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Introduction
In the RAN1#110 meeting, it was agreed that two approaches are studied and evaluated for AI/ML-based positioning [1]. In this contribution, we will discuss the two approaches. 
	Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning



[bookmark: _Ref481671177]
Evaluation methodology
AI/ML assisted positioning
AI/ML assisted positioning includes LOS/NLOS identification and TOA estimation. Figure 1 shows the AI/ML assisted positioning based on LOS/NLOS identification and Figure 2 shows the AI/ML assisted positioning based on TOA estimation. Channel impulse responses (CIRs) or power delay profiles (PDPs)was used as AI/ML model input. 
As shown in Figure 1, to provide the soft value as the LOS/NLOS probability from the model output to the LMF, the measurement results under potential NLOS condition maybe removed from the UE position calculation, resulting in the improvement in accuracy. 


[bookmark: _Ref118371676]Figure 1. AI/ML assisted positioning based on LOS/NLOS identification
For TOA estimation, the TOAs calculated based on the straight-line distance between UE and TRPs are used as the AI/ML model labels. As shown in Figure 2, to provide the TOA from the model output to the LMF, the measurement results under potential NLOS condition maybe more accurate than conventional TOA estimation, resulting in the improvement in accuracy. 


[bookmark: _Ref118371665]Figure 2. AI/ML assisted positioning based on TOA estimation
In this contribution, DL-TDOA positioning method is used as the baseline for comparison purpose.
Direct AI/ML positioning
System level simulation based on the statistical model of TR38.901 is adopted as the evaluation methodology to evaluate the positioning performance. The channels between UE and all TRPs are almost NLOS in InF-DH scenario with clutter parameter {density: 60%, height: 6m, size: 2m}, which is very challenging for traditional positioning methods based on LOS channels. The direct AI/ML positioning has been proposed to improve the positioning accuracy in heavy NLOS scenarios by RAN1#110 agreements.
For direct AI/ML positioning, the dataset with spatial consistency is generated from our system level simulation platform. We generate spatially consistent random variables at specific locations (x, y) using the interpolation method, which is also discussed in 3GPP in [2]. As shown in Figure 3, the UE’s position is directly estimated from the AI model when the model input is time domain channel impulse responses (CIRs) or power delay profiles (PDPs) collected from all 18 TRPs according to the agreed BS layout in a small hall (L=120m x W=60m). The model used in our evaluations of direct AI/ML positioning includes total 13 layers, which contains 10 convolutional layers and 3 dense layers. The AI model can be deployed at the UE side or Network side.


[bookmark: _Ref118371650][bookmark: _Ref118371618]Figure 3. Direct AI/ML positioning
For AI/ML model, generalization performance is a very important indicator. We evaluated the performance of the AI model under different parameter settings, including, different drops, and different clutter parameters. Both mixing the training dataset and fine-tuning the pre-trained AI model are deployed for the model generalization.
Evaluation results
Performance evaluation of AI/ML assisted positioning
Dataset description
For evaluations of the AI/ML assisted positioning, 4 DL-PRS antennas are configured for each TRP, and 2 RX branch at UE is configured. Sampling period in dataset is 8.138ns. In order to verify the generalization performance of AI/ML model, dataset with different clutter parameters, scenarios, channel estimation error and timing error are also generated. The sample number for each evaluation is 36000, where data size for model training, validation, and testing is 28800, 3600, and 3600, respectively, and 1 sample means the CIR/PDP collected from 18 TRPs for a given UE, each CIR(PDP) is comprised of length Nt = 256 complex(real) samples.
AI/ML assisted positioning using LOS/NLOS identification
Evaluation of soft decision
AI/ML model is single-TRP model and same model for all TRPs. The input to model is 8x256x2 valued array, where 8 means 4gNB TX antenna and 2 UE RX antenna, 256 is length of CIR(PDP), and 2 means real part and image part. 
LOS detection probability is 93.3% and NLOS detection probability is 96.7%, the overall accuracy is 95.2%. Where the overall accuracy is LOS_detection_probability*LOS_ percentage+ NLOS_detection_probability*NLOS_ percentage. 
[bookmark: _Hlk126150502]Hard and soft LOS/NLOS value of model output was compared in Table 1. After LOS/NLOS identification, DL-TDOA positioning method is used to estimate UE position and TOA is represented as integer-values in time units of sampling period 8.138ns.
If UE report LOS/NLOS hard value (0 or 1) to network, horizontal positioning accuracy is 8m. But if UE report LOS/NLOS soft value (probability of LOS and NLOS) to network, network can use soft probability in positioning estimation and horizontal positioning accuracy is improved to 6.9m. For comparison, horizontal positioning accuracy at CDF=90% of conventional TDoA is 17 meters.
[bookmark: _Ref118371838]Table 1. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS hard value
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	8

	CIR (8*256*2)
	LOS/NLOS soft value
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	6.9


From the results in Table 1, we can get the following observation:
[bookmark: _Ref127352139]The soft-decision approach outperforms the hard-decision approach for AI/ML assisted LOS/NLOS identification positioning.

[bookmark: _With_generalization:_different]Evaluation of different user density for training dataset
Two different user density scenarios of training dataset were compared in Table 2. The higher user density means more training data. The LOS/NLOS identification accuracy of dense scenario is bigger than sparse scenario.
· Dense UE scenario: 36000UEs/(120*60)m2 = 5UEs/m2
· Sparse UE scenario: 7200UEs/(120*60)m2 = 1UEs/m2
[bookmark: _Hlk126150611]Table 2. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480
	720
	185.7k
	29.4M*18
	92.8%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	95.2%


From the results in Table 2, we can get the following observation:
[bookmark: _Ref127352151]High user density of training dataset provides an improvement in LOS/NLOS identification accuracy over the low user density. 

Evaluation of different scenario
This section summarized accuracy of the LOS/NLOS identification in different scenario.  As shown in Table 3, AI/ML model performs well when the training dataset and test dataset are all InF-DH. But when the model is trained in InF-DH scenario and test in InF-SH scenario, the performance degrades a lot.
For InF-SH hall size is 300x150 m; for InF-DH hall size is 120x60 m.
[bookmark: _Ref118371854]Table 3. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400
	3600
	185.7k
	29.4M*18
	93.0%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	97.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400
	3600
	185.7k
	29.4M*18
	60.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	93.7%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400
	3600
	185.7k
	29.4M*18
	92.9%


From the results in Table 3, we can get the following observation:
[bookmark: _Ref127352173]Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario. And the performance is improved when mix InF-DH and InF-SH training data.

Evaluation of channel estimation error
The performance of channel estimation is mainly affected by interference and noise. We use a procedure of adding channel estimation error to time-domain CIR, in which the additional estimation error is additive white Gaussian noise (AWGN), that cause different SNR as shown in Figure 4.


[bookmark: _Ref127199732]Figure 4. channel estimation error
[bookmark: _Ref127199419]Table 4. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m, channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=0dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	95.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	91.1%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	90.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	90.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=10dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	75%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	94.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	93.8%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	SNR=20dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	56.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	84.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	95.1%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	95.1%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Without noise
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	56.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	65.6%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	90.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	mix
SNR=0dB and SNR =20dB
	SNR=0dB
	32400
	3600
	185.7k
	29.4M*18
	91.7%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	SNR =10dB
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	SNR =20dB
	32400
	3600
	185.7k
	29.4M*18
	93.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	Without noise
	32400
	3600
	185.7k
	29.4M*18
	93.3%


From the results in Table 4, we can get the following observation:
[bookmark: _Ref127352201]Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
[bookmark: _Ref127352216]AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.

Evaluation of network synchronization error and RX&TX timing error
Timing error includes network synchronization error and UE/gNB RX&TX timing error. The timing error can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-2*T1, 2*T1] range. T1 was set to 0&20&50ns.
[bookmark: _Ref127199438]Table 5. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	50ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.3%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	93.9%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	20ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	94.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	94.4%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	0ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	74.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	75.4%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	Mix 50ns and 20ns
	50ns
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal
	
	20ns
	32400
	3600
	185.7k
	29.4M*18
	93.8%

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	
	0ns
	32400
	3600
	185.7k
	29.4M*18
	93.8%


From the results in Table 5, we can get the following observation:
[bookmark: _Ref127352230]Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
[bookmark: _Ref127352244]AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.

Evaluation of samples selection with strongest power
	Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


According to the above agreement, we have evaluated the influence of Nt and N’t on LOS/NLOS identification positioning, the results are shown in the Table 6 below.
[bookmark: _Ref131172451]Table 6. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	CIR (8*Nt*2)
	LOS/NLOS
	Ideal
	256
	256
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	
	
	
	
	25
	
	
	
	
	95.3%

	
	
	
	
	15
	
	
	
	
	95.0%

	
	
	
	64
	64
	32400
	3600
	173.4k
	7.39M*18
	94.7%

	
	
	
	
	25
	
	
	
	
	94.6%

	
	
	
	
	15
	
	
	
	
	94.8%


When the parameter setting is changed from {Nt = 256, N’t = 25} to {Nt = 64, N’t = 15}, the LOS/NLOS identification accuracy is reduced from 95.2% to 94.8%, the computation complexity is reduced from 29.4M to 7.39M, the LOS/NLOS identification accuracy is only reduced 0.4%, but the computation complexity is reduced by more than half. 
[bookmark: _Ref131172624]For AI/ML assisted LOS/NLOS identification positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.

