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At RAN1 #109-e, the following were agreed:

Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, companies report the one of spatial consistency procedures: 
· Procedure A in TR38.901
· Procedure B in TR38.901
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
Agreement
· At least for spatial-domain beam prediction in initial phase of the evaluation, UE trajectory model is not necessarily to be defined.
Agreement
· At least for temporal beam prediction in initial phase of the evaluation, UE trajectory model is defined. FFS on the details.

Agreement
· UE rotation speed is reported by companies.
· Note: UE rotation speed = 0, i.e., no UE rotation, is not precluded.
Agreement
· For AI/ML in beam management evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.
Conclusion
Further study AI/ML model generalization in beam management evaluating the inference performance of beam prediction under multiple different scenarios/configurations.
· FFS on different scenarios/configurations
· Companies report the training approach, at least including the dataset assumption for training
Agreement
· For evaluation of AI/ML in BM, the KPI may include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity
Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the parameters (if applicable) in Table 1.2-1b for Dense Urban scenario for SLS
Table 1.2-1b Assumptions for Dense Urban scenario for AI/ML in beam management
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	· [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
· [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
· Other assumptions are not precluded.

Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· Other assumptions are not precluded

Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB



Agreement
· For temporal beam prediction, the following options can be considered as a starting point for UE trajectory model for further study. Companies report further changes or modifications based on the following options for UE trajectory model. Other options are not precluded. 
· Option #2: Linear trajectory model with random direction change.
· UE moving trajectory: UE will move straightly along the selected direction to the end of an time interval, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms. 
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· UE move straightly within the time interval with the fixed speed.
· FFS on UE orientation
· Option #3: Linear trajectory model with random and smooth direction change.
· UE moving trajectory: UE will change the moving direction by multiple steps within an time internal, where the length of the time interval is provided by using an exponential distribution with average interval length, e.g., 5s, with granularity of 100 ms.
· UE moving direction change: At the end of the time interval, UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°].
· The time interval is further broken into N sub-intervals, e.g. 100ms per sub-interval, and at the end of each sub-interval, UE change the direction by the angle of A_diff/N.  
· UE move straightly within the time sub-interval with the fixed speed.
· FFS on UE orientation
· Option #4: Random direction straight-line trajectories. 
· Initial UE location, moving direction and speed: UE is randomly dropped in a cell, and an initial moving direction is randomly selected, with a fixed speed.
· The initial UE location should be randomly drop within the following blue area


where d1 is the minimum distance that UE should be away from the BS. 
· Each sector is a cell and that the cell association is geometry based.
· During the simulation, inter-cell handover or switching should be disabled.
For training data generation
· For each UE moving trajectory: the total length of the UE trajectory can be set as T second if it is in time, of set as D meter if it is in distance.
· The value of T (or D) can be further discussed
· The trajectory sampling interval granularity depends on UE speed and it can be further discussed. 
· UE can move straightly along the entire trajectory, or
· UE can move straightly during the time interval, where the time interval is provided by using an exponential distribution with average interval length 
· UE may change the moving direction at the end of the time interval. UE will change the moving direction with the angle difference A_diff from the beginning of the time interval, provided by using a uniform distribution within [-45°, 45°]
· If the UE trajectory hit the cell boundary (the red line), the trajectory should be terminated. 
· If the trajectory length (in time) is less than the length of observation window + prediction window, the trajectory should be discarded. 
· At the current stage, the length of observation window + prediction window is not fixed and the companies can report their values.
· FFS on UE orientation
· Generalization issue is FFS 

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.
Agreement
· For dataset generation and performance evaluation for AI/ML in beam management, take the following assumption for LLS as optional methodology
	Parameter
	Value

	Frequency
	30GHz.

	Subcarrier spacing
	120kHz

	Data allocation
	[8 RBs] as baseline, companies can report larger number of RBs
First 2 OFDM symbols for PDCCH, and following 12 OFDM symbols for data channel

	PDCCH decoding
	Ideal or Non-ideal (Companies explain how is oppler)

	Channel model
	FFS:
LOS channel: CDL-D extension, DS = 100ns
NLOS channel: CDL-A/B/C extension, DS = 100ns
Companies explains details of extension methodology considering spatial consistency

Other channel models are not precluded.

	BS antenna configurations
	· One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline
· Other assumptions are not precluded. 
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS antenna element radiation pattern
	Same as SLS

	BS antenna height and antenna array downtile angle
	25m, 110°

	UE antenna configurations
	Panel structure: (M, N, P) = (1, 4, 2), 
· 2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
· 1 panel as optional
· Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE antenna element radiation pattern
	Same as SLS

	UE moving speed
	Same as SLS

	Raw data collection format
	Depends on sub-use case and companies’ choice. 



Agreement
· For UE trajectory model, UE orientation can be independent from UE moving trajectory model. FFS on the details. 
· Other UE orientation model is not precluded.
Agreement
· Companies are encouraged to report the following aspects of AI/ML model in RAN 1 #110. FFS on whether some of aspects need be defined or reported.
· Description of AI/ML model, e.g, NN architecture type
· Model inputs/outputs (per sub-use case)
· Training methodology, e.g.
· Loss function/optimization function
· Training/ validity /testing dataset:
· Dataset size, number of training/ validity /test samples
· Model validity area: e.g., whether model is trained for single sector or multiple sectors
· Details on Model monitoring and model update, if applicable
· Others related aspects are not precluded

Agreement
· To evaluate the performance of AI/ML in beam management, further study the following KPI options:
· Beam prediction accuracy related KPIs, may include the following options:
· Average L1-RSRP difference of Top-1 predicted beam
· Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
· Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”

· CDF of L1-RSRP difference for Top-1 predicted beam
· Beam prediction accuracy (%) with 1dB margin for Top-1 beam
· The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam” 

· the definition of L1-RSRP difference of Top-1 predicted beam: 
· the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
· Other beam prediction accuracy related KPIs are not precluded and can be reported by companies. 
· System performance related KPIs, may include the following options:
· UE throughput: CDF of UE throughput, avg. and 5%ile UE throughput
· RS overhead reduction at least for spatial-domain beam prediction at least for top-1 beam:
· 1-N/M,
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement
· where (FFS) M is the total number of beams
· Note: Non-AI/ML approach based on the measurement of these M beams may be used as a baseline
· FFS on whether to define a proper value for M for evaluation.
· Other System performance related KPIs are not precluded and can be reported by companies.
· Other KPIs are not precluded and can be reported by companies, for example:
· Reporting overhead reduction: (FFS) The number of UCI report and UCI payload size, for temporal /spatial prediction
· Latency reduction:
· (FFS) (1 – [Total transmission time of N beams] / [Total transmission time of M beams])
· where N is the number of beams (with reference signal (SSB and/or CSI-RS)) in the input beam set required for measurement
· where M is the total number of beams
· Power consumption reduction: FFS on details
At RAN1 #111, more details on evaluation were agreed. And at RAN1 #110bis-e, besides others,  the following were agreed:


Agreement
· For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, the set of scenarios/configurations are considered focusing on one or more of the following aspects as a starting point:
· Scenarios
· Various deployment scenarios 
· Various outdoor/indoor UE distributions 
· Various UE mobility 
· Configurations
· Various UE parameters 
· Various gNB settings 
· [Various Set B of beam(pairs)]
· Other aspects of scenarios/configurations are not precluded
· The selected scenarios/configurations for generalization verification may consider the AI model inference node (e.g., @UE or @gNB) and use case (e.g., BM-Case1, or BM-Case2)
· Companies to report the selected scenarios/configurations for generalization verification
· Note: other approaches for achieving good generalization performance for AI/ML-based schemes are not precluded.
At RAN1 #112bis-e, there were discussions on quantization error and measurement error.

In this contribution, we discuss evaluation of AI based beam management. This is an update to R1-2307270. The update fixes typos in the dataset definition in Section 2.2, and provides additional evaluation results with measurement error modeling, and observations on generalization cases 2 and 3.
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At RAN1 #111, the following was reached:The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side


Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.


Agreement
· Companies report the pattern of Set B.
· Further study the performance with different patterns of set B(s) for fixed Set B (Option 1) and different pre-configured/pre-known patterns of Set B(s) (Option 2A and 2B). 



Agreement
For the sub use case BM-Case1 and BM-Case2, at least support Alt.1 and Alt.2 for AI/ML model training and inference for further study:
· Alt.1. AI/ML model training and inference at NW side
· Alt.2. AI/ML model training and inference at UE side
· The discussion on Alt.3 for BM-Case1 and BM-Case2 is dependent on the conclusion/agreement of Agenda item 9.2.1 of RAN1 and/or RAN2 on whether to support model transfer for UE-side AI/ML model or not
· Alt.3. AI/ML model training at NW side, AI/ML model inference at UE side

In previous meetings, there were discussions on how to evaluate training/inference alternatives agreed above. In our view, the generalized cases’ evaluation is particularly relevant to establishing the feasibility of a training/inference alternative. 
With training/inference Alternative 1, as inference and training are both performed by the network, the network can ensure a properly chosen AI/ML model is used in the inference, hence evaluation with Generalization Performance Case 1 is indicative of its performance.
With training/inference Alternative 3, the training is conducted on the network side, and inference is conducted on the UE side. Subject to proper signaling to select a appropriate AI/ML model for inference, data mismatch between training and inference can be avoided. From that, evaluation with Generalization Performance Case 1 is indicative of Alt. 3’s performance. To reduce the frequency of model transfer and/or model switching, network may transfer an AI/ML model trained with mixed data to a UE. Note as the network is in full control of the AI/ML model used at the UE for Tx beam inference, it is network’s responsibility to ensure a proper AI/ML model is place for UE’s Tx beam inference. Hence while Generalization performance Case 3 can be considered as secondary solution for training/inference Alternative 3, and the network ensures the degradation with Case 3 is not much compared with that with Case 1.
There are several factors to consider for AI/ML model generalization:
· Analog beam design for narrow beams and wide beams
· Antenna configurations:
· In RAN1, notations with (M, N, P, Mg, Ng; Mp, Np) have been used to describe an antenna configuration: 
· M: Number of vertical antenna elements within a panel, on one polarization
· N: Number of horizontal antenna elements within a panel, on one polarization
· P: Number of polarizations
· Mg: Number of panels in a column;
· Ng: Number of panels in a row;
· Mp: Number of vertical TXRUs within a panel, on one polarization
· Np: Number of horizontal TXRUs within a panel, on one polarization
· Antenna element spacings:
· (dH, dV)=(0.5, 0.5)λ for example
· (dg,H,dg,V) = (4.0, 2.0)λ for example
· Antenna panel orientation
· Deployment scenarios:
· Umi, UMa, inH, etc.
· Carrier frequency:
· 30 GHz, 41 GHz, etc.

As discussed in [2][3], AI/ML models can be developed as either universal parameter estimators or cell-specific estimators that target superior performance by incorporating cell-specific information. For example, RSRP measurements from Set B can provide points for interpolation/extrapolation for a universal parameter estimator, and an inference model trained for one carrier frequency may be applicable to another. Similarly, an inference model trained with UMa data may be applicable to UMi. However, generalizing to different M/N values may not be as straightforward, and a key factor is the analog beam design for narrow and wide beams. The term "beam shape information" suggests that proponents may view the analog beam design as describable by well-defined beam shapes and orientations.

Our study indicates that with DFT beams assumed for the vertical and horizontal domains, the loading on each Tx beam may not be even, as observed by other companies. This may necessitate equalizing the Tx beam loading, for instance, by combining lightly loaded Tx beams in practice. While RAN1 need not consider all practical aspects, factors that underpin the AI/ML-enabled BM must not be disregarded. From open literature, it is also evident that the analog beam design itself may utilize AI/ML. Whether the resulting analog beams are still amenable to a simple description is unclear.

Two important conclusions were reached at RAN1 #112:
 


Conclusion
Regarding the explicit assistance information from UE to network for NW-side AI/ML model, RAN1 has no consensus to support the following information
· UE location
· UE moving direction
· UE Rx beam shape/direction

Conclusion
Regarding the explicit assistance information from network to UE for UE-side AI/ML model, RAN1 has no consensus to support the following information
· NW-side beam shape information
· E.g., 3dB beamwidth, beam boresight directions, beam shape, Tx beam angle, etc.
· Note: Other information (e.g., relative information) of Tx beam(s) preserving sensitive proprietary information is a separate discussion 
· e.g., some information following the same principle of Rel-17 positioning agreement

Regarding RAN1 discussion, it should be assumed that the NW-side AI/ML model does not have access to assistance information such as UE location, UE moving direction, or UE Rx beam shape/direction. Similarly, the UE-side AI/ML model does not have access to NW-side beam shaping information.
If NW-side beam information were available at the UE-side, it might have been possible to build a generic Tx beam predictor by incorporating the beam angle information for set A and set B beams in the AI/ML model. However, RAN1 #112 has concluded that such a possibility is excluded. Therefore, it is difficult to come up with a UE-side AI/ML model that has good generalization performance. Deploying multiple AI/ML models on the UE side and requesting the network side to validate the suitability of a model may also prove challenging. Hence, operating with Alt. 2 (UE side training/UE side inference) may not be feasible.
As for the NW-side model, since assistance information about UE Rx beam shape/direction is unavailable, it is not possible for the network side to perform Rx beam prediction for the UE. Conventionally, the Rx beam operation is solely determined by the UE implementation. In the P3 operation, with repetition on for CSI-RS, UE can test different RX beams, but there is no CSI reporting on RSRP out of that operation. Deviating from the conventional practice for RX beam management is neither desirable nor warranted. Additionally, in the current NR design, P2 and P3 procedures are clearly defined. Performing beam pair prediction instead of separate prediction for Tx beam and Rx beam would unnecessarily complicate the design without any benefit. Therefore, the study of beam pair prediction in Rel-18 AI/ML should be deprioritized.
We have 
Proposal 1: For AI model generalization, generalization performance depends on diverse analog beam design including Set A design, antenna configurations including M/N, antenna spacing and deployment scenario. 
Proposal 2: Follow the legacy P2/P3 procedures when possible for AI/ML-BM.
As to be discussed in the evaluation section, actually NW-side beam shape information is critical if a generic model is to be used. We also show AI models crafted for specific scenario/deployment in general work well without explicit beam shape information. 
We have 
Observation 1: If explicit Tx beam shape information for different datasets is not available to model trainer, designing AI model to generalize well over different scenarios/configurations depends on acquiring diverse training data matched to the overall deployment. 
From the agreement at RAN1 110:
Agreement
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

There are 3 alternatives to study:
· Set-B-alt-1: Set B is fixed in both number of beams and the beam constellations (analog beam design)
· Set-B-alt-2: The number of beams in Set B is fixed, but the beam constellations can be changed with time.
· Set-B-alt-3: Both the number of beams and beam constellations in Set B can change.
In the study reported below, we focus on Set-B-alt-1, which should the most favorable choice for generalization performance.
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[bookmark: _Toc143266602]Analog beam design
To study different options in analog beam design at the network and their impact to AI/ML model generalization, we first collect channel responses between 64 antenna elements at the base station and 16 antenna elements at the UE. For each UE panel, the channel response is characterized by As UE Rx beam selection is a UE implementation choice, we mainly focus the discussion on Tx beam selection. 

