus is on the method of fine-tuning to handle the various generalization issues.
Different drops
	· ZTE (R1-2306799)
Various simulation drops:
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
1st Drop
	
N/A
	
2nd Drop
	
4
	
0%

	
0.25

	
20.42
	
78.54


	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
17%

	
0.25

	
2.72
	
10.46

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
34%

	
0.25

	
2.33
	
8.88

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
100%

	
0.25

	
0.31
	
1.19





	· Qualcomm (R1-2307920)
Table 22 Horizontal positioning error (meters) at 90% percentile for different finetuning options  at original A and new B settings
	Model Description/Training
	Finetuning size
	Test on Drop A
	Test Drop B

	
	
	E
	yA
	E
	yB

	Model trained on Drop A 
	0
	1.53
	1.00
	9.22
	5.01

	Model trained on Drop A
	200 [x=~0.025 samples/m2]
	6.67
	4.36
	7.80
	4.24

	Model trained on Drop A
	350 [x=~0.05 samples/m2]
	6.36
	4.16
	7.18
	3.9

	Model trained on Drop A
	700 [x=~0.1 samples/m2]
	6.86
	4.48
	6.53
	3.55

	Model trained on Drop A
	1800 [x=0.25 samples/m2]
	7.07
	4.62
	5.70
	3.10

	Model trained on Drop A
	3600 [x=0.5 samples/m2]
	7.44
	4.86
	4.97
	2.70

	Model trained on Drop B
	0
	10.39
	6.79
	1.84
	1.00


Observation 18: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 50% sample/m2, the positioning error is 2.7m*1.84m, where 1.84m is the full training accuracy for the new setting B.
Observation 19: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 2.5% sample/m2, the positioning error is 6.67*1.53m, where 1.53m is the full training accuracy for the original setting A.


	· MediaTek (R1-2308056)
Table 30. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
drop1
	InF-DH({60%, 6m, 2m})
drop2
	InF-DH({60%, 6m, 2m})
drop2
	4.5
	0
	0.5
	8.475
	8.968

	
	
	
	
	
	
	2.5%
	
	3.382
	3.579

	
	
	
	
	
	
	5%
	
	2.906
	3.075

	
	
	
	
	
	
	10%
	
	2.237
	2.367

	
	
	
	
	
	
	25%
	
	1.584
	1.676

	
	
	
	
	
	
	50%
	
	1.149
	1.216

	
	
	
	
	
	
	100%
	
	0.948
	1.003


Table 31. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
drop1
	InF-DH({60%, 6m, 2m})
drop2
	InF-DH({60%, 6m, 2m})
Drop1
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	5.752
	5.764

	
	
	
	
	
	
	5%
	
	5.386
	5.397

	
	
	
	
	
	
	10%
	
	5.232
	5.242

	
	
	
	
	
	
	25%
	
	5.948
	5.960

	
	
	
	
	
	
	50%
	
	7.192
	7.206

	
	
	
	
	
	
	100%
	
	7.695
	7.710





	· NVIDIA (R1-2306479)
Table 4: Summary of CDF percentiles of horizontal positioning accuracy with model finetuning.
	Training
	Testing
	Finetuning
	50%
	67%
	80%
	90%

	Drop 1
	Drop 1
	N/A
	1.1 m
	1.5 m
	1.8 m
	2.3 m

	Drop 1
	Drop 2
	No finetuning
	7.1 m
	9.3 m
	11.6 m
	14.5 m

	Drop 1
	Drop 2
	Finetuning with 1k samples
	2.5 m
	3.3 m
	4.2 m
	5.3 m

	Drop 1
	Drop 2
	Finetuning with 2k samples
	2.1 m
	2.7 m
	3.5 m
	4.3 m

	Note: The original model was trained with 16k samples. Thus, 1k (resp. 2k) finetuning samples corresponds to 6.25% (resp. 12.5%) of the total 16k samples.


[image: ]
Observation 6: For direct AI/ML positioning, if the new deployment scenario has a drop different from the drop of the deployment scenario that the model was trained for, fine-tuning an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the same positioning accuracy for the new deployment scenario.
[image: A graph of a graph with colored lines
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Observation 7: For direct AI/ML positioning, evaluation results show that, after fine-tuning an old model with dataset of the new deployment scenario with the new drop, the performance of the updated model degrades for the previous deployment scenario with the old drop that the old model was trained for.




Fine-tuning results (excel): different drops, test on new setting
1.3% - 2.5%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	2.5%
	0.5
	3.38
	3.58
	Different drops

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}
	1000 samples from the 2nd drop

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	1.3%
	11.1
	1.23
	3.74
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	2.2
	2.5%
	0.56
	7.60
	3.15
	Different drops

	vivo R1-2306744
	CIR
	Pos.
	Drop1
	Drop2
	Drop2
	25k
	2.0%
	1k
	4.69
	4.74
	Different drops

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	2.0%
	2500
	4.14
	18.45
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	2.5%
	2k
	7.80
	4.24
	Different drops



4.0% - 5.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	5.0%
	0.5
	2.91
	3.08
	Different drops

	Huawei-R1-2306515
	CIR 18*4*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	4.0%
	5000
	2.86
	2.20
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	2.2
	5.0%
	0.56
	6.00
	2.49
	Different drops

	vivo R1-2306744
	CIR
	Pos.
	Drop1
	Drop2
	Drop2
	25k
	4.0%
	1k
	3.97
	4.01
	Different drops

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	4.0%
	2500
	3.35
	18.45
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	5.0%
	2k
	7.18
	3.90
	Different drops

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	5.0%
	2500
	3.52
	4.17
	Different drops

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	5.0%
	2500
	3.07
	4.17
	Different drops


6.3% ~10.0%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	10.0%
	0.5
	2.237
	2.37
	Different drops

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}
	5000 samples from the 2nd drop

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	6.3%
	10.42
	0.69
	2.08
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	2.2
	10.0%
	0.56
	4.8
	1.99
	Different drops

	vivo R1-2306744
	CIR
	Pos.
	Drop1
	Drop2
	Drop2
	25k
	8.0%
	1k
	3.37
	3.40 
	Different drops

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	8.0%
	2500
	2.74
	18.45
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	10.0%
	2k
	6.53
	3.55
	Different drops

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	10.0%
	2500
	3.40
	4.03
	Different drops

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	10.0%
	2500
	3.06
	4.03
	Different drops



12%-25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	1st Drop
	2nd Drop
	2nd Drop
	4
	17.0%
	0.25
	2.72
	10.46
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	25.0%
	0.5
	1.58
	1.676
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	2.2
	25.0%
	0.56
	3.8
	1.58
	Different drops

	vivo R1-2306744
	CIR
	Pos.
	Drop1
	Drop2
	Drop2
	25k
	12.0%
	1k
	2.9
	2.93 
	Different drops

	CMCC R1-2307187
	CIR;size：18*1*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	12.0%
	2500
	1.95
	18.45
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	25.0%
	2k
	5.7
	3.1
	Different drops

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	15.0%
	2500
	3.32
	3.94
	Different drops

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Drop1
	Drop 1
	Drop 1
	47500
	15.0%
	2500
	3.05
	3.94
	Different drops



34% ~ 50%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	1st Drop
	2nd Drop
	2nd Drop
	4
	34.0%
	0.25
	2.33
	8.88
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	50.0%
	0.5
	1.149
	1.216
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	2.2
	50.0%
	0.56
	3.0 m
	1.24
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	50.0%
	2k
	4.97
	2.7
	Different drops



100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	1st Drop
	2nd Drop
	2nd Drop
	4
	100.0%
	0.25
	0.31
	1.19
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop2
	4.5
	100.0%
	0.5
	0.948
	1.00
	Different drops



Fine-tuning results (excel): different drops, test on previous setting
2.5%-5.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	2.5%
	0.5
	5.75
	5.76
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	5.0%
	0.5
	5.39
	5.40
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	2.5%
	0.56
	6.80
	3.00
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	5.0%
	0.56
	6.80
	3.00
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop A (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	2.5%
	2k
	6.67
	4.36
	different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop A (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	5.0%
	2k
	6.36
	4.16
	different drops


	
10%-25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	10.0%
	0.5
	5.23
	5.24
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	25.0%
	0.5
	5.95
	5.96
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	10.0%
	0.56
	7.60
	3.35
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	25.0%
	0.56
	8.60
	3.80
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop A (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	10.0%
	2k
	6.86
	4.48
	different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop A (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	25.0%
	2k
	7.07
	4.62
	different drops



50%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	50.0%
	0.5
	7.19
	7.21
	Different drops

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} drop1
	InF-DH({60%, 6m, 2m} drop2
	InF-DH({60%, 6m, 2m} drop1
	4.5
	100.0%
	0.5
	7.70
	7.71
	Different drops

	NVIDIA R1-2306479
	CIR
	Position
	Drop 1, {60%, 6m, 2m}
	Drop 3, {60%, 6m, 2m}
	Drop 1, {60%, 6m, 2m}
	2.2
	50.0%
	0.56
	10.20
	4.50
	Different drops

	Qualcomm R1-2307920
	CIR (18,1,256)
	2D
	Drop A (InF-DH {60%,6,2})
	Drop B (InF-DH {60%,6,2})
	Drop A (InF-DH {60%,6,2})
	15k (2.08 samples/m2
	50.0%
	2k
	7.44
	4.86
	different drops




1st round discussion
Based on the simulation results submitted by companies, the following observations are presented.
Observation 4.2.1.3-1 (A-B-B)
For direct AI/ML positioning and different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, OPPO, NVIDIA, vivo, Qualcomm] when fine-tuning dataset size is x% = 1.3%~2.5% of full training dataset size, the positioning error is (3.15~4.74)  E0,B;
· [6 sources: MediaTek, Huawei, NVIDIA, vivo, Qualcomm, Apple] when fine-tuning dataset size is x% = 4.0%~5.0% of full training dataset size, the positioning error is (2.20~4.17)  E0,B;
· [6 sources: MediaTek, OPPO, NVIDIA, vivo, Qualcomm, Apple] when fine-tuning dataset size is x% = 6.3%~10.0% of full training dataset size, the positioning error is (1.99~4.03)  E0,B;
· [5 sources: MediaTek, NVIDIA, vivo, Qualcomm, Apple] when fine-tuning dataset size is x% = 12.0%~25.0% of full training dataset size, the positioning error is (1.58~3.94)  E0,B; [1 source: ZTE] the positioning error is (10.46)  E0,B;  
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 34.0%~50.0% of full training dataset size, the positioning error is (1.22~2.70)  E0,B; [1 source: ZTE] the positioning error is (8.88)  E0,B;
· [2 sources: ZTE, MediaTek] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (1.00~1.19)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for drop B.

	Company
	Comments

	ZTE
	For direct AI/ML positioning, our simulation result shows a similar performance after fine-tune =100% (i.e., E=1.19xE0,B). The slight variation may contribute to different model parameter initializations for the models on different drops. We don’t think it’s a big outlier. For convienece, we can simply conclude when fine-tune =100%, a similar performance is observed before and after the fine-tuning.

	
	




Observation 4.2.1.3-2 (A-B-A)
For direct AI/ML positioning and different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 2.5%~5.0% of full training dataset size, the positioning error is (3.00~5.76)  E0,A;
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 10.0%~25.0% of full training dataset size, the positioning error is (3.35~5.96)  E0,A;
· [3 sources: MediaTek, NVIDIA, Qualcomm] when fine-tuning dataset size is x% = 50.0%~100.0% of full training dataset size, the positioning error is (4.50~7.71)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for drop A.

	Company
	Comments

	HW/HiSi
	We still do not understand the meaning and potential benefit why the fine-tuned model again should be tested under drop A? It would be better to apply the previous model on Drop A. In our understanding, fine-tuning is used to adapt to the current conditions.



Different clutter parameters
	· ZTE (R1-2306799)
Various clutter settings:
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
{60%, 6m, 2m}
	
N/A
	
{40%, 4m, 2m}
	
4
	
0%

	
0.25

	
19.31
	
74.27

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
{60%, 6m, 2m}
	
N/A
	
{40%, 4m, 2m}
	
4
	
17%

	
0.25

	
3.81
	
14.65

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
{60%, 6m, 2m}
	
N/A
	
{40%, 4m, 2m}
	
4
	
34%

	
0.25

	
3.18
	
12.23

	CIR

= {1, 18, 256, 256}
	2-D UE position
(1x2)
	
{60%, 6m, 2m}
	
N/A
	
{40%, 4m, 2m}
	
4
	
100%

	
0.25

	
0.48
	
1.84





	· Nokia (R1-2307242)
Table 10 – Absolute and relative accuracy of fine-tuning performance for Direct AI/ML positioning and fine-tuning when the model was trained in one scenario (clutter density 40%) and tested in another different scenario (clutter density 60%) and vice versa.
	Model input
	Model output
	Settings (e.g., drops, clutter parameters)
	Sample density (#samples/m2) of dataset
	Horizontal Accuracy @90%

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy

	PDP (Real)
	x, y position
	Dataset 2
	-
	Dataset 2
	10K/Area
	
	10%
	7.8
	7.8/7.8 = 1.0

	PDP (Real)
	x, y position
	Dataset 1
	-
	Dataset 1
	10K/Area
	
	10%
	5.6
	5.6/5.6 = 1.0

	PDP (Real)
	x, y position
	Dataset 1
	Dataset 2
	Dataset 2
	10K/Area
	20%
	10%
	7.89
	7.89/7.8 = 1.011

	PDP (Real)
	x, y position
	Dataset 1
	Dataset 2
	Dataset 1
	10K/Area
	20%
	10%
	8.94
	8.94/5.6 = 1.596

	PDP (Real)
	x, y position
	Dataset 2
	Dataset 1
	Dataset 1
	10K/Area
	20%
	10%
	6.45
	6.45/5.6 = 1.15

	PDP (Real)
	x, y position
	Dataset 2
	Dataset 1
	Dataset 2
	10K/Area
	20%
	10%
	10.95
	10.95/7.8 = 1.403



Table 11 – Absolute and relative accuracy of fine-tuning performance for Direct AI/ML positioning and fine-tuning when the model was trained in one scenario (clutter density 40%) and tested in another different scenario (clutter density 60%) and vice versa.
	Model input
	Model output
	Settings (e.g., drops, clutter parameters)
	Sample density (#samples/m2) of dataset
	Horizontal Accuracy @90%

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy

	PDP (Real)
	x, y position
	Dataset 4
	-
	Dataset 4
	64K/Area
	-
	5%
	1.18
	1.18/1.18 =1.0

	PDP (Real)
	x, y position
	Dataset 3
	-
	Dataset 3
	64K/Area
	-
	5%
	1.07
	1.07/1.07 = 1.0

	PDP (Real)
	x, y position
	Dataset 3
	Dataset 4
	Dataset 4
	64K/Area
	10%
	5%
	5.07
	5.07/1.18 = 4.34 

	PDP (Real)
	x, y position
	Dataset 3
	Dataset 4
	Dataset 3
	64K/Area
	10%
	5%
	9.85
	9.85/1.07 = 9.2

	PDP (Real)
	x, y position
	Dataset 4
	Dataset 3
	Dataset 3
	64K/Area
	10%
	5%
	2.9911
	2.911/1.07 = 2.72

	PDP (Real)
	x, y position
	Dataset 4
	Dataset 3
	Dataset 4
	64K/Area
	10%
	5%
	10.61
	10.61/1.18 = 8.99





	· MediaTek (R1-2308056)
Table 33. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	0
	0.5
	7.133
	5.084

	
	
	
	
	
	
	2.5%
	
	3.132
	2.232

	
	
	
	
	
	
	5%
	
	2.690
	1.917

	
	
	
	
	
	
	10%
	
	2.323
	1.656

	
	
	
	
	
	
	25%
	
	1.978
	1.410

	
	
	
	
	
	
	50%
	
	1.532
	1.092

	
	
	
	
	
	
	100%
	
	1.154
	0.823


Table 34. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 2m})
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	3.241
	3.247

	
	
	
	
	
	
	5%
	
	3.007
	3.013

	
	
	
	
	
	
	10%
	
	2.799
	2.805

	
	
	
	
	
	
	25%
	
	2.576
	2.581

	
	
	
	
	
	
	50%
	
	2.425
	2.430

	
	
	
	
	
	
	100%
	
	2.079
	2.083





	· NVIDIA (R1-2306479)
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Observation 10: For direct AI/ML positioning, if the new deployment scenario has a clutter parameter setting different from the clutter parameter setting of the deployment scenario that the model was trained for, fine-tuning an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the same positioning accuracy for the new deployment scenario.
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Observation 11: For direct AI/ML positioning, evaluation results show that, after fine-tuning an old model with dataset of the new deployment scenario with the new clutter parameter setting, the performance of the updated model degrades for the previous deployment scenario with the old clutter parameter setting that the old model was trained for.