Evaluation of labelling error
At the RAN1#112b-e meeting, it was agreed that:
	Agreement
[bookmark: _Hlk132894047]For AI/ML assisted positioning with LOS/NLOS indicator as model output, study the impact of labelling error to LOS/NLOS indicator accuracy and/or positioning accuracy.
· The ground truth label error of LOS/NLOS indicator can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.
· Companies consider at least hard-value LOS/NLOS indicator as model output.


We evaluated the different ratio of labelling error in LOS and NLOS as show in Table 7.
[bookmark: _Ref131169278]Table 7. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR (8*256*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	95.2%

	CIR (8*256*2)
	LOS/NLOS 
	10% LOS labelling error
10% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	93.1%

	CIR (8*256*2)
	LOS/NLOS 
	20% LOS labelling error
20% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	185.7k
	29.4M*18
	92.1%


[bookmark: _Ref131172648]Performance of AI/ML assisted LOS/NLOS identification positioning degrades with increasement the of labelling error.

Evaluation for model monitoring 
For AI/ML assisted LOS/NLOS identification positioning, we propose a model monitor scheme based on model output in Figure 5. First, AI/ML model output LOS/NLOS results of all path between TRP and UE (LOS_NLOS_AI). Then UE location can be estimated based on non-AI TDOA positioning method. With known UE location and TRP location, new TOA-AI of all path between TRP and UE can be calculated, that is the distance between TRP and UE divided by speed of light. After that, we can get another LOS/NLOS results of all path between TRP and UE (LOS_NLOS_NonAI) by comparing the TOA-AI and TOA-NonAI. The last step is to calculate false LOS detection ratio, false NLOS detection ratio and false LOS&NLOS detection ratio by comparing LOS_NLOS_AI and LOS_NLOS_NonAI. For example, if one of LOS_NLOS_AI result is NLOS but LOS_NLOS_NonAI result is LOS path, this path is false NLOS detection path. False NLOS detection ratio is the ratio of false NLOS detection path number and total NLOS detection path number. 


[bookmark: _Ref131169224]Figure 5. model monitoring for AI/ML assisted LOS/NLOS identification positioning
As shown in Figure 6, the false NLOS detection ratio is about 0.1 @CDF80% when AI/ML model trained and inferenced in InF-DH scenario.  But when AI/ML model generalize to InF-SH scenario, the false NLOS detection ratio is about 0.5 @CDF80%.
[image: ]
[bookmark: _Ref131169215]Figure 6. simulation results for model monitoring
[bookmark: _Ref131172665]The proposed model monitoring scheme can achieve model monitoring for AI/ML assisted LOS/NLOS identification positioning.

AI/ML assisted positioning using TOA Estimation
Evaluation of single-TRP and multi-TRP
For TOA based AI/ML assisted positioning, two different schemes are investigated:
· Single-TRP, same model for all TRPs:
· PDP information corresponding to single TRP are used for the input of AI/ML model.
· The AI/ML model is performed for each TRP and get the estimated TOA corresponding to each TRP.
· Multi-TRP:
·  PDP information corresponding to all TRPs are used for the input of AI/ML model.
· The outputs of AI/ML model are the estimated TOAs corresponding to all TRPs.

The input to model is NTRPx8x256 valued array, where 8 means 4gNB TX antenna and 2 UE RX antenna, 256 is length of CIR(PDP). For Multi-TRP NTRP is 18 and for single-TRP NTRP is 1.
As shown in Table 8, performance of Multi-TRP of 1.05m accuracy is better than Single-TRP of 20.1m accuracy when clutter parameter is {60%, 6m, 2m}. Performance of Multi-TRP of 1.56m accuracy is better than Single-TRP of 14.9m accuracy when clutter parameter is {40%, 2m, 2m}.
[bookmark: _Ref118371882]Table 8. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (1*8*256)
	1TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	187k
	15M*18
	20.1

	PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	PDP (1*8*256)
	1TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	14.9

	PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56


From the results in Table 8, we can get the following observation:
[bookmark: _Ref118374411]Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.

Evaluation of soft decision
This section compared performance of hard decision and soft decision of single-TRP.
Hard decision approach: For each TRP, the hard TOA value derived by the AI/ML model is reported to LMF.
Soft decision approach: For each TRP, the UE uses an AI/ML model to derive the probability distribution of TOA. We model the probability distribution as a Gaussian mixture, which is completely described by the weights, means and standard deviations or variance of the mixture components. The UE reports the distribution to the LMF. The LMF server fuses the likelihoods across TRPs to derive the position estimate. We also compare the performance of standard deviations and variance.
[bookmark: _Ref127199470]Table 9. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (1*8*256)
	1TOA
Hard-decision
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	14.9

	PDP (1*8*256)
	1TOA
Soft- decision standard deviations
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	5.75

	PDP (1*8*256)
	1TOA
Soft- decision variance
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	187k
	15M*18
	5.6


From the results in Table 9, we can get the following observation:
[bookmark: _Ref127352280]The soft-decision approach outperforms the hard-decision approach for AI/ML assisted TOA estimation positioning.
Proposal 1 [bookmark: _Ref127200883]: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.

Evaluation of different user density for training dataset
Two different user density scenarios of training dataset were compared in Table 10. The higher user density means more training data. The positioning accuracy of dense scenario is bigger than sparse scenario.
· Dense UE scenario: 36000UEs/(120*60)m2 = 5UEs/m2
· Sparse UE scenario: 7200UEs/(120*60)m2 = 1UEs/m2
[bookmark: _Ref127199504]Table 10. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	6480
	720
	205k
	77M
	2.4

	PDP (18*8*256)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480
	720
	205k
	77M
	3.1

	PDP (18*8*256)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56


From the results in Table 10, we can get the following observation:
[bookmark: _Ref127352295]High user density of training dataset provides an improvement in AI/ML assisted TOA estimation positioning over the low user density.

Evaluation of different scenario
This section summarized positioning accuracy in different scenario based on Multi-TRP model. As shown in Table 11, AI/ML model performance drop dramatically when the training dataset and test dataset are generated with different scenarios, indicating that AI model suffers from poor generalization capability across different scenarios especially for scenario hall size. Moreover, training AI/ML model with a mixed dataset is an effective way to improve generalization performance.
For InF-SH hall size is 300x150 m; for InF-DH hall size is 120x60 m.
[bookmark: _Ref118371914]Table 11. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m], different scenario
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400
	3600
	205k
	77M
	1.56

	PDP (18*8*256)
	18TOA
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400
	3600
	205k
	77M
	4.50

	PDP (18*8*256)
	18TOA
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400
	3600
	205k
	77M
	4.36

	PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	>100

	PDP (18*8*256)
	18TOA
	Ideal
	InF-DH {60%,6m, 2m}
	InF-DH {60%,6m, 2m}
same drop
	32400
	3600
	205k
	77M
	1.05

	PDP (18*8*256)
	18TOA
	Ideal
	
	InF-DH {60%,6m, 2m}
new drop
	32400
	3600
	205k
	77M
	7.42

	PDP (18*8*256)
	18TOA
	Ideal
	
	InF-DH {40%, 2m, 2m}
	32400
	3600
	205k
	77M
	8.14

	PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	>100

	PDP (18*8*256)
	18TOA
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.42

	PDP (18*8*256)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400
	3600
	205k
	77M
	3.6


From the results in Table 11, we can get the following observation:
[bookmark: _Ref118377356]Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.

Evaluation of channel estimation error
The performance of channel estimation is mainly affected by interference and noise. We use a procedure of adding channel estimation error to time-domain CIR, in which the additional estimation error is additive white Gaussian noise (AWGN), that cause different SNR as shown in Figure 4.
[bookmark: _Ref127199545]Table 12. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m,  channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	Ideal 
	SNR=0dB
	SNR=0dB
	32400
	3600
	205k
	77M
	2.32

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =10dB
	32400
	3600
	205k
	77M
	4.24

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =20dB
	32400
	3600
	205k
	77M
	4.48

	PDP (18*8*256)
	18TOA
	Ideal 
	
	Without noise
	32400
	3600
	205k
	77M
	4.31

	PDP (18*8*256)
	18TOA
	Ideal 
	SNR=10dB
	SNR=0dB
	32400
	3600
	205k
	77M
	38

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =10dB
	32400
	3600
	205k
	77M
	2.13

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =20dB
	32400
	3600
	205k
	77M
	2.76

	PDP (18*8*256)
	18TOA
	Ideal 
	
	Without noise
	32400
	3600
	205k
	77M
	3.67

	PDP (18*8*256)
	18TOA
	Ideal 
	SNR=20dB
	SNR=0dB
	32400
	3600
	205k
	77M
	51.4

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =10dB
	32400
	3600
	205k
	77M
	20.5

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =20dB
	32400
	3600
	205k
	77M
	1.72

	PDP (18*8*256)
	18TOA
	Ideal 
	
	Without noise
	32400
	3600
	205k
	77M
	2.1

	PDP (18*8*256)
	18TOA
	Ideal 
	Without noise
	SNR=0dB
	32400
	3600
	205k
	77M
	50.6

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =10dB
	32400
	3600
	205k
	77M
	43.4

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =20dB
	32400
	3600
	205k
	77M
	20.8

	PDP (18*8*256)
	18TOA
	Ideal 
	
	Without noise
	32400
	3600
	205k
	77M
	1.56

	PDP (18*8*256)
	18TOA
	Ideal 
	mix
SNR=0dB and SNR =20dB
	SNR=0dB
	32400
	3600
	205k
	77M
	2.38

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =10dB
	32400
	3600
	205k
	77M
	2.28

	PDP (18*8*256)
	18TOA
	Ideal 
	
	SNR =20dB
	32400
	3600
	205k
	77M
	2.23

	PDP (18*8*256)
	18TOA
	Ideal 
	
	Without noise
	32400
	3600
	205k
	77M
	2.22


From the results in Table 12, we can get the following observation:
[bookmark: _Ref127352331]Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
[bookmark: _Ref127352352]AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.