We construct the wideband covariance matrix at , further the submatrices from two polarizations are summed, SVD is performed is over the resulted matrix, and the optimal RX beam is assumed to be found from the singular vector corresponding to the largest singular value. Such a practice is consistent with agreement reached in RAN1 #110bis-e as the number of Rx beams other than 4 and 8 can be used. With the identified Rx beam, then Rx beamforming is performed on the channel responses to result in an  tensor, where (i.e. two baseband antenna ports are assumed).

For each channel realization, then a procedure similar to Type II codebook’s W1 search is applied to the  tensor to find the best Tx beam from   beams with { }.  By aggregating all the best Tx beams across drops, we have found using 8 vertical beams is an overkill, as many of them are not loaded with any UEs. We assume in an actual network, the operator/infra vendor will not generate Tx beams for beam measurements, if those Tx beams are not preferred by any UE. Due to that, we just keep only vertical beams with sizeable number of UEs. It is obvious what vertical beams should be kept will depend on factors like  cell size, base station height, down-tilt, etc.  For horizontal beams, we also reduce the number of beams from 16 to 8 to simplify the study. In the end, we use  Tx beams (set A) in our study.

We assume CSI-RS resources are used for the P2 procedure for AI enabled beam management. How Tx beam angles are mapped to CSI-RS resources are discussed in the sub-section “Set A design”. In the current study, Set B is assumed to be a subset of Set A, which is discussed in the sub-section “Set B design”.

In data generation for BM Case-1, we drop on average 10 UEs per cell in a network with 21 cells, hence 210 UEs are obtained for each drop. With 500 drops with different random seeds, we collect data for around 100,000 UEs. 

In data generation for BM Case-2, we drop on average 50 UEs in a network with 3 cells, hence 50 UEs are obtained for each drop. With 1000 drops with different random seeds, we collect data for around 50,000 UEs. To determine the Rx beam, the wideband covariance matrix at  is accumulated over multiple time occasions.


To study the impact of antenna spacings to model generation, we generate two options in antenna element spacing, each with data for around 100,000 UEs:
· Option 1 is with 
· Option 2 is with 

[bookmark: _Toc143266603]Set A design
The design of analog beam can vary among different infrastructure vendors, such as the arrangement and number of CSI-RS (Channel State Information Reference Signal) resources. Even for macro cells and pico-cells in the same market with gNBs from the same vendor, the analog beam design can differ depending on the antenna modules used, e.g., one antenna module for macro cells, another for pico cells.

Regarding the design of set A, we have considered two options for arranging CSI-RS resources based on the vertical and horizontal beam angles. The first option involves arranging CSI-RS resources in a column-first fashion, as illustrated below.

Figure 1 Column first arrangement of CSI-RS resources
[image: Table
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Figure 2 Row first arrangement of CSI-RS resources
[image: ]

[bookmark: _Toc143266604]Set B design

With a given Set A, Set B beams are chosen to sample Set A uniformly. With 16 beams in Set A, we consider two options in Set B design as shown below. The second option can be treated as a column-wise cyclically shifted version of the first option.

Figure 3 Options for Set B with 16 beams
[image: Graphical user interface, application, bar chart

Description automatically generated with medium confidence]

With 8 beams in Set A, we consider four options in Set B design as shown below. The second/third/fourth option can be treated as a column-wise cyclically shifted version of the first option.  



Figure 4, Options for Set B with 8 beams
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With 4 beams in Set A, we consider four options in Set B design as shown below. The second/third/fourth option can be treated as a column-wise cyclically shifted version of the first option.  

Figure 5, Options for Set B with 4 beams
[image: A picture containing graphical user interface
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[bookmark: _Toc143266605]Examples of Set A design and Set B design
As explained above, while we have generated data with  Tx beams, for the results reported here Set A is limited to 32 Tx beams as shown below. Further we assume set B is a subset of set A, and 3 set B sizes are investigated. If the MIMO channel between network and UE is known, then finding the optimal Tx beam and Rx beam is easy. Of course, a brute-force method to recover the MIMO channel would need too many observations (beam measurements), we are interested to see with the universal approximation theorem whether we can recover key information in the MIMO channel (e.g., the domain beam direction), thus we experiment with 4 beams for set B.
In total, 3 examples are as shown below:
· 16 fixed beams in set B
· 8 fixed beams in set B
· 4 fixed beams in set B

[image: Table
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Figure 1 Set A and Set B composition.

[bookmark: _Toc143266606]Training datasets and test datasets
From discussion above, factors for dataset construction include
· Set A design (Column first vs Row first)
· Set B design (Column shift = 0 and 1 for Set A at 16 beams, and Column shift = 0, 1, 2 and 3 for Set A at 4/8 beams)
· Antenna element spacing (() vs ()


Then for the case with 16 beams in set B, 8 datasets are constructed as shown below, for the case with 8 beams in Set B, 16 datasets are constructed, for the case with 4 beams in Set B, 16 datasets are constructed.
Table 6 Datasets with 16 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-16-1a
	Column First
	Column shift = 0
	

	Dataset-16-1b
	Column First
	Column shift = 1
	

	Dataset-16-1c
	Column First
	Column shift = 0
	

	Dataset-16-1d
	Column First
	Column shift = 1
	

	Dataset-16-2a
	Row First
	Column shift = 0
	

	Dataset-16-2b
	Row First
	Column shift = 1
	

	Dataset-16-2c
	Row First
	Column shift = 0
	

	Dataset-16-2d
	Row First
	Column shift = 1
	



Table 7 Datasets with 8 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-8-1a
	Column First
	Column shift = 0
	

	Dataset-8-1b
	Column First
	Column shift = 1
	

	Dataset-8-1c
	Column First
	Column shift = 2
	

	Dataset-8-1d
	Column First
	Column shift = 3
	

	Dataset-8-1e
	Column First
	Column shift = 0
	

	Dataset-8-1f
	Column First
	Column shift = 1
	

	Dataset-8-1g
	Column First
	Column shift = 2
	

	Dataset-8-1h
	Column First
	Column shift = 3
	

	Dataset-8-2a
	Row First
	Column shift = 0
	

	Dataset-8-2b
	Row First
	Column shift = 1
	

	Dataset-8-2c
	Row First
	Column shift = 2
	

	Dataset-8-2d
	Row First
	Column shift = 3
	

	Dataset-8-2e
	Row First
	Column shift = 0
	

	Dataset-8-2f
	Row First
	Column shift = 1
	

	Dataset-8-2g
	Row First
	Column shift = 2
	

	Dataset-8-2h
	Row First
	Column shift = 3
	



Table 8, Datasets with 4 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-4-1a
	Column First
	Column shift = 0
	

	Dataset-4-1b
	Column First
	Column shift = 1
	

	Dataset-4-1c
	Column First
	Column shift = 2
	

	Dataset-4-1d
	Column First
	Column shift = 3
	

	Dataset-4-1e
	Column First
	Column shift = 0
	

	Dataset-4-1f
	Column First
	Column shift = 1
	

	Dataset-4-1g
	Column First
	Column shift = 2
	

	Dataset-4-1h
	Column First
	Column shift = 3
	

	Dataset-4-2a
	Row First
	Column shift = 0
	

	Dataset-4-2b
	Row First
	Column shift = 1
	

	Dataset-4-2c
	Row First
	Column shift = 2
	

	Dataset-4-2d
	Row First
	Column shift = 3
	

	Dataset-4-2e
	Row First
	Column shift = 0
	

	Dataset-4-2f
	Row First
	Column shift = 1
	

	Dataset-4-2g
	Row First
	Column shift = 2
	

	Dataset-4-2h
	Row First
	Column shift = 3
	






With the working assumption reached at RAN1 #110bis-e, three cases were agreed in the evaluation of generalization performance:

· Generalization performance Case-1: matched training data set/test data set
· Generalization performance Case-2: mis-matched training data set/test data set
· Generalization performance Case-3: training data set as a super set for each test data set


[bookmark: _Toc143266607]Training dataset composition
[bookmark: _Toc143266608]Generalization Performance Case-1 (GP-Case-1)
The dataset construction for GP-Case-1 is to find whether AI-BM provides meaningful gains under the most favorable condition. The AI-BM performance achieved for GP-Case-1 is also an upper bound for AI-BM performance, e.g., The AI-BM performance achieved for GP-Case-2 and GP-Case-3 should be compared with that.

· 8 AI models for Set B at 16 beams are trained for each dataset listed in Table 6 in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 8 test results.
· For example, an AI model is trained with Dataset-16-1a, and the trained AI model is tested with portion of data from Dataset-16-1a.
· Training with Dataset-16-1a  test with Dataset-16-1a
· …
· Training with Dataset-16-1d  test with Dataset-16-1d
· 16 AI models for Set B at 8 beams are trained for each dataset listed in Table 7 in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 16 test results.
· Training with Dataset-8-1a  test with Dataset-8-1a
· …
· Training with Dataset-8-2h  test with Dataset-8-2h
· 
· 16 AI models for Set B at 4 beams are trained for each dataset listed in Table 8 in our study. Each AI model is tested with portion of data in each dataset the AI model is trained for. And there are 16 test results.
· Training with Dataset-4-1a  test with Dataset-4-1a
· …
· Training with Dataset-4-2h  test with Dataset-4-2h

[bookmark: _Toc143266609]Generalization Performance Case-2 (GP-Case-2):
· 8 AI models for Set B at 16 beams are trained for each dataset listed in Table 6 in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.
· For example, an AI model is trained with Dataset-16-1a, and the trained AI model is tested with portion of data from Dataset-16-2d.
· Training with Dataset-16-1a  test with Dataset-16-1b
· …
· Training with Dataset-16-1a  test with Dataset-16-1d
· …
· 
· 16 AI models for Set B at 8 beams are trained for each dataset listed in Table 7 in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.
· 16 AI models for Set B at 4 beams are trained for each dataset listed in Table 8 in our study. Each AI model is tested with portion of data in each dataset the AI model is not trained with. And there are  test results.

We conduct several experiments to understand generalization performance Case-2. 
In the first experiment, the aggregated results with  combnations are reported.
In the second experiment, we investigate Set A design mismatch.
In the third experiment, we investigate Set B design mismatch.
In the fourth experiment, we investigate antenna spacing mismatch.


[bookmark: _Toc143266610]Generalization Performance Case-3 (GP-Case-3): 
For GP-Case-3, we consider 3 ways to combine datasets. 
The goal of the investigation is to find

· Evaluation with Dataset Combination 1 basically provides assessment that if the super set for training data is the complete set, how AI-BM performs for BM Case-1. Note in the training data composition, we assume the composition of training data is proportional to the composition of test data, e.g., if there are 16 test datasets, then the training dataset consists of equal portion from 16 training datasets for corresponding 16 test datasets.
· Evaluation with Dataset Combination 2 demonstrates how much performance degradation is if the AI model needs to handle different gNB antenna spacings and different set A designs with a fixed set B design. 
· Evaluation with Dataset Combination 3 demonstrates how much performance degradation is if the AI model needs to handle different gNB antenna spacings and different set B designs with a fixed set A design. 