	· CATT (R1-2308205)
Table 12: Evaluation results for direct AI/ML positioning model different clutter parameters deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	[bookmark: OLE_LINK9][bookmark: OLE_LINK10]Sample density(#sample/m2)of dataset
	Horizontal pos.accuracy at CDF=90%(m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune(%)*
	Test
	Absolute accuracy(m)
	Relative accuracy**

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	2.5%
	0.15
	1.10
	1.80

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	5%
	0.15
	1.08
	1.77

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	10%
	0.15
	0.93
	1.52

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	25%
	0.15
	0.81
	1.33

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	50%
	0.15
	0.67
	1.10

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	2.5%
	0.15
	1.21
	2.24

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	5%
	0.15
	1.09
	2.02

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	10%
	0.15
	0.98
	1.81

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	25%
	0.15
	0.78
	1.44

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	50%
	0.15
	0.65
	1.20







Fine-tuning results (excel): different clutter parameters, test on new setting
1.3%-2.5%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	2.5%
	0.5
	3.13
	2.23
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	3.89
	10.18
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	2.23
	7.45
	Different clutter parameters

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	1000 samples from the 2nd drop

{40%, 2, 2}
	Remaining samples of the 2nd drop
	11.11
	1.3%
	11.1
	2.71
	6.95
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	2.2
	2.5%
	0.56
	10.90
	2.36
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	2.0%
	1k
	5.22
	4.92
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	2.0%
	1k
	3.89
	3.93
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	2.5%
	0.15
	1.10
	1.80
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	3.03
	4.50
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	2.88
	3.56
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	3.90
	3.78
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	8.8
	2.5%
	0.44
	7.09
	6
	Different clutter parameters



4.0%-8.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	DH422
	DH422
	2.5
	5.6%
	0.28
	3.38
	2.30
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	5.0%
	0.5
	2.69
	1.92
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	2.70
	7.05
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	1.55
	5.17
	Different clutter parameters

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 


{60%, 6, 2}
	5000 samples from the 2nd drop

{40%, 2, 2}
	Remaining samples of the 2nd drop
	11.11
	6.3%
	10.42
	1.28
	3.29
	Different clutter parameters

	Huawei-R1-2306515
	CIR 18*4*256
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	4.0%
	5000
	3.10
	2.50
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	2.2
	5.0%
	0.56
	9.60
	2.08
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	4.0%
	1k
	4.40
	4.15
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	8.0%
	1k
	3.50
	3.30
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	4.0%
	1k
	3.23
	3.26
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	8.0%
	1k
	2.56
	2.59
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	5.0%
	0.15
	1.08
	1.77
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	2.33
	3.46
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	2.42
	2.99
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	3.23
	3.13
	Different clutter parameters

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	5.0%
	2500
	4.84
	5.74
	Different clutter parameters

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	5.0%
	2500
	2.95
	5.74
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	8.8
	5.0%
	0.44
	6.19
	5.2
	Different clutter parameters


10%-17%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	DH422
	DH422
	2.5
	11.1%
	0.28
	2.27
	1.50
	Different clutter parameters

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt'}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	Clutter parameters = {60%, 6m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	4
	17.0%
	0.25
	3.81
	14.65
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	10.0%
	0.5
	2.32
	1.66
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	1.79
	4.69
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	1.11
	3.69
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	2.2
	10.0%
	0.56
	8.40
	1.82
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	12.0%
	1k
	3.16
	2.98
	Different clutter parameters

	vivo R1-2306744
	CIR
	Pos.
	{0.4, 2, 2}
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	12.0%
	1k
	2.40
	2.42
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	10.0%
	0.15
	0.93
	1.52
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.80
	2.67
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.88
	2.32
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	2.44
	2.36
	Different clutter parameters

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	15.0%
	2500
	4.44
	5.26
	Different clutter parameters

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	10.0%
	2500
	4.51
	5.34
	Different clutter parameters

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	15.0%
	2500
	2.81
	5.26
	Different clutter parameters

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	10.0%
	2500
	2.83
	5.34
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	8.8
	10.0%
	0.44
	5.07
	4.29
	Different clutter parameters


20%-34%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt'}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	Clutter parameters = {60%, 6m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	4
	34.0%
	0.25
	3.18
	12.23
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	25.0%
	0.5
	1.98
	1.41
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	2.2
	25.0%
	0.56
	6.50
	1.41
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	25.0%
	0.15
	0.81
	1.33
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.18
	1.75
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.27
	1.56
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.62
	1.57
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	10K
	20.0%
	10K
	7.89
	1.01
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{60%,2m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	10K
	20.0%
	10K
	6.45
	1.15
	Different clutter parameters



50%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	50.0%
	0.5
	1.53
	1.09
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 2, {40%, 2m, 2m}
	2.2
	50.0%
	0.56
	5.40
	1.17
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.7
	50.0%
	0.15
	0.67
	1.10
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.84
	1.25
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.99
	1.22
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	1.29
	1.25
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	8.8
	50.0%
	0.44
	1.34
	1.13

	Different clutter parameters


100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt'}= {1, 18, 256, 256}
	2-D UE position
(1x2)
	Clutter parameters = {60%, 6m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	Clutter parameters = {40%, 4m, 2m}
	4
	100.0%
	0.25
	0.48
	1.84
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	100.0%
	0.5
	1.15
	0.82
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.62
	0.92
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.79
	0.98
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	1.04
	1.00
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	8.8
	95.0%
	0.44
	1.34
	1.13

	Different clutter parameters



Fine-tuning results (excel): different clutter parameters, test on previous setting
2.5%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 3m}
	4.5
	2.5%
	0.5
	3.24
	3.25
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	6.63
	22.11
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	3.55
	9.27
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 1, {60%, 6m, 2m}
	2.2
	2.5%
	0.56
	6.1 m
	2.69
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	2.5%
	0.15
	1.21
	2.24
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	3.35
	8.99
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	3.01
	5.91
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	3.97
	6.03
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	8.8
	2.5%
	0.44
	9.65
	9

	Different clutter parameters



5.0%-5.6%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	DH422
	DH662
	2.5
	5.6%
	0.28
	8.20
	4.80
	Different clutter parameters

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	DH662
	DH422
	2.5
	5.6%
	0.28
	5.14
	3.50
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 4m}
	4.5
	5.0%
	0.5
	3.01
	3.01
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	5.84
	19.49
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	3.97
	10.38
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 1, {60%, 6m, 2m}
	2.2
	5.0%
	0.56
	7.1 m
	3.13
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	5.0%
	0.15
	1.09
	2.02
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	3.45
	9.26
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	2.79
	5.48
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	3.72
	5.65
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	8.8
	5.0%
	0.44
	10.01
	9.3

	Different clutter parameters


10%-25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 5m}
	4.5
	10.0%
	0.5
	2.80
	2.81
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 6m}
	4.5
	25.0%
	0.5
	2.58
	2.58
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	5.59
	18.65
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	4.85
	12.68
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 1, {60%, 6m, 2m}
	2.2
	10.0%
	0.56
	8.1 m
	3.58
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 1, {60%, 6m, 2m}
	2.2
	25.0%
	0.56
	9.4 m
	4.15
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	10.0%
	0.15
	0.98
	1.81
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	25.0%
	0.15
	0.78
	1.44
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	1.99
	5.34
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	2.63
	7.06
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	1.80
	3.52
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	2.46
	4.81
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	2.44
	3.70
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	3.35
	5.09
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	2.7
	20.0%
	0.27
	8.94
	1.59
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{60%,2m,2m}
	{40%,2m,2m}
	{60%,2m,2m}
	2.7
	20.0%
	0.27
	10.95
	1.40
	Different clutter parameters



50%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 7m}
	4.5
	50.0%
	0.5
	2.425
	2.43
	Different clutter parameters

	NVIDIA R1-2306479
	CIR
	Position
	Clutter 1, {60%, 6m, 2m}
	Clutter 2, {40%, 2m, 2m}
	Clutter 1, {60%, 6m, 2m}
	2.2
	50.0%
	0.56
	10.0 m
	4.41
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	50.0%
	0.15
	0.65
	1.2
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	1.668
	4.47
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	1.591
	3.12
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	UE 2D position estimate
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	2.242
	3.41
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	8.8
	50.0%
	0.44
	11.48
	10.72

	Different clutter parameters



100%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	100.0%
	0.5
	1.80
	1.15
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.62
	0.89
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.78
	0.92
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	1.03
	0.96
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.42
	1.03
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.55
	0.93
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	horizontal 2d positioning
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	8.8
	95.0%
	0.44
	13.46
	12.58

	Different clutter parameters



1st round discussion
Based on the simulation results submitted by companies, the following observations are presented.

Observation 4.2.2.3-1 (A-B-B)
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [7 sources: MediaTek, Xiaomi, OPPO, NVIDIA, vivo, CATT, Ericsson] when fine-tuning dataset size is x% = 1.3%~2.5% of full training dataset size, the positioning error is ( 1.8~10.18)  E0,B;
· [10 sources: Samsung, MediaTek, Xiaomi, OPPO, Huawei, NVIDIA, vivo, CATT, Ericsson, Apple] when fine-tuning dataset size is x% = 4.0%~8.0% of full training dataset size, the positioning error is (1.77~7.05)  E0,B;
· [8 sources: Samsung, MediaTek, Xiaomi, NVIDIA, vivo, CATT, Ericsson, Apple] when fine-tuning dataset size is x% = 10.0%~17.0% of full training dataset size, the positioning error is (1.50~5.34)  E0,B; [1 source: ZTE] the positioning error is (14.65)  E0,B;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 20.0%~34.0% of full training dataset size, the positioning error is (1.01~1.75)  E0,B; [1 source: ZTE] the positioning error is (12.23)  E0,B;
· [4 sources: MediaTek, NVIDIA, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.09~1.25)  E0,B;
· [3 sources: ZTE, MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (0.82~1.84)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter B.

	Company
	Comments

	ZTE
	For direct AI/ML positioning, our simulation result shows a similar performance after fine-tune =100% (i.e., E=1.84xE0,B). The slight variation may contribute to different model parameter initializations for the models on different clutter parameters. We don’t think it’s a big outlier. For convienece, we can simply conclude when fine-tune =100%, a similar performance is observed before and after the fine-tuning.

	Nokia/NSB
	We added new results in the table according tot he format used in the observation. They are marked in yellow

Observation 4.2.2.3-1 (A-B-B) (updated)
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [8 sources: MediaTek, Xiaomi, OPPO, NVIDIA, vivo, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 1.3%~2.5% of full training dataset size, the positioning error is ( 1.8~10.18)  E0,B;
· [11 sources: Samsung, MediaTek, Xiaomi, OPPO, Huawei, NVIDIA, vivo, CATT, Ericsson, Apple, Nokia] when fine-tuning dataset size is x% = 4.0%~8.0% of full training dataset size, the positioning error is (1.77~7.05)  E0,B;
· [9 sources: Samsung, MediaTek, Xiaomi, NVIDIA, vivo, CATT, Ericsson, Apple, Nokia] when fine-tuning dataset size is x% = 10.0%~17.0% of full training dataset size, the positioning error is (1.50~5.34)  E0,B; [1 source: ZTE] the positioning error is (14.65)  E0,B;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 20.0%~34.0% of full training dataset size, the positioning error is (1.01~1.75)  E0,B; [1 source: ZTE] the positioning error is (12.23)  E0,B;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.09~1.25)  E0,B;
· [4 sources: ZTE, MediaTek, Ericsson, Nokia] when fine-tuning dataset size is x% = 95.0%~100.0% of full training dataset size, the positioning error is (0.82~1.84)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter B.




Observation 4.2.2.3-2 (A-B-A)
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson] when fine-tuning dataset size is x% = 2.5% of full training dataset size, the positioning error is (2.24~22.11)  E0,A;
· [6 sources: Samsung, MediaTek, Xiaomi, NVIDIA, CATT, Ericsson] when fine-tuning dataset size is x% = (5.0%~5.6%) of full training dataset size, the positioning error is (2.02~19.49)  E0,A;
· [6 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = (10.0%~25.0%) of full training dataset size, the positioning error is (1.40~18.65)  E0,A;
· [4 sources: MediaTek, NVIDIA, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.20~4.47)  E0,A;
· [2 sources: MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (2.08~3.62)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter A.

	Company
	Comments

	Hw/HiSI
	[Not support] 
We still do not understand the meaning and potential benefit why the fine-tuned model again should be tested under clutter parameter A? It would be better to apply the previous model on clutter parameter A. In our understanding, fine-tuning is used to adapt to the current conditions.

	Nokia/NSB
	We included new results following the format that was proposed by FL. Please, consider the yellow highlighed update. 

[TO FL] Please check the last table for case A-B-A for Fine tuning percentage 100%. It looks that there was a typo in the table values. The specific typo is in “Test“ column.

Observation 4.2.2.3-2 (A-B-A) (Updated)
For direct AI/ML positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [6 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 2.5% of full training dataset size, the positioning error is (2.24~22.11)  E0,A;
· [7 sources: Samsung, MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = (5.0%~5.6%) of full training dataset size, the positioning error is (2.02~19.49)  E0,A;
· [6 sources: MediaTek, Xiaomi, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = (10.0%~25.0%) of full training dataset size, the positioning error is (1.40~18.65)  E0,A;
· [5 sources: MediaTek, NVIDIA, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.20~10.72)  E0,A;
· [3 sources: MediaTek, Ericsson, Nokia] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (2.08~12.58)  E0,A; [This sub-bullet should be updated/confirmed after updating the table with proper values]
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter A.




Network synchronization error
	· CATT (R1-2308205)
Table 13: Evaluation results for direct AI/ML positioning model for different network synchronization assumptions deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Settings (e.g., drops, clutter param, mix)
	Sample density(#sample/m2)of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune(%)*
	test
	Absolute accuracy(m)
	Relative accuracy**

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	Perfectnetwork synchronization
	50ns network synchronization
	50ns network synchronization
	2.7
	2.78%
	0.15
	2.69m
	3.20

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	Perfect network synchronization
	50ns network synchronization
	50ns network synchronization
	2.7
	5.56%
	0.15
	2.23m
	2.65

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	Perfectnetwork synchronization
	50ns network synchronization
	50ns network synchronization
	2.7
	8.33%
	0.15
	2.00m
	2.38

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	Perfectnetwork synchronization
	50ns network synchronization
	50ns network synchronization
	2.7
	18.5%
	0.15
	1.43m
	1.70





	· MediaTek (R1-2308056)
Table 36. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	0
	0.5
	13.208
	3.923945

	
	
	
	
	
	
	2.5%
	
	8.099
	2.40612

	
	
	
	
	
	
	5%
	
	7.477
	2.221331

	
	
	
	
	
	
	10%
	
	6.482
	1.925728

	
	
	
	
	
	
	25%
	
	4.925
	1.463161

	
	
	
	
	
	
	50%
	
	3.718
	1.104575

	
	
	
	
	
	
	100%
	
	2.743
	0.814914


Table 37. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	5.941
	5.952906

	
	
	
	
	
	
	5%
	
	5.911
	5.922846

	
	
	
	
	
	
	10%
	
	5.068
	5.078156

	
	
	
	
	
	
	25%
	
	3.908
	3.915832

	
	
	
	
	
	
	50%
	
	3.007
	3.013026

	
	
	
	
	
	
	100%
	
	2.278
	2.282565


Table 38. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	50ns
	10ns
	10ns
	4.5
	0
	0.5
	2.705
	1.624624

	
	
	
	
	
	
	2.5%
	
	2.357
	1.415616

	
	
	
	
	
	
	5%
	
	2.228
	1.338138

	
	
	
	
	
	
	10%
	
	2.154
	1.293694

	
	
	
	
	
	
	25%
	
	1.961
	1.177778

	
	
	
	
	
	
	50%
	
	1.672
	1.004204

	
	
	
	
	
	
	100%
	
	1.478
	0.887688


Table 39. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	50ns
	10ns
	50ns
	4.5
	0
	0.5
	3.366
	1

	
	
	
	
	
	
	2.5%
	
	3.766
	1.118835

	
	
	
	
	
	
	5%
	
	3.866
	1.148544

	
	
	
	
	
	
	10%
	
	4.150
	1.232917

	
	
	
	
	
	
	25%
	
	4.742
	1.408794

	
	
	
	
	
	
	50%
	
	5.086
	1.510992

	
	
	
	
	
	
	100%
	
	5.600
	1.663696








Fine-tuning results (excel): Network synchronization error, test on new setting
1.3%-5.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	2.5%
	0.5
	8.10
	2.41
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	1.69
	5.21
	Network synchronization error

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o NW sync error

{60%, 6, 2}
	1000 samples from the 2nd drop

w/ NW sync error

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	1.3%
	11.1
	0.84
	/
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	2ns
	2ns
	25k
	2.0%
	1k
	1.11
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	10ns
	10ns
	25k
	2.0%
	1k
	1.44
	
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	50ns
	50ns
	25k
	2.0%
	1k
	3.22
	
	Network synchronization error



4.0%-8.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	5.0%
	0.5
	7.48
	2.22
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	1.41
	4.35
	Network synchronization error