Evaluation of network synchronization error and RX&TX timing error
Timing error includes network synchronization error and UE/gNB RX&TX timing error. The timing error can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-2*T1, 2*T1] range. T1 was set to 0&20&50ns.
[bookmark: _Ref127199570]Table 13. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m, timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	Ideal 
	50ns
	50ns
	32400
	3600
	205k
	77M
	6.78

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	5.11

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	5.14

	PDP (18*8*256)
	18TOA
	Ideal 
	20ns
	50ns
	32400
	3600
	205k
	77M
	9.72

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	4.45

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	4

	PDP (18*8*256)
	18TOA
	Ideal 
	0ns
	50ns
	32400
	3600
	205k
	77M
	16.57

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	10.9

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	1.56

	PDP (18*8*256)
	18TOA
	Ideal 
	Mix 50ns and 20ns
	50ns
	32400
	3600
	205k
	77M
	7.42

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	4.72

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	4.95



[bookmark: _Ref127199575]Table 14. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m, timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
{60%, 6m, 2m}
	Test
{60%, 6m, 2m}
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	Ideal 
	50ns
	50ns
	32400
	3600
	205k
	77M
	4.09

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	3.06

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	3.28

	PDP (18*8*256)
	18TOA
	Ideal 
	20ns
	50ns
	32400
	3600
	205k
	77M
	7.56

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	2.83

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	2.36

	PDP (18*8*256)
	18TOA
	Ideal 
	0ns
	50ns
	32400
	3600
	205k
	77M
	16.59

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	10.62

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	1.05

	PDP (18*8*256)
	18TOA
	Ideal 
	Mix 50ns and 20ns
	50ns
	32400
	3600
	205k
	77M
	5.05

	PDP (18*8*256)
	18TOA
	Ideal 
	
	20ns
	32400
	3600
	205k
	77M
	3.1

	PDP (18*8*256)
	18TOA
	Ideal 
	
	0ns
	32400
	3600
	205k
	77M
	3.07


From the results in Table 13 and Table 14, we can get the following observation:
[bookmark: _Ref127352365]Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
[bookmark: _Ref127352380]AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.

Evaluation of fine tuning 
In this section, we will evaluate whether model fine-tuning can improve the generalization performance for AI/ML assisted TOA estimation positioning for different clutter and different synchronization error. 
Table 15 shows the performance of fine-tuned model in the new deployment setting {40%, 2m, 2m} clutter and Table 16 shows the performance of fine-tuned model in the original deployment setting {60%, 6m, 2m} clutter.
[bookmark: _Ref127199592][bookmark: _Hlk142486481]Table 15. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	4.5
	0
	0.5
	8.14
	5.22

	
	
	
	
	
	
	2.5%
	
	4.74
	3.04

	
	
	
	
	
	
	5%
	
	3.64
	2.33

	
	
	
	
	
	
	10%
	
	2.97
	1.90

	
	
	
	
	
	
	25%
	
	2.41
	1.54

	
	
	
	
	
	
	50%
	
	1.81
	1.16

	
	
	
	
	
	
	100%
	
	1.8
	1.15


[bookmark: _Ref142560044]Table 16. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{60%, 6m, 2m}
	4.5
	0
	0.5
	1.05
	1

	
	
	
	
	
	
	2.5%
	
	6.64
	6.32

	
	
	
	
	
	
	5%
	
	5.54
	5.28

	
	
	
	
	
	
	10%
	
	4.69
	4.47

	
	
	
	
	
	
	25%
	
	4.52
	4.3

	
	
	
	
	
	
	50%
	
	4.21
	4.01

	
	
	
	
	
	
	100%
	
	4.58
	4.36



Table 17 shows the performance of fine-tuned model in the new deployment setting 50ns synchronization error and Table 18 shows the performance of fine-tuned model in the original deployment setting 0ns synchronization error.
[bookmark: _Ref142560055]Table 17. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	0ns
	50ns
	50ns
	4.5
	0
	0.5
	16.59
	4.06

	
	
	
	
	
	
	2.5%
	
	10.79
	2.64

	
	
	
	
	
	
	5%
	
	10.05
	2.46

	
	
	
	
	
	
	10%
	
	8.69
	2.12

	
	
	
	
	
	
	25%
	
	7.23
	1.77

	
	
	
	
	
	
	50%
	
	6.02
	1.47

	
	
	
	
	
	
	100%
	
	4.73
	1.16


[bookmark: _Ref142560061]Table 18. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	0ns
	50ns
	0ns
	4.5
	0
	0.5
	1.05
	1

	
	
	
	
	
	
	2.5%
	
	6.24
	5.94

	
	
	
	
	
	
	5%
	
	6.27
	5.97

	
	
	
	
	
	
	10%
	
	5.54
	5.28

	
	
	
	
	
	
	25%
	
	4.92
	          4.69

	
	
	
	
	
	
	50%
	
	4.39
	4.18

	
	
	
	
	
	
	100%
	
	3.9
	3.71



Table 19 shows the performance of fine-tuned model in the new deployment setting 0ns synchronization error and Table 20 shows the performance of fine-tuned model in the original deployment setting 50ns synchronization error.
[bookmark: _Ref142560071]Table 19. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	50ns
	0ns
	0ns
	4.5
	0
	0.5
	3.27
	3.11

	
	
	
	
	
	
	2.5%
	
	2.94
	2.8

	
	
	
	
	
	
	5%
	
	2.61
	2.49

	
	
	
	
	
	
	10%
	
	2.28
	2.17

	
	
	
	
	
	
	25%
	
	1.84
	1.75

	
	
	
	
	
	
	50%
	
	1.51
	1.44

	
	
	
	
	
	
	100%
	
	1.06
	1.01


[bookmark: _Ref142560103]Table 20. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
{60%, 6m, 2m} clutter
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP (18*8*256)
	18TOA
	50ns
	0ns
	50ns
	4.5
	0
	0.5
	4.09
	1

	
	
	
	
	
	
	2.5%
	
	4.82
	1.18

	
	
	
	
	
	
	5%
	
	4.69
	1.15

	
	
	
	
	
	
	10%
	
	5.23
	1.28

	
	
	
	
	
	
	25%
	
	6.7
	1.64

	
	
	
	
	
	
	50%
	
	7.26
	1.78

	
	
	
	
	
	
	100%
	
	9.14
	2.23



From the results in above tables, we can get the following observation:
[bookmark: _Ref142562147]If the new deployment scenario has different clutter parameters with the deployment scenario the model was trained for, fine-tuning an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the converged performance for the new deployment scenario.
[bookmark: _Ref142562171]If synchronization error of new deployment scenario is smaller than the deployment scenario the model was trained for, model fine-tuning with a small dataset size is most useful for enhancing positioning accuracy. If synchronization error of new deployment scenario is bigger than the deployment scenario the model was trained for, model fine-tuning with a big dataset size is still not useful for enhancing positioning accuracy.

Evaluation of semi-supervised learning (ground truth labels partially unavailable)
In some cases, it is difficulty to collect enough labelled data to to train the AI/ML model. This section focuses on semi-supervised learning, i.e., model training with both labelled data and un-labelled data. We use an iterative semi-supervised learning framework from [3]. For example, in Table 21, if training data includes 3600UE labelled and 3600UE un-labelled, we use labelled data to estimate results of un-labelled data, after that these un-labelled estimated results and original labelled data as training data to re-train the model.
[bookmark: _Ref127199617]Table 21. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	(percentage of training data set without) Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	0%
	{40%, 2m, 2m}
	32400 labelled
	3600
	205k
	77M
	1.56

	PDP (18*8*256)
	18TOA
	0%
	{40%, 2m, 2m}
	3600 labelled
	3600
	205k
	77M
	5.58

	PDP (18*8*256)
	18TOA
	50%
	{40%, 2m, 2m}
	3600 labelled
3600 un-labelled
	3600
	205k
	77M
	4.64

	PDP (18*8*256)
	18TOA
	88.9%
	{40%, 2m, 2m}
	3600 labelled
28800 un-labelled
	3600
	205k
	77M
	4.46

	PDP (18*8*256)
	18TOA
	0%
	{40%, 2m, 2m}
	7200 labelled
	7200
	205k
	77M
	3.33

	PDP (18*8*256)
	18TOA
	50%
	{40%, 2m, 2m}
	7200 labelled
7200 un-labelled
	7200
	205k
	77M
	3.06

	PDP (18*8*256)
	18TOA
	75%
	{40%, 2m, 2m}
	7200 labelled
21600 un-labelled
	7200
	205k
	77M
	2.83


From the results in Table 21, we can get the following observation:
[bookmark: _Ref127352406]With less amount of labelled data, semi-supervised learning with more un-labelled data provides a more accurate position accuracy than supervised learning for AI/ML assisted TOA estimation positioning. 