[bookmark: _Toc143266611]Dataset Combination 1 for GP-Case-3
· All datasets for a given Set B number are included in the combination, i.e. different Set A designs, different Set B designs and different antenna element spacings are covered.
· For Set B at 16 beams, all 8 datasets are combined to train a single AI model, which is tested on each of the 8 datasets:
· Training with all datasets with 16 set B beams  test with dataset-16-1a
· …
· Training with all datasets with 16 set B beams  test with dataset-16-2d
· For Set B at 8 beams, all 16 datasets are combined to train a single AI model, which is tested on each of the 16 datasets:
· Training with all datasets with 8 set B beams  test with dataset-8-1a
· …
· Training with all datasets with 8 set B beams  test with dataset-8-2h
· 
· For Set B at 4 beams, all 16datasets are combined to train a single AI model, which is tested on each of the 16 datasets. 
· Training with all datasets with 4 set B beams  test with dataset-4-1a
· …
· Training with all datasets with 4 set B beams  test with dataset-4-2h


Table 6 Datasets with 16 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-16-1a
	Column First
	Column shift = 0
	

	Dataset-16-1b
	Column First
	Column shift = 1
	

	Dataset-16-1c
	Column First
	Column shift = 0
	

	Dataset-16-1d
	Column First
	Column shift = 1
	

	Dataset-16-2a
	Row First
	Column shift = 0
	

	Dataset-16-2b
	Row First
	Column shift = 1
	

	Dataset-16-2c
	Row First
	Column shift = 0
	

	Dataset-16-2d
	Row First
	Column shift = 1
	



Table 7 Datasets with 8 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-8-1a
	Column First
	Column shift = 0
	

	Dataset-8-1b
	Column First
	Column shift = 1
	

	Dataset-8-1c
	Column First
	Column shift = 2
	

	Dataset-8-1d
	Column First
	Column shift = 3
	

	Dataset-8-1e
	Column First
	Column shift = 0
	

	Dataset-8-1f
	Column First
	Column shift = 1
	

	Dataset-8-1g
	Column First
	Column shift = 2
	

	Dataset-8-1h
	Column First
	Column shift = 3
	

	Dataset-8-2a
	Row First
	Column shift = 0
	

	Dataset-8-2b
	Row First
	Column shift = 1
	

	Dataset-8-2c
	Row First
	Column shift = 2
	

	Dataset-8-2d
	Row First
	Column shift = 3
	

	Dataset-8-2e
	Row First
	Column shift = 0
	

	Dataset-8-2f
	Row First
	Column shift = 1
	

	Dataset-8-2g
	Row First
	Column shift = 2
	

	Dataset-8-2h
	Row First
	Column shift = 3
	



Table 8, Datasets with 4 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-4-1a
	Column First
	Column shift = 0
	

	Dataset-4-1b
	Column First
	Column shift = 1
	

	Dataset-4-1c
	Column First
	Column shift = 2
	

	Dataset-4-1d
	Column First
	Column shift = 3
	

	Dataset-4-1e
	Column First
	Column shift = 0
	

	Dataset-4-1f
	Column First
	Column shift = 1
	

	Dataset-4-1g
	Column First
	Column shift = 2
	

	Dataset-4-1h
	Column First
	Column shift = 3
	

	Dataset-4-2a
	Row First
	Column shift = 0
	

	Dataset-4-2b
	Row First
	Column shift = 1
	

	Dataset-4-2c
	Row First
	Column shift = 2
	

	Dataset-4-2d
	Row First
	Column shift = 3
	

	Dataset-4-2e
	Row First
	Column shift = 0
	

	Dataset-4-2f
	Row First
	Column shift = 1
	

	Dataset-4-2g
	Row First
	Column shift = 2
	

	Dataset-4-2h
	Row First
	Column shift = 3
	




[bookmark: _Toc143266612]Dataset Combination 2 for GP-Case-3
· All datasets with the same Set B design at (column shift = 0) are included in the combination, i.e. different Set A designs (rowFirst and ColumnFirst),   and different antenna element spacings  with Set B design at (Column shift =0) are covered. They are highlighted in green in the duplicated tables 6-8.
· For Set B at 16 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-16-1a, Dataset-16-1c , Dataset-16-2a, Dataset-16-2c} 
·  test dataset from Dataset-16-1a, Dataset-16-1c , Dataset-16-2a, Dataset-16-2c.
· For Set B at 8 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-8-1a, Dataset-8-1e , Dataset-8-2a, Dataset-8-2e} 
·  test dataset from Dataset-8-1a, Dataset-8-1e , Dataset-8-2a, Dataset-8-2e.

· For Set B at 4 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Training dataset = {Dataset-4-1a, Dataset-4-1e , Dataset-4-2a, Dataset-4-2e} 
·  test dataset from Dataset-4-1a, Dataset-4-1e , Dataset-4-2a, Dataset-4-2e.

Table 6 Datasets with 16 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-16-1a
	Column First
	Column shift = 0
	

	Dataset-16-1b
	Column First
	Column shift = 1
	

	Dataset-16-1c
	Column First
	Column shift = 0
	

	Dataset-16-1d
	Column First
	Column shift = 1
	

	Dataset-16-2a
	Row First
	Column shift = 0
	

	Dataset-16-2b
	Row First
	Column shift = 1
	

	Dataset-16-2c
	Row First
	Column shift = 0
	

	Dataset-16-2d
	Row First
	Column shift = 1
	



Table 7 Datasets with 8 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-8-1a
	Column First
	Column shift = 0
	

	Dataset-8-1b
	Column First
	Column shift = 1
	

	Dataset-8-1c
	Column First
	Column shift = 2
	

	Dataset-8-1d
	Column First
	Column shift = 3
	

	Dataset-8-1e
	Column First
	Column shift = 0
	

	Dataset-8-1f
	Column First
	Column shift = 1
	

	Dataset-8-1g
	Column First
	Column shift = 2
	

	Dataset-8-1h
	Column First
	Column shift = 3
	

	Dataset-8-2a
	Row First
	Column shift = 0
	

	Dataset-8-2b
	Row First
	Column shift = 1
	

	Dataset-8-2c
	Row First
	Column shift = 2
	

	Dataset-8-2d
	Row First
	Column shift = 3
	

	Dataset-8-2e
	Row First
	Column shift = 0
	

	Dataset-8-2f
	Row First
	Column shift = 1
	

	Dataset-8-2g
	Row First
	Column shift = 2
	

	Dataset-8-2h
	Row First
	Column shift = 3
	



Table 8, Datasets with 4 beams in set B
	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-4-1a
	Column First
	Column shift = 0
	

	Dataset-4-1b
	Column First
	Column shift = 1
	

	Dataset-4-1c
	Column First
	Column shift = 2
	

	Dataset-4-1d
	Column First
	Column shift = 3
	

	Dataset-4-1e
	Column First
	Column shift = 0
	

	Dataset-4-1f
	Column First
	Column shift = 1
	

	Dataset-4-1g
	Column First
	Column shift = 2
	

	Dataset-4-1h
	Column First
	Column shift = 3
	

	Dataset-4-2a
	Row First
	Column shift = 0
	

	Dataset-4-2b
	Row First
	Column shift = 1
	

	Dataset-4-2c
	Row First
	Column shift = 2
	

	Dataset-4-2d
	Row First
	Column shift = 3
	

	Dataset-4-2e
	Row First
	Column shift = 0
	

	Dataset-4-2f
	Row First
	Column shift = 1
	

	Dataset-4-2g
	Row First
	Column shift = 2
	

	Dataset-4-2h
	Row First
	Column shift = 3
	





[bookmark: _Toc143266613]Dataset Combination 3 for GP-Case-3
· All datasets with the same Set A design (rowFirst or ColumnFirst) are included in the combination, i.e different antenna element spacings, different Set B designs are covered.
· For Set B at 16 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset = {Dataset-16-1a, Dataset-16-1b, Dataset-16-1c, Dataset-16-1d}
· Test dataset from Dataset-16-1a, Dataset-16-1b, Dataset-16-1c, Dataset-16-1d.
· Experiment 2:
· Training dataset = {Dataset-16-2a, Dataset-16-2b, Dataset-16-2c, Dataset-16-2d}
· Test dataset from Dataset-16-2a, Dataset-16-2b, Dataset-16-2c, Dataset-16-2d.

· For Set B at 8 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset {Dataset-8-1a, …, Dataset-8-1h}
· Test dataset from Dataset-8-1a, …, Dataset-8-1h.
· Experiment 2:
· Training dataset {Dataset-8-2a, …, Dataset-8-2h}
· Test dataset from Dataset-8-2a, …, Dataset-8-2h.
· 
· For Set B at 4 beams, 4 datasets are combined to train a single AI model, which is tested on each of the 4 datasets.
· Experiment 1:
· Training dataset {Dataset-4-1a, …, Dataset-4-1h}
· Test dataset from Dataset-4-1a, …, Dataset-4-1h.
· Experiment 2:
· Training dataset {Dataset-4-2a, …, Dataset-4-2h}
· Test dataset from Dataset-4-2a, …, Dataset-4-2h.


For fine tuning, our view is while it may bring benefits such as adopting an AI model to a particular scenario/configuration, its feasibility should be investigated. With generic compute platforms such as those with GPUs, fine-tuning may be readily supported. For AI model deployed on the UE side, the hardware/firmware to implement an AI model can be highly optimized with little capacity for extra-work not directly required for inference. With that, whether backwards propagation as required in fine-tuning is supported or not is a question. Thus we need to be careful with the feasibility of Case 2A.

We have 

Observation 2-1: It may not be feasible to support fine-tuning of a deployed AI model on the UE side.

[bookmark: _Toc143266614]Model description
We use four dense layers and one dropout layer, softmax activation is used for the last dense layer (output layer). For the input layer, As for AI model input, each sample is , where  is the set B size. For each beam in set B, the RSRP (dBm) is explicitly entered, and beam index is implicitly entered. Depending the number of beams in set B, there can be 4 inputs, 8 inputs or 16 inputs. 

[bookmark: _Toc143266615]Model description for BM Case-1

The AI model for BM Case-2 uses multiple dense layers.

With 4 inputs (set B with 4 beams), the complexity is given by 
Total params: 49,888
Trainable params: 49,888
Non-trainable params: 0

With 8 inputs (set B with 8 beams), the complexity is given by 
Total params: 50,144
Trainable params: 50,144
Non-trainable params: 0

With 16 inputs (set B with 16 beams), the complexity is given by 
Total params: 50,656
Trainable params: 50,656
Non-trainable params: 0

[bookmark: _Toc143266616]Model description for BM Case-2
The AI model for BM Case-2 uses LSTM and one dense layer.

With 4 inputs (set B with 4 beams), the complexity is given by 
Total params: 170,432
Trainable params: 170,432
Non-trainable params: 0

With 8 inputs (set B with 8 beams), the complexity is given by 
Total params: 173,632
Trainable params: 173,632
Non-trainable params: 0

With 16 inputs (set B with 16 beams), the complexity is given by 
Total params: 180,032
Trainable params: 180,032
Non-trainable params: 0


[bookmark: _Toc143266617]Discussion on quantization error’s impact to inference performance
We evaluated a number of quantizer by varying 
· The quantization of the reference beam, e.g., 1 dB
· Whether to provide a floor/ceil to the reference beam RSRP, e.g., [-140 dBm, -44 dBm]
· The quantization step for differential RSRP, e.g., 2 dB


	Test dataset
	Dataset-4-1a
	Dataset-4-1a

	Prediction method
	AI prediction 
(with quantization)
	AI prediction 
(without quantization) 

	top-1 beam accuracy
	0.667
	0.687

	top-2 beam accuracy
	0.845
	0.855

	top-3 beam accuracy
	0.909
	0.915

	top-4 beam accuracy
	0.948
	0.949

	top-1 1 dB margin accuracy
	0.783
	0.793



For a particular case (GP Case 1), slight performance degradation is observed with substantial feedback overhead. Whether the same performance can be achieved while reducing feedback overhead should be investigated. We have

Proposal 3: study quantization error’s impact to inference performance.


[image: Table
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Figure 3 Feedback overhead for beam reporting in NR design

First the discussion for RSRP quantization should be only for the NW side model. In legacy NR design, the quantization step for a reference beam is 1 dB, and the quantization step for the differential RSRP is 2 dB, and the lowest representable differential RSRP is -30 dB. The feedback overhead to support the NW side model is 
	
{overhead for the reference beam} + {overhead for the differential RSRPs}.

From the discussion on Set C and Set B at RAN1 #112, it may happen not all the measured beams need to be reported, e.g., a weak beam’s RSRP does not need reporting, this is especially true when the set B size relatively large.  

In the table below, for BM Case-1, 4 beam reporting methods are considered for NW side inference and model performance monitoring. In the first method, the strongest beam is identified and its RSRP is quantized with 7 bits. RSRPs for other beams in set B are differentially quantized with 4 bits. The second method is a simple extension of the NR legacy design to 16 beams. The third method uses a bitmap for indicating the selected strong beams. The fourth method uses a combinatorial indexing to indicate the selected strong beams.

	BM Case-1

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting
	Example (S=32, M=16, N=10)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam
	
	
	
71

	Reporting selected set B beams’ RSRPs with CRI signaling
	
	
	
	83

	Reporting selected set B beams’ RSRPs with bitmap
	
	
	
	63

	Reporting selected set B beams’ RSRPs with combinatorial index
	
	
	
	60


 
In the table below, for BM Case-2, 4 beam reporting methods are considered for NW side inference and model performance monitoring. In the first method,  , the strongest beam among all observation intervals is identified and its RSRP is quantized with 7 bits. RSRPs for other beams in set B are differentially quantized with 4 bits. The second method is a simple extension of the NR legacy design to 16 beams per each observation internal. The third method uses a bitmap for indicating the selected strong beams. The fourth method uses a combinatorial indexing per observation interval to indicate the selected strong beams.


	BM Case-2
	

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting, W = # of observation intervals
	Example (S=32, M=16, N=10, W=4)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam over W intervals 
	
	
	265

	Reporting selected set B beams’ RSRPs
	 (strongest beam indication per interval)
	 per interval
	
	

332

	Reporting selected set B beams’ RSRPs with bitmaps
	 per interval
	 per interval
	
	252

	Reporting selected set B beams’ RSRPs with combinatorial index
	 per interval
	 per interval
	
	240



We have 
Proposal 4: capture 4 UCI reporting methods for BM Case-1 and BM Case-2:


	BM Case-1

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting
	Example (S=32, M=16, N=10)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam
	
	
	
71

	Reporting selected set B beams’ RSRPs with CRI signaling
	
	
	
	83

	Reporting selected set B beams’ RSRPs with bitmap
	
	
	
	63

	Reporting selected set B beams’ RSRPs with combinatorial index
	
	
	
	60





	BM Case-2
	

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting, W = # of observation intervals
	Example (S=32, M=16, N=10, W=4)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam over W intervals 
	
	
	265

	Reporting selected set B beams’ RSRPs
	 (strongest beam indication per interval)
	 per interval
	
	

332

	Reporting selected set B beams’ RSRPs with bitmaps
	 per interval
	 per interval
	
	252

	Reporting selected set B beams’ RSRPs with combinatorial index
	 per interval
	 per interval
	
	240




On the question from RAN2 below:

To facilitate the discussion on data collection in RAN2 for further progress, RAN2 would like RAN1 to provide feedback/inputs on the following essential aspects:
· Data content
· Typical data size (value or value range) of the identified data content
· Reporting type (e.g., periodic, event triggered, other) of the identified data content
· Typical latency requirement (value or value range) to transfer the identified data content









Then we can provide answer based on the above analysis. We have 
Proposal 5: consider the following table for LS reply to RAN2:

	
	Data content
	Typical data size
	Reporting type
	Latency requirement

	Offline training
	“Set A” and “set B” measurements 
	Large, and depending on the targeted generalization performance
	Signaling by RRC  configuration for NW side training. None for UE side training. For NW side training, the collected data is carried with 
user plane or control plane via PUSCH 
	Large (hours or days)

	Inference
	Beam reporting
	70 ~ 280 bits for NW side inference

Several bits to tens of bits for UE side inference
	Periodic, semi-persistent,  aperiodic, event-triggered reporting
 