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 

w/o NW sync error

 

{60%, 6, 2}
	5000 samples from the 2nd drop

w/ NW sync error

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	6.3%
	10.42
	0.56
	/
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	2ns
	2ns
	25k
	4.0%
	1k
	1.11
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	2ns
	2ns
	25k
	8.0%
	1k
	0.95
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	10ns
	10ns
	25k
	4.0%
	1k
	1.28
	
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	10ns
	10ns
	25k
	8.0%
	1k
	1.06
	
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	50ns
	50ns
	25k
	4.0%
	1k
	2.39
	
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	50ns
	50ns
	25k
	8.0%
	1k
	1.73
	
	Network synchronization error

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5.0%
	2500
	9.03
	10.70
	Network synchronization error

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5.0%
	2500
	11.71
	10.70
	Network synchronization error


10.0%-25.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	10.0%
	0.5
	6.48
	1.93
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	25.0%
	0.5
	4.93
	1.46
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	1.06
	3.25
	Network synchronization error

	Huawei-R1-2306515
	CIR 18*4*256
	UE coordinates
	Without network synchronization error
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	20.0%
	5000
	8.47
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	2ns
	2ns
	25k
	12.0%
	1k
	0.90
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	10ns
	10ns
	25k
	12.0%
	1k
	0.95
	
	Network synchronization error

	vivo R1-2306744
	CIR
	Pos.
	0ns
	50ns
	50ns
	25k
	12.0%
	1k
	1.47
	
	Network synchronization error

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	15.0%
	2500
	8.70
	10.31
	Network synchronization error

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	10.0%
	2500
	8.76
	10.38
	Network synchronization error

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	15.0%
	2500
	10.96
	10.31
	Network synchronization error

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	10.0%
	2500
	11.16
	10.38
	Network synchronization error



50%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	50.0%
	0.5
	3.72
	1.10
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	100.0%
	0.5
	2.74
	0.81
	Network synchronization error



Fine-tuning results (excel): Network synchronization error, test on previous setting
2.5%-10%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	2.5%
	0.5
	5.94
	5.95
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	5.0%
	0.5
	5.91
	5.92
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	10.0%
	0.5
	5.07
	5.08
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	5.80
	19.35
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	5.86
	19.53
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	2*1 UE coordinates
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	7.03
	23.44
	Network synchronization error



25%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	25.0%
	0.5
	3.91
	3.92
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	50.0%
	0.5
	3.01
	3.01
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	100.0%
	0.5
	2.28
	2.28
	Network synchronization error



1st round discussion

Observation 4.2.3.3-1 (A-B-B)
For direct AI/ML positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = A (ns) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = B (ns) with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = B (ns) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: MediaTek, Xiaomi, [OPPO], [vivio]] when fine-tuning dataset size is x% = (1.3%~5.0%) of full training dataset size, the positioning error is (2.41~5.21)  E0,B;
· [2 sources: MediaTek, Xiaomi, [OPPO], [vivio]] when fine-tuning dataset size is x% = (4.0%~8.0%) of full training dataset size, the positioning error is (2.22~4.35)  E0,B; [1 source: Apple] the positioning error is (10.7)  E0,B;
· [2 sources: MediaTek, Xiaomi, [Huawei, [vivo]] when fine-tuning dataset size is x% = (10.0%~25.0%) of full training dataset size, the positioning error is (1.46~3.25)  E0,B; [1 source: Apple] the positioning error is (10.31~10.38)  E0,B;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.81~1.1)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error = B (ns).

	Company
	Comments

	
	




Observation 4.2.3.3-2 (A-B-A)
For direct AI/ML positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 0 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 50 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 0 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: MediaTek, Xiaomi] when fine-tuning dataset size is x% = (2.5%~10.0%) of full training dataset size, the positioning error is (5.08~23.44)  E0,A;
· [1 sources: MediaTek] when fine-tuning dataset size is x% = (25.0%~100.0%) of full training dataset size, the positioning error is (2.28~3.92)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error = 0 ns.


	Company
	Comments

	
	




UE/gNB RX and TX timing error
Fine-tuning results (excel): UE/gNB RX and TX timing error, test on new setting


	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o UE timing error

{60%, 6, 2}
	1000 samples from the 2nd drop

w/ UE timing error

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	1.3%
	11.1
	0.81
	/
	UE/gNB RX and TX timing error

	OPPO R1-2307568
	Normalized CIR + RSRP (18, 1, 256, 2)
	UE coordination
	1 drop, 80,000 UEs per drop 

w/o UE timing error
 

{60%, 6, 2}
	5000 samples from the 2nd drop

w/ UE timing error

{60%, 6, 2}
	Remaining samples of the 2nd drop
	11.11
	6.3%
	10.42
	0.57
	/
	UE/gNB RX and TX timing error

	Huawei-R1-2306515
	CIR 18*4*256
	UE coordinates
	Without UE timing error
	With UE timing error @20ns
	With UE timing error @20ns
	25000
	20.0%
	5000
	1.13
	 
	UE/gNB RX and TX timing error



0st round discussion (pending data update from OPPO, Huawei)

DRAFT Observation 4.2.4.2-1 (A-B-B)
For direct AI/ML positioning and different UE/gNB RX and TX timing error, evaluation has been performed where the AI/ML model is (a) previously trained for xxx A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for xxx B with a dataset of sample density x%  N (#samples/m2), (c) then tested under xxx B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [[2] sources: [OPPO], [Huawei]] when fine-tuning dataset size is x% = [XXX]% of full training dataset size, the positioning error is ( [XXX])  E0,B;
· [[2] sources: [OPPO], [Huawei]]  when fine-tuning dataset size is x% = [XXX]% of full training dataset size, the positioning error is ([XXX])  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for the xxx B.


	Company
	Comments

	
	




Different InF scenarios
	· CATT (R1-2308205)
Table 14: Evaluation results for direct AI/ML positioning model for different scenarios deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density(#sample/m2)of dataset
	Horizontal pos.accuracy at CDF=90%(m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune(%)*
	Test
	Absolute accuracy(m)
	Relative accuracy**

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.7
	2.5%
	0.15
	1.45m
	2.50

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.7
	5%
	0.15
	1.16m
	2.00

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.7
	10%
	0.15
	1.09m
	1.88

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.7
	25%
	0.15
	0.97m
	1.67

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.7
	50%
	0.15
	0.82m
	1.41

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	2.5%
	0.15
	1.91m
	3.54

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}

	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	5%
	0.15
	1.23m
	2.28

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	10%
	0.15
	1.25m
	2.31

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	25%
	0.15
	1.07m
	1.98

	Type: CIR;
Size:
18*1*256
	Type:position
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.7
	50%
	0.15
	0.92m
	1.70





	· MediaTek (R1-2308056)
Table 44. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning for scenario InF-SH
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-SH
	InF-SH
	4.5
	0
	0.5
	12.255
	12.41641

	
	
	
	
	
	
	2.5%
	
	2.761
	2.797366

	
	
	
	
	
	
	5%
	
	2.316
	2.346505

	
	
	
	
	
	
	10%
	
	1.942
	1.967579

	
	
	
	
	
	
	25%
	
	1.576
	1.596758

	
	
	
	
	
	
	50%
	
	1.163
	1.178318

	
	
	
	
	
	
	100%
	
	0.909
	0.920973


Table 45. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning for scenario InF-SH
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-SH
	InF-DH({60%, 6m, 2m})
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	8.315
	8.332

	
	
	
	
	
	
	5%
	
	8.644
	8.661

	
	
	
	
	
	
	10%
	
	7.888
	7.904

	
	
	
	
	
	
	25%
	
	8.456
	8.473

	
	
	
	
	
	
	50%
	
	8.161
	8.177

	
	
	
	
	
	
	100%
	
	9.221
	9.240







Fine-tuning results (excel): different InF scenarios, test on new setting

2.0%-5.6%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	SH
	SH
	2.5
	5.6%
	0.28
	6.08
	16.40
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH662
	DH662
	2.5
	5.6%
	0.28
	3.38
	2.00
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH422
	DH422
	2.5
	5.6%
	0.28
	0.70
	0.50
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	DH662
	DH662
	2.5
	5.6%
	0.28
	6.08
	3.50
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	SH
	SH
	2.5
	5.6%
	0.28
	3.32
	8.90
	different scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	2.5%
	0.5
	2.76
	2.80
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	5.0%
	0.5
	2.32
	2.35
	Different InF scenarios

	vivo R1-2306744
	CIR
	Pos.
	DH{0.6, 6, 2}
	HH
	HH
	25k
	2.0%
	1k
	10.50
	16.67
	Different InF scenarios

	vivo R1-2306744
	CIR
	Pos.
	DH{0.6, 6, 2}
	HH
	HH
	25k
	4.0%
	1k
	8.78
	13.94
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.7
	2.5%
	0.15
	1.45
	2.50
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.7
	5.0%
	0.15
	1.16
	2.00
	Different InF scenarios

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	5.0%
	2500
	4.42
	5.24
	Different InF scenarios

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	5.0%
	2500
	2.70
	5.24
	Different InF scenarios



8.0%-15.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	SH
	SH
	2.5
	11.1%
	0.28
	4.68
	12.60
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH662
	DH662
	2.5
	11.1%
	0.28
	2.27
	1.30
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH422
	DH422
	2.5
	11.1%
	0.28
	0.58
	0.40
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	DH662
	DH662
	2.5
	11.1%
	0.28
	4.68
	2.70
	different scenarios

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	SH
	SH
	2.5
	11.1%
	0.28
	2.85
	7.70
	different scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	10.0%
	0.5
	1.94
	1.97
	Different InF scenarios

	vivo R1-2306744
	CIR
	Pos.
	DH{0.6, 6, 2}
	HH
	HH
	25k
	8.0%
	1k
	5.84
	9.27
	Different InF scenarios

	vivo R1-2306744
	CIR
	Pos.
	DH{0.6, 6, 2}
	HH
	HH
	25k
	12.0%
	1k
	4.66
	7.40
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.7
	10.0%
	0.15
	1.09
	1.88
	Different InF scenarios

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	15.0%
	2500
	4.32
	5.12
	Different InF scenarios

	Apple-R12308248
	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	10.0%
	2500
	4.33
	5.13
	Different InF scenarios

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	15.0%
	2500
	2.65
	5.12
	Different InF scenarios

	Apple-R12308248
	Delay Profile
[18,1,256,1]
DP
	UE coordinates
[1x2]
	InF-DH
	InF-SH
	InF-SH
	47500
	10.0%
	2500
	2.67
	5.13
	Different InF scenarios


25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	25.0%
	0.5
	1.58
	1.60
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.7
	25.0%
	0.15
	0.97
	1.67
	Different InF scenarios



50%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	50.0%
	0.5
	1.16
	1.18
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-SH
	4.5
	100.0%
	0.5
	0.91
	0.92
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.7
	50.0%
	0.15
	0.82
	1.41
	Different InF scenarios




Fine-tuning results (excel): different InF scenarios, test on previous setting
2.5%-10%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	DH662
	SH
	DH662
	2.5
	5.6%
	0.28
	11.6
	6.8
	different scenarios

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH662
	SH
	2.5
	5.6%
	0.28
	11.2
	30.2
	different scenarios

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	SH
	DH422
	SH
	2.5
	5.6%
	0.28
	1.9
	5.1
	different scenarios

	Samsung R1-2307672
	CIR with 18x256x2
	UE 2D position estimate
	DH422
	SH
	DH422
	2.5
	5.6%
	0.28
	3.73
	2.5
	different scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	2.5%
	0.5
	8.32
	8.33
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	5.0%
	0.5
	8.64
	8.66
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	10.0%
	0.5
	7.89
	7.90
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.7
	2.5%
	0.15
	1.91
	3.54
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.7
	5.0%
	0.15
	1.23
	2.28
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.7
	10.0%
	0.15
	1.25
	2.31
	Different InF scenarios



25%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	25.0%
	0.5
	8.46
	8.47
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	50.0%
	0.5
	8.16
	8.18
	Different InF scenarios

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m} 
	InF-SH
	InF-DH({60%, 6m, 2m} 
	4.5
	100.0%
	0.5
	9.22
	9.24
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.7
	25.0%
	0.15
	1.07
	1.98
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:POS;
Size:1*2
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.7
	50.0%
	0.15
	0.92
	1.70
	Different InF scenarios



1st round discussion

Observation 4.2.5.3-1 (A-B-B)
For direct AI/ML positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: Samsung, MediaTek, vivo, CATT, Apple] when fine-tuning dataset size is x% = (2.0%~5.6%) of full training dataset size, the positioning error is (0.5~16.67)  E0,B;
· [5 sources: Samsung, MediaTek, vivo, CATT, Apple] when fine-tuning dataset size is x% = (8.0%~15.0%) of full training dataset size, the positioning error is  (0.4~12.6)  E0,B;
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.60~1.67)  E0,B; 
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.92~1.41)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for InF scenario B.

	Company
	Comments

	
	




Observation 4.2.5.3-2 (A-B-A)
For direct AI/ML positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: Samsung, MediaTek, CATT] when fine-tuning dataset size is x% = (2.5%~10.0%) of full training dataset size, the positioning error is (2.28~30.2)  E0,A;
· [2 sources: MediaTek, CATT] when fine-tuning dataset size is x% = (25.0%~100.0%) of full training dataset size, the positioning error is (1.7~9.24)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for InF scenario A.


	Company
	Comments

	
	




SNR mismatch
Fine-tuning results (excel): SNR mismatch, test on new setting
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662(SNR=10dB)
	DH662(SNR=-10dB)
	DH662(SNR=-10dB)
	2.5
	5.6%
	0.28
	18.21
	1.9
	different SNR

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662(SNR=10dB)
	DH662(SNR=-10dB)
	DH662(SNR=-10dB)
	2.5
	11.1%
	0.28
	14.77
	1.6
	different SNR

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662(SNR=-10dB)
	DH662(SNR=10dB)
	DH662(SNR=10dB)
	2.5
	5.6%
	0.28
	6.43
	1.8
	different SNR

	Samsung R1-2303124
	CIR with 18x256x2
	UE 2D position estimate
	DH662(SNR=-10dB)
	DH662(SNR=10dB)
	DH662(SNR=10dB)
	2.5
	11.1%
	0.28
	6.31
	1.8
	different SNR



1st round discussion

Observation 4.2.6.2-1 (A-B-B)
For direct AI/ML positioning and different SNR value (dB), evaluation has been performed where the AI/ML model is (a) previously trained for SNR value A (dB) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for SNR value B (dB) with a dataset of sample density x%  N (#samples/m2), (c) then tested under SNR value B (dB) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: Samsung] when fine-tuning dataset size is x% = (5.6%~11.1%) of full training dataset size, the positioning error is (1.60~1.90)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for SNR value B (dB).


	Company
	Comments

	
	




Time varying changes
Fine-tuning results (excel): time varying changes, test on new setting
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	without time varying
	with time varying
	with time varying
	4.5
	3.7%
	0.5
	9.95
	3.49
	Time varying changes

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	without time varying
	with time varying
	with time varying
	4.5
	11.0%
	0.5
	6.15
	2.16
	Time varying changes

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	without time varying
	with time varying
	with time varying
	4.5
	22.0%
	0.5
	4.80
	1.68
	Time varying changes



1st round discussion

Observation 4.2.7.2-1 (A-B-B)
For direct AI/ML positioning and different time varying assumptions, evaluation has been performed where the AI/ML model is (a) previously trained for the scenario without time varying change with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for the scenario with time varying change with a dataset of sample density x%  N (#samples/m2), (c) then tested under the scenario with time varying change and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (3.7%~22.0%) of full training dataset size, the positioning error is (1.68~3.49)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for the scenario with time varying change.


	Company
	Comments

	
	




Channel estimation error
	· InterDigital (R1-2307582)
Observation 25: After performing training with noiseless dataset and testing with dataset with lower SNR (10 dB and 0 dB), both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 26: After performing training with dataset consisting of 10 dB SNR and testing with dataset consisting of 0 dB SNR, both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 27: After performing training with dataset consisting of 10 dB SNR and testing with noiseless dataset, larger and smaller AI/ML models yields ~1.4 m and ~2.28 m positioning accuracy for 90% UEs respectively. 
Observation 28: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.77 m and ~4.85 m positioning accuracy for 90% UEs respectively. 
Observation 29: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.93 m and ~5.05 m positioning accuracy for 90% UEs, respectively. 
Observation 30: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.