Evaluation of samples selection with strongest power
	Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


According to the above agreement, we have evaluated the influence of Nt and N’t on assisted positioning, the results are shown in the Table 22 below.
[bookmark: _Ref131169411]Table 22. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
{40%, 2m, 2m}
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	PDP (18* Nt*8)
	18TOA
	Ideal
	256
	256
	32400
	3600
	205k
	77M
	1.56

	
	
	
	
	25
	
	
	
	
	1.65

	
	
	
	
	15
	
	
	
	
	1.63

	
	
	
	64
	64
	32400
	3600
	181.3k
	19.3M
	1.7

	
	
	
	
	25
	
	
	
	
	1.73

	
	
	
	
	15
	
	
	
	
	1.74


When the parameter setting is changed from {Nt = 256, N’t = 25} to {Nt = 64, N’t = 15}, the performance is reduced from 1.56 to 1.74, the computation complexity is reduced from 77M to 19.3M, the performance is only reduced by 12%, but the complexity is reduced by more than half. 
[bookmark: _Ref131168021]For AI/ML assisted TOA estimation positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.
Proposal 2 [bookmark: _Ref127203354]: Study the trade-off between performance and complexity by choosing the appropriate Nt and N’t for AI/ML assisted positioning evaluation.

Evaluation of labelling error
At the RAN1#112b-e meeting, it was agreed that:
	Agreement
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.
· Other models of labelling error are not precluded
· Other timing information, e.g., RSTD, as model output is not precluded.


For AI/ML assisted TOA positioning, we use the same label error model with direct AI/ML positioning (positioning accuracy error).
Table 23. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
	18TOA
	L=0
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	1.56

	PDP (18*8*256)
	18TOA
	L=0.5
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.20

	PDP (18*8*256)
	18TOA
	L=1
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	2.37

	PDP (18*8*256)
	18TOA
	L=2
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	205k
	77M
	3.32

	PDP (18*8*256)
	18TOA
	L=0
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	PDP (18*8*256)
	18TOA
	L=0.5
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.86

	PDP (18*8*256)
	18TOA
	L=1
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	2.21

	PDP (18*8*256)
	18TOA
	L=2
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	3.06


[bookmark: _Ref131168032]Performance of AI/ML assisted TOA estimation positioning degrades with increasement the of labelling error.

Evaluation of reduced number of TRP 
At the RAN1#112b-e meeting, it was agreed that:
	Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.
Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]



At the RAN1#113 meeting, it was agreed that:
	Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.
Note:  The agreement is updated from agreement made in RAN1#112bis


According to the above agreement, we evaluated the influence of NTRP for different approach, the results are shown in the below. For Approach 1-A and 2-A, the selected TRPs ID are {0, 2, 4, 6 ... 14, 16} if N’TRP =9 and {0, 2, 15, 17} f N’TRP =4. For Approach 1-B and 2-B, the TRPs with the highest RSRP are used in the model. For Approach 2-B, TRP information is also used as model input to learn the relationship between activated TRPs.
Table 24. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, N’TRP
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	PDP (18*8*256)
N’TRP =18
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.05

	PDP (18*8*256)
Approach 1-A
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	1.45

	PDP (18*8*256)
Approach 1-B
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	7.92

	PDP (9*8*256)
Approach 2-A
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	188k
	45.9M
	1.50

	PDP (9*8*256)
Approach 2-B
N’TRP =9
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	190k
	49.6M
	8.78

	PDP (18*8*256)
Approach 1-A
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	5.0

	PDP (18*8*256)
Approach 1-B
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	205k
	77M
	44.9

	PDP (4*8*256)
Approach 2-A
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	188k
	18.2M
	7.3

	PDP (4*8*256)
Approach 2-B
N’TRP =4
	18TOA
	ideal
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	191k
	19.6M
	55



[bookmark: _Ref134632181]For reduced number of TRP evaluation approach 1-A and approach 2-A, performance of AI/ML assisted TOA estimation positioning will not significantly degrade when number of TRPs (N’TRP) is 9.
[bookmark: _Ref134632248]For reduced number of TRP evaluation approach 1-B and approach 2-B, performance of AI/ML assisted TOA estimation positioning degrade with the decrease of number of TRPs (N’TRP).
[bookmark: _Ref134632261]For reduced number of TRP evaluation approach 2-A and approach 2-B, computational complexity can be significantly reduced with the decrease of number of TRPs (N’TRP).

Evaluation of label from non-AI positioning
We evaluate the performance that all AI/ML labels come from non-AI positioning. The positioning accuracy of non-AI positioning (TDOA) is 16.58m. If AI/ML training the model with estimated TOA from non-AI positioning as model label, the positioning accuracy is 15.53m. The performance gain is very limited.
Table 25. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	AI/ML

	Non-AI positioning (TDOA)
	16.58

	PDP (18*8*256)
	18TOA
	Ideal label
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	1.56

	PDP (18*8*256)
	18TOA
	100% label from non-AI positioning
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	15.53



[bookmark: _Ref142562217]If all labels are from non-AI positioning, AI/ML positioning performance gain is limited.

Evaluation of differenced CIR/PDP/DP as model input
In our simulations, UE measure CIR/PDP/DP for every TRP. The timing of first path of every TRP is time of flight from TRP to UE as shown in Figure 7. For example, time of flight from TRP1 to UE is t1, from TRP2 to UE is t2, and from TRP3 to UE is t3.


[bookmark: _Ref142560244]Figure 7.  Timing of CIR/PDP/DP based on TOF
Figure8 shows the relationship between TOF and TOA. In real implementation, UE will adjust the RX boundary so that the CIR/PDP/DP has first path at t=0 by measuring reference signal from the serving cell. Some implementations may also put first path at t >0 to give some timing margin. Only PRU can get the CIR/PDP/DP in Figure 7 because the location of PRU is known. Normal UE cannot get the CIR/PDP/DP in figure7 for different TRP. AI/ML positioning cannot use CIR/PDP/DP in Figure 7 as model input during test stage.


Figure 8. TOF and TOA
If network can notify UE/PRU reference TRP information, then UE can generate differenced CIR/PDP/DP based on reference TRP for model input. For example, in Figure 7 TRP1 is reference TRP, the timing of first path of TRP1 is zero. The timing of first path of other TRP is based on reference TRP. The timing of first path of TRP2 is t2-t1. Because t3 is smaller than t1, the part of CIR/PDP/DP before t1 will be shifted to the end. These differenced CIR/PDP/DP in Figure 9 will be used as model input.
The "RSTD reference" TRP already specified in the 3GPP 37.355 may be reused for the differenced CIR/PDP/DP reference TRP.


[bookmark: _Ref142560320]Figure 9. Timing of differenced CIR/PDP/DP based on TOA
Table 26 shows the result of two different format of CIR/PDP/DP. ‘TOF’ means the format is in Figure 7 and ‘TOA’ means the format in Figure 9. If training data is based on TOF (with known location PRU) and test data is based on TOA, the performance is very poor. If training data and test data are all based on TOA, there is only a little loss compared with training data and test data are all based on TOF.
[bookmark: _Ref142562033]Table 26. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param, mix
	Timing format of CIR/PDP/DP
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Training
	test
	

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOF
	TOF
	1.05

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOF
	TOF
	1.56

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOF
	TOA
	19.27

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOF
	TOA
	13.0

	PDP (18*8*256)
	18TOA
	{60%, 6m, 2m}
	TOA
	TOA
	1.42

	PDP (18*8*256)
	18TOA
	{40%, 2m, 2m}
	TOA
	TOA
	2.02



[bookmark: _Ref142562231]The timing format of CIR/PDP/DP based on TOF cannot be used as model input in real implementation.
Proposal 3 [bookmark: _Ref142562666]: Support differenced CIR/PDP/DP based on TOA as model input for AI/ML positioning.
0. 
0. Performance evaluation of direct AI/ML positioning
1. Dataset description
For evaluations of the direct AI/ML positioning, 4 DL-PRS Tx antenna is configured for each TRP, and 2 RX branch at UE is configured. The dataset #A generated with InF-DH scenario, {60%, 6m, 2m} clutter settings, and 8.138ns sampling period is used as baseline. In order to verify the generalization performance of AI/ML model over various settings, clutter parameters of {40%, 2m, 2m}, different random seeds, different timing error, different CE error, different scenarios are also used for dataset #B generation. The sample number for each evaluation is 36000, where data size for model training, validation, and testing is 28800, 3600, and 3600, respectively, and 1 sample means the CIR/PDP collected from 18 TRPs for a given UE, each CIR(PDP) is comprised of length Nt = 256 complex(real) samples.
1. Evaluation of CIR/PDP with relative power as model input
In Table 27, we present the direct AI/ML positioning results based on model input with 1-port CIR, 2-port CIR (by different polarization, the existing spec is only 1 antenna port) and PDP generated in InF-DH scenario with clutter parameters {60%,6m,2m}. For 1-port CIR evaluation, the input dimension of CIR is 18*1*256(number of TRP, number of transmit antenna port, length of CIR). When model input is 2-port CIR or PDP, the signals of the 4 transmit antenna are combined for each receive antenna branch, the input dimension is 18*2*256. 
Both normalized and non-normalized CIR/PDP can be reported by the relative power and a common power scaling, the relative power is the ratio of the absolute power of each path to the peak power. The peak power is the maximum absolute power. Since the relative path power is the common part of the normalized and non-normalized CIR/PDP, we also have evaluated the performance of relative power as an input of direct AI/ML model. The evaluation results are shown in Table 27.  