	Short (~ ms)

	






Performance monitoring 
	Beam reporting on set A/set B for NW side inference
	140 bits for BM Case-1 with 32 set A beams, 560 bits for BM Case-2 with 32 set A beams and for 4 occasions  for one sample, multiple samples may be needed.
	Periodic, semi-persistent, aperiodic reporting

 
	






Medium (configurable by NW, ~100ms)

	
	performance metric/event for UE side inference.
	A few bits or more depending on the exact performance metric.
	Periodic, semi-persistent, aperiodic or event-triggered reporting

 
	



[bookmark: _Toc143266618]Discussion on measurement error
The measured signal strength can be related to the signal strength of the genie signal by the following:

where  is the Rx beam index, and  is the Tx beam index, and  is the genie RSRP of the reference signal transmitted by Tx beam  and received by Rx beam ,  characterizes the gain error between the genie RSRP and the measured RSRP, which can be due to the difference between assumed gain setting and the actual gain setting (e.g., the UE assumes there is X dB gain from antenna to the digital baseband, but the actual gain is Y dB, then  corresponds to (Y-X) dB ). Then there is also thermal noise contributing to measurement error which is represented by . There can be algorithmic error when further signal processing procedure is applied to  or  e.g., the channel estimation quality has dependence on the SINR of the received signal, due to fluctuation in the SINR, a further factor might need to be considered in a study which would include all the implementation details, and the implementation details would be disclosed. Pursuing that would not be the RAN1 practice and many details are probably outside RAN1’s expertise.
Then it is natural that we limit ourselves to study the effect of  and .
We can see there can be a tradeoff between quantization error in  and gain error : if the input signal takes the full-scale of the ADC, it can be expected the quantization error may be small, however to achieve the full-scale input for ADC, gain stages may need to be optimized for each individual signal, which can lead to a large and different .
In another choice, for a given Rx beam, if the gain stages are kept unchanged from one Tx beam to another, then the measurement condition is the same for the measurement of Tx beams, it can be expected while  may be large or may be small, however the difference between  and  for Tx beams  and  may be small or zero. However, in this case, the quantization error related to the signal strength may be larger for weaker signals.
For NW-side inference, the reported RSRP is given by

where  is a quantizer.
There are at least two sources for quantization error:
· ADC quantization error: quantization error due to ADC resolution which contributes to . In the agreed evaluation methodology, for carrier frequency at 30 GHz, BWP bandwidth at 80 MHz, and subcarrier spacing at 120 KHz, there are about 50 PRBs over 80 MHz, which translates into  dB processing gain for CSI-RS, the impact of ADC quantization error may be much reduced by the large processing gain.
· Reporting quantization error: quantization error due to feedback overhead constraint, which is captured by .
We have
Observation 2-2: the main factors to consider for measurement error are the reporting quantization error and gain error .


To evaluate measurement error’s impact to inference performance, we study three cases:
· Beam measurement without measurement error
· Beam measurement with common mode measurement error with a given Rx beam, which is modelled as a variable following a Gaussian distribution with zero mean and 3.3 dB for standard deviation (i.e. all Tx beams are impacted by the same measurement error with the Rx beam);
· Beam measurement with independent measurement errors, which are modelled as random variables following a Gaussian distribution with zero mean and 3.3 dB for standard deviation (i.e. Tx beams are impacted by the different measurement errors). 
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Details in the evaluation resutls can be found in the accompanying excel file.

For conventional method, the measured RSRP instead of normalized RSRP is used for beam selection. The normalization parameters (scale & bias) for each set B beam for the AI method can be slightly different.

For spatial domain beam prediction with measurement for limited number of beams, a classification network is used with fully connected layers. The input is the normalized L1-RSRP for set B beams.
As shown in Figure 2, UE does not need to measure the all the beams, but it only needs to measure a subset of beams at the initial stage and with the help of machine learning, a new beam search space (BSS) can be identified for next step measurement. The final beam selection can be performance based on the measurement result from the BSS.
Tables below provide the results for beam prediction accuracy. The simulation is based data set generation procedure as given above. All the data are generated from a system level simulator. Regarding Rx beam, the optimal Rx beam is used.  65% of the data is used for training and 10% for validation and 15% for test. The machine learning is based on multiple fully connected layers. It can be observed that it is possible to use AI to predict the Tx beams to reduce the beam management overhead. The simulation assumptions compliant with the agreements from RAN1 109-e/110 are captured in the Appendix section. 
For comparison, in the conventional approach, measurements from set B are used to identify the strongest set B beam, then 3 neighbors of the strongest set B beam are measured additionally, and it is checked whether the optimal set A beam is one of them. When number of the BSS is 1, then the optimal set A beam is checked against the strongest set B beam only.

We report top-1, top-2, top-3, top-4 beam prediction accuracy in the evaluation.  We also report top-1 1 dB margin accuracy as it reveals how well AI based BM performs compared with the conventional BM method. 
For each evaluation, a limited samples are included below. Please refer to the attached excel file for the full reported evaluations.

In each table below (which may be truncated due to space limit) and all tables reported in the excel file, 

For each evaluation, the training data set composition is captured. 

For Generalization performance case 1(GP Case 1), the training data set and the test data set are the same. For each test, the test dataset is marked. 

For generalization performance case 2(GP Case 2), the training data set and the test data set are different (c.f. the section on training dataset composition in this contribution). However, we also include the evaluation results in generalization former case 1 in the same table to allow review on GP-Case 1 and G-Case 2 side by side. 

For Generalization performance case 3 (GP Case 3), a mixture of datasets is used for AI model training, and inference is performed on each component dataset. 
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In general, for GP-Case-1, AI enabled BM outperforms the conventional approach. A summary of evaluation results is provided below. For full evaluation results, please refer to the attached excel files.


	GP Case 1, NoMeasError
	
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	60.1% ~ 64.8%,  mean=62.6%
	15.0% ~ 22.1%,  mean=18.2%
	78.5% ~ 81.2%,  mean=80.0%
	23.5% ~ 26.1%,  mean=24.8%
	89.6% ~ 90.5%,  mean=90.2%
	48.4% ~ 49.4%,  mean=48.9%

	top-2 beam accuracy
	79.4% ~ 84.0%,  mean=81.8%
	24.3% ~ 34.7%,  mean=29.1%
	94.6% ~ 95.2%,  mean=94.9%
	37.6% ~ 39.8%,  mean=38.8%
	98.3% ~ 98.8%,  mean=98.5%
	53.7% ~ 56.1%,  mean=54.7%

	top-3 beam accuracy
	87.9% ~ 91.0%,  mean=89.5%
	33.6% ~ 47.0%,  mean=39.8%
	98.0% ~ 98.2%,  mean=98.1%
	51.8% ~ 53.4%,  mean=52.6%
	99.4% ~ 99.7%,  mean=99.5%
	58.6% ~ 60.9%,  mean=59.5%

	top-4 beam accuracy
	92.4% ~ 94.6%,  mean=93.6%
	50.1% ~ 62.8%,  mean=56.6%
	99.1% ~ 99.3%,  mean=99.2%
	64.6% ~ 68.3%,  mean=65.9%
	99.8% ~ 99.9%,  mean=99.8%
	78.9% ~ 83.7%,  mean=81.5%

	top-1 1 dB margin accuracy
	70.1% ~ 77.4%,  mean=73.9%
	21.8% ~ 32.2%,  mean=26.3%
	87.2% ~ 89.7%,  mean=88.6%
	33.8% ~ 37.7%,  mean=35.9%
	97.4% ~ 98.2%,  mean=97.8%
	66.4% ~ 69.3%,  mean=67.9%

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	GP Case 1, CommonMeasError
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	59.9% ~ 64.9%,  mean=62.5%
	15.0% ~ 22.1%,  mean=18.2%
	78.4% ~ 81.2%,  mean=80.0%
	23.5% ~ 26.1%,  mean=24.8%
	89.6% ~ 90.4%,  mean=90.1%
	48.4% ~ 49.4%,  mean=48.9%

	top-2 beam accuracy
	79.4% ~ 84.0%,  mean=81.8%
	24.3% ~ 34.7%,  mean=29.1%
	94.6% ~ 95.2%,  mean=94.9%
	37.6% ~ 39.8%,  mean=38.8%
	98.3% ~ 98.9%,  mean=98.5%
	53.7% ~ 56.1%,  mean=54.7%

	top-3 beam accuracy
	87.9% ~ 90.9%,  mean=89.4%
	33.6% ~ 47.0%,  mean=39.8%
	98.0% ~ 98.2%,  mean=98.1%
	51.8% ~ 53.4%,  mean=52.6%
	99.4% ~ 99.7%,  mean=99.5%
	58.6% ~ 60.8%,  mean=59.4%

	top-4 beam accuracy
	92.3% ~ 94.6%,  mean=93.5%
	50.1% ~ 62.8%,  mean=56.6%
	99.1% ~ 99.3%,  mean=99.2%
	64.7% ~ 68.4%,  mean=65.9%
	99.8% ~ 99.9%,  mean=99.8%
	78.9% ~ 83.7%,  mean=81.5%

	top-1 1 dB margin accuracy
	70.1% ~ 77.4%,  mean=73.8%
	21.8% ~ 32.2%,  mean=26.3%
	87.1% ~ 89.7%,  mean=88.5%
	33.8% ~ 37.7%,  mean=35.9%
	97.5% ~ 98.2%,  mean=97.8%
	66.4% ~ 69.3%,  mean=67.7%

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	GP Case 1, Indpt.MeasError
	
	
	
	
	

	
	
	
	
	
	
	

	 
	 setB with 4 beams
	 setB with 8 beams
	 setB with 16 beams

	Prediction method
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	top-1 beam accuracy
	33.1% ~ 37.5%,  mean=35.2%
	14.8% ~ 21.7%,  mean=17.8%
	54.1% ~ 56.6%,  mean=55.0%
	22.7% ~ 25.4%,  mean=24.1%
	67.5% ~ 68.5%,  mean=67.9%
	40.3% ~ 42.1%,  mean=41.2%

	top-2 beam accuracy
	50.3% ~ 58.3%,  mean=54.4%
	23.9% ~ 33.9%,  mean=28.4%
	77.3% ~ 80.3%,  mean=78.9%
	36.3% ~ 38.3%,  mean=37.4%
	86.4% ~ 87.5%,  mean=87.1%
	47.8% ~ 49.2%,  mean=48.4%

	top-3 beam accuracy
	62.2% ~ 70.1%,  mean=66.2%
	33.1% ~ 46.1%,  mean=39.0%
	87.1% ~ 89.6%,  mean=88.4%
	49.7% ~ 51.5%,  mean=50.5%
	92.2% ~ 93.2%,  mean=92.8%
	54.1% ~ 55.7%,  mean=55.0%

	top-4 beam accuracy
	69.9% ~ 78.5%,  mean=74.5%
	49.0% ~ 60.6%,  mean=55.3%
	92.1% ~ 94.4%,  mean=93.2%
	61.0% ~ 64.9%,  mean=62.7%
	95.7% ~ 96.4%,  mean=96.0%
	71.8% ~ 75.2%,  mean=73.4%

	top-1 1 dB margin accuracy
	41.8% ~ 49.7%,  mean=45.5%
	21.3% ~ 31.7%,  mean=25.7%
	65.2% ~ 67.7%,  mean=66.6%
	32.2% ~ 36.1%,  mean=34.2%
	80.4% ~ 81.8%,  mean=81.1%
	54.9% ~ 56.7%,  mean=55.7%

	
	
	
	
	
	
	



When there is no measurement error, we have 

Observation 3-1: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.6%,
Top-2 Tx beam accuracy at 81.8%,
Top-3 Tx beam accuracy at 89.5%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 73.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-2: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 80.0%,
Top-2 Tx beam accuracy at 94.9%,
Top-3 Tx beam accuracy at 98.1%,
Top-4 Tx beam accuracy at 99.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-3: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 90.2%,
Top-2 Tx beam accuracy at 98.5%,
Top-3 Tx beam accuracy at 99.5%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 

When there is common mode measurement error, we have 


Observation 3-4: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.5%,
Top-2 Tx beam accuracy at 81.8%,
Top-3 Tx beam accuracy at 89.4%,
Top-4 Tx beam accuracy at 93.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 73.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-5: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 80.0%,
Top-2 Tx beam accuracy at 94.9%,
Top-3 Tx beam accuracy at 98.1%,
Top-4 Tx beam accuracy at 99.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-6: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 90.1%,
Top-2 Tx beam accuracy at 98.5%,
Top-3 Tx beam accuracy at 99.5%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.7%. 

When there is independent measurement error, we have 

Observation 3-7: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 35.2%,
Top-2 Tx beam accuracy at 54.4%,
Top-3 Tx beam accuracy at 66.2%,
Top-4 Tx beam accuracy at 74.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 45.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.7%. 


Observation 3-8: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 55.0%,
Top-2 Tx beam accuracy at 78.9%,
Top-3 Tx beam accuracy at 88.4%,
Top-4 Tx beam accuracy at 93.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.2%. 


Observation 3-9: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 67.9%,
Top-2 Tx beam accuracy at 87.1%,
Top-3 Tx beam accuracy at 92.8%,
Top-4 Tx beam accuracy at 96.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.7%. 






[bookmark: _Toc143266621]Results for Generalization Performance Case-2
[bookmark: _Toc143266622]Notes on evaluation results
In a sample of the reported results, note GP-Case 1 results are reported along with GP-Case 2 results, due to difficulty in table formatting. Note the evaluation results have been updated in the excel files. 


	Training data set composition: {Dataset-4-1a}
	
	
	
	

	
	
	
	
	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a
GP-Case 1 


	Dataset-4-1b
	Dataset-4-1b
	Dataset-4-1c
	Dataset-4-1c

	Prediction method
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	0.687
	0.222
	0.134
	0.208
	0.218
	0.199

	top-2 beam accuracy
	0.855
	0.345
	0.257
	0.327
	0.357
	0.322

	top-3 beam accuracy
	0.915
	0.473
	0.347
	0.456
	0.444
	0.443

	top-4 beam accuracy
	0.949
	0.617
	0.438
	0.617
	0.522
	0.626

	top-1 1 dB margin accuracy
	0.793
	0.322
	0.207
	0.299
	0.309
	0.295
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When there is no measurement error, we have the following observations from evaluation for different set A design, set B design and antenna spacing choices. It is clear with Generalization Case-2, AI-BM tends to perform worse than the conventional approach. This is not surprising, just as for model based digital signal processing, when the model is invalid, the algorithm fails badly.