	· MediaTek (R1-2308056)
Table 41. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR
[18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	0
	0.5
	60.615
	23.5398

	
	
	
	
	
	
	2.5%
	
	7.172
	2.785243

	
	
	
	
	
	
	5%
	
	6.003
	2.331262

	
	
	
	
	
	
	10%
	
	4.828
	1.874951

	
	
	
	
	
	
	25%
	
	3.870
	1.502913

	
	
	
	
	
	
	50%
	
	3.016
	1.171262

	
	
	
	
	
	
	100%
	
	2.479
	0.962718


Table 42. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	0
	0.5
	1.168
	1

	
	
	
	
	
	
	2.5%
	
	6.949
	5.949484

	
	
	
	
	
	
	5%
	
	5.150
	4.409245

	
	
	
	
	
	
	10%
	
	4.620
	3.955478

	
	
	
	
	
	
	25%
	
	4.930
	4.220889

	
	
	
	
	
	
	50%
	
	3.598
	3.080478

	
	
	
	
	
	
	100%
	
	4.606
	3.943491






Fine-tuning results (excel): channel estimation error, test on new setting
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	2.5%
	0.5
	7.17
	2.79
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	5.0%
	0.5
	6.00
	2.33
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	10.0%
	0.5
	4.83
	1.87
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	25.0%
	0.5
	3.87
	1.50
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	50.0%
	0.5
	3.02
	1.17
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	100.0%
	0.5
	2.48
	0.96
	Channel estimation error



Fine-tuning results (excel): channel estimation error, test on previous setting
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	2.5%
	0.5
	6.95
	5.95
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	5.0%
	0.5
	5.15
	4.41
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	10.0%
	0.5
	4.62
	3.96
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	25.0%
	0.5
	4.93
	4.22
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	50.0%
	0.5
	3.60
	3.08
	Channel estimation error

	MediaTek R1-2308056
	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	100.0%
	0.5
	4.61
	3.94
	Channel estimation error



1st round discussion

Observation 4.2.8.3-1 (A-B-B)
For direct AI/ML positioning and different channel estimation error, evaluation has been performed where the AI/ML model is (a) previously trained for channel estimation error = 20 dB with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for channel estimation error = 0 dB with a dataset of sample density x%  N (#samples/m2), (c) then tested under channel estimation error = 0 dB and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~25.0%) of full training dataset size, the positioning error is (1.50~2.79)  E0,B;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (0.96~1.17)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for channel estimation error = 0 dB.


	Company
	Comments

	
	




Observation 4.2.8.3-2 (A-B-A)
For direct AI/ML positioning and different channel estimation error, evaluation has been performed where the AI/ML model is (a) previously trained for channel estimation error = 20 dB with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for channel estimation error = 0 dB with a dataset of sample density x%  N (#samples/m2), (c) then tested under channel estimation error = 20 dB and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~25.0%) of full training dataset size, the positioning error is (4.22~5.95)  E0,A;
· [1 source: MediaTek] when fine-tuning dataset size is x% = (50.0%~100.0%) of full training dataset size, the positioning error is (3.08~3.94)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for channel estimation error = 20 dB.


	Company
	Comments

	
	



Fine-tuning – Other 
	· vivo (R1-2306744)
Table 56	Evaluation of similarity of different fine-tuning scenarios
	Scenario 1
(Original domain)
	Scenario 2
(Target domain)
	Parameter setting
	Classifier Accuracy
(AUC)
	Similarity
2*(100% - AUC)
	Positioning accuracy with 1k fine-tuning samples (@90%)

	InF DH{0.6, 6, 2}, Drop 1, without sync. Error 
	Original domain
	No change
	0.50
	100%
	0.99

	
	Different sync. Error
	2ns
	0.64
	72%
	1.11

	
	
	10ns
	0.84
	32%
	1.28

	
	
	50ns
	0.92
	16%
	2.39

	
	Different drop
	Drop 2
	1.00
	0%
	3.97



Observation 14:	Model fine-tuning is suitable for the following tasks:
•	The source domain and the target domain are greatly similar, such as with different synchronization error.
•	The target domain is easy to fit, such as TOA estimation of LOS path. 
Observation 15:	 the extent to which model fine-tuning improves positioning performance mainly depends on two aspects:
•	The scale of the target domain data.
•	The similarity between the original domain and the target domain.
Observation 16:	The similarity between two scenarios is positively related to their similarity of distributions.
Proposal 7:	Model fine-tuning can flexibly adapt AI/ML model to various dynamic changes in environment, while mix-training is more suitable for these static changes.
Proposal 8:	It is benefit to integrate model fine-tuning and mix-training so as to fully leverage their advantages.




1st round discussion
Based on the evaluation results above, high-level observations can be drawn on model fine-tuning.

Observation 4.4-1 
For direct AI/ML positioning, evaluation results show that, after fine-tuning/re-training a previous model with dataset of the new deployment scenario (e.g., new clutter parameter setting), the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.

	Company
	Comments

	ZTE
	Prefer to add more examples (e.g., different drops, different clutter parameter, different InF scenarios)

	HW/HiSi
	Similar comments as earlier, why testing for the original conditions with teh new model?

	Apple
	Can we say anything about the performance compared with the non-finetuned case ? Based on this observation, I would conclude that there is no need to fine-tune at all.



Observation 4.4-2 
For direct AI/ML positioning, if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the full-training performance for the new deployment scenario.

	Company
	Comments

	ZTE
	· It’s not clear to us on the ‘full-training performance’. 

For direct AI/ML positioning, if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the full-training similar performance for the new deployment scenario.

	HW/HiSI
	Based on what sources is that observation made?



Evaluation of direct AI/ML positioning: impact by model input type and size
Different type of model input
	· Qualcomm (R1-2307920)
Observation 10: For direct AI/ML positioning evaluation, when N’t measurements (CIR or PDP) are considered for model input, evaluation results show that Ecir/Epdp is 0.98 and range Ecir/Epdp is 0.71- 1.12, while the average reporting overhead/measurement size of CIR can be almost 1.38 of PDP.
Proposal 4: For direct AI/ML positioning evaluation, no significant average gain has been identified for CIR vs. PDP as measurements for model input. Gains of reporting additional phase information requires more evaluation and study.  



	· Huawei (R1-2306515)
Table 8. Evaluation results for AI/ML model deployed on network-side, ResNet, DP, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	9-DP 18*4
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	1.08

	9-DP 4*4 TRP(3,5,12,14)
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	1.73


Observation 7 : For direct AI/ML positioning, when the AI/ML model input is obtained from DP (9 paths per DP and one DP per TRP) and consists of different numbers of TRPs are evaluated,
•	The positioning accuracy decreases from about 1m to 1.7m when the number of TRPs is reduced from 18 to 4.

Table 10. Evaluation results for AI/ML model deployed on network-side, ResNet, DP w/ power, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	16bit-16-DPwithpower 18*4
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.57

	8bit-16-Dpwithpower 18*4
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.6

	4bit-16-Dpwithpower 18*4
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	1.26


Observation 9 : For direct AI/ML positioning, when the AI/ML model input is DP with power (one DP per TRP) are evaluated,
•	The positioning accuracy decreases slightly when the number of quantization bits is reduced from 16 to 4. But to maintain sub-meter level accuracy, the number of quantized bits should be at least 8.


	· China Telecom (R1-2306811)
Table 2: Positioning accuracy for different schemes
	Methods
	50%
	67%
	80%
	90%

	Traditional method
	11.89
	13.62
	14.78
	16.36

	AI + TOA
	0.37
	0.46
	0.57
	0.69

	AI + CIR
	0.27
	0.36
	0.43
	0.54


Note: TOA is the part of DP. E.g., the first delay profile of DP.



Model input truncated in time domain, or reduced number of taps
	· Huawei (R1-2306515)
Observation 10 : For direct AI/ML positioning, when the model input type is CIR, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.22 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
Observation 11 : For direct AI/ML positioning, when the model input type is PDP, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.08 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32.

	· Apple (R1-2307272)
Table 2: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.0808m

	CIR
[18,1,128,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	0.0808

	CIR
[18,1,64,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	1.1206


Observation 5: For direct AI/ML based positioning
· Reducing the number of taps from 256 to 128 does not affect the performance
· Reducing the number of taps to 64 starts affecting the performance negatively
· Reducing the number of taps ultimately reduces the overhead by the same factor



Reduced number of TRPs
	· Ericsson (R1-2306454)
Proposal 8	Update the agreement so that the same understanding applies to both Approach 1-A and 2-A: “one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18 – N’TRP) TRPs.”

Observation 24	If there is no need to support dynamic TRP reduction, static TRP reduction Approach 2-A is beneficial for achieving high positioning accuracy while reducing model input size, model complexity, and computational complexity.
Observation 25	If there is a need to support dynamic TRP reduction, Approach 1-B is superior to 2-B. 
Observation 26	With Approach 1-B, both PDP and DP can achieve graceful positioning accuracy degradation as the number of active TRPs is reduced from 18 to 6. With PDP model input, the positioning accuracy degrades gracefully even when the number of active TRPs is further reduced to 3. 
Observation 27	For all cases evaluated (different model input, different TRP reduction, different model size, different dataset size), centralized assisted methods achieve similar performance as centralized direct methods.
[image: ]
Figure 14: Positioning accuracy vs number of active TRP (N’TRP) for centralized ML direct positioning. Dynamic TRP reduction approach 2-A, 1-B, 2-B. Model input is PDP or DP.


	· Qualcomm (R1-2307920)
Table 18 Horizontal positioning error (meters) at 90% percentile for different TRP numbers and TRP selection methodologies.
	
	CIR 32
	PDP 32
	CIR 16
	PDP 16

	18 TRPs
	1.56
	2.2
	1.81
	2.19

	8 TRPs [fixed selection]
	2.74
	2.73
	3.24
	2.94

	8 TRPs [flexible selection]
	2.91
	2.84
	3.35
	3.20

	4 TRPs [fixed selection]
	4.11
	3.91
	5.56
	5.03

	4 TRPs [flexible selection]
	4.29
	4.27
	4.57
	4.56


Observation 11: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show:
•	reducing N’TRP from 18 to 8 can result in 1.57 average increase in positioning error (E8trp/E18trp is 1.29 – 1.87) but can reduce the reporting overhead/measurement size by 66%
•	reducing N’TRP from 18 to 4 can result in 2.38 average increase in positioning error (E4trp/E18trp is 1.78 – 3.07) but can reduce the reporting overhead/measurement size by 78%
Observation 12: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show a fixed selection of TRPs (i.e., Approach X-A) has positioning error 0.92 – 1.22 when compared to a flexible selection of TRPs (i.e., Approach X-B)
Observation 13: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, consider flexible TRP selection for measurements and reporting.




	· xiaomi (R1-2307379)
Table 3 Evaluation results for different TRP patterns
	Approach
	Model input
	Model output
	TRP patter for training 
	TRP pattern for test 
	AI/ML complexity 
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	Model complexity
(Millions)
	Computation complexity
(Millions) 
	

	1-A
	CIR
	Pos.
	Fixed 9 TRP
(1: 2:17)
	Fixed 9 TRP
(1: 2:17)
	21.28
	5760
	0.598

	1-A
	CIR
	Pos.
	Fixed 6 TRP
(0:4:16)
	Fixed 6 TRP
(0:4:16)
	21.28
	5760
	0.629

	1-B
	CIR
	Pos.
	Random 9 TRP
	Random 9 TRP
	21.28
	5760
	0.893

	1-B
	CIR
	Pos.
	Random 6 TRP
	Random 6 TRP
	21.28
	5760
	1.563

	2-A
	CIR
	Pos.
	Fixed 9 TRP
(1: 2:17)
	Fixed 9 TRP
(1: 2:17)
	21.28
	3380
	0.604

	2-A
	CIR
	Pos.
	Fixed 6 TRP
(0:4:16)
	Fixed 6 TRP
(0:4:16)
	21.28
	2070
	0.658

	2-B
	CIR
	Pos.
	Random 9 TRPs
	Random 9 TRP
	21.28
	3380
	>10m

	2-B
	CIR
	Pos.
	Random 6 TRPs
	Random 6 TRP
	21.28
	2070
	>10m

	2-B
	CIR
	Pos.
	Random 9 TRP with knowing TRP coordinates
	[bookmark: OLE_LINK1]Random 9 TRPs with knowing TRPs coordinates
	21.28
	
	1.45

	2-B
	CIR
	Pos.
	Random 6 TRP with knowing TRP coordinates
	Random 6 TRPs with knowing TRP coordinates
	21.28
	
	4.44

	3-A
	CIR
	Pos.
	Mix of 18 TRP, 9 fixed TRP and fixed 6 TRP
	Fixed 9 TRPs
	21.28
	5760
	0.475

	3-A
	CIR
	Pos.
	Mix of 18 TRP, 9 fixed TRP and fixed 6 TRP
	Fixed 6 TRPs
	21.28
	5760
	0.594

	3-B
	CIR
	Pos.
	Mix of 18 TRP, 9 random TRP and random 6 TRP
	Random 9 TRPs
	21.28
	5760
	1.227

	3-B
	CIR
	Pos.
	Mix of 18 TRP, 9 random TRP and random 6 TRP
	Random 6 TRPs
	21.28
	5760
	2.192


Observation 13:
-	Reducing the number of TRP for input measurement could still maintain acceptable positioning accuracy 
-	Include TRP information in Approach 2-B could help to guarantee the positioning accuracy performance. 
-	Compared with Approach 1-A/2-A/3-A, Approach 1-B/ 2-B / 3-B could provide more flexibility in the realistic deployment while maintain acceptable positioning accuracy  
-	Compared with Approach 1-B/Approach 2-B, when achieving similar input scalability, less AI/ML complexity is required for Approach 3-B.

	· Nokia (R1-2307242)
Table 17 – For approach 1-A and approach 1-B – Evaluation for different number of TRPs (N’TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter is PDP, the N’t =128, UE distribution an area = 120x60 m.
	Model input
	Model output
	Selected TRP number
N’TRPs
	Total TRP number
NTRPs
	TRP pattern
	Approach
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	
	Model complexity
	Computation complexity
	AI/ML

	PDP
	x, y Pos.
	4
	18
	Fixed
1:1:4
	1-A
	466.9K
	1280M
	57.7

	PDP
	x, y Pos
	8
	18
	Fixed
1:1:8
	1-A
	466.9K
	1280M
	32.84

	PDP
	x, y Pos
	12
	 18                                              
	Fixed
1:1:12
	1-A
	466.9K
	1280M
	21.06

	PDP
	x, y Pos
	12
	 18                                              
	Dynamic
Random
	1-B
	466.9K
	1280M
	31.80

	PDP
	x, y Pos
	16
	18
	Fixed
1:1:16
	1-A
	466.9K
	1280M
	2.755

	PDP
	x, y Pos
	18
	18
	Fixed
1:1:18
	1-A
	466.9K
	1280M
	1.39

	PDP
	x, y Pos.
	4
	18
	Fixed
1:1:4
	1-A
	466.9K
	6390M
	53.17

	PDP
	x, y Pos
	8
	18
	Fixed
1:1:8
	1-A
	466.9K
	6390M
	26.94

	PDP
	x, y Pos
	12
	 18                                              
	Fixed
1:1:12
	1-A
	466.9K
	6390M
	17.3

	PDP
	x, y Pos
	16
	18
	Fixed
1:1:16
	1-A
	466.9K
	6390M
	1.39

	PDP
	x, y Pos
	18
	18
	Fixed
1:1:18
	1-A
	466.9K
	6390M
	0.732


Observation 24: The approach 1-A provides desired results when the N’TRPs is around the maximum number of TRPs = 18. In other cases, the performance is degraded.
Table 18 – For approach 2-A and approach 2-B – Evaluation for different number of TRPs (N_TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter is PDP, the N’t =128, and UE distribution area = 120x60m.
	Model input
	Model output
	Selected TRP number


	Total TRP number


	TRP pattern
	Approach
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	
	Model complexity
	Computation complexity
	AI/ML

	PDP
	x, y Pos.
	4
	4
	Fixed
1:1:4
	2-A
	462.8K
	498M
	2.3317

	PDP
	x, y Pos
	8
	8
	Fixed
1:1:8
	2-A
	464K
	720M
	1.5684

	PDP
	x, y Pos
	12
	 12                                             
	Fixed
1:1:12
	2-A
	465.2K
	943M
	1.3404

	PDP
	x, y Pos
	12
	 12                                             
	Dynamic
random
	2-B
	465.2K
	943M
	2.653

	PDP
	x, y Pos
	16
	16
	Fixed
1:1:16
	2-A
	466.3K
	1170M
	1.173

	PDP
	x, y Pos
	18
	18
	Fixed
1:1:18
	2-A
	466.9K
	1280M
	0.9719

	PDP
	x, y Pos.
	4
	4
	Fixed
1:1:4
	2-A
	462.8K
	2490M
	1.3106

	PDP
	x, y Pos
	8
	8
	Fixed
1:1:8
	2-A
	464K
	3600M
	1.13219

	PDP
	x, y Pos
	12
	 12                                             
	Fixed
1:1:12
	2-A
	465.2K
	4720M
	1.0132

	PDP
	x, y Pos
	16
	16
	Fixed
1:1:16
	2-A
	466.3K
	5830M
	0.9266

	PDP
	x, y Pos
	18
	18
	Fixed
1:1:18
	2-A
	466.9K
	6390M
	0.6838


Observation 26: For direct AI/ML, the evaluation of Approach 2-A indicates that the horizontal performance is enhanced when the number of TRPs is increased at the expense of the computational complexity.
Observation 27: For direct AI/ML, the evaluation of Approach 2-A indicates that reducing the number of TRPs has an impact on the performance. However, it may be compensated by increasing the computational complexity.