[bookmark: _Ref142559148]Table 27. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	202.10K
	73.18M
	1.32

	2-port CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.896

	2-port PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.998

	Relative power PDP
[18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	1.059



As shown in the Table 27, the positioning accuracy based on fingerprinting is about 1m, which is much higher than the traditional RAT-dependent positioning accuracy. We can conclude that the positioning performance in heavy NLOS scenario can be significantly improved by fingerprinting, regardless of whether the input is PDP or CIR, absolute power or relative path power. Moreover, it is obvious that increasing the antenna port can also improve the positioning accuracy.
[bookmark: _Ref142562243]Direct AI positioning can significantly improve the positioning performance in heavy-NLOS scenarios compared to conventional methods.
[bookmark: _Ref142562251]The evaluation results show that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
[bookmark: _Ref142562259]The performance of relative power as model input is comparable to that of CIR/PDP as model input.
Proposal 4 [bookmark: _Ref142562684]: At least support PDP as model input for direct AI/ML positioning, and further study CIR to check whether the phase part in CIR is useful.
Proposal 5 [bookmark: _Ref142562704]: Support relative path power (the ratio of path power to the peak power) as model input. 
1. Evaluation of differenced CIR/PDP/DP measurement as model input
We evaluated the generalization performance of the direct AI/ML model with differenced CIR/PDP measurements as model input. The CIR/PDP/DP shifted by first path timing of reference TRP is called differenced measurement as discussed in section 3.1.3.13.
The settings of TOF means the first path timing of CIR/PDP/DP from each TRP is time of flight from TRP to UE, which is different for different UE locations. Simulations in other chapters are all based on TOF.
TOA means CIR/PDP/DP of all TRPs shifted by a common offset which is equal to the first path timing of reference TRP, and for all UEs, the first path timing of reference TRP is zero. 
Table 28.Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {60%, 6m, 2m} TOF
	InF-DH {60%, 6m, 2m} TOF
	32400
	3600
	463.95K
	0.264G
	0.998

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {40%, 2m, 2m} TOF
	InF-DH {40%, 2m, 2m} TOF
	32400
	3600
	463.95K
	0.264G
	1.403

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-SH TOF
	InF-SH TOF
	32400
	3600
	463.95K
	0.264G
	0.987

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {60%, 6m, 2m} TOF
	InF-DH {60%, 6m, 2m} TOA
	32400
	3600
	463.95K
	0.264G
	20.894

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {40%, 2m, 2m} TOF
	InF-DH {40%, 2m, 2m} TOA
	32400
	3600
	463.95K
	0.264G
	10.783

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-SH TOF
	InF-SH TOA
	32400
	3600
	463.95K
	0.264G
	12.125

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {60%, 6m, 2m} TOA
	InF-DH {60%, 6m, 2m} TOA
	32400
	3600
	463.95K
	0.264G
	1.187

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-DH {40%, 2m, 2m} TOA
	InF-DH {40%, 2m, 2m} TOA
	32400
	3600
	463.95K
	0.264G
	1.549

	PDP[18,2,256]
	UE pos [x,y]
	0%
	InF-SH TOA
	InF-SH TOA
	32400
	3600
	463.95K
	0.264G
	1.313





1. Evaluation of different drops
3. Evaluation with better training dataset construction
In Table 29, we present the generalization capability of the AI model over different drops based on model input with PDP. The random seeds of different drops are different. When we test the model trained by data of drop1 directly to the data of drop2, the horizontal positioning accuracy at CDF=90% is 8.57m. Since the multipath realization has no correlation across different drops, the direct AI/ML methods in general are not expected to generalize across unseen drops.
For evaluation with better training dataset construction, the data of drop1 and the data of drop2 are mixed for training. In this way, the positioning accuracy can reach 1.034m.
[bookmark: _Ref142559223]Table 29. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed training for different drop
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Sample density (#samples/m2) of dataset
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP
[18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	4.5
	0.5
	463.95K
	0.264G
	8.57

	
	
	
	Drop1+Drop2
	Drop2
	2.25+2.25
	0.5
	
	
	1.429

	
	
	
	Drop1+Drop2
	Drop2
	4.5+2.25
	0.5
	
	
	1.234

	
	
	
	Drop1+Drop2
	Drop2
	4.5+4.5
	0.5
	
	
	1.034



[bookmark: _Ref142562274]Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different drops.
3. Evaluation of model fine-tuning
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different drops, where the model pretrained with dataset of drop1 is fine-tuned/re-trained with a dataset from the same drop (drop2) as the test dataset. The results are shown in Table 30.
[bookmark: _Ref142559251]Table 30. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
drop1
	InF-DH({60%, 6m, 2m})
drop2
	InF-DH({60%, 6m, 2m})
drop2
	4.5
	0
	0.5
	8.475
	8.968

	
	
	
	
	
	
	2.5%
	
	3.382
	3.579

	
	
	
	
	
	
	5%
	
	2.906
	3.075

	
	
	
	
	
	
	10%
	
	2.237
	2.367

	
	
	
	
	
	
	25%
	
	1.584
	1.676

	
	
	
	
	
	
	50%
	
	1.149
	1.216

	
	
	
	
	
	
	100%
	
	0.948
	1.003



As shown in Table 30, without fine-tuning, the positioning accuracy of direct AI positioning decreased from 0.998m to 8.475m. The positioning performance improves as the data size used for fine-tuning.

[bookmark: _Ref142562284]For different drops, evaluation results from Table 30 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 3.579* , 3.075* , where  is the full training accuracy for the new setting B.

[bookmark: _Ref142559284]Table 31. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
drop1
	InF-DH({60%, 6m, 2m})
drop2
	InF-DH({60%, 6m, 2m})
Drop1
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	5.752
	5.764

	
	
	
	
	
	
	5%
	
	5.386
	5.397

	
	
	
	
	
	
	10%
	
	5.232
	5.242

	
	
	
	
	
	
	25%
	
	5.948
	5.960

	
	
	
	
	
	
	50%
	
	7.192
	7.206

	
	
	
	
	
	
	100%
	
	7.695
	7.710



[bookmark: _Ref142562293]For different drops, evaluation results from Table 31 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.764* , 5.397* , where  is the full training accuracy for the original setting A.

1. Evaluation of different clutter parameters
4. Evaluation with better training dataset construction
In Table 32, it can be observed that when the model trained on the dataset with clutter setting {60%,6m,2m} is tested by the clutter setting {40%,2m,2m}, the positioning accuracy is 7.133m. By better training dataset construction, the accuracy can be improved to 1.137m. The performance of direct AI/ML positioning under clutter setting {40%,2m,2m} depends on its size in the mixed dataset.
[bookmark: _Ref142559303]Table 32. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed training for different clutter setting
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	463.95K
	0.264G
	7.133

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	1.760

	
	
	
	
	
	32400+32400
	3600
	
	
	1.137


[bookmark: _Ref142562302]Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different clutter settings.
4. Evaluation of model fine-tuning
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different clutter settings, where the model pre-trained with dataset of clutter setting ({60%,6m,2m}) is fine-tuned/re-trained with a dataset from the clutter setting ({40%,2m,2m}) which is the same as the test dataset. The results are shown in Table 33.
[bookmark: _Ref142559314]Table 33. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting 
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-DH({40%, 2m, 2m})
	InF-DH({40%, 2m, 2m})
	4.5
	0
	0.5
	7.133
	5.084

	
	
	
	
	
	
	2.5%
	
	3.132
	2.232

	
	
	
	
	
	
	5%
	
	2.690
	1.917

	
	
	
	
	
	
	10%
	
	2.323
	1.656

	
	
	
	
	
	
	25%
	
	1.978
	1.410

	
	
	
	
	
	
	50%
	
	1.532
	1.092

	
	
	
	
	
	
	100%
	
	1.154
	0.823




[bookmark: _Ref142562310]For different clutter parameter settings, e.g., {60%,6m,2m} and {40%, 2m, 2m}, evaluation results from Table 33 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.232* , 1.917* , where  is the full training accuracy for the new setting B.