Observation 3-10: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.5%,
Top-2 Tx beam accuracy at 14.8%,
Top-3 Tx beam accuracy at 20.3%,
Top-4 Tx beam accuracy at 25.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 11.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-11: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.4%,
Top-2 Tx beam accuracy at 26.0%,
Top-3 Tx beam accuracy at 34.4%,
Top-4 Tx beam accuracy at 41.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-12: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 21.1%,
Top-2 Tx beam accuracy at 33.9%,
Top-3 Tx beam accuracy at 42.1%,
Top-4 Tx beam accuracy at 49.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 

[bookmark: _Toc143266624]Observation on Generalization Case 2 with common mode measurement error

We can also draw some conclusions with the common mode measurement error, which has little impact on the beam accuracy performance.

Observation 3-13: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.5%,
Top-2 Tx beam accuracy at 14.7%,
Top-3 Tx beam accuracy at 20.3%,
Top-4 Tx beam accuracy at 25.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 11.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-14: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.4%,
Top-2 Tx beam accuracy at 26.0%,
Top-3 Tx beam accuracy at 34.4%,
Top-4 Tx beam accuracy at 41.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-15: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 21.1%,
Top-2 Tx beam accuracy at 33.9%,
Top-3 Tx beam accuracy at 42.1%,
Top-4 Tx beam accuracy at 49.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.8%. 
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We can also draw some conclusions with the independent measurement error, which makes on the AI beam accuracy performance even worse.

Observation 3-16: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 7.3%,
Top-2 Tx beam accuracy at 13.1%,
Top-3 Tx beam accuracy at 18.4%,
Top-4 Tx beam accuracy at 23.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 10.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-17: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.9%,
Top-2 Tx beam accuracy at 23.6%,
Top-3 Tx beam accuracy at 31.8%,
Top-4 Tx beam accuracy at 38.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 17.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-18: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 18.9%,
Top-2 Tx beam accuracy at 31.2%,
Top-3 Tx beam accuracy at 39.5%,
Top-4 Tx beam accuracy at 46.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.7%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 
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Observation 3-19: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.2%,
Top-2 Tx beam accuracy at 5.3%,
Top-3 Tx beam accuracy at 10.4%,
Top-4 Tx beam accuracy at 13.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 3.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 22.1%,
Top-2 Tx beam accuracy at 34.3%,
Top-3 Tx beam accuracy at 46.9%,
Top-4 Tx beam accuracy at 61.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 32.2%. 


Observation 3-20: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.8%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 19.8%,
Top-4 Tx beam accuracy at 24.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 15.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.4%,
Top-2 Tx beam accuracy at 39.2%,
Top-3 Tx beam accuracy at 53.1%,
Top-4 Tx beam accuracy at 65.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 37.7%. 


Observation 3-21: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.3%,
Top-2 Tx beam accuracy at 25.6%,
Top-3 Tx beam accuracy at 30.9%,
Top-4 Tx beam accuracy at 35.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 24.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.7%,
Top-2 Tx beam accuracy at 53.8%,
Top-3 Tx beam accuracy at 59.1%,
Top-4 Tx beam accuracy at 82.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-22: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.2%,
Top-2 Tx beam accuracy at 5.3%,
Top-3 Tx beam accuracy at 10.3%,
Top-4 Tx beam accuracy at 13.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 3.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 22.1%,
Top-2 Tx beam accuracy at 34.3%,
Top-3 Tx beam accuracy at 46.9%,
Top-4 Tx beam accuracy at 61.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 32.2%. 


Observation 3-23: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.7%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 19.8%,
Top-4 Tx beam accuracy at 24.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 15.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.4%,
Top-2 Tx beam accuracy at 39.2%,
Top-3 Tx beam accuracy at 53.1%,
Top-4 Tx beam accuracy at 64.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 37.7%. 


Observation 3-24: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.3%,
Top-2 Tx beam accuracy at 25.6%,
Top-3 Tx beam accuracy at 30.9%,
Top-4 Tx beam accuracy at 35.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 24.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.7%,
Top-2 Tx beam accuracy at 53.8%,
Top-3 Tx beam accuracy at 59.0%,
Top-4 Tx beam accuracy at 82.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-25: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.8%,
Top-2 Tx beam accuracy at 6.7%,
Top-3 Tx beam accuracy at 11.0%,
Top-4 Tx beam accuracy at 15.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 4.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 21.7%,
Top-2 Tx beam accuracy at 33.7%,
Top-3 Tx beam accuracy at 46.0%,
Top-4 Tx beam accuracy at 60.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 31.3%. 


Observation 3-26: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.4%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 20.1%,
Top-4 Tx beam accuracy at 25.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 14.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.7%,
Top-2 Tx beam accuracy at 37.8%,
Top-3 Tx beam accuracy at 51.5%,
Top-4 Tx beam accuracy at 62.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.1%. 


Observation 3-27: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.1%,
Top-2 Tx beam accuracy at 23.9%,
Top-3 Tx beam accuracy at 29.6%,
Top-4 Tx beam accuracy at 35.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 21.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 40.7%,
Top-2 Tx beam accuracy at 48.1%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 56.3%. 
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Observation 3-28: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.3%,
Top-2 Tx beam accuracy at 25.8%,
Top-3 Tx beam accuracy at 33.7%,
Top-4 Tx beam accuracy at 41.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 20.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.5%,
Top-2 Tx beam accuracy at 33.2%,
Top-3 Tx beam accuracy at 45.4%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.8%. 


Observation 3-29: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 11.4%,
Top-2 Tx beam accuracy at 28.0%,
Top-3 Tx beam accuracy at 40.4%,
Top-4 Tx beam accuracy at 51.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.9%,
Top-3 Tx beam accuracy at 52.4%,
Top-4 Tx beam accuracy at 65.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.5%. 


Observation 3-30: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 15.2%,
Top-2 Tx beam accuracy at 48.3%,
Top-3 Tx beam accuracy at 60.8%,
Top-4 Tx beam accuracy at 66.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 49.3%,
Top-2 Tx beam accuracy at 56.1%,
Top-3 Tx beam accuracy at 59.9%,
Top-4 Tx beam accuracy at 78.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 69.3%. 


Observation 3-31: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.3%,
Top-2 Tx beam accuracy at 25.8%,
Top-3 Tx beam accuracy at 33.6%,
Top-4 Tx beam accuracy at 41.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 20.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.5%,
Top-2 Tx beam accuracy at 33.2%,
Top-3 Tx beam accuracy at 45.4%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.8%. 


Observation 3-32: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 11.4%,
Top-2 Tx beam accuracy at 28.0%,
Top-3 Tx beam accuracy at 40.3%,
Top-4 Tx beam accuracy at 51.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.9%,
Top-3 Tx beam accuracy at 52.4%,
Top-4 Tx beam accuracy at 65.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.4%. 


Observation 3-33: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 15.3%,
Top-2 Tx beam accuracy at 48.3%,
Top-3 Tx beam accuracy at 60.8%,
Top-4 Tx beam accuracy at 66.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 49.3%,
Top-2 Tx beam accuracy at 56.1%,
Top-3 Tx beam accuracy at 59.9%,
Top-4 Tx beam accuracy at 78.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-34: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.6%,
Top-2 Tx beam accuracy at 23.2%,
Top-3 Tx beam accuracy at 30.8%,
Top-4 Tx beam accuracy at 37.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.0%,
Top-2 Tx beam accuracy at 32.3%,
Top-3 Tx beam accuracy at 44.2%,
Top-4 Tx beam accuracy at 60.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.2%. 


Observation 3-35: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.3%,
Top-2 Tx beam accuracy at 26.8%,
Top-3 Tx beam accuracy at 38.3%,
Top-4 Tx beam accuracy at 49.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.0%,
Top-2 Tx beam accuracy at 37.5%,
Top-3 Tx beam accuracy at 50.3%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.4%. 


Observation 3-36: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.7%,
Top-2 Tx beam accuracy at 43.8%,
Top-3 Tx beam accuracy at 57.1%,
Top-4 Tx beam accuracy at 64.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 49.2%,
Top-3 Tx beam accuracy at 55.5%,
Top-4 Tx beam accuracy at 71.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%.
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Observation 3-37: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 22.1%,
Top-2 Tx beam accuracy at 35.6%,
Top-3 Tx beam accuracy at 44.4%,
Top-4 Tx beam accuracy at 52.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 31.0%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.9%,
Top-2 Tx beam accuracy at 32.5%,
Top-3 Tx beam accuracy at 44.7%,
Top-4 Tx beam accuracy at 62.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.5%. 


Observation 3-38: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.1%,
Top-2 Tx beam accuracy at 26.7%,
Top-3 Tx beam accuracy at 38.0%,
Top-4 Tx beam accuracy at 52.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 17.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.7%,
Top-2 Tx beam accuracy at 38.5%,
Top-3 Tx beam accuracy at 52.2%,
Top-4 Tx beam accuracy at 66.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.9%. 


Observation 3-39: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.7%,
Top-2 Tx beam accuracy at 92.8%,
Top-3 Tx beam accuracy at 96.5%,
Top-4 Tx beam accuracy at 98.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.4%,
Top-2 Tx beam accuracy at 54.5%,
Top-3 Tx beam accuracy at 58.8%,
Top-4 Tx beam accuracy at 81.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.4%. 


Observation 3-40: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 22.0%,
Top-2 Tx beam accuracy at 35.4%,
Top-3 Tx beam accuracy at 44.3%,
Top-4 Tx beam accuracy at 52.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 30.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.9%,
Top-2 Tx beam accuracy at 32.5%,
Top-3 Tx beam accuracy at 44.7%,
Top-4 Tx beam accuracy at 62.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.5%. 


Observation 3-41: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.1%,
Top-2 Tx beam accuracy at 26.8%,
Top-3 Tx beam accuracy at 38.0%,
Top-4 Tx beam accuracy at 52.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 17.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.6%,
Top-2 Tx beam accuracy at 38.5%,
Top-3 Tx beam accuracy at 52.2%,
Top-4 Tx beam accuracy at 66.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.8%. 


Observation 3-42: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.7%,
Top-2 Tx beam accuracy at 92.8%,
Top-3 Tx beam accuracy at 96.4%,
Top-4 Tx beam accuracy at 98.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.4%,
Top-2 Tx beam accuracy at 54.5%,
Top-3 Tx beam accuracy at 58.8%,
Top-4 Tx beam accuracy at 81.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.4%. 


Observation 3-43: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 18.4%,
Top-2 Tx beam accuracy at 30.7%,
Top-3 Tx beam accuracy at 39.6%,
Top-4 Tx beam accuracy at 47.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.4%,
Top-2 Tx beam accuracy at 31.5%,
Top-3 Tx beam accuracy at 43.3%,
Top-4 Tx beam accuracy at 60.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.0%. 


Observation 3-44: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.7%,
Top-2 Tx beam accuracy at 26.4%,
Top-3 Tx beam accuracy at 37.4%,
Top-4 Tx beam accuracy at 49.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 20.0%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 23.9%,
Top-2 Tx beam accuracy at 37.2%,
Top-3 Tx beam accuracy at 50.2%,
Top-4 Tx beam accuracy at 62.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.8%. 


Observation 3-45: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.2%,
Top-2 Tx beam accuracy at 82.3%,
Top-3 Tx beam accuracy at 89.3%,
Top-4 Tx beam accuracy at 93.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 74.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.0%,
Top-2 Tx beam accuracy at 48.2%,
Top-3 Tx beam accuracy at 54.2%,
Top-4 Tx beam accuracy at 73.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.9%. 
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With mismatch between the dataset for model training and test dataset for model inference, the AI model performance can degrade severely, and it can be even worse than the conventional method. Note with even 16 beams in set B, the top-1 beam accuracy for AI can be low, e.g., with a training dataset following the ColumnFirst setA design, and a test dataset following RowFirst setA design, the performance is poor. While all the considered mismatching factors lead to poor beam prediction performance, in terms of severity it is observed 

Observation GP-Case2-a:
Generalization performance Case 2 in general has poor performance due to mismatch in set A design, set B design and antenna spacing design. In terms of severity of performance degradation, 
Set A design {ColumnFirst vs RowFirst} > Set B design {Column Shift =0, 1, etc.} > antenna element spacing.

Observation GP-Case-2b:
Even for the least damaging factor, comparing GP Case 1 and GP Case 2 evaluation, with other factors being identical, the top-1 beam accuracy degrades substantially just due to mismatched antenna element spacing: from 73.9% to 34.2% at 4 beams in Set B, from 88.6% to 63.9% at 8 beams in set B, from 97.8% to 88.4% at 16 beams in set B. 


[bookmark: _Toc143266630]Results for Generalization Performance Case-3


Observation 3-46: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.5%,
Top-2 Tx beam accuracy at 52.7%,
Top-3 Tx beam accuracy at 63.9%,
Top-4 Tx beam accuracy at 71.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 42.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-47: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 64.1%,
Top-2 Tx beam accuracy at 83.0%,
Top-3 Tx beam accuracy at 90.0%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-48: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 86.7%,
Top-2 Tx beam accuracy at 97.2%,
Top-3 Tx beam accuracy at 98.9%,
Top-4 Tx beam accuracy at 99.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 95.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-49: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.5%,
Top-2 Tx beam accuracy at 52.6%,
Top-3 Tx beam accuracy at 63.9%,
Top-4 Tx beam accuracy at 71.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 42.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-50: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 64.0%,
Top-2 Tx beam accuracy at 82.9%,
Top-3 Tx beam accuracy at 89.9%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-51: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 86.7%,
Top-2 Tx beam accuracy at 97.2%,
Top-3 Tx beam accuracy at 98.9%,
Top-4 Tx beam accuracy at 99.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 95.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.8%. 