	· vivo (R1-2306744)
Table 72	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Selected TRP number


	Total TRP number


	TRP pattern for training
	TRP pattern for testing
	Approach
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	
	
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	9
	18
	Fixed
0:2:17
	Fixed
0:2:17
	1-A
	1.65M
	22.30M
	1.00

	CIR
	Pos.
	9
	18
	Random
	Random
	1-B
	1.65M
	22.30M
	1.76

	CIR
	Pos.
	9
	18
	Fixed
0:2:17
	Fixed
0:2:17
	2-A
	1.65M
	22.30M
	1.01

	CIR
	Pos.
	9
	18
	Random
	Random
	2-B w/ TRP coding
	1.65M
	22.30M
	1.54

	CIR
	Pos.
	9
	18
	Random
	Random
	2-B w/o TRP coding
	1.65M
	22.30M
	>10



Table 73	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Selected TRP number
[image: ]
	Total TRP number
[image: ]
	TRP pattern for training
	TRP pattern for testing
	Approach
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	
	
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	9
	18
	Random
	Random
	1-B
	1.65M
	22.30M
	1.76

	CIR
	Pos.
	9
	18
	Random
	Best pattern
	1-B
	1.65M
	22.30M
	0.13

	CIR
	Pos.
	9
	18
	Random
	Random
	2-B w/ TRP coding
	1.65M
	22.30M
	1.54 

	CIR
	Pos.
	9
	18
	Random
	Best pattern
	2-B w/ TRP coding
	1.65M
	22.30M
	0.12


Observation 32:	Approach 1-a and Approach 2-a with a fixed TRP pattern can achieve similar performance. 
Observation 33:	Approach 1-b and Approach 2-b with random (dynamic) TRP patterns can still achieve great positioning performance (1.54m@90%) when tested with random TRP patterns, indicating that it is feasible to deploy a single AI/ML model to cover dynamic TRP patterns in practice.
Observation 34:	Approach 1-b and Approach 2-b with random (dynamic) TRP patterns can provide significantly superior positioning performance when a better TRP pattern among all TRP combinations can be found.  
Observation 35:	The performance of Approach 2-b is slightly better than that of Approach 1-b when TRP coding is included into the model input, while Approach 2-b suffers from poor positioning performance when TRP coding is not included into the model input.
Proposal 20:	The TRP information, which implicitly or explicitly indicates the TRP identification/index of measurement should be included into the model input for training of Approach 1-b and Approach 2-b with random (dynamic) TRP patterns.


	· MediaTek (R1-2308056)
Table 51. Fixed TRP patterns for Approach 1-A,2-A, different N’TRP
	TRP number
	TRP pattern for approach 1-A,2-A

	N’TRP =12
	0,3,6,9,12,15,1,4,7,10,13,16

	N’TRP =9
	0,6,12,1,7,13,2,8,14

	N’TRP =5
	0,9,1,10,2


Table 52. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’TRP
	Model input
	Model output
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Approach 1A
	Approach 2A
	Approach 1B
Based on power
	Approach 2B
Based on power
	Approach 2B + TRP information
Based on power

	CIR N’TRP =18 
	UE pos [x,y]
	0.896

	CIR N’TRP =12
	UE pos [x,y]
	1.251
	1.137
	1.526
	4.254
	2.723

	CIR N’TRP =9
	UE pos [x,y]
	1.516
	1.324
	1.772
	8.083
	3.437

	CIR N’TRP =5
	UE pos [x,y]
	2.163
	2.110
	3.621
	24.714
	9.103


Observation 58:	Due to dynamic activation of TRPs, the performance of Approach 2-B is significantly lower than that of Approach 2-A, the performance of Approach 2-B can be improved by using TRP information as model input.
Proposal 8	: It is recommended that TRP information be used as model input along with CIR/PDP to improve the performance if Approach 2-B is used.
Table 54. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], dynamic activation of TRPs, different N’TRP
	Model input
	Model output
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Approach 1B
Based on power
	Approach 1B
Based on timing
	Approach 2B
Based on power
	Approach 2B
Based on timing
	Approach 2B + TRP information
Based on power
	Approach 2B + TRP information
Based on timing

	CIR N’TRP =18 
	UE pos [x,y]
	0.896

	CIR N’TRP =12
	UE pos [x,y]
	1.526
	1.101
	4.254
	2.371
	2.723
	1.639

	CIR N’TRP =9
	UE pos [x,y]
	1.772
	1.280
	8.083
	3.571
	3.437
	1.737

	CIR N’TRP =5
	UE pos [x,y]
	3.621
	1.466
	24.714
	8.158
	9.103
	2.688


Observation 59:	For dynamical TRP activation (Approach 1-B and Approach 2-B), the performance is related to the TRP activation method.
Proposal 9	: The dynamical TRP activation method should be sent to UE/PRU by network for data collection or other aspects of AI/ML LCM (e.g., training, updating, monitoring, inference) if Approach 1-B or Approach 2-B is used.
Table 55. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], model fine-tuning over different N’TRP
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR 
	UE pos [x,y]
	18TRPs
	9TRPs Approach1-A
	9TRPs Approach 1-A
	4.5
	0
	0.5
	24.009 
	15.83706

	
	
	
	
	
	
	2.5%
	
	4.984
	3.287596

	
	
	
	
	
	
	5%
	
	4.286
	2.827174

	
	
	
	
	
	
	10%
	
	3.102
	2.046172

	
	
	
	
	
	
	25%
	
	2.275
	1.500658

	
	
	
	
	
	
	50%
	
	1.766
	1.164907

	
	
	
	
	
	
	100%
	
	1.311
	0.864775


Table 56. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning over different N’TRP
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR
	UE pos [x,y]
	18TRPs
	9TRPs Approach1-A
	18TRPs
	4.5
	0
	0.5
	0.896
	1

	
	
	
	
	
	
	2.5%
	
	17.068
	19.04908

	
	
	
	
	
	
	5%
	
	17.172
	19.16515

	
	
	
	
	
	
	10%
	
	21.164
	23.62051

	
	
	
	
	
	
	25%
	
	25.53
	28.49327

	
	
	
	
	
	
	50%
	
	25.962
	28.97541

	
	
	
	
	
	
	100%
	
	15.051
	16.79797




	· CATT (R1-2308205)
Observation 14: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.
Observation 15: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.
Observation 16: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs and the total dataset size is unchanged, the horizontal position accuracy of using two models to cover the entire area is slightly degraded compared to the performance of using single model to cover the entire area.
Observation 17: For direct AI/ML positioning, different TRP patterns have a great impact on the performance of the model, but after embedding, the performance of horizontal accuracy will be improved.
Observation 18: For direct AI/ML positioning, the horizontal position accuracy of fixed TRP patterns is better than the horizontal position accuracy of dynamic TRP patterns.


	· CMCC (R1-2307187)
Observation 3: The positioning accuracy is sensitive to the input data dimensions, and the topology of assist TRPs.

	· IIT (R1-2308161)
[image: ]
Figure 3: CDF of Horizontal position error for Approach 1A, Cases 1 and 2
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Figure 5: CDF of Horizontal position error for Approach 1B
[image: ]
Figure 6: Horizontal position error at 90th percentile vs N’TRP  for Approach 2A
[image: ]
Figure 7: Horizontal position error at 90th percentile vs N’TRP  for Approach 2B
Observation 7: Approach 2A gives smaller positioning error compared to Approach 2B
Observation 8: The best case of Approach 1 (A and B) and the best case of Approach 2 (A and B) give similar positioning error.  

	•	Apple (R1-2307272)
We evaluate the direct AI/ML positioning performance assuming the N TRPs with the highest RSRP are used in the model where N = 4, 9 or 18 and using Option 1b. This means the all the TRPs in the factory are used depending on the location of the UE.
Table 3: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using different # of TRPs , with CNN1, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.0808m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	1.0629

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	1.4959

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	23750
	1250
	1,480,140
	2.75G
	1.234m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	23750
	1250
	1,480,140
	2.75G
	1.2960

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	23750
	1250
	1,480,140
	2.75G
	1.8235

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	9500
	500
	1,480,140
	2.75G
	1.860m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	9500
	500
	1,480,140
	2.75G
	1.9717m

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	9500
	500
	1,480,140
	2.75G
	2.7403m


Observation 4: For direct AI-ML positioning, as the # of TRPs reduces, the positioning performance suffers. It may be possible to regain some of those losses by mixing different input types e.g. CIR for X TRPs and L1-RSRP for Y TRPs

	•	China Telecom (R1-2308330)
Table 4: Positioning accuracy with TRP reduction (meters)
	TRP number
	50%
	67%
	80%
	90%

	18 TRPs
	0.27
	0.36
	0.43
	0.54

	9 TRPs
	0.30
	0.38
	0.47
	0.58

	6 TRPs
	0.28
	0.38
	0.49
	0.62

	3 TRPs
	0.9
	1.34
	1.83
	2.77


Observation 3: For direct AI/ML positioning, the positioning accuracy degrades while the number of TRP is reduced. 
Observation 4: The performance does not significantly degrade when the number of TRPs is reduced from 18 to 9.



Other
	· China Telecom (R1-2306811)
Table 2: Positioning accuracy for different schemes
	Methods
	50%
	67%
	80%
	90%

	Traditional method
	11.89
	13.62
	14.78
	16.36

	AI + TOA
	0.37
	0.46
	0.57
	0.69

	AI + DL-TDOA
	0.38
	0.49
	0.59
	0.73

	AI + CIR
	0.27
	0.36
	0.43
	0.54

	AI + RSRP +TOA
	0.22
	0.29
	0.36
	0.43

	AI + RSRP + DL-TDOA
	0.19
	0.25
	0.31
	0.38


Observations 1: The positioning accuracy can be further improved when the measurement information is combined as the input of AI/ML model.


	· Samsung (R1-2307672)
[image: ][image: ]
Fig.12 comparison of CIR and SIG in ResNet   Fig.13 illustration of complexity reduction and Data size reduction
Observation 10: the SIG-based input could drastically reduce the input data size and the complexity (e.g., with 98% reduction) without accuracy loss (e.g., even with 1% improvement).
[image: ][image: ]
Fig. 14 the comparison between SIG vs truncated CIR (first N’t in (a) and strongest N’t in (b))




[bookmark: _Ref143264062]1st round discussion
Based on companies’ input, the following proposal and observations are presented.

Proposal 5.5-1
Update the RAN1#113 agreement so that the same understanding applies to both Approach 1-A and 2-A:
Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, ignalling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For both Approach 1-A and 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Offline discussion

	
	Company

	Support
	Mtk, Apple, LG

	Not support
	




Observation 5.5-2
Evaluation of TRP reduction for direct AI/ML positioning shows that: approaches supporting dynamic TRP pattern (i.e., Approach 1-B and 2-B) can achieve similar performance as approaches supporting fixed TRP pattern (i.e., Approach 1-A and 2-A), when other design parameters are held the same.

Offline discussion

	[bookmark: _Hlk103708880]
	Company

	Support
	mtk ( for 5.5-1), Xiaomi, LG

	Not support
	



	Company
	Comments

	Apple
	Would like a reference to observation 5.5.2. Okay with 5.5.1 




Observation 5.5-3
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: the positioning accuracy degrades as the number of active TRPs are reduced from 18 TRPs to 3 TRPs.  
· The degradation increases as the number of active TRPs decreases.
· Regarding model input type, CIR and PDP are more robust to TRP reduction than DP, especially when the number of active TRPs is small (e.g., 3 or 4 active TRPs).

Offline discussion


	
	Company

	Support
	China Telecom (with some revisions), Xiaomi, LG

	Not support
	



	Company
	Comments

	China Telecom
	We suggest to revise observation 5.5-3 as:
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: the positioning accuracy degrades as the number of active TRPs are reduced from 18 TRPs to 3 TRPs. [sources from: Ericsson, Qualcomm, xiaomi, Nokia, vivo, MediaTek, CATT, CMCC, IIT, Apple, China Telecom]
· The degradation increases as the number of active TRPs decreases.
· Regarding model input type, CIR and PDP are more robust to TRP reduction than DP, especially when the number of active TRPs is small (e.g., 3 or 4 active TRPs).


	HW/HiSi
	Support the intention.
Based on our simulations, PDP is most robust when decreasing the number of TRPs, the CIR is in the middle and DP is the least robust. If this can be conformed from more results, we suggest the following rewording. 
Updated Observation 5.5-3
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: the positioning accuracy degrades as the number of active TRPs are reduced from 18 TRPs to 3 TRPs.  
· The degradation increases as the number of active TRPs decreases.
Regarding model input type, CIR and PDP is are more robust to TRP reduction than CIR which is more robust than DP, especially when the number of active TRPs is small (e.g., 3 or 4 active TRPs).



Observation 5.5-4
Evaluation of TRP reduction for direct AI/ML positioning show that: the performance does not significantly degrade when the number of active TRPs is reduced from 18 to 9.

	
	Company

	Support
	China Telecom (with some revisions), Xiaomi, LG

	Not support
	



	Company
	Comments

	China Telecom
	We suggest to revise observation 5.5-4 as:
Evaluation of TRP reduction for direct AI/ML positioning show that: the performance does not significantly degrade when the number of active TRPs is reduced from 18 to 9. [sources from: Ericsson, xiaomi, MediaTek, CATT, China Telecom]

	Apple
	May need to have a metric for what “not significant degradation“ means.  

	Qualcomm
	Just to clarify, is the forward intention here to specify a threshold for number of TRP to be reported? In practice, this number can be different for other deployments and scenarios




Observation 5.5-3
Evaluation of TRP reduction for both direct AI/ML positioning and AI/ML assisted positioning shows that: identification of the active TRPs need to be included in the model input for approaches supporting dynamic TRP pattern (i.e., Approach 1-B and 2-B). Otherwise, the model suffers substantial performance loss in terms of positioning accuracy.

	
	Company

	Support
	Xiaomi, LG

	Not support
	



	Company
	Comments

	HW/HiSi
	Need clarification
Can it firstly be clarified based on what sources this observation has been made? Are there simulations where a certain number of active TRPs is assumed but wrong (i.e. non-active) TRPs have been selected to be used as model input?



Evaluation of Direct AI/ML positioning: impact by model output

Evaluation of noisy ground truth labels
	· Nokia (R1-2307242)
Observation 18: For Direct AI/ML positioning, the evaluation indicates that the AI/ML model is robust to certain level of label noise modeled with Gaussian distribution. However, modeling this error type in real-world scenarios could be a challenge.  

	· InterDigital (R1-2307582)
[image: ]
Observation 18: For direct AI/ML positioning, for different model inputs (RSRP, RSRP+RSTD and CIR) while keeping the same amount of labelling error, we observe different values of positioning accuracy degradation.    
Observation 19: For direct AI/ML positioning, for same model input(CIR) while changing model complexity(CIR large vs CIR small), we observe different values of positioning accuracy degradation.     
Proposal 2: For AI/ML positioning, support data collection of training dataset with uncertainties for different types model inputs (e.g., measurements such as RSRP, RSTD, CIR), ground truth with labelling error, and different model complexity.

	· OPPO (R1-2307568)
Observation 11: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
•	Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case.
Observation 13: For the InF-DH scenario, when the number of training data with ideal label is fixed, the AI model inference performance will degrade if training data with the labels that are obtained by traditional NR DL-TDOA scheme are added to the training data set.
Observation 15: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance cannot reflect that of a practical AI model (e.g., an AI model trained by labels based on NR positioning
•	The estimation errors of NR positioning are correlated for the close Ues due to the spatial consistency, whereas the error of truncated Gaussian modelling are independent even for collocated Ues.  


	· CMCC (R1-2307187)
We firstly generate parameter r based on the truncated Gaussian distribution, then we use a random number  and  to calculate the location error of x-axis. The location error of y-axis is calculated by  . The result of this method is showed as below.
[image: ]
Figure 2. Evaluation results for label error
Observation 7: The positioning error may not increase approximately in proportion to L, if the model of the label error generation changed
Observation 8: Both semi-supervised learning and weak label could be used to improve the positioning accuracy.