[bookmark: _Ref142559342]Table 34. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-DH({40%, 2m, 2m})
	InF-DH({60%, 6m, 2m})
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	3.241
	3.247

	
	
	
	
	
	
	5%
	
	3.007
	3.013

	
	
	
	
	
	
	10%
	
	2.799
	2.805

	
	
	
	
	
	
	25%
	
	2.576
	2.581

	
	
	
	
	
	
	50%
	
	2.425
	2.430

	
	
	
	
	
	
	100%
	
	2.079
	2.083



[bookmark: _Ref142562319]For different clutter parameter settings, e.g., {60%,6m,2m} and {40%, 2m, 2m}, evaluation results from Table 34 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  3.247* , 3.013* , where  is the full training accuracy for the original setting A.

1. Evaluation of network synchronization error and RX&TX timing error
Timing error includes network synchronization error and UE/gNB RX&TX timing error. The timing error can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of T1 ns, with truncation of the distribution to the [-2*T1, 2*T1] range. The performance of direct AI positioning with rms value T1=50ns, 30ns and 10ns has been evaluated. The results have been shown in the table below. The ideal dataset is generated with InF-DH scenario, {60%, 6m, 2m} clutter settings, without timing error.
5. Evaluation with better training dataset construction
[bookmark: _Ref142559372]Table 35. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different timing error
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test
Train
	50ns
	30ns
	10ns
	Ideal

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	50ns
	3.275
	2.813
	2.714
	2.673

	
	
	
	
	30ns
	4.260
	2.667
	1.867
	1.865

	
	
	
	
	10ns
	9.231
	4.058
	1.782
	1.146

	
	
	
	
	Ideal
	18.080
	12.172
	8.917
	0.896

	
	
	16200+16200
	3600
	50ns&10ns
	3.743
	2.519
	2.448
	2.090

	
	
	32400+32400
	3600
	50ns&10ns
	2.994
	2.050
	2.075
	1.687

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	50ns
	3.366
	2.772
	2.705
	2.703

	
	
	
	
	30ns
	4.749
	3.400
	1.905
	1.924

	
	
	
	
	10ns
	8.539
	3.872
	1.665
	1.218

	
	
	
	
	Ideal
	13.208
	6.948
	3.405
	0.998

	
	
	16200+16200
	3600
	50ns&10ns
	3.513
	2.504
	2.327
	2.006

	
	
	32400+32400
	3600
	50ns&10ns
	2.510
	1.765
	1.791
	1.358


From the diagonal data in the Table 35, it can be found that the smaller the timing error, the better the positioning performance. Besides, it can be observed that the model trained by the larger timing error dataset can be directly adopted to the dataset with smaller timing error, which can be seen from the upper triangle of the table. On the contrary, if the error of test dataset is larger than that of training data, the positioning performance will degrade, which can be seen from the lower triangle of the table. 
Besides, we mix the training data with 50ns and 10ns timing error and ensure that the mixed training dataset is the same size as the training data with only 50ns timing error, it can be observed that the performance of the test dataset with 30ns, 10ns timing error and ideal dataset (smaller than 50ns) have been improved compared with the training dataset only with 50ns timing error. Further, increasing the number of mixed training dataset can further improve the performance.
[bookmark: _Ref142562332]Direct AI/ML model trained with large timing error dataset can be generalized to dataset with small timing error.
[bookmark: _Ref142562341]The positioning performance of direct AI/ML can be improved by mixing dataset with different timing errors at the cost of the training complexity.

5. Evaluation of model fine-tuning
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different timing errors. In Table 36, the model pre-trained by dataset with rms=0ns is fine-tuned and tested by dataset with rms=50ns. 

[bookmark: _Ref142559382]Table 36. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	50ns
	4.5
	0
	0.5
	13.208
	3.923945

	
	
	
	
	
	
	2.5%
	
	8.099
	2.40612

	
	
	
	
	
	
	5%
	
	7.477
	2.221331

	
	
	
	
	
	
	10%
	
	6.482
	1.925728

	
	
	
	
	
	
	25%
	
	4.925
	1.463161

	
	
	
	
	
	
	50%
	
	3.718
	1.104575

	
	
	
	
	
	
	100%
	
	2.743
	0.814914



[bookmark: _Ref142562350]For different timing errors, e.g., rms = 0ns and 50ns, evaluation results from Table 36 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.406* , 2.221* , where  is the full training accuracy for the new setting B.


[bookmark: _Ref142559410]Table 37. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	0ns
	50ns
	0ns
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	5.941
	5.952906

	
	
	
	
	
	
	5%
	
	5.911
	5.922846

	
	
	
	
	
	
	10%
	
	5.068
	5.078156

	
	
	
	
	
	
	25%
	
	3.908
	3.915832

	
	
	
	
	
	
	50%
	
	3.007
	3.013026

	
	
	
	
	
	
	100%
	
	2.278
	2.282565



[bookmark: _Ref142562361]For different timing errors, e.g., rms = 0ns and 50ns, evaluation results from Table 37 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.953* , 5.923* , where  is the full training accuracy for the original setting A.

When the model pre-trained with 50ns timing error is directly used for the test dataset with 10ns timing error, the performance is better than that of the test dataset with 50ns timing error, which is shown in Table 38. When fine-tune the model with dataset with 10ns timing error, it can be found that the performance of test data with the same timing error(10ns) as the fine-tuning data is further improved, while the performance of test data with 50ns timing error is decreased.

[bookmark: _Ref142559427]Table 38. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	50ns
	10ns
	10ns
	4.5
	0
	0.5
	2.705
	1.624624

	
	
	
	
	
	
	2.5%
	
	2.357
	1.415616

	
	
	
	
	
	
	5%
	
	2.228
	1.338138

	
	
	
	
	
	
	10%
	
	2.154
	1.293694

	
	
	
	
	
	
	25%
	
	1.961
	1.177778

	
	
	
	
	
	
	50%
	
	1.672
	1.004204

	
	
	
	
	
	
	100%
	
	1.478
	0.887688



[bookmark: _Ref142562372]For different timing errors, e.g., rms = 50ns and 10ns, evaluation results from Table 38 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 1.416* , 1.338* , where  is the full training accuracy for the new setting B.


[bookmark: _Ref142559465]Table 39. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for timing error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	50ns
	10ns
	50ns
	4.5
	0
	0.5
	3.366
	1

	
	
	
	
	
	
	2.5%
	
	3.766
	1.118835

	
	
	
	
	
	
	5%
	
	3.866
	1.148544

	
	
	
	
	
	
	10%
	
	4.150
	1.232917

	
	
	
	
	
	
	25%
	
	4.742
	1.408794

	
	
	
	
	
	
	50%
	
	5.086
	1.510992

	
	
	
	
	
	
	100%
	
	5.600
	1.663696



[bookmark: _Ref142562381]For different timing errors, e.g., rms = 50ns and 10ns, evaluation results from Table 39 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  1.119* , 1.149* , where  is the full training accuracy for the original setting A.


1. Evaluation of channel estimation error
6. Evaluation with better training dataset construction
We model the channel estimation error as AWGN  (dB). The training set is set in the fifth column, and test set is set in the second row of Table 40. The dataset is generated with InF-DH scenario, {60%, 6m, 2m} clutter settings.
[bookmark: _Ref142559476]Table 40. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different channel estimation error
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test 
Train
	SNR=0dB
	SNR=10dB
	SNR=20dB
	Ideal

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.575
	4.697
	4.878
	4.887

	
	
	
	
	SNR=10dB
	53.064
	1.541
	1.520
	1.516

	
	
	
	
	SNR=20dB
	60.615
	46.2
	1.168
	1.220

	
	
	
	
	Ideal
	53.918
	59.543
	43.803
	0.940

	
	
	32400+32400
	3600
	0dB & 10dB
	2.211
	1.456
	1.453
	1. 452

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.252
	3.036
	3.108
	3.102

	
	
	
	
	SNR=10dB
	43.713
	1.418
	1.455
	1.457

	
	
	
	
	SNR=20dB
	60.615
	37.334
	1.034
	1.00

	
	
	
	
	Ideal
	64.88
	37.01
	1.561
	0.821

	
	
	32400+32400
	3600
	0dB & 10dB
	1.825
	1.253
	1.259
	1.260


From the diagonal data in the Table 40, it can be found that the higher the SNR, the better the positioning performance. Besides, it can be observed that the model trained by the lower SNR dataset can be directly adopted to the dataset with higher SNR, which can be seen from the upper triangle of the table. On the contrary, if the SNR of test dataset is lower than SNR of training data, the positioning performance will be very poor, which can be seen from the lower triangle of the table.
The model trained with dataset of SNR=0dB can be directly adopted to the dataset with larger SNR, when we mix 10dB data into 0dB training data, the performance can be further improved. 