Observation 3-52: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 19.2%,
Top-2 Tx beam accuracy at 32.5%,
Top-3 Tx beam accuracy at 42.4%,
Top-4 Tx beam accuracy at 50.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-53: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.6%,
Top-2 Tx beam accuracy at 55.1%,
Top-3 Tx beam accuracy at 67.3%,
Top-4 Tx beam accuracy at 75.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 43.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-54: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 57.6%,
Top-2 Tx beam accuracy at 79.0%,
Top-3 Tx beam accuracy at 87.7%,
Top-4 Tx beam accuracy at 92.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 69.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 


Observation 3-55: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 47.7%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.5%,
Top-4 Tx beam accuracy at 84.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 57.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.1%,
Top-2 Tx beam accuracy at 29.7%,
Top-3 Tx beam accuracy at 40.5%,
Top-4 Tx beam accuracy at 57.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 27.4%. 


Observation 3-56: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.9%,
Top-2 Tx beam accuracy at 92.1%,
Top-3 Tx beam accuracy at 96.1%,
Top-4 Tx beam accuracy at 97.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 84.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.5%,
Top-2 Tx beam accuracy at 39.1%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.8%. 


Observation 3-57: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 89.3%,
Top-2 Tx beam accuracy at 98.1%,
Top-3 Tx beam accuracy at 99.4%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.5%,
Top-2 Tx beam accuracy at 54.3%,
Top-3 Tx beam accuracy at 58.9%,
Top-4 Tx beam accuracy at 81.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.6%. 


Observation 3-58: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 47.7%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.5%,
Top-4 Tx beam accuracy at 84.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 57.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.1%,
Top-2 Tx beam accuracy at 29.7%,
Top-3 Tx beam accuracy at 40.5%,
Top-4 Tx beam accuracy at 57.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 27.4%. 


Observation 3-59: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.9%,
Top-2 Tx beam accuracy at 92.0%,
Top-3 Tx beam accuracy at 96.1%,
Top-4 Tx beam accuracy at 97.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 84.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.5%,
Top-2 Tx beam accuracy at 39.1%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.8%. 


Observation 3-60: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 89.3%,
Top-2 Tx beam accuracy at 98.2%,
Top-3 Tx beam accuracy at 99.4%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.5%,
Top-2 Tx beam accuracy at 54.3%,
Top-3 Tx beam accuracy at 58.9%,
Top-4 Tx beam accuracy at 81.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.6%. 


Observation 3-61: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.1%,
Top-2 Tx beam accuracy at 41.7%,
Top-3 Tx beam accuracy at 52.9%,
Top-4 Tx beam accuracy at 60.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 33.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.7%,
Top-2 Tx beam accuracy at 29.2%,
Top-3 Tx beam accuracy at 39.7%,
Top-4 Tx beam accuracy at 55.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.7%. 


Observation 3-62: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 46.4%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.2%,
Top-4 Tx beam accuracy at 84.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 56.7%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 37.7%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.2%. 


Observation 3-63: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 63.1%,
Top-2 Tx beam accuracy at 83.3%,
Top-3 Tx beam accuracy at 89.9%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 76.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 40.9%,
Top-2 Tx beam accuracy at 48.0%,
Top-3 Tx beam accuracy at 54.5%,
Top-4 Tx beam accuracy at 73.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.6%. 


Observation 3-64: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 44.5%,
Top-2 Tx beam accuracy at 64.3%,
Top-3 Tx beam accuracy at 75.5%,
Top-4 Tx beam accuracy at 82.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-65: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 72.0%,
Top-2 Tx beam accuracy at 89.7%,
Top-3 Tx beam accuracy at 94.9%,
Top-4 Tx beam accuracy at 97.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-66: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 88.2%,
Top-2 Tx beam accuracy at 97.9%,
Top-3 Tx beam accuracy at 99.2%,
Top-4 Tx beam accuracy at 99.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 96.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-67: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 44.4%,
Top-2 Tx beam accuracy at 64.2%,
Top-3 Tx beam accuracy at 75.4%,
Top-4 Tx beam accuracy at 82.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-68: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 71.9%,
Top-2 Tx beam accuracy at 89.7%,
Top-3 Tx beam accuracy at 94.9%,
Top-4 Tx beam accuracy at 97.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.0%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-69: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 88.2%,
Top-2 Tx beam accuracy at 97.9%,
Top-3 Tx beam accuracy at 99.2%,
Top-4 Tx beam accuracy at 99.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 96.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-70: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.0%,
Top-2 Tx beam accuracy at 42.6%,
Top-3 Tx beam accuracy at 54.2%,
Top-4 Tx beam accuracy at 62.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-71: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 41.3%,
Top-2 Tx beam accuracy at 64.6%,
Top-3 Tx beam accuracy at 77.2%,
Top-4 Tx beam accuracy at 84.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 51.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-72: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 60.1%,
Top-2 Tx beam accuracy at 82.0%,
Top-3 Tx beam accuracy at 90.1%,
Top-4 Tx beam accuracy at 94.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 
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From the evaluation provided in the attached spreadsheets, we have 
Observation GP-Case-1-2-3-a:
· For generalization performance Case -1 and BM Case-1, trained AI models perform well and provide better beam prediction accuracy than the conventional approach.
· For generalization performance Case -2 and BM Case-1, trained AI models can perform much worse than that for GP Case-1, they may have even worse beam prediction accuracy than the conventional approach.
· For generalization performance Case-3 and BM Case-1, trained AI models can perform worse than that for GP Case-1, even though are in general better than that for GP case-2. the AI performance with set B beam at 8 beams with GP Case-3 is roughly the same as the AI performance with set B at 4 beams with GP Case-1.
It should be noted that as there can be many design combinations which cannot be adequately captured in the model training (e.g., infra vendors are reluctant to share beam angle information, field networks optimization for specific cells), GP Case-2 is more likely to be encountered rather than GP Case-3. 
We have:
Proposal 6: As generalization performance can be poor for AI models trained without Tx beam shape information, study NW-trained cell-specific AI models for AI enabled beam management.
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The impact of measurement error is evaluated for Generalization Case 1/2/3 for BM Case-1, with the same setup as for Section 3 (Simulation results for BM Case-1).

We have

Observation-measuremenet-error-1: 
With common mode measurement error for Tx beams with a given Rx beam, AI inference performance degrades slightly compared with the case without measurement error.

Observation-measuremenet-error-2: 
With independent measurements for Tx beams, which can arise if those Tx beam are received with different Rx beams, significant performance loss for AI inference is seen when compared with the case without measurement error.

The evaluation results unveil differences in the impact on AI inference performance when beam measurements are subjected to either common mode measurement error or independent measurement errors. For beam pair prediction, when one Rx beam is switched to another Rx beam, it is likely beam measurement will experience independent measurement errors, thus beam pair prediction performance can be degraded. 

Observation-measuremenet-error-2: 
Measurement error is likely to be a challenging problem for beam pair prediction.
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Figure 4-1 Timeline for BM Case 2
For simulation evaluation on BM Case-2, we expect similar conclusions can be drawn as for BM Case-1. To model UE movement, the spatial consistency procedure B is used. 

Here we focus validation on the BM Case-2. Assume BM Case-1 and BM Case-2 may be configured in the same network, and also from a UE’s point of view, the difference between two use cases is about the time gap between beam reporting and effective time for beam update for NW side inference. As for the UE side inference, it is about the time gap between prediction and the effective time for beam update. With that, the study is about using a set B which is a subset of set A. 

The set design choices as for BM Case-1are reused here: 4, 8 or 16 beams can be included in Set B.  

	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-16-1a
	Column First
	Column shift = 0
	



	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-8-1a
	Column First
	Column shift = 0
	



	
	Set A design
	Set B design 
	Antenna element spacing

	Dataset-4-1a
	Column First
	Column shift = 0
	



The timeline for BM case 2 is shown in Figure 401, if the reference signals are periodic or semipersistent signals, how many observation periods are used for UE side inference is a purely an implementation issue. With aperiodic reference signals for observations, regardless whether UE side inference or NW side inference is used, the number of observation periods required for inference has specification impact. For NW side inference, the number of observation periods is relevant from specification development point of view. As the table below provides our understanding   

	Specification impact
	Beam measurement reference signals

	
	Periodic/semi-persistent reference signals
	Aperiodic signals

	UE side inference
	No
	Yes

	NW side inference 
	Yes
	Yes



For performance evaluation, we assume 4 to 6 observation periods/intervals are utilized for beam measurement. As can be seen in the figure, if multiple predictions are generated in the future, e.g., for T_n1, …, and T_n4, the evaluation for each of the prediction time can involve extensive evaluation effort. Instead, we choose a single prediction time in the evaluation, and assume any beam prediction performance within a shorter gap to the observation periods will be better. 
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In general, for BM Case-2, AI enabled BM outperforms the conventional approach.  

Details of the evaluation include:
· observation periods/intervals are assumed for set B measurements. An observation period is 160 ms. And the prediction time is also 160 ms. 
· UE speed at 30 km/hr, without UE rotation.
· For analog beam design, Option 1 is with is assumed.
· Set A consists of 32 beams, we use “ColumnFirst” beam arrangement as discussed Section 2.
· Set B design is with column shift = 0.  For each evaluation, the number of beams in set B can be 4, 8 or 16.
· The conventional method uses sample and hold. There can be two options with the conventional method:
· Option 1: the predicted beam is limited to be one of the Set B beams, so no additional beam measurement for beams outside set B is needed. Of course, in this case, the beam prediction accuracy is upper-limited by the ratio of set B beams versus the set A beams.
· Option 2: the neighbours of the strongest set B beam are assumed to be the top K beams, and if some of the neighbours are not set B beams, additional beam measurements are needed. If opportunities for additional beam measurements are available, then Option 2 may be a more fair treatment for conventional method. 
· To generate the training data and test data, the simulation setup for BM Case 2 is somewhat different from that for BM Case 1. Tables A-1 and A-2 provide details in the Appendix section.
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	Training data set composition: similar to {Dataset-4-1a} with Table A-2 assumptions

	
	
	

	Test dataset
	Dataset-4-1a
	Dataset-4-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	56.91%
	18.75%

	top-2 beam accuracy
	74.03%
	29.70%

	top-3 beam accuracy
	81.75%
	40.40%

	top-4 beam accuracy
	86.06%
	61.58%

	top-1 1 dB margin accuracy
	63.76%
	24.78%
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	Training data set composition: similar to {Dataset-8-1a} with Table A-2 assumptions

	
	
	

	Test dataset
	Dataset-8-1a
	Dataset-8-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	67.25%
	23.95%

	top-2 beam accuracy
	83.03%
	36.63%

	top-3 beam accuracy
	89.26%
	49.15%

	top-4 beam accuracy
	92.55%
	65.31%

	top-1 1 dB margin accuracy
	74.20%
	32.00%
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	Training data set composition: similar to {Dataset-16-1a} with Table A-2 assumptions

	
	
	

	Test dataset
	Dataset-16-1a
	Dataset-16-1a

	Prediction method
	AI prediction 
	Conv. prediction

	top-1 beam accuracy
	75.34%
	44.36%

	top-2 beam accuracy
	89.08%
	49.45%

	top-3 beam accuracy
	93.55%
	54.75%

	top-4 beam accuracy
	95.80%
	78.18%

	top-1 1 dB margin accuracy
	82.88%
	58.04%

	
	
	


As clarified at the start of Section 4, the training/test data set generation follows different simulation setups for BM Case 1 and BM Case 2. Hence we don’t feel a simple comparison can be made between BM Case 1 results and BM Case 2 results. 

With the simulation evaluation provided between the AI approach and conventional approach, we can have
Observation BM-Case-2:
· For generalization performance Case-1 and BM Case-2, trained AI models perform well and provide better beam prediction accuracy than the conventional approach when set B is a subset of set A.
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In this contribution, we provide our evaluation on AI model generalization performance for beam management. We have

Observation 1: If explicit Tx beam shape information for different datasets is not available to model trainer, designing AI model to generalize well over different scenarios/configurations depends on acquiring diverse training data matched to the overall deployment. 

Observation 2-1: It may not be feasible to support fine-tuning of a deployed AI model on the UE side.


Observation 2-2: the main factors to consider for measurement error are the reporting quantization error and gain error .



Observation 3-1: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.6%,
Top-2 Tx beam accuracy at 81.8%,
Top-3 Tx beam accuracy at 89.5%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 73.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-2: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 80.0%,
Top-2 Tx beam accuracy at 94.9%,
Top-3 Tx beam accuracy at 98.1%,
Top-4 Tx beam accuracy at 99.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-3: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 90.2%,
Top-2 Tx beam accuracy at 98.5%,
Top-3 Tx beam accuracy at 99.5%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-4: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.5%,
Top-2 Tx beam accuracy at 81.8%,
Top-3 Tx beam accuracy at 89.4%,
Top-4 Tx beam accuracy at 93.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 73.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-5: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 80.0%,
Top-2 Tx beam accuracy at 94.9%,
Top-3 Tx beam accuracy at 98.1%,
Top-4 Tx beam accuracy at 99.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-6: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 90.1%,
Top-2 Tx beam accuracy at 98.5%,
Top-3 Tx beam accuracy at 99.5%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.7%. 


Observation 3-7: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 35.2%,
Top-2 Tx beam accuracy at 54.4%,
Top-3 Tx beam accuracy at 66.2%,
Top-4 Tx beam accuracy at 74.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 45.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.7%. 


Observation 3-8: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 55.0%,
Top-2 Tx beam accuracy at 78.9%,
Top-3 Tx beam accuracy at 88.4%,
Top-4 Tx beam accuracy at 93.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.2%. 


Observation 3-9: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 1, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 67.9%,
Top-2 Tx beam accuracy at 87.1%,
Top-3 Tx beam accuracy at 92.8%,
Top-4 Tx beam accuracy at 96.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.7%. 