	· IIT (R1-2308161)
[image: ]
Figure 9: CDF of Horizontal position error for different values of L (Label Error)



Semi-supervised learning
	· ZTE (R1-2306799)
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	2000 labeled
	1000
	9.50M
	158.66 M
	3.94

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	2000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	1.72

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	4000 labeled
	1000
	9.50M
	158.66 M
	1.67

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	4000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.83

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	8000 labeled
	1000
	9.50M
	158.66 M
	0.70

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	8000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.51

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	16000 labeled
	1000
	9.50M
	158.66 M
	0.38

	CIR 

= {1, 18, 256, 128}
	2-D UE position
(1x2)
	2-D UE position
	InF-DH
{60%, 6m, 2m}
	InF-DH
{60%, 6m, 2m}
	16000 labeled
100 K unlabeled
	1000
	9.50M
	158.66 M
	0.37





	· Nokia (R1-2307242)
•	[Baseline-1] Supervised-learning only on the 5000 samples of labelled data (SL without DA).
•	[Baseline-2] Supervised-learning with data augmentation (SL with DA) on the 5000 samples of labelled data. 
•	[Proposed scheme] Semi-supervised learning with data augmentation (SSL with DA) on the 5000 samples of labelled data and the 23384 samples of unlabeled data.
[image: ]



	· China Telecom (R1-2308330)
Table 5: Positioning accuracy with 1.25% data with ideal label
	Model
	Horizontal accuracy @90% (meters)

	Supervised
	3.33

	Semi-supervised 
	1.63


Observation 5: Semi-supervised learning could be used to improve the positioning accuracy when ideal labeled data is few.




Evaluation of AI/ML-assisted positioning: generalization issues 

	· MediaTek (R1-2308056)
Observation 11:	Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.




Evaluation of single-TRP construction with same model for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· MediaTek (R1-2308056)

Table 2. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480
	720
	185.7k
	29.4M*18
	92.8%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	95.2%



Observation 12:	The soft-decision approach outperforms the hard-decision approach for AI/ML assisted TOA estimation positioning.
Proposal 1	: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.


	· CMCC (R1-2307187)
Observation 10: AI/ML assisted positioning can be helpful for identifying LOS link.


	· Nokia (R1-2307242)
Observation 12: For AI/ML assisted positioning, the LOS indicator is sensitive to errors in scenarios with unbalanced amount of samples for LOS and NLOS links (e.g., clutter density of 60% has a NLOS rate is 99%).
Observation 13: For AI/ML assisted positioning, the LOS indicator provides a better performance when the input parameter is CIR compared to PDP, using both cases a similar model and computational complexity.

	· InterDigital (R1-2307582)
Observation 34: For AI/ML assisted positioning based on unobserved RSTD measurements prediction yields ~ 5.08 m better for 90% horizontal positioning accuracy than RSTD estimation.
Proposal 5 : Support AIML training based on unobserved timing measurements.



Generalization aspects (different setting for training and testing)
	· MediaTek (R1-2308056)
Observation 3:	Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario. And the performance is improved when mix InF-DH and InF-SH training data.
Observation 4:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 5:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
Observation 6:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 7:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Observation 8:	For AI/ML assisted LOS/NLOS identification positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.

	· Nokia (R1-2307242)
[bookmark: _Ref127108845][bookmark: _Ref134980498]Table 4 – Training and fine-tuning of an AI/ML assisted positioning based on LOS/NLOS classification. The model is trained using dataset 2 and tuned with a small amount of information from dataset 1 (UE distribution area = 120x60 m). Here, the model complexity is 130K samples and the computational complexity is 13.2K flops.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Sample density (#samples/m2) of dataset
	Fine-tuning Performance

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Absolute 
F1-score
	Relative

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	-
	Dataset 2
	10K/Area
	-
	20%
	0.66
	0.66/0.66 = 1

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 1
	-
	Dataset 1
	10K/Area
	-
	20%
	0.78
	0.98/0.98 = 1

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 1
	Dataset 2
	Dataset 2
	10K/Area
	10%
	20%
	0.37
	0.66/0.37 = 1.783 

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 1
	Dataset 2
	Dataset 1
	10K/Area
	10%
	20%
	0.19
	0.78 / 0.19 = 4.105

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	Dataset 1
	Dataset 1
	10K/Area
	10%
	20%
	0.76
	0.78/0.76 = 1.02

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	Dataset 1
	Dataset 2
	10K/Area
	10%
	20%
	0.056
	0.66/0.056 =11.7


Observation 19: For AI/ML assisted positioning, the relative performance of using fine-tuning is more effective when retraining is done with a dataset with clutter density 40%, and the model was initially trained with a dataset with clutter density 60%. The other way around indicates a low relative performance.
Table 5 – Training and tuning of an AI/ML assisted positioning based on ToA estimation. The model is trained in dataset 3 and tuned with a small amount of information from dataset 4 and vice versa. The UE distribution area = 120x60 m. The Model complexity is 1.41G parameters and the computational complexity is 1.87 G flops.
	Model input
	Model output
	Settings (e.g., drops, clutter param, mix)
	Sample density (#samples/m2) of dataset
	Fine-tuning performance (MSE)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Absolute
	Relative

	PDP (Real)
	ToA 
	Dataset 3
	-
	Dataset 3
	63K/area
	-
	5%
	0.49
	1

	PDP (Real)
	ToA 
	Dataset 3
	-
	Dataset 4
	63K/area
	-
	5%
	13.57
	13.57/0.42 = 32.3

	PDP (Real)
	ToA 
	Dataset 4
	-
	Dataset 4
	63K/area
	-
	5%
	0.4212
	1

	PDP (Real)
	ToA 
	Dataset 4
	-
	Dataset 3
	63K/area
	-
	5%
	10.44
	10.44/0.49 = 21.3

	PDP (Real)
	ToA 
	Dataset 3
	Dataset 4
	Dataset 4
	63K/area
	10%
	5%
	2.78
	2.78/0.421 = 6.6

	PDP (Real)
	ToA
	Dataset 3
	Dataset 4
	Dataset 3
	63K/area
	10%
	5%
	4.05
	4.05/0.49 = 8.26

	PDP (Real)
	ToA 
	Dataset 4
	Dataset 3
	Dataset 3
	63K/area
	10%
	5%
	1.93
	1.93/0.49 = 3.93

	PDP (Real)
	ToA
	Dataset 4
	Dataset 3
	Dataset 4
	63K/area
	10%
	5%
	4.58
	4.58/0.421 = 10.87



Observation 20: For AI/ML assisted positioning, the performance of fine-tuning for ToA estimation between different clutter parameters provides a low relative performance. The performance of fine-tunned models is low compared to models already trained on specific datasets.


	· Huawei (R1-2306515)
Observation 33 : When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS identification rate.
Observation 34 : When the mixed training dataset of InF-DH and InF-SH consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS identification rate is improved under both scenarios’ inference.




Evaluation of single-TRP construction with N models for N TRP
	· Huawei (R1-2306515)
Table 24. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(For Single-TRP, N models for N TRPs; For Multi-TRP, one centralized model)
	ToA estimation accuracy at CDF=90% (m)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	AI/ML

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.88
	1.25

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.84
	1.43

	CIR 1*1*256 
TRP(0~17)
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.45
	0.72

	CIR 1*1*256 
TRP(0~17)
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.55
	0.81


Observation 35 : From the evaluation results, it is observed that AI/ML-based TOA estimation could significantly improve the positioning accuracy in NLOS environments both in Multi-TRP and Single-TRP construction.





Evaluation of multi-TRP construction: generalization aspects
Different drops
	· ZTE (R1-2306799)
AI/ML assisted RSTD estimation:
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	
1st Drop
	
N/A
	
2nd Drop
	
4
	
0%

	
0.25

	
29.37
	
108.38

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
17%

	
0.25

	
3.49
	
12.88

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
34%

	
0.25

	
3.14
	
11.59

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
62%

	
0.25

	
2.90
	
10.70

	CIR 

= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	
1st Drop
	
2nd Drop
	
2nd Drop
	
4
	
79%

	
0.25

	
1.86
	
6.86







Different clutter parameters

	· CATT (R1-2308205)
Table 32: Evaluation results for AI/ML-assisted model for different clutter parameters deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density(#sample/m2)of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	2.5%
	0.22
	0.9069m
	1.474

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	5%
	0.22
	0.8597m
	1.392

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	10%
	0.22
	0.8209m
	1.335

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	25%
	0.22
	0.8154m
	1.326

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	50%
	0.22
	0.7777m
	1.264

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	2.5%
	0.22
	1.101m
	1.681

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	5%
	0.22
	0.9597m
	1.465

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	10%
	0.22
	0.8619m
	1.316

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	25%
	0.22
	0.8012m
	1.223

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	50%
	0.22
	0.7879m
	1.203





	· MediaTek (R1-2308056)
Table 15. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	4.5
	0
	0.5
	8.14
	5.22

	
	
	
	
	
	
	2.5%
	
	4.74
	3.04

	
	
	
	
	
	
	5%
	
	3.64
	2.33

	
	
	
	
	
	
	10%
	
	2.97
	1.90

	
	
	
	
	
	
	25%
	
	2.41
	1.54

	
	
	
	
	
	
	50%
	
	1.81
	1.16

	
	
	
	
	
	
	100%
	
	1.8
	1.15



Table 16. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{60%, 6m, 2m}
	4.5
	0
	0.5
	1.05
	1

	
	
	
	
	
	
	2.5%
	
	6.64
	6.32

	
	
	
	
	
	
	5%
	
	5.54
	5.28

	
	
	
	
	
	
	10%
	
	4.69
	4.47

	
	
	
	
	
	
	25%
	
	4.52
	4.3

	
	
	
	
	
	
	50%
	
	4.21
	4.01

	
	
	
	
	
	
	100%
	
	4.58
	4.36


Observation 19:	If the new deployment scenario has different clutter parameters with the deployment scenario the model was trained for, fine-tuning an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the converged performance for the new deployment scenario.





Network synchronization error
	· CATT (R1-2308205)
Table 33: Evaluation results for AI/ML-assisted model for different network synchronization assumptions deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
[image: ]

	· MediaTek (R1-2308056)
Observation 17:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 18:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Table 17. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	0ns
	50ns
	50ns
	4.5
	0
	0.5
	16.59
	4.06

	
	
	
	
	
	
	2.5%
	
	10.79
	2.64

	
	
	
	
	
	
	5%
	
	10.05
	2.46

	
	
	
	
	
	
	10%
	
	8.69
	2.12

	
	
	
	
	
	
	25%
	
	7.23
	1.77

	
	
	
	
	
	
	50%
	
	6.02
	1.47

	
	
	
	
	
	
	100%
	
	4.73
	1.16


Table 18. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	0ns
	50ns
	0ns
	4.5
	0
	0.5
	1.05
	1

	
	
	
	
	
	
	2.5%
	
	6.24
	5.94

	
	
	
	
	
	
	5%
	
	6.27
	5.97

	
	
	
	
	
	
	10%
	
	5.54
	5.28

	
	
	
	
	
	
	25%
	
	4.92
	          4.69

	
	
	
	
	
	
	50%
	
	4.39
	4.18

	
	
	
	
	
	
	100%
	
	3.9
	3.71


Table 19. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	50ns
	0ns
	0ns
	4.5
	0
	0.5
	3.27
	3.11

	
	
	
	
	
	
	2.5%
	
	2.94
	2.8

	
	
	
	
	
	
	5%
	
	2.61
	2.49

	
	
	
	
	
	
	10%
	
	2.28
	2.17

	
	
	
	
	
	
	25%
	
	1.84
	1.75

	
	
	
	
	
	
	50%
	
	1.51
	1.44

	
	
	
	
	
	
	100%
	
	1.06
	1.01


Table 20. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	50ns
	0ns
	50ns
	4.5
	0
	0.5
	4.09
	1

	
	
	
	
	
	
	2.5%
	
	4.82
	1.18

	
	
	
	
	
	
	5%
	
	4.69
	1.15

	
	
	
	
	
	
	10%
	
	5.23
	1.28

	
	
	
	
	
	
	25%
	
	6.7
	1.64

	
	
	
	
	
	
	50%
	
	7.26
	1.78

	
	
	
	
	
	
	100%
	
	9.14
	2.23


Observation 20:	If synchronization error of new deployment scenario is smaller than the deployment scenario the model was trained for, model fine-tuning with a small dataset size is most useful for enhancing positioning accuracy. If synchronization error of new deployment scenario is bigger than the deployment scenario the model was trained for, model fine-tuning with a big dataset size is still not useful for enhancing positioning accuracy.




Different InF scenarios
	· MediaTek (R1-2308056)
Observation 14:	Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.

	· CATT (R1-2308205)
Table 34: Evaluation results for AI/ML-assisted model for different scenarios deployed on UE/LMF-side, with model generalization and fine-tuning, ResNet18
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density(#sample/m2)of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.78
	2.5%
	0.22
	2.342m
	3.564

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.78
	5%
	0.22
	2.179m
	3.316

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.78
	10%
	0.22
	2.051m
	3.122

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.78
	25%
	0.22
	1.911m
	2.909

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-SH
{20%,10m,2m}
	2.78
	50%
	0.22
	1.676m
	2.551

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	2.5%
	0.22
	2.417m
	3.690

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	5%
	0.22
	2.225m
	3.443

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	10%
	0.22
	2.052m
	3.133

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	25%
	0.22
	1.917m
	2.927

	Type: CIR;
Size:18*1*256
	Type:TOA
Size:18*1
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,10m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	50%
	0.22
	1.654m
	2.525








Channel estimation error
	· MediaTek (R1-2308056)
Observation 15:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 16:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.




Fine-tuning results of AI/ML-assisted positioning
Different drops
Fine-tuning results (excel): different drops, test on new setting
2%-10%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	vivo R1-2306744
	CIR
	TOA
	Drop1
	Drop2
	Drop2
	25k
	2.0%
	1k
	5.61
	7.68
	Different drops

	vivo R1-2306744
	CIR
	TOA
	Drop1
	Drop2
	Drop2
	25k
	4.0%
	1k
	5.50
	7.53
	Different drops

	vivo R1-2306744
	CIR
	TOA
	Drop1
	Drop2
	Drop2
	25k
	8.0%
	1k
	5.03
	6.89
	Different drops

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Drop1
	Drop 2
	Drop2
	47500
	10.0%
	2500
	1.59
	1.27
	Different drops

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Drop1
	Drop 2
	Drop2
	47500
	5.0%
	2500
	1.87
	1.50
	Different drops



12%-34%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	1st Drop
	2nd Drop
	2nd Drop
	4
	17.0%
	0.25
	3.49
	12.88
	Different drops

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	1st Drop
	2nd Drop
	2nd Drop
	4
	34.0%
	0.25
	3.14
	11.59
	Different drops

	vivo R1-2306744
	CIR
	TOA
	Drop1
	Drop2
	Drop2
	25k
	12.0%
	1k
	4.08
	5.59
	Different drops


62%-100%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	1st Drop
	2nd Drop
	2nd Drop
	4
	62.0%
	0.25
	2.9
	10.7
	Different drops

	ZTE R1-2306799
	CIR

{Nport, Ntrp, Nt, Nt’}= {1, 18, 256, 128}
	DL RSTD values
(1x18)
	1st Drop
	2nd Drop
	2nd Drop
	4
	100.0%
	0.25
	1.86
	6.86
	Different drops



1st round discussion
Observation 7.4.1.2-1 (A-B-B)
For AI/ML assisted positioning and different drops, evaluation has been performed where the AI/ML model is (a) previously trained for drop A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for drop B with a dataset of sample density x%  N (#samples/m2), (c) then tested under drop B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: vivo, Apple] when fine-tuning dataset size is x% = (2.0%~10.0%) of full training dataset size, the positioning error is (1.27~7.68)  E0,B;
· [2 sources: ZTE, vivo] when fine-tuning dataset size is x% = (12.0%~34.0%) of full training dataset size, the positioning error is (5.59~12.88)  E0,B;
· [1 source: ZTE] when fine-tuning dataset size is x% = (62.0%~100.0%) of full training dataset size, the positioning error is (6.86~10.70)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for drop B.