[bookmark: _Ref142562398]The direct AI Model trained by dataset with large channel estimation error can be generalized to dataset with small channel estimation error.
[bookmark: _Ref142562406]The positioning performance can be improved by mixing dataset with different channel estimation errors at the cost of the training complexity.
[bookmark: _Ref142562415] In fact, channel estimation errors can be used as a type of data augmentation to enhance trained model performance and to increase the model robustness to various channel estimation errors.

Proposal 6 [bookmark: _Ref142562724]：For AI/ML positioning, support better training dataset construction (e.g., mix dataset with different clutter parameters, different timing errors, and different channel estimation errors) for AI/ML model generalization.

6. Evaluation of model fine-tuning
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different channel estimation errors. In Table 41 and Table 42, the model pre-trained by dataset with SNR = 20dB is fine-tuned by SNR = 0dB and tested by dataset with SNR=0dB and SNR=20dB.
[bookmark: _Ref142559522]Table 41. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR
[18,2,256]
	UE pos [x,y]
	20dB
	0dB
	0dB
	4.5
	0
	0.5
	60.615
	23.5398

	
	
	
	
	
	
	2.5%
	
	7.172
	2.785243

	
	
	
	
	
	
	5%
	
	6.003
	2.331262

	
	
	
	
	
	
	10%
	
	4.828
	1.874951

	
	
	
	
	
	
	25%
	
	3.870
	1.502913

	
	
	
	
	
	
	50%
	
	3.016
	1.171262

	
	
	
	
	
	
	100%
	
	2.479
	0.962718



[bookmark: _Ref142562436]For different channel estimation errors, e.g., 20dB and 0dB, evaluation results from Table 41 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.785* , 2.331* , where  is the full training accuracy for the new setting B.

[bookmark: _Ref142559535]Table 42. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	20dB
	0dB
	20dB
	4.5
	0
	0.5
	1.168
	1

	
	
	
	
	
	
	2.5%
	
	6.949
	5.949484

	
	
	
	
	
	
	5%
	
	5.150
	4.409245

	
	
	
	
	
	
	10%
	
	4.620
	3.955478

	
	
	
	
	
	
	25%
	
	4.930
	4.220889

	
	
	
	
	
	
	50%
	
	3.598
	3.080478

	
	
	
	
	
	
	100%
	
	4.606
	3.943491



[bookmark: _Ref142562444]For different channel estimation errors, e.g., 20dB and 0dB, evaluation results from Table 42 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.949* , 4.409* , where  is the full training accuracy for the original setting A.

[bookmark: _Ref142562452]Fine-tuning a model with samples of new parameter setting (e.g., drop, clutter setting, channel estimation error, timing error, scenario) can achieve positioning accuracy improvement when the pre-trained model is transferred to a new parameter setting for direct AI/ML positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained parameter setting.

1. Evaluation of SNR mismatch

Table 43. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different SNR
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test 
Train
	Tx power 3dBm
	Tx power 13dBm
	Legacy 23dBm
	Tx power 33dBm
	Tx power 43dBm

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	Tx power 13dBm
	2.256
	0.857
	3.302
	8.977
	40.739

	
	
	
	
	Tx power 23dBm
	11.745
	4.205
	0.896
	1.470
	3.938

	
	
	
	
	Tx power 33dBm
	15.007
	6.837
	2.034
	1.023
	2.623

	
	
	
	
	Tx power 43dBm
	55.63
	17.186
	5.534
	2.760
	1.045

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	Tx power 13dBm
	10.063
	1.167
	7.367
	33.822
	>100

	
	
	
	
	Legacy 23dBm
	36.887
	9.941
	0.998
	2.183
	9.730

	
	
	
	
	Tx power 33dBm
	45.715
	13.431
	2.379
	0.916
	3.327

	
	
	
	
	Tx power 43dBm
	52.499
	28.538
	6.856
	2.912
	0.861



[bookmark: _Ref142562463]For evaluation of direct AI/ML positioning over different SNRs, the generalization performance of a model trained with data of S1(dB) and tested with data of S2(dB) is worse than the model trained and tested with data of S1(dB), and the generalization performance degrades with the increases of difference between S1(dB) and S2(dB).

1. Evaluation of different scenarios
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different scenarios, where the model pretrained with dataset of scenario InF-DH({60%, 6m, 2m}) with hall size (120*60)is re-trained with dataset in scenario InF-SH with hall size (120*60). The results are shown in Table 44.
[bookmark: _Ref142559582]Table 44. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning for scenario InF-SH
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-SH
	InF-SH
	4.5
	0
	0.5
	12.255
	12.41641

	
	
	
	
	
	
	2.5%
	
	2.761
	2.797366

	
	
	
	
	
	
	5%
	
	2.316
	2.346505

	
	
	
	
	
	
	10%
	
	1.942
	1.967579

	
	
	
	
	
	
	25%
	
	1.576
	1.596758

	
	
	
	
	
	
	50%
	
	1.163
	1.178318

	
	
	
	
	
	
	100%
	
	0.909
	0.920973



[bookmark: _Ref142562476]For different scenarios, e.g., InF-DH and InF-SH, evaluation results from Table 44 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.797* , 2.347* , where  is the full training accuracy for the new setting B.

[bookmark: _Ref142559603]Table 45. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning for scenario InF-SH
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	PDP [18,2,256]
	UE pos [x,y]
	InF-DH({60%, 6m, 2m})
	InF-SH
	InF-DH({60%, 6m, 2m})
	4.5
	0
	0.5
	0.998
	1

	
	
	
	
	
	
	2.5%
	
	8.315
	8.332

	
	
	
	
	
	
	5%
	
	8.644
	8.661

	
	
	
	
	
	
	10%
	
	7.888
	7.904

	
	
	
	
	
	
	25%
	
	8.456
	8.473

	
	
	
	
	
	
	50%
	
	8.161
	8.177

	
	
	
	
	
	
	100%
	
	9.221
	9.240



[bookmark: _Ref142562489]For different scenarios, e.g., InF-DH and InF-SH, evaluation results from Table 45 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  8.332* , 8.661* , where  is the full training accuracy for the original setting A.

1. Evaluation of time varying
We model the data with time varying by randomly select the paths from the 25clusters in CIR, both the number and the positions of paths selected are random for each UE-TRP link. 
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over time varying, where the model pretrained with dataset of scenario InF-DH({60%, 6m, 2m}) without time varying is re-trained with a small amount of dataset with time varying. The results are shown in Table 46.
[bookmark: _Ref142559612]Table 46. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of time varying  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Sample density (#samples/m2) of dataset
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune (%) *
	Test
	Train
	Fine-tune
(%) *
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	4.5
	0%
	0.5
	464.24K
	0.266G
	>100

	
	
	
	
	
	
	
	3.7%
	
	
	
	11.206

	
	
	
	
	
	
	
	11%
	
	
	
	6.712

	
	
	
	
	
	
	
	22%
	
	
	
	5.076

	PDP [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	4.5
	0%
	0.5
	463.95K
	0.264G
	>100

	
	
	
	
	
	
	
	3.7%
	
	
	
	9.950

	
	
	
	
	
	
	
	11%
	
	
	
	6.146

	
	
	
	
	
	
	
	22%
	
	
	
	4.796



As shown in Table 46, without fine-tuning, the positioning accuracy of direct AI positioning is larger than 100m when there is time varying change between the data for model pretraining and data for test. When using 7200 samples with time varying for fine-tuning, the positioning accuracy of direct AI positioning can reach 4.796m with PDP as model input.
[bookmark: _Ref142562499]Performance of direct AI/ML positioning degrades when there is time varying change between the training data and test data, and fine-tuning can improve the performance.
1. Evaluation of UE density
In this section, the simulation is performed on the impact of UE density on performance of direct AI positioning, the results are shown in the table below.
[bookmark: _Ref142559637]Table 47. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different UE density  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
UE density 
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	InF-DH{60%,6m,2m}
	4.5UEs/
	464.24K
	0.266G
	0.896

	
	
	
	
	
	2.25UEs/
	
	
	1.273

	
	
	
	
	
	1.125UEs/
	
	
	1.839

	
	
	
	
	
	0.5625UEs/
	
	
	3.250

	PDP [18,2,256]
	UE pos [x,y]
	0%
	
	
	4.5UEs/
	463.95K
	0.264G
	0.998

	
	
	
	
	
	2.25UEs/
	
	
	1.357

	
	
	
	
	
	1.125UEs/
	
	
	2.039

	
	
	
	
	
	0.5625UEs/
	
	
	2.758



From Table 47, it can be observed that the performance of direct AI positioning decreases as the UE density decreases.
[bookmark: _Ref142562507]Performance of direct AI positioning decreases as the UE density decreases.
Further, we analyse the direct AI positioning performance of UE non-uniform distribution in Table 48. Simply, we divide the data into left and right areas, and the amount of data in the left area is 1/4 of that in the right area. The model is trained on the mixed data and evaluated on the left and right test sets respectively.
[bookmark: _Ref142559667]Table 48. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], non-uniform UE distribution  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH{60%,6m,2m}
	Left
InF-DH
	3600
(left)
+14400
(right)=18000
	3600
	463.95K
	0.264G
	1.518

	
	
	
	
	Right
InF-DH
	
	3600
	
	
	1.021


From the Table 48, it can be seen that the performance of the left area is worse than that of the right, this is due to the lower data density on the left.
Proposal 7 [bookmark: _Ref142562746]: Further evaluate performance of AI/ML positioning for non-uniform UE distribution.
1. Evaluation of semi-supervised learning (ground truth labels partially unavailable)
In semi-supervised learning, we divide the training data set into several parts, the first part is labelled data for supervised training, and the rest is unlabelled data for semi-supervised training. The simulation results of supervised learning and semi-supervised learning are given in the following table.
[bookmark: _Ref142559739]Table 49. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], semi-supervised learning
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400 labelled
	3600
	464.24K
	0.266G
	0.896

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.018

	
	
	75%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	1.722

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400 labelled
	3600
	463.95K
	0.264G
	0.998

	
	
	0%
	
	
	7200 labelled
	7200
	
	
	2.213

	
	
	75%
	
	
	7200 labelled + 21600 unlabelled
	7200
	
	
	2.070


In Table 49, The amount of labelled data of supervised learning and semi-supervised learning is the same, and additionally, the amount of unlabelled data is 3 times that of labelled data for semi-supervised learning. The performance of supervised and semi-supervised learning is 2.018m and 1.722m respectively when CIR as model input. 
[bookmark: _Ref142562522]Semi-supervised learning with large amounts of unlabeled data can improve performance over supervised learning when labelled data is limited.