Observation 3-10: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.5%,
Top-2 Tx beam accuracy at 14.8%,
Top-3 Tx beam accuracy at 20.3%,
Top-4 Tx beam accuracy at 25.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 11.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-11: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.4%,
Top-2 Tx beam accuracy at 26.0%,
Top-3 Tx beam accuracy at 34.4%,
Top-4 Tx beam accuracy at 41.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-12: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 21.1%,
Top-2 Tx beam accuracy at 33.9%,
Top-3 Tx beam accuracy at 42.1%,
Top-4 Tx beam accuracy at 49.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-13: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 8.5%,
Top-2 Tx beam accuracy at 14.7%,
Top-3 Tx beam accuracy at 20.3%,
Top-4 Tx beam accuracy at 25.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 11.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-14: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.4%,
Top-2 Tx beam accuracy at 26.0%,
Top-3 Tx beam accuracy at 34.4%,
Top-4 Tx beam accuracy at 41.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-15: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 21.1%,
Top-2 Tx beam accuracy at 33.9%,
Top-3 Tx beam accuracy at 42.1%,
Top-4 Tx beam accuracy at 49.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.8%. 


Observation 3-16: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 7.3%,
Top-2 Tx beam accuracy at 13.1%,
Top-3 Tx beam accuracy at 18.4%,
Top-4 Tx beam accuracy at 23.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 10.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-17: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.9%,
Top-2 Tx beam accuracy at 23.6%,
Top-3 Tx beam accuracy at 31.8%,
Top-4 Tx beam accuracy at 38.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 17.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-18: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 18.9%,
Top-2 Tx beam accuracy at 31.2%,
Top-3 Tx beam accuracy at 39.5%,
Top-4 Tx beam accuracy at 46.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.7%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 


Observation 3-19: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.2%,
Top-2 Tx beam accuracy at 5.3%,
Top-3 Tx beam accuracy at 10.4%,
Top-4 Tx beam accuracy at 13.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 3.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 22.1%,
Top-2 Tx beam accuracy at 34.3%,
Top-3 Tx beam accuracy at 46.9%,
Top-4 Tx beam accuracy at 61.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 32.2%. 


Observation 3-20: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.8%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 19.8%,
Top-4 Tx beam accuracy at 24.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 15.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.4%,
Top-2 Tx beam accuracy at 39.2%,
Top-3 Tx beam accuracy at 53.1%,
Top-4 Tx beam accuracy at 65.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 37.7%. 


Observation 3-21: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.3%,
Top-2 Tx beam accuracy at 25.6%,
Top-3 Tx beam accuracy at 30.9%,
Top-4 Tx beam accuracy at 35.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 24.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.7%,
Top-2 Tx beam accuracy at 53.8%,
Top-3 Tx beam accuracy at 59.1%,
Top-4 Tx beam accuracy at 82.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-22: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.2%,
Top-2 Tx beam accuracy at 5.3%,
Top-3 Tx beam accuracy at 10.3%,
Top-4 Tx beam accuracy at 13.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 3.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 22.1%,
Top-2 Tx beam accuracy at 34.3%,
Top-3 Tx beam accuracy at 46.9%,
Top-4 Tx beam accuracy at 61.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 32.2%. 


Observation 3-23: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.7%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 19.8%,
Top-4 Tx beam accuracy at 24.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 15.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.4%,
Top-2 Tx beam accuracy at 39.2%,
Top-3 Tx beam accuracy at 53.1%,
Top-4 Tx beam accuracy at 64.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 37.7%. 


Observation 3-24: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.3%,
Top-2 Tx beam accuracy at 25.6%,
Top-3 Tx beam accuracy at 30.9%,
Top-4 Tx beam accuracy at 35.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 24.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.7%,
Top-2 Tx beam accuracy at 53.8%,
Top-3 Tx beam accuracy at 59.0%,
Top-4 Tx beam accuracy at 82.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-25: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 2.8%,
Top-2 Tx beam accuracy at 6.7%,
Top-3 Tx beam accuracy at 11.0%,
Top-4 Tx beam accuracy at 15.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 4.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 21.7%,
Top-2 Tx beam accuracy at 33.7%,
Top-3 Tx beam accuracy at 46.0%,
Top-4 Tx beam accuracy at 60.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 31.3%. 


Observation 3-26: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 10.4%,
Top-2 Tx beam accuracy at 15.7%,
Top-3 Tx beam accuracy at 20.1%,
Top-4 Tx beam accuracy at 25.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 14.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.7%,
Top-2 Tx beam accuracy at 37.8%,
Top-3 Tx beam accuracy at 51.5%,
Top-4 Tx beam accuracy at 62.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.1%. 


Observation 3-27: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set A design mismatch (training with ColumnFirst, test with RowFirst), independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.1%,
Top-2 Tx beam accuracy at 23.9%,
Top-3 Tx beam accuracy at 29.6%,
Top-4 Tx beam accuracy at 35.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 21.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 40.7%,
Top-2 Tx beam accuracy at 48.1%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 56.3%. 


Observation 3-28: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.3%,
Top-2 Tx beam accuracy at 25.8%,
Top-3 Tx beam accuracy at 33.7%,
Top-4 Tx beam accuracy at 41.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 20.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.5%,
Top-2 Tx beam accuracy at 33.2%,
Top-3 Tx beam accuracy at 45.4%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.8%. 


Observation 3-29: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 11.4%,
Top-2 Tx beam accuracy at 28.0%,
Top-3 Tx beam accuracy at 40.4%,
Top-4 Tx beam accuracy at 51.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.9%,
Top-3 Tx beam accuracy at 52.4%,
Top-4 Tx beam accuracy at 65.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.5%. 


Observation 3-30: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 15.2%,
Top-2 Tx beam accuracy at 48.3%,
Top-3 Tx beam accuracy at 60.8%,
Top-4 Tx beam accuracy at 66.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 49.3%,
Top-2 Tx beam accuracy at 56.1%,
Top-3 Tx beam accuracy at 59.9%,
Top-4 Tx beam accuracy at 78.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 69.3%. 


Observation 3-31: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 14.3%,
Top-2 Tx beam accuracy at 25.8%,
Top-3 Tx beam accuracy at 33.6%,
Top-4 Tx beam accuracy at 41.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 20.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.5%,
Top-2 Tx beam accuracy at 33.2%,
Top-3 Tx beam accuracy at 45.4%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.8%. 


Observation 3-32: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 11.4%,
Top-2 Tx beam accuracy at 28.0%,
Top-3 Tx beam accuracy at 40.3%,
Top-4 Tx beam accuracy at 51.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.9%,
Top-3 Tx beam accuracy at 52.4%,
Top-4 Tx beam accuracy at 65.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.4%. 


Observation 3-33: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 15.3%,
Top-2 Tx beam accuracy at 48.3%,
Top-3 Tx beam accuracy at 60.8%,
Top-4 Tx beam accuracy at 66.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 49.3%,
Top-2 Tx beam accuracy at 56.1%,
Top-3 Tx beam accuracy at 59.9%,
Top-4 Tx beam accuracy at 78.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 68.7%. 


Observation 3-34: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.6%,
Top-2 Tx beam accuracy at 23.2%,
Top-3 Tx beam accuracy at 30.8%,
Top-4 Tx beam accuracy at 37.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 18.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 20.0%,
Top-2 Tx beam accuracy at 32.3%,
Top-3 Tx beam accuracy at 44.2%,
Top-4 Tx beam accuracy at 60.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 29.2%. 


Observation 3-35: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 12.3%,
Top-2 Tx beam accuracy at 26.8%,
Top-3 Tx beam accuracy at 38.3%,
Top-4 Tx beam accuracy at 49.0%,
Top-1 DL Tx beam accuracy with 1dB margin at 19.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.0%,
Top-2 Tx beam accuracy at 37.5%,
Top-3 Tx beam accuracy at 50.3%,
Top-4 Tx beam accuracy at 62.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.4%. 


Observation 3-36: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, Set B design mismatch, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 16.7%,
Top-2 Tx beam accuracy at 43.8%,
Top-3 Tx beam accuracy at 57.1%,
Top-4 Tx beam accuracy at 64.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 49.2%,
Top-3 Tx beam accuracy at 55.5%,
Top-4 Tx beam accuracy at 71.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 


Observation 3-37: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.4%,
Top-2 Tx beam accuracy at 46.0%,
Top-3 Tx beam accuracy at 59.0%,
Top-4 Tx beam accuracy at 69.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 16.0%,
Top-2 Tx beam accuracy at 25.0%,
Top-3 Tx beam accuracy at 34.0%,
Top-4 Tx beam accuracy at 52.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 22.7%. 


Observation 3-38: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 54.1%,
Top-2 Tx beam accuracy at 78.6%,
Top-3 Tx beam accuracy at 88.4%,
Top-4 Tx beam accuracy at 93.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 63.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.7%,
Top-2 Tx beam accuracy at 39.0%,
Top-3 Tx beam accuracy at 52.2%,
Top-4 Tx beam accuracy at 66.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.0%. 


Observation 3-39: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.7%,
Top-2 Tx beam accuracy at 92.8%,
Top-3 Tx beam accuracy at 96.5%,
Top-4 Tx beam accuracy at 98.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.4%,
Top-2 Tx beam accuracy at 54.5%,
Top-3 Tx beam accuracy at 58.8%,
Top-4 Tx beam accuracy at 81.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.4%. 


Observation 3-40: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.3%,
Top-2 Tx beam accuracy at 45.9%,
Top-3 Tx beam accuracy at 59.0%,
Top-4 Tx beam accuracy at 68.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.2%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 16.0%,
Top-2 Tx beam accuracy at 25.0%,
Top-3 Tx beam accuracy at 34.0%,
Top-4 Tx beam accuracy at 52.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 22.7%. 


Observation 3-41: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 54.0%,
Top-2 Tx beam accuracy at 78.5%,
Top-3 Tx beam accuracy at 88.4%,
Top-4 Tx beam accuracy at 93.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 63.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.7%,
Top-2 Tx beam accuracy at 38.9%,
Top-3 Tx beam accuracy at 52.2%,
Top-4 Tx beam accuracy at 66.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.0%. 


Observation 3-42: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.7%,
Top-2 Tx beam accuracy at 92.8%,
Top-3 Tx beam accuracy at 96.4%,
Top-4 Tx beam accuracy at 98.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 88.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.4%,
Top-2 Tx beam accuracy at 54.5%,
Top-3 Tx beam accuracy at 58.8%,
Top-4 Tx beam accuracy at 81.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 66.4%. 


Observation 3-43: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 22.2%,
Top-2 Tx beam accuracy at 39.4%,
Top-3 Tx beam accuracy at 51.7%,
Top-4 Tx beam accuracy at 61.1%,
Top-1 DL Tx beam accuracy with 1dB margin at 28.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 15.8%,
Top-2 Tx beam accuracy at 24.5%,
Top-3 Tx beam accuracy at 33.4%,
Top-4 Tx beam accuracy at 51.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 22.2%. 


Observation 3-44: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 42.7%,
Top-2 Tx beam accuracy at 66.3%,
Top-3 Tx beam accuracy at 78.3%,
Top-4 Tx beam accuracy at 85.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 52.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.9%,
Top-2 Tx beam accuracy at 37.5%,
Top-3 Tx beam accuracy at 49.8%,
Top-4 Tx beam accuracy at 63.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-45: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 2, antenna spacing mismatch, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 62.2%,
Top-2 Tx beam accuracy at 82.3%,
Top-3 Tx beam accuracy at 89.3%,
Top-4 Tx beam accuracy at 93.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 74.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.0%,
Top-2 Tx beam accuracy at 48.2%,
Top-3 Tx beam accuracy at 54.2%,
Top-4 Tx beam accuracy at 73.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.9%. 


Observation 3-46: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.5%,
Top-2 Tx beam accuracy at 52.7%,
Top-3 Tx beam accuracy at 63.9%,
Top-4 Tx beam accuracy at 71.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 42.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-47: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 64.1%,
Top-2 Tx beam accuracy at 83.0%,
Top-3 Tx beam accuracy at 90.0%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.6%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-48: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 86.7%,
Top-2 Tx beam accuracy at 97.2%,
Top-3 Tx beam accuracy at 98.9%,
Top-4 Tx beam accuracy at 99.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 95.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-49: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.5%,
Top-2 Tx beam accuracy at 52.6%,
Top-3 Tx beam accuracy at 63.9%,
Top-4 Tx beam accuracy at 71.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 42.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-50: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 64.0%,
Top-2 Tx beam accuracy at 82.9%,
Top-3 Tx beam accuracy at 89.9%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-51: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 86.7%,
Top-2 Tx beam accuracy at 97.2%,
Top-3 Tx beam accuracy at 98.9%,
Top-4 Tx beam accuracy at 99.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 95.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.8%. 


Observation 3-52: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 19.2%,
Top-2 Tx beam accuracy at 32.5%,
Top-3 Tx beam accuracy at 42.4%,
Top-4 Tx beam accuracy at 50.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-53: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 34.6%,
Top-2 Tx beam accuracy at 55.1%,
Top-3 Tx beam accuracy at 67.3%,
Top-4 Tx beam accuracy at 75.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 43.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-54: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 1, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 57.6%,
Top-2 Tx beam accuracy at 79.0%,
Top-3 Tx beam accuracy at 87.7%,
Top-4 Tx beam accuracy at 92.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 69.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 


Observation 3-55: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 47.7%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.5%,
Top-4 Tx beam accuracy at 84.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 57.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.1%,
Top-2 Tx beam accuracy at 29.7%,
Top-3 Tx beam accuracy at 40.5%,
Top-4 Tx beam accuracy at 57.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 27.4%. 


Observation 3-56: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.9%,
Top-2 Tx beam accuracy at 92.1%,
Top-3 Tx beam accuracy at 96.1%,
Top-4 Tx beam accuracy at 97.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 84.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.5%,
Top-2 Tx beam accuracy at 39.1%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.8%. 


Observation 3-57: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 89.3%,
Top-2 Tx beam accuracy at 98.1%,
Top-3 Tx beam accuracy at 99.4%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.5%,
Top-2 Tx beam accuracy at 54.3%,
Top-3 Tx beam accuracy at 58.9%,
Top-4 Tx beam accuracy at 81.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.6%. 


Observation 3-58: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 47.7%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.5%,
Top-4 Tx beam accuracy at 84.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 57.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 19.1%,
Top-2 Tx beam accuracy at 29.7%,
Top-3 Tx beam accuracy at 40.5%,
Top-4 Tx beam accuracy at 57.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 27.4%. 