	Company
	Comments

	
	




Different clutter parameters
Fine-tuning results (excel): different clutter parameters, test on new setting
2%-2.5%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	2.5%
	0.5
	4.74
	3.04
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	3.68
	5.42
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	1.72
	2.72
	Different clutter parameters

	vivo R1-2306744
	CIR
	TOA
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	2.0%
	1k
	0.85
	2.66
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	2.5%
	0.22
	0.91
	1.47
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	2.89
	4.14
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	2.84
	3.33
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	3.97
	3.71
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	2.40
	5.88
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	2.5%
	0.56
	2.49
	4.17
	Different clutter parameters



4%-5%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	5.0%
	0.5
	3.64
	2.33
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	2.42
	3.56
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	1.29
	2.04
	Different clutter parameters

	vivo R1-2306744
	CIR
	TOA
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	4.0%
	1k
	0.63
	1.97
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	5.0%
	0.22
	0.86
	1.39
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	2.28
	3.28
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	2.38
	2.78
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	3.16
	2.95
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	1.81
	4.42
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	5.0%
	0.56
	1.88
	3.16
	Different clutter parameters

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	5.0%
	2500
	2.70
	2.16
	Different clutter parameters



8% - 12%

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	10.0%
	0.5
	2.97
	1.90
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	1.62
	2.38
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	1.03
	1.63
	Different clutter parameters

	vivo R1-2306744
	CIR
	TOA
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	8.0%
	1k
	0.48
	1.50
	Different clutter parameters

	vivo R1-2306744
	CIR
	TOA
	{0.6, 6, 2}
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	12.0%
	1k
	0.48
	1.50
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	10.0%
	0.22
	0.82
	1.34
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.81
	2.59
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.88
	2.20
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	2.46
	2.29
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.29
	3.14
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	10.0%
	0.56
	1.41
	2.36
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	LOS/NLOS indicator
	{40%,2m,2m}
	{60%,2m,2m}
	{60%,2m,2m}
	10K
	10.0%
	10K
	0.37
	1.78
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	LOS/NLOS indicator
	{60%,2m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	10K
	10.0%
	10K
	0.76
	1.02
	Different clutter parameters

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	10.0%
	2500
	2.55 
	2.04
	Different clutter parameters



25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	25.0%
	0.5
	2.41
	1.54
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	25.0%
	0.22
	0.82
	1.33
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.14
	1.64
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.27
	1.49
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	1.61
	1.51
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	0.78
	1.91
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	25.0%
	0.56
	0.99
	1.66
	Different clutter parameters



50%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	50.0%
	0.5
	1.81
	1.16
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{40%,2m,2m}
	2.78
	50.0%
	0.22
	0.78
	1.26
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.82
	1.17
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.98
	1.15
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	1.28
	1.20
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.54
	1.33
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	50.0%
	0.56
	0.74
	1.24
	Different clutter parameters



100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{40%, 2m, 2m}
	4.5
	100.0%
	0.5
	1.80
	1.15
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.62
	0.89
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.78
	0.92
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	1.03
	0.96
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.42
	1.03
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{40%,2m,2m}
	5.56
	100.0%
	0.56
	0.55
	0.93
	Different clutter parameters




Fine-tuning results (excel): different clutter parameters, test on previous setting
2.5%-5%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	 
	 
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	2.5%
	0.5
	6.64
	6.32
	Different clutter parameters

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	5.0%
	0.5
	5.54
	5.28
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	8.16
	12.86
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	7.86
	12.40
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	4.19
	6.17
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	4.04
	5.96
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	2.5%
	0.22
	1.10
	1.68
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	5.0%
	0.22
	0.96
	1.47
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	2.91
	7.85
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	3.26
	8.78
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	2.92
	5.57
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	2.91
	5.56
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	3.58
	5.48
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	4.05
	6.20
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	5.27
	11.63
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	5.86
	12.94
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	5.0%
	0.56
	4.96
	7.30
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	2.5%
	0.56
	5.11
	7.51
	Different clutter parameters



10%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	10.0%
	0.5
	4.69
	4.47
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	7.31
	11.52
	Different clutter parameters

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.4，2，2}
0ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.4，2，2}
0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	3.59
	5.29
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	10.0%
	0.22
	0.86
	1.32
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	2.47
	6.67
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	2.35
	4.49
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	3.26
	5.00
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	4.29
	9.48
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	10.0%
	0.56
	4.12
	6.06
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	LOS/NLOS indicator
	{40%,2m,2m}
	{60%,2m,2m}
	{40%,2m,2m}
	10K
	10.0%
	10K
	0.19
	4.11
	Different clutter parameters

	NOKIA R1-2307242
	PDP (NTRP =18* Nt = 128*Real Number=1)
	LOS/NLOS indicator
	{60%,2m,2m}
	{40%,2m,2m}
	{60%,2m,2m}
	10K
	10.0%
	10K
	0.06
	11.70
	Different clutter parameters



25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	25.0%
	0.5
	4.52
	4.30
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	25.0%
	0.22
	0.80
	1.22
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	1.87
	5.03
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	1.80
	3.44
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	2.43
	3.72
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	3.47
	7.65
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	25.0%
	0.56
	3.42
	5.03
	Different clutter parameters



50%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	50.0%
	0.5
	4.21
	4.01
	Different clutter parameters

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-DH
{40%,2m,2m}
	InF-DH
{60%,6m,2m}
	2.78
	50.0%
	0.22
	0.79
	1.20
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	1.55
	4.18
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	1.52
	2.89
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	2.14
	3.28
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	2.65
	5.86
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	50.0%
	0.56
	2.81
	4.14
	Different clutter parameters



100%
	
	
	
	
	
	
	
	
	
	
	
	

	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	InF-DH{60%, 6m, 2m}
	InF-DH{40%, 2m, 2m}
	InF-DH{60%, 6m, 2m}
	4.5
	100.0%
	0.5
	4.58
	4.36
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 18x2x256, complex array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	100.0%
	0.56
	1.36
	3.66
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	100.0%
	0.56
	1.38
	2.64
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain 32-tap DP, 18x1x256, real array
	18 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	100.0%
	0.56
	1.88
	2.88
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain CIR, 3x2x256, complex array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	100.0%
	0.56
	2.11
	4.66
	Different clutter parameters

	Ericsson R1-2302335
	Time-domain PDP, 3x1x256, real array
	3 direct path ToA estimates
	{60%,6m,2m}
	{40%,2m,2m}
	{60%,6m,2m}
	5.56
	100.0%
	0.56
	2.42
	3.56
	Different clutter parameters



1st round discussion

Observation 7.4.2.3-1 (A-B-B)
For AI/ML assisted positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [5 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson] when fine-tuning dataset size is x% = (2.0%~2.5%) of full training dataset size, the positioning error is (1.47~5.88)  E0,B;
· [6 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson, Apple] when fine-tuning dataset size is x% = (4.0%~5.0%) of full training dataset size, the positioning error is (1.39~4.42)  E0,B;
· [7 sources: MediaTek, Xiaomi, vivo, CATT, Ericsson, Nokia, Apple] when fine-tuning dataset size is x% = (8.0%~12.0%) of full training dataset size, the positioning error is (1.02~3.14)  E0,B; 
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.33~1.91)  E0,B; 
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.15~1.33)  E0,B;
· [2 sources: MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (0.89~1.15)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for clutter parameter B.


	Company
	Comments

	
	




Observation 7.4.2.3-2 (A-B-A)
For AI/ML assisted positioning and different clutter parameters, evaluation has been performed where the AI/ML model is (a) previously trained for clutter parameter A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for clutter parameter B with a dataset of sample density x%  N (#samples/m2), (c) then tested under clutter parameter A and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [4 sources: MediaTek, Xiaomi, CATT, Ericsson] when fine-tuning dataset size is x% = (2.5%~5.0%) of full training dataset size, the positioning error is (1.47~12.94)  E0,A;
· [5 sources: MediaTek, Xiaomi, CATT, Ericsson, Nokia] when fine-tuning dataset size is x% = 10.0% of full training dataset size, the positioning error is (1.32~11.7)  E0,A;
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 25.0% of full training dataset size, the positioning error is (1.22~7.65)  E0,A;
· [3 sources: MediaTek, CATT, Ericsson] when fine-tuning dataset size is x% = 50.0% of full training dataset size, the positioning error is (1.2~5.86)  E0,A;
· [2 sources: MediaTek, Ericsson] when fine-tuning dataset size is x% = 100.0% of full training dataset size, the positioning error is (2.64~4.66)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for the clutter parameter A.


	Company
	Comments

	
	




Network synchronization error 
Fine-tuning results (excel): Network synchronization error, test on new setting
2.0%-5.0%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	2.5%
	0.5
	10.79
	2.64
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	5.0%
	0.5
	10.05
	2.46
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	2.5%
	0.5
	2.94
	2.80
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	5.0%
	0.5
	2.61
	2.49
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	1.00
	1.51
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	0.84
	1.28
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	2ns
	2ns
	25k
	2.0%
	1k
	1.43
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	2ns
	2ns
	25k
	4.0%
	1k
	1.37
	 
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	10ns
	10ns
	25k
	2.0%
	1k
	2.10
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	10ns
	10ns
	25k
	4.0%
	1k
	1.78
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	50ns
	50ns
	25k
	2.0%
	1k
	3.97
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	50ns
	50ns
	25k
	4.0%
	1k
	3.40
	
	Network synchronization error

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5.0%
	2500
	5.30
	4.24
	Network synchronization error



8%-25%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	10.0%
	0.5
	8.69
	2.12
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	25.0%
	0.5
	7.23
	1.77
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	10.0%
	0.5
	2.28
	2.17
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	25.0%
	0.5
	1.84
	1.75
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	0.73
	1.10
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	2ns
	2ns
	25k
	8.0%
	1k
	1.37
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	2ns
	2ns
	25k
	12.0%
	1k
	1.31
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	10ns
	10ns
	25k
	8.0%
	1k
	1.57
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	10ns
	10ns
	25k
	12.0%
	1k
	1.40
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	50ns
	50ns
	25k
	8.0%
	1k
	2.97
	
	Network synchronization error

	vivo R1-2306744
	CIR
	TOA
	0ns
	50ns
	50ns
	25k
	12.0%
	1k
	2.55
	
	Network synchronization error

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	10.0%
	2500
	4.34
	3.48
	Network synchronization error



50%-100%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	50.0%
	0.5
	6.02
	1.47
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	50ns
	4.5
	100.0%
	0.5
	4.73
	1.16
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	50.0%
	0.5
	1.51
	1.44
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	0ns
	4.5
	100.0%
	0.5
	1.06
	1.01
	Network synchronization error




Fine-tuning results (excel): Network synchronization error, test on previous setting
(0ns, 50ns, 0ns)
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	2.5%
	0.5
	6.24
	5.94
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	5.0%
	0.5
	6.27
	5.97
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	10.0%
	0.5
	5.54
	5.28
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	25.0%
	0.5
	4.92
	4.69
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	50.0%
	0.5
	4.39
	4.18
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	0ns
	50ns
	0ns
	4.5
	100.0%
	0.5
	3.90
	3.71
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	2.5%
	0.69
	2.83
	4.46
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	5.0%
	0.69
	3.00
	4.73
	Network synchronization error

	Xiaomi R1-2307379
	18*256*1 CIR
	18*1 ToA
	{0.6，6，2} 0ns sync error, 0ns Rx error
	{0.6，6，2} 50ns sync error, 0ns Rx error
	{0.6，6，2} 0ns sync error, 0ns Rx error
	5.56
	10.0%
	0.69
	2.91
	4.58
	Network synchronization error



(50ns, 0ns, 50ns)
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	2.5%
	0.5
	4.82
	1.18
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	5.0%
	0.5
	4.69
	1.15
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	10.0%
	0.5
	5.23
	1.28
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	25.0%
	0.5
	6.70
	1.64
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	50.0%
	0.5
	7.26
	1.78
	Network synchronization error

	MediaTek R1-2308056
	PDP [18,8,256]
	TOA
	50ns
	0ns
	50ns
	4.5
	100.0%
	0.5
	9.14
	2.23
	Network synchronization error



1st round discussion

Observation 7.4.3.3-1 (A-B-B)
For AI/ML assisted positioning and different network synchronization error, evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error A (ns) with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error B (ns) with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error B (ns) and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [3 sources: MediaTek, Xiaomi, [vivo], Apple] when fine-tuning dataset size is x% = 2.0%~5.0% of full training dataset size, the positioning error is (1.28~4.24)  E0,B;
· [3 sources: MediaTek, Xiaomi, [vivo], Apple] when fine-tuning dataset size is x% = 8.0%~25.0% of full training dataset size, the positioning error is (1.1~3.48)  E0,B;
· [1 source: MediaTek] when fine-tuning dataset size is x% = 50.0%~100.0% of full training dataset size, the positioning error is (1.01~1.47)  E0,B; 
Here  (meters) is the full training accuracy at CDF=90% for network synchronization error B (ns).


	Company
	Comments

	
	




Observation 7.4.3.3-2 (A-B-A)
For AI/ML assisted positioning and different network synchronization error, 
· evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 0 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 50 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 0 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, denoting  (meters) as the full training accuracy at CDF=90% for network synchronization error = 0 ns,
· [2 sources: MediaTek, Xiaomi] when fine-tuning dataset size is x% = (2.5%~100.0%) of full training dataset size, the positioning error is (3.71~5.97)  E0,A;
· evaluation has been performed where the AI/ML model is (a) previously trained for network synchronization error = 50 ns with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for network synchronization error = 0 ns with a dataset of sample density x%  N (#samples/m2), (c) then tested under network synchronization error = 50 ns and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, denoting  (meters) as the full training accuracy at CDF=90% for network synchronization error = 50 ns,
· [1 source: MediaTek] when fine-tuning dataset size is x% = (2.5%~100.0%) of full training dataset size, the positioning error is ( 1.15~2.23)  E0,A;


	Company
	Comments

	
	



Different InF scenarios
Fine-tuning results (excel): different InF scenarios, test on new setting

2%-12%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	vivo R1-2306744
	CIR
	TOA
	DH
	SH
	SH
	25k
	2.0%
	1k
	0.28
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	SH
	SH
	25k
	4.0%
	1k
	0.17
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	SH
	SH
	25k
	8.0%
	1k
	0.10
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	SH
	SH
	25k
	12.0%
	1k
	0.07
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	HH
	HH
	25k
	2.0%
	1k
	0.30
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	HH
	HH
	25k
	4.0%
	1k
	0.17
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	HH
	HH
	25k
	8.0%
	1k
	0.09
	 
	Different InF scenarios

	vivo R1-2306744
	CIR
	TOA
	DH
	HH
	HH
	25k
	12.0%
	1k
	0.06
	 
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.78
	2.5%
	0.22
	2.34
	3.56
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.78
	5.0%
	0.22
	2.18
	3.32
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.78
	10.0%
	0.22
	2.05
	3.12
	Different InF scenarios

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	InF-DH
	InF-SH
	InF-SH
	47500
	10.0%
	2500
	1.88
	1.51
	Different InF scenarios

	Apple-R12308248
	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	InF-DH
	InF-SH
	InF-SH
	47500
	5.0%
	2500
	2.12
	1.70
	Different InF scenarios



25%-50%
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.78
	25.0%
	0.22
	1.91
	2.91
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-SH
{20%,2m,10m}
	2.78
	50.0%
	0.22
	1.68
	2.55
	Different InF scenarios



Fine-tuning results (excel): different InF scenarios, test on previous setting

all
	Source
	Model input
	Model output
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%)
	Test
	Absolute accuracy (m)
	Relative accuracy
	Generalization Aspect

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.78
	2.50%
	0.22
	2.42
	3.69
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.78
	5.00%
	0.22
	2.23
	3.44
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.78
	10.00%
	0.22
	2.05
	3.13
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.78
	25.00%
	0.22
	1.92
	2.93
	Different InF scenarios

	CATT　R1-2307080
	Type: CIR;
Size:
18*1*256*2
	Type:TOA
Size:1*18
	InF-DH
{60%,6m,2m}
	InF-SH
{20%,2m,10m}
	InF-DH
{60%,6m,2m}
	2.78
	50.00%
	0.22
	1.65
	2.53
	Different InF scenarios



1st round discussion

Observation 7.4.4.3-1 (A-B-B)
For AI/ML assisted positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF scenario A with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF scenario B with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF scenario B and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [2 sources: [vivo], CATT, Apple] when fine-tuning dataset size is x% = (2.0%~12.0%) of full training dataset size, the positioning error is ( 1.51~3.56)  E0,B;
· [1 source: CATT] when fine-tuning dataset size is x% = 25.0%~50.0% of full training dataset size, the positioning error is (2.55~2.91)  E0,B;
Here  (meters) is the full training accuracy at CDF=90% for InF scenario B.


	Company
	Comments

	
	




Observation 7.4.4.3-2 (A-B-A)
For AI/ML assisted positioning and different InF scenarios, evaluation has been performed where the AI/ML model is (a) previously trained for InF-DH{60%,6m,2m} with a dataset of sample density N (#samples/m2), (b) followed by fine-tuning for InF-SH{20%,2m,10m} with a dataset of sample density x%  N (#samples/m2), (c) then tested under InF-DH{60%,6m,2m} and the horizontal accuracy at CDF=90% is E meters. Evaluation results show that, 
· [1 source: CATT] when fine-tuning dataset size is x% = 2.5%-50.0% of full training dataset size, the positioning error is (2.53~3.44)  E0,A;
Here  (meters) is the full training accuracy at CDF=90% for InF-DH{60%,6m,2m}.


	Company
	Comments

	
	



1st round discussion
Based on the evaluation results above, high-level observations can be drawn on model fine-tuning.

Observation 7.5-1 
For AI/ML assisted positioning, evaluation results show that, after fine-tuning/re-training a previous model with dataset of the new deployment scenario (e.g., new clutter parameter setting), the performance of the updated model degrades for the previous deployment scenario (e.g., previous clutter parameter setting) that the previous model was trained for.
	Company
	Comments

	ZTE
	Prefer to add more examples (e.g., different drops, different clutter parameter, different InF scenarios)

	Hw/HiSi
	Not support.
Firstly, similar to our earlier comments, we do not see the motivation to apply an updated model on the earlier scenario.
Based on what sources is that observation made?
Furthermore, for assisted positioning, the considered model output should be specified. 
For LOS identification, fine tuning is not needed. Our simulations results have shown that firstly the performance depends on the scenarios in training and inference. For example, when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS identification rate. Only when the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates. But also here, this can be overcome with mixing the training data set. Thus, fine-tuning is not needed.