1. Overhead reduction studies
12. Reduced samples
	Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


According to the above agreement, we have evaluated the influence of Nt and N’t on direct AI positioning, the results are shown in the table below.
Table 50. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’t and Nt  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	464.24K
	0.266G
	0.896

	
	
	
	
	20
	
	
	
	
	0.915

	
	
	
	
	15
	
	
	
	
	1.017

	
	
	
	64
	25
	
	
	243.058K
	0.066G
	0.984

	
	
	
	
	20
	
	
	
	
	0.851

	
	
	
	
	15
	
	
	
	
	1.097

	PDP [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	463.95K
	0.264G
	0.998

	
	
	
	
	20
	
	
	
	
	1.089

	
	
	
	
	15
	
	
	
	
	1.133

	
	
	
	64
	25
	
	
	242.770K
	0.066G
	0.942

	
	
	
	
	20
	
	
	
	
	0.965

	
	
	
	
	15
	
	
	
	
	1.057


When the model input is CIR, the parameter setting is changed from {Nt = 256, N’t = 25} to {Nt = 64, N’t = 15}, the performance is reduced from 0.940 to 1.097, the complexity is reduced from {464.24K, 0.266G} to {243.058K,0.066G}, the performance is only reduced by 16%, but the complexity is reduced by more than half. 
[bookmark: _Ref142562530]By selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.

12. Reduced TRPs
The dataset of this section is 2-port CIR (by different polarization, the existing spec is only 1 antenna port) generated in InF-DH scenario with clutter parameters {60%,6m,2m}. The input dimension of CIR is N’TRP *2*256(number of TRP, number of transmit antenna port, length of CIR). The training dataset size is 32400 (4.5 samples/m2)and test dataset size if 3600(0.5 samples/m2).

Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

The following was agreed in RAN1 #112bie-s:
	Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

	Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]



According to the above agreement, we have evaluated the influence of N’TRP (N’TRP =18, 12, 9, 5 ) on direct AI/ML positioning, the evaluation results based on Approach 1-A , Approach 1-B , Approach 2-A, and Approach 2-B are shown below. The result shows that the positioning performance of both Approach 1 and Approach 2 will degrade as the number of TRPs decreases. Nmodel =1 is provided for Approach 2.
[bookmark: _Ref142562538]The performance of direct AI/ML positioning decreases with the decrease of N’TRP.

With reduced model input, the performance of Approach 2-B decreases significantly compared to Approach 2-A due to dynamically TRP activation. Then, TRP information is proposed as model input to learn the relationship between activated TRPs and improve the performance, the performance gain is shown in Table 52 and Table 54.
Table 51. Fixed TRP patterns for Approach 1-A,2-A, different N’TRP
	TRP number
	TRP pattern for approach 1-A,2-A

	N’TRP =12
	0,3,6,9,12,15,1,4,7,10,13,16

	N’TRP =9
	0,6,12,1,7,13,2,8,14

	N’TRP =5
	0,9,1,10,2



[bookmark: _Ref142559781]Table 52. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’TRP
	Model input
	Model output
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Approach 1A
	Approach 2A
	Approach 1B
Based on power
	Approach 2B
Based on power
	Approach 2B + TRP information
Based on power

	CIR N’TRP =18 
	UE pos [x,y]
	0.896

	CIR N’TRP =12
	UE pos [x,y]
	1.251
	1.137
	1.526
	4.254
	2.723

	CIR N’TRP =9
	UE pos [x,y]
	1.516
	1.324
	1.772
	8.083
	3.437

	CIR N’TRP =5
	UE pos [x,y]
	2.163
	2.110
	3.621
	24.714
	9.103



[bookmark: _Ref142562548]Due to dynamic activation of TRPs, the performance of Approach 2-B is significantly lower than that of Approach 2-A, the performance of Approach 2-B can be improved by using TRP information as model input.
Proposal 8 [bookmark: _Ref142562758]: It is recommended that TRP information be used as model input along with CIR/PDP to improve the performance if Approach 2-B is used.

Additionally, for Approach 2, the TRP dimension of model input is N’TRP, which will reduce the AI/ML complexity compared to Approach 1 that the model input size stays constant as NTRP=18 , the AI/ML complexity of  Approach 2 with different number of TRP as model input is shown in Table 53.
[bookmark: _Ref142559820]Table 53. Model complexity and computation complexity with different N’TRP as model input
	Model input
	Model output
	AI/ML complexity

	
	
	Model complexity
	Computation complexity

	CIR N’TRP =18 
	UE pos [x,y]
	464.24K
	0.266G

	CIR N’TRP =12
	UE pos [x,y]
	365.93K
	0.177G

	CIR N’TRP =9
	UE pos [x,y]
	316.78K
	0.133G

	CIR N’TRP =5
	UE pos [x,y]
	251.25K
	0.0739G



For Approach 1-B and Approach 2-B, the set of active TRPs (N’TRP) that provide measurements can change dynamically, in Table 52, the first N’TRP TRPs with strongest power are selected. In Table 54, we compared the performance of direct AI/ML over different TRP selection methods, and the TRP selection based on timing, that is, the first N’TRP TRPs with the shortest estimated first path delay are selected, is also evaluated, and the result shows that the performance of timing based TRP selection is better than power based TRP selection in this simulation.

[bookmark: _Ref142559789]Table 54. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], dynamic activation of TRPs, different N’TRP
	Model input
	Model output
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Approach 1B
Based on power
	Approach 1B
Based on timing
	Approach 2B
Based on power
	Approach 2B
Based on timing
	Approach 2B + TRP information
Based on power
	Approach 2B + TRP information
Based on timing

	CIR N’TRP =18 
	UE pos [x,y]
	0.896

	CIR N’TRP =12
	UE pos [x,y]
	1.526
	1.101
	4.254
	2.371
	2.723
	1.639

	CIR N’TRP =9
	UE pos [x,y]
	1.772
	1.280
	8.083
	3.571
	3.437
	1.737

	CIR N’TRP =5
	UE pos [x,y]
	3.621
	1.466
	24.714
	8.158
	9.103
	2.688



[bookmark: _Ref142562560]For dynamical TRP activation (Approach 1-B and Approach 2-B), the performance is related to the TRP activation method.

Proposal 9 [bookmark: _Ref142562768]: The dynamical TRP activation method should be sent to UE/PRU by network for data collection or other aspects of AI/ML LCM (e.g., training, updating, monitoring, inference) if Approach 1-B or Approach 2-B is used.
12. Reduced TRPs with model fine-tuning 
Model fine-tuning is performed to evaluate the generalization capability of direct AI/ML positioning over different number of TRPs N’TRP, where the model pretrained with dataset of N’TRP =18 is re-trained/fine-tuned with dataset of N’TRP =9. Approach 1-A is evaluated since the model input size stays constant as NTRP=18. The results are shown in Table 55.  

[bookmark: _Ref142559864]Table 55. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], model fine-tuning over different N’TRP
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR 
	UE pos [x,y]
	18TRPs
	9TRPs Approach1-A
	9TRPs Approach 1-A
	4.5
	0
	0.5
	24.009 
	15.83706

	
	
	
	
	
	
	2.5%
	
	4.984
	3.287596

	
	
	
	
	
	
	5%
	
	4.286
	2.827174

	
	
	
	
	
	
	10%
	
	3.102
	2.046172

	
	
	
	
	
	
	25%
	
	2.275
	1.500658

	
	
	
	
	
	
	50%
	
	1.766
	1.164907

	
	
	
	
	
	
	100%
	
	1.311
	0.864775



[bookmark: _Ref142562577]For different N’TRP, e.g., N’TRP =18, 9, evaluation results from Table 55 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 3.288* , 2.827* , where  is the full training accuracy for the new setting B.

[bookmark: _Ref142559892]Table 56. Evaluation results for AI/ML model deployed