Observation 3-59: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 75.9%,
Top-2 Tx beam accuracy at 92.0%,
Top-3 Tx beam accuracy at 96.1%,
Top-4 Tx beam accuracy at 97.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 84.4%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 25.5%,
Top-2 Tx beam accuracy at 39.1%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 36.8%. 


Observation 3-60: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 89.3%,
Top-2 Tx beam accuracy at 98.2%,
Top-3 Tx beam accuracy at 99.4%,
Top-4 Tx beam accuracy at 99.8%,
Top-1 DL Tx beam accuracy with 1dB margin at 97.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.5%,
Top-2 Tx beam accuracy at 54.3%,
Top-3 Tx beam accuracy at 58.9%,
Top-4 Tx beam accuracy at 81.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.6%. 


Observation 3-61: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.1%,
Top-2 Tx beam accuracy at 41.7%,
Top-3 Tx beam accuracy at 52.9%,
Top-4 Tx beam accuracy at 60.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 33.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.7%,
Top-2 Tx beam accuracy at 29.2%,
Top-3 Tx beam accuracy at 39.7%,
Top-4 Tx beam accuracy at 55.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.7%. 


Observation 3-62: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 46.4%,
Top-2 Tx beam accuracy at 67.7%,
Top-3 Tx beam accuracy at 78.2%,
Top-4 Tx beam accuracy at 84.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 56.7%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 37.7%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.2%. 


Observation 3-63: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 2, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 63.1%,
Top-2 Tx beam accuracy at 83.3%,
Top-3 Tx beam accuracy at 89.9%,
Top-4 Tx beam accuracy at 93.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 76.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 40.9%,
Top-2 Tx beam accuracy at 48.0%,
Top-3 Tx beam accuracy at 54.5%,
Top-4 Tx beam accuracy at 73.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.6%. 


Observation 3-64: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 44.5%,
Top-2 Tx beam accuracy at 64.3%,
Top-3 Tx beam accuracy at 75.5%,
Top-4 Tx beam accuracy at 82.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-65: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 72.0%,
Top-2 Tx beam accuracy at 89.7%,
Top-3 Tx beam accuracy at 94.9%,
Top-4 Tx beam accuracy at 97.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.1%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-66: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, no measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 88.2%,
Top-2 Tx beam accuracy at 97.9%,
Top-3 Tx beam accuracy at 99.2%,
Top-4 Tx beam accuracy at 99.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 96.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.5%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-67: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 44.4%,
Top-2 Tx beam accuracy at 64.2%,
Top-3 Tx beam accuracy at 75.4%,
Top-4 Tx beam accuracy at 82.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 54.8%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 18.2%,
Top-2 Tx beam accuracy at 29.1%,
Top-3 Tx beam accuracy at 39.8%,
Top-4 Tx beam accuracy at 56.6%,
Top-1 DL Tx beam accuracy with 1dB margin at 26.3%. 


Observation 3-68: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 71.9%,
Top-2 Tx beam accuracy at 89.7%,
Top-3 Tx beam accuracy at 94.9%,
Top-4 Tx beam accuracy at 97.2%,
Top-1 DL Tx beam accuracy with 1dB margin at 81.0%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.8%,
Top-2 Tx beam accuracy at 38.8%,
Top-3 Tx beam accuracy at 52.6%,
Top-4 Tx beam accuracy at 65.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 35.9%. 


Observation 3-69: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, common mode measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 88.2%,
Top-2 Tx beam accuracy at 97.9%,
Top-3 Tx beam accuracy at 99.2%,
Top-4 Tx beam accuracy at 99.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 96.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 48.9%,
Top-2 Tx beam accuracy at 54.7%,
Top-3 Tx beam accuracy at 59.4%,
Top-4 Tx beam accuracy at 81.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 67.9%. 


Observation 3-70: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 4 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 26.0%,
Top-2 Tx beam accuracy at 42.6%,
Top-3 Tx beam accuracy at 54.2%,
Top-4 Tx beam accuracy at 62.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 17.8%,
Top-2 Tx beam accuracy at 28.4%,
Top-3 Tx beam accuracy at 39.0%,
Top-4 Tx beam accuracy at 55.3%,
Top-1 DL Tx beam accuracy with 1dB margin at 25.6%. 


Observation 3-71: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 8 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 41.3%,
Top-2 Tx beam accuracy at 64.6%,
Top-3 Tx beam accuracy at 77.2%,
Top-4 Tx beam accuracy at 84.9%,
Top-1 DL Tx beam accuracy with 1dB margin at 51.5%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 24.1%,
Top-2 Tx beam accuracy at 37.4%,
Top-3 Tx beam accuracy at 50.5%,
Top-4 Tx beam accuracy at 62.7%,
Top-1 DL Tx beam accuracy with 1dB margin at 34.3%. 


Observation 3-72: 
For BM-Case 1 DL Tx beam prediction, when Set B is a subset of Set A, with Generalization Case 3, dataset combination 3, independent measurement error, 32 beams for set A, 16 beams for set B: 
AI-BM provides 
Top-1 Tx beam accuracy at 60.1%,
Top-2 Tx beam accuracy at 82.0%,
Top-3 Tx beam accuracy at 90.1%,
Top-4 Tx beam accuracy at 94.5%,
Top-1 DL Tx beam accuracy with 1dB margin at 72.9%; 
while the conventional BM approach (Option 2) provides 
Top-1 Tx beam accuracy at 41.2%,
Top-2 Tx beam accuracy at 48.4%,
Top-3 Tx beam accuracy at 55.0%,
Top-4 Tx beam accuracy at 73.4%,
Top-1 DL Tx beam accuracy with 1dB margin at 55.9%. 

Observation GP-Case2-a:
Generalization performance Case 2 in general has poor performance due to mismatch in set A design, set B design and antenna spacing design. In terms of severity of performance degradation, 
Set A design {ColumnFirst vs RowFirst} > Set B design {Column Shift =0, 1, etc.} > antenna element spacing.

Observation GP-Case-2b:
Even for the least damaging factor, comparing GP Case 1 and GP Case 2 evaluation, with other factors being identical, the top-1 beam accuracy degrades substantially just due to mismatched antenna element spacing: from 73.9% to 34.2% at 4 beams in Set B, from 88.6% to 63.9% at 8 beams in set B, from 97.8% to 88.4% at 16 beams in set B. 

Observation GP-Case-1-2-3-a:
· For generalization performance Case -1 and BM Case-1, trained AI models perform well and provide better beam prediction accuracy than the conventional approach.
· For generalization performance Case -2 and BM Case-1, trained AI models can perform much worse than that for GP Case-1, they may have even worse beam prediction accuracy than the conventional approach.
· For generalization performance Case-3 and BM Case-1, trained AI models can perform worse than that for GP Case-1, even though are in general better than that for GP case-2. the AI performance with set B beam at 8 beams with GP Case-3 is roughly the same as the AI performance with set B at 4 beams with GP Case-1.

Observation-measuremenet-error-1: 
With common mode measurement error for Tx beams with a given Rx beam, AI inference performance degrades slightly compared with the case without measurement error.

Observation-measuremenet-error-2: 
With independent measurements for Tx beams, which can arise if those Tx beam are received with different Rx beams, significant performance loss for AI inference is seen when compared with the case without measurement error.

Observation-measuremenet-error-2: 
Measurement error is likely to be a challenging problem for beam pair prediction.

Observation BM-Case-2:
· For generalization performance Case-1 and BM Case-2, trained AI models perform well and provide better beam prediction accuracy than the conventional approach when set B is a subset of set A.
Proposal 1: For AI model generalization, generalization performance depends on diverse analog beam design including Set A design, antenna configurations including M/N, antenna spacing and deployment scenario. 

Proposal 2: Follow the legacy P2/P3 procedures when possible for AI/ML-BM.
Proposal 3: study quantization error’s impact to inference performance.

Proposal 4: capture 4 UCI reporting methods for BM Case-1 and BM Case-2:


	BM Case-1

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting
	Example (S=32, M=16, N=10)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam
	
	
	
71

	Reporting selected set B beams’ RSRPs with CRI signaling
	
	
	
	83

	Reporting selected set B beams’ RSRPs with bitmap
	
	
	
	63

	Reporting selected set B beams’ RSRPs with combinatorial index
	
	
	
	60





	BM Case-2
	

	S = # of set A beams, M = # of set B beams, N = # of selected B beams for beam reporting, W = # of observation intervals
	Example (S=32, M=16, N=10, W=4)

	
	Beam selection  
	RSRP
	Total signaling bits
	

	Reporting all set B beams’ RSRPs
	 for the strongest beam over W intervals 
	
	
	265

	Reporting selected set B beams’ RSRPs
	 (strongest beam indication per interval)
	 per interval
	
	

332

	Reporting selected set B beams’ RSRPs with bitmaps
	 per interval
	 per interval
	
	252

	Reporting selected set B beams’ RSRPs with combinatorial index
	 per interval
	 per interval
	
	240





Proposal 5: consider the following table for LS reply to RAN2:

	
	Data content
	Typical data size
	Reporting type
	Latency requirement

	Offline training
	“Set A” and “set B” measurements 
	Large, and depending on the targeted generalization performance
	Signaling by RRC  configuration for NW side training. None for UE side training. For NW side training, the collected data is carried with 
user plane or control plane via PUSCH 
	Large (hours or days)

	Inference
	Beam reporting
	70 ~ 280 bits for NW side inference

Several bits to tens of bits for UE side inference
	Periodic, semi-persistent,  aperiodic, event-triggered reporting
 
	Short (~ ms)

	






Performance monitoring 
	Beam reporting on set A/set B for NW side inference
	140 bits for BM Case-1 with 32 set A beams, 560 bits for BM Case-2 with 32 set A beams and for 4 occasions  for one sample, multiple samples may be needed.
	Periodic, semi-persistent, aperiodic reporting

 
	






Medium (configurable by NW, ~100ms)

	
	performance metric/event for UE side inference.
	A few bits or more depending on the exact performance metric.
	Periodic, semi-persistent, aperiodic or event-triggered reporting

 
	




Proposal 6: As generalization performance can be poor for AI models trained without Tx beam shape information, study NW-trained cell-specific AI models for AI enabled beam management.
[bookmark: _Toc143266639]References
[1] [bookmark: _Ref111066876]“Beam Codebook Design for 5G mmWave Terminals”,  Jianhua Mo, Boon Loong Ng, Sanghyun Chang, Pengda Huang, Mandar Kulkarni, Ahmad Alammouri, Jianzhong Charlie Zhang, Jeongheum Lee, Won-Joon Choi, https://arxiv.org/pdf/1908.01004.pdf
[2] [bookmark: _Ref115375391]R1-2209579, “Other aspects on AI/ML for beam management”, Apple, RAN1 #110bis-e, October 2022.
[3] [bookmark: _Ref118622816]R1-2211808, “Discussions on other aspects on AI/ML for beam management”, Apple, RAN1 #111, November 2022.
[4] [bookmark: _Ref127524446]R1-2301339, “Evaluation for AI/ML based beam management enhancements”, Apple, RAN1 #112, February  2023.












[bookmark: _Toc143266640]Appendix – Simulation assumptions
Table A-1: Simulation Assumptions for BM Case 1
	Parameter
	Value

	Scenario
	Dense Urban Macro

	Number of cells
	7

	Number of sectors per cell
	3

	Number of UEs
	200,000

	Carrier frequency
	30 GHz

	Subcarrier spacing
	120kHz

	Bandwidth
	80MHz

	gNB antenna configuration
	 (M, N, P, Mp, Np, Mg, Ng) = (4, 8, 2, 1, 1, 1, 1)

	UE antenna configuration
	 (M, N, P, Mp, Np, Mg, Ng) = (1, 4, 2, 1, 1, 1, 2)

	UE distribution
	Uniformly distributed

	UE orientation
	Random

	Slow fading model
	TR 38.901

	Fast fading model
	TR 38.901 

	Tx beam pattern
	4 by 16 (vertical by horizontal)




Table A-2: Simulation Assumptions for BM Case 2
	Parameter
	Value

	Scenario
	Dense Urban Macro

	Number of cells
	1

	Number of sectors per cell
	3

	Number of UEs
	50,000 (from 1,000 drops)

	Carrier frequency
	30 GHz

	Subcarrier spacing
	120kHz

	Bandwidth
	80MHz

	gNB antenna configuration
	 (M, N, P, Mp, Np, Mg, Ng) = (4, 8, 2, 1, 1, 1, 1)

	UE antenna configuration
	 (M, N, P, Mp, Np, Mg, Ng) = (1, 4, 2, 1, 1, 1, 2)

	UE distribution
	Uniformly distributed

	UE orientation
	Random

	Slow fading model
	TR 38.901

	Fast fading model
	TR 38.901 with spatial consistency

	Tx beam pattern
	4 by 16 (vertical by horizontal)
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The bitwidth for CRI, SSBRI, RSRP, and differential RSRP are provided in Table 6.3.1.1.2-6.

Table 6.3.1.1.2-6: CRI, SSBRI, and RSRP

Field Bitwidth
CRI [log, (k)]
SSBRI [log, (k)]
RSRP 7
Differential RSRP 4
where KSCSI_RS is the number of CSI-RS resources in the corresponding resource set, and KSSSB is the configured

number of SS/PBCH blocks in the corresponding resource set for reporting 'ssb-Index-RSRP'.

Table 6.3.1.1.2-8: Mapping order of CSl fields of one report for CRI/RSRP or SSBRI/RSRP reporting

CSl report

CSi fields
number

CRI or SSBRI #1 as in Table 6.3.1.1.2-6, if reported
CRI or SSBRI #2 as in Table 6.3.1.1.2-6, if reported
CRI or SSBRI #3 as in Table 6.3.1.1.2-6, if reported
CRI or SSBRI #4 as in Table 6.3.1.1.2-6, if reported
RSRP #1 as in Table 6.3.1.1.2-6, if reported

CSl report #n

Differential RSRP #2 as in Table 6.3.1.1.2-6, if reported

Differential RSRP #3 as in Table 6.3.1.1.2-6, if reported
Differential RSRP #4 as in Table 6.3.1.1.2-6, if reported
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