Observation 7.5-2 
For AI/ML assisted positioning, if the new deployment scenario is significantly different from the deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the full-training performance for the new deployment scenario.

	Company
	Comments

	ZTE
	· This obervation is applied when the model output is timing information.
· It’s not clear to us on the ‘full-training performance’. 

For direct AI/ML positioning using timing information as model output, if the new deployment scenario is significantly different from the previous deployment scenario the model was trained for (e.g., different drops, different clutter parameter, different InF scenarios), fine-tuning a previous model requires similarly large training dataset size as training the model from scratch, in order to achieve the full-training similar performance for the new deployment scenario.

	HW/hiSi
	Based on what sources is that observation made?



Evaluation of AI/ML assisted positioning: impact by model input type and size
Different type of model input
	· InterDigital (R1-2307582)
Table 1. Evaluation results for AI/ML model deployed on UE-side, different model inputs, without model generalization, UE distribution area = [120x60 m]
	Model input 
Note : for CIR or PDP, complexity is indicated by (N’TRP * Nt *C) where C indicates the complex number factor
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256* 2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M
	0.98

	PDP (18*256*1)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	839 M
	1.59

	RSRP +RSTD
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	334k
	11.41 M
	1.69

	RSRP 
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M 
	3.35


Observation 4: Direct AI/ML positioning technique based on RSRP+RSTD measurements as model input achieves ~0.71 m worse horizontal accuracy than CIR measurements with significantly lower model complexity (~112 times) and computational complexity (~76 times).




Model input truncated in time domain, or reduced number of taps
	· Apple (R1-2307272)
Table 6: AI/ML-assisted Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using a different # of consecutive taps , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6 M
	3.1 G
	1.138m

	CIR
[128,1,128,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6 M
	3.1 G
	1.1362m

	CIR
[18,1,64,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6 M
	3.1 G
	1.2410m



Observation 10: For AI/ML assisted positioning, when optimizing the data size by reducing the number of consecutive taps into the model
· Reducing the number of taps even to 564 does not affect the performance materially
· This seems to be more robust than direct AI-ML based positioning. 
· Reducing the number of taps ultimately reduces the overhead by the same factor





Reduced number of TRPs
	· Ericsson (R1-2306454)
[image: ]
Figure 13: Positioning accuracy vs number of active TRP (N'TRP) for centralized ML assisted positioning. Dynamic TRP reduction approach 2-A, 1-B, 2-B. Model input is PDP or DP.


	· MediaTek (R1-2308056)
Observation 24:	For reduced number of TRP evaluation approach 1-A and approach 2-A, performance of AI/ML assisted TOA estimation positioning will not significantly degrade when number of TRPs (N’TRP) is 9.
Observation 25:	For reduced number of TRP evaluation approach 1-B and approach 2-B, performance of AI/ML assisted TOA estimation positioning degrade with the decrease of number of TRPs (N’TRP).
Observation 26:	For reduced number of TRP evaluation approach 2-A and approach 2-B, computational complexity can be significantly reduced with the decrease of number of TRPs (N’TRP).


	· Nokia (R1-2307242)
Observation 14: For AI/ML assisted positioning, the ToA estimation provides a good performance when the number of TRPs is decreasing.
Observation 15: For AI/ML assisted positioning, using CIR as input parameter to estimate ToA provides a better performance compared to PDP using for both cases the same model and computational complexity.


	· InterDigital (R1-2307582)
Observation 5: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (Approach 1-A), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 3)
Observation 6: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 4)
Observation 7: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B) results better 90% horizontal positioning accuracy compared to fixed TRP selection approach (Approach 1-A). 
Observation 8: For direct AI/ML positioning, for different number of CIR taps when model input is CIR measurements: 
•	For Nt= 128 and 64, we observe similar (~ < 1m) horizontal positioning accuracy as Nt=256.
•	For Nt =32 and 16, 90% horizontal accuracy degrades compared to Nt=256.  
Observation 9: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), horizontal positioning accuracy degrades as we reduce number of TRPs (N’TRP) for 90% UEs.
Observation 10: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), model complexity is decreasing as we reduce number of TRPs (N’TRP).

	· CATT (R1-2308205)
Observation 34: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.
Observation 35: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.
Observation 36: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs and the total dataset size is unchanged, the horizontal position accuracy of using two models to cover the entire area is slightly degraded compared to the performance of using single model to cover the entire area.
Observation 37: For AI/ML-assisted positioning, the positioning accuracy performance is affected by different patterns, but the difference is minor.
Observation 38: For AI/ML-assisted positioning, the horizontal position accuracy of fixed TRP patterns is slightly better than the horizontal position accuracy of dynamic TRP patterns.



1st round discussion
Observation 8.5-1
Evaluation of TRP reduction for AI/ML assisted positioning show that: the performance does not significantly degrade when the number of active TRPs is reduced from 18 to 9, where the AI/ML model has timing information as model output.

	
	Company

	Support
	mtk

	Not support
	



	Company
	Comments

	HW/HuSu
	Not support. It should be described that this observation is for multi-TRP construction.
For assisted positioning, the KPI is per TRP or UE, e.g. the LOS status or the TOA. It is not meaningful in our understanding to evaluate the performance of the intermediate KPI different numbers of TRPs.

	Qualcomm
	Same to comment in Section 5.5 on direct AI/ML positioning




Observation 8.5-2
Evaluation of TRP reduction shows that, in response to TRP reduction, the following methods behaves similarly in terms of positioning accuracy:
(a) direct AI/ML positioning and 
(b) AI/ML assisted positioning with multi-TRP construction. 

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	
	




 Evaluation of AI/ML-assisted positioning: impact by model output

Evaluation of noisy ground truth labels
	· MediaTek (R1-2308056)
Observation 9:	Performance of AI/ML assisted LOS/NLOS identification positioning degrades with increasement the of labelling error.
Table 25. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	AI/ML

	Non-AI positioning (TDOA)
	16.58

	PDP (18*8*256)
	18TOA
	Ideal label
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	1.56

	PDP (18*8*256)
	18TOA
	100% label from non-AI positioning
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	15.53


Observation 27:	If all labels are from non-AI positioning, AI/ML positioning performance gain is limited.


	· Ericsson (R1-2306454)

[bookmark: _Toc142672321]Observation 36. Compared to ground truth label error of UE location (x-axis, y-axis), AI/ML assisted positioning models are more robust to LOS/NLOS label error, including m% LOS label error and n% NLOS label error, where the m%= is false negative rate, FN is the number of actual LOS links which are incorrectly labelled as NLOS (False Negative),  is the total number of actual LOS links; and n%= is the false positive rate, FP is the number of actual NLOS links which are incorrectly labelled as LOS (False Positive),  is the total number of actual NLOS links.  
[bookmark: _Toc142672322]Observation 37. AI/ML models are able to overcome the negative impact of training datasets with false negative rate  up to at least 20% and false positive rate  up to at least 20%.
- The models trained on islabeled samples achieve basically the same LoS/NloS classification accuracy on the test sets as models trained on correctly labelled samples.
- The outputs from the models trained on islabeled samples can be applied to conventional positioning algorithms to achieve basically the same positioning accuracy as the outputs from the models trained on correctly labelled samples.
Table 55 Evaluation of ground truth labelling error with different m% LOS label error and n% NLOS label error. The scenario is InF-DH with clutter parameter {40%, 2m, 2m}, different drops for train and test. The UE distribution area is 120x60 m.
	m (%)
	0
	1
	1
	2.4
	2.4
	2.4
	5
	5
	5
	10
	20

	n (%)
	0
	16.5
	20
	10
	16.5
	20
	10
	16.5
	20
	10
	20

	Accuracy
	0.960
	0.950
	0.948
	0.953
	0.950
	0.946
	0.951
	0.948
	0.943
	0.954
	0.944

	F1-score
	0.959
	0.943
	0.941
	0.947
	0.943
	0.939
	0.944
	0.941
	0.936
	0.947
	0.936

	90%-tile 2D pos. Error [m]
	0.061
	0.062
	0.070
	0.058
	0.059
	0.065
	0.060
	0.065
	0.072
	0.079
	0.065





	· Nokia (R1-2307242)
Table 16 – [NTRP=18] Evaluation of ground truth labelling error with different m% LOS label error and n% NLOS label error. The scenario is InF-DH with clutter density of 40% (dataset 4). The UE distribution area is 120x60 m.
	Model input
	Model output
	Label
	N. of TRPs
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	Error Labeling
	Complexity
	Performance evaluation

	
	
	
	
	Train
	Test
	Train
	Test
	m(%)
	n(%)
	Model Complexity
	Computational Complexity
	Accuracy
	F1-score

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	18
	Dataset 3
	Dataset 3
	95%
	5%
	0.0
	0.0
	4967.962K
	0.996G
	98.1%
	97.5%

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	18
	Dataset 3
	Dataset 3
	95%
	5%
	5
	10
	4967.962K
	0.996G
	99.32%
	99.14%

	PDP (Real)
	LOS/
NLOS 
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Observation 22: When the number of TRPs is more than one, adding a labelling error of less than 10% for LOS/NLOS indication the performance is not impacted, in some cases the performance is enhanced when compared to the benchmark (m%=0, and n%=0).
Observation 23: For AI/ML assisted positioning with LOS/NLOS indicator as model output, an acceptable LOS/NLOS indication is obtained until 20% of error for both, n% and m% error.




Semi-supervised learning
	· Nokia (R1-2307242)
Table 25 – LOS/NLOS indication performance for assisted AI/ML positioning when a semi-supervised learning is applied on scenarios with low labelled samples.
	Training dataset
	Testing dataset
	Model complexity
	Computational complexity
	LOS/NLOS classification accuracy

	Labeled
	Unlabeled
	
	
	
	

	60k
	0
	10k
	509k
	508k
	86.32%

	65k
	0
	10k
	509k
	508k
	87.87%

	70k
	0
	10k
	509k
	508k
	91.06%

	75k
	0
	10k
	509k
	508k
	93.53%

	60k
	440k
	10k
	509k
	508k
	88.50%

	65k
	435k
	10k
	509k
	508k
	89.12%

	70k
	430k
	10k
	509k
	508k
	92.05%

	75k
	425k
	10k
	509k
	508k
	95.16%





	· MediaTek (R1-2308056)
Observation 21:	With less amount of labelled data, semi-supervised learning with more un-labelled data provides a more accurate position accuracy than supervised learning for AI/ML assisted TOA estimation positioning.




1st round discussion
Observation 9.3-1
For AI/ML assisted positioning where the model output includes LOS/NLOS indicator, the models are robust under LOS/NLOS label error with m% LOS label error and n% NLOS label error up to at least m%=20% and at least n%=20%.
· Note: m%= is false negative rate, where FN is the number of actual LOS links which are incorrectly labelled as NLOS (False Negative),  is the total number of actual LOS links. N%= is the false positive rate, FP is the number of actual NLOS links which are incorrectly labelled as LOS (False Positive),  is the total number of actual NLOS links.

	
	Company

	Support
	mtk (but with some revision)

	Not support
	



	Company
	Comments

	mtk
	 From our results we see the degradation of around 3% from ideal label to 20% label error. 

 So the degradation will happen, which seems to be minor. We prefer not to use “robust”, since this word is quite vague. We suggest to use “the models have minor degradation for the identification error, with degradation range from 1.6% to 7%”, where 7% maybe derived from Nokia results

[image: ]





	HwH7HiSI
	Not support, requires more discussion in the group.
For example: “For AI/ML assisted positioning where the model output includes LOS/NLOS indicator, the models are robust under LOS/NLOS label error with m% LOS label error and n% NLOS label error up to at least m%=20% and at least n%=20%.”
Does it mean that the model is trained with a false label or does it mean that the inference outcome that is delivered to the legacy positioning is is wrong.
Based on what sources is the observation proposed?



Evaluation of model monitoring methods
For the topic of model monitoring, the following methods have been proposed by companies.
Label based methods 
No new methods are provided.
Label-free methods 
	· Apple (R1-2307272)
Observation 12: For direct AI-positioning, any of the following is suitable for performance monitoring:
· Model monitoring using statistics of measurement(s) without ground truth label
· Model monitoring based on provided ground truth label (or its approximation) 
· Model monitoring using statistics of output without ground truth  label.


	· Ericsson (R1-2306454)
[image: ]
[image: ]
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	· Nokia (R1-2307242)
Observation 29: The performance monitoring based on the distribution comparison of different datasets is impacted by the feature that is selected to monitor. For instance, in evaluating the similarity between two distributions with Kolmogorov-Smirnov Test (Kstest) method, the RSRP measurement provides an accurate distribution comparison compared to CIR and PDP. 
Observation 30: For performance monitoring, the RSRP measurement is a dominant feature for performance monitoring based on the similarity of distributions.
[image: ]
Figure 8 - Illustration of ROC curve. The fundamental information is indicated to differentiate the quality of binary classifiers.
Observation 31: For Performance monitoring purposes, using ML models as binary classification provides an easily discriminatory criteria between two different dataset distributions. However, in real scenarios it is expected to get a diversity set of distributions. Thus, an extension of a binary classification to a multi-class classification could be a potential alternative, in addition an extra expense of model and computational complexity could be expected.


	· CATT (R1-2308205)
Observation 43: For direct AI/ML positioning, the relative displacement method can monitor the model performance.
Observation 44: For AI/ML-assisted positioning, the relative displacement method can monitor the model performance.




Potential updates to previously endorsed observations
1st round discussion
Please provide feedback in the table below.

	Company
	Revised observation (including the meeting the previous observation was endorsed)
	Company's later results that lead to the revision

	China Telecom
	Observation in RAN1#113 Final Report
[bookmark: OLE_LINK2]For AI/ML based positioning, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. 
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.

Source companies copied from RAN1#113 R1-2306054 chapter 2.2 include MediaTek, NVIDIA, China Telecom, xiaomi, Huawei, Ericsson, Apple. The observation is drawn without adding any source company in previous meeting.
So, we suggest to have following revision.

Observation with revision
For AI/ML based positioning, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. [source from: MediaTek, NVIDIA, China Telecom, xiaomi, Huawei, Ericsson, Apple.]
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.
· 
	In RAN1#113 R1-2306054 FL summary, China Telecom’s result is indeed captered in 2.2.3 section. However, the observation is drawn without adding any source company.
So it is for adding the source company if it will be shown by someway in TR38.843.


	
	Observation in RAN1#113 Final Report
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.
Source companies copied from RAN1#113 R1-2306056 chapter 7.2 and 10.2 include
MediaTek, vivo, ZTE, Ericsson.
The observation is drawn in previous meeting without adding any source company. So, we suggest to have following revision.
Observation in RAN1#113 Final Report
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.[source company: MediaTek, vivo, ZTE, Ericsson, China Telecom]

	In this meeting, we provide our result on semi-supervised learning in RAN1#114 R1-2308330. And I also added the following result in this doc at section 6.2.
· China Telecom (R1-2308330)
Table 5: Positioning accuracy with 1.25% data with ideal label
	Model
	Horizontal accuracy @90% (meters)

	Supervised
	3.33

	Semi-supervised 
	1.63


Observation 5: Semi-supervised learning could be used to improve the positioning accuracy when ideal labeled data is few.
it is for adding the source company if it will be shown by someway in TR38.843.

	
	
	




Updates to list of sources without change of content
This section is for all previously endorsed observations that include a list of sources and the contents of the observations do not need to be updated, except the source list.
Please provide feedback if your later results indicate that your company name should be added to the source list. In this case, please point out: 
(a) the previously endorsed observation (including the meeting it was endorsed), 
(b) your relevant simulation results which are submitted after the meeting the observation was endorsed.

This is to ensure that the correct list of sources is provided, if the list is to be captured in the TR. Whether/how to capture the list of sources to the TR is pending further discussion in RAN1. For TR writing, it is expected that the same guideline is to be followed for all use cases (i.e., CSI, beam management, positioning). 

1st round discussion
Please provide feedback in the table below.

	Company
	Previously endorsed observation (including the meeting it was endorsed)
	Company's later results 
(couldn't be considered when the observation was endorsed)

	
	
	

	
	
	





Updates with change of content
This section is for all previously endorsed observations that the content of the observation needs to be updated to reflect new results submitted to RAN1#114.

If new evaluation results to RAN1#114 show that the observation should be updated, please indicate: 
· how the endorsed observation should be revised, and 
· the new evaluation results that lead to the revision.

Proposals for online sessions
TBD

Conclusion: Agreements achieved during RAN1#114
TBD


 References
RP-221348, “Revised SID: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface,” 3GPP RAN#96, June 2022.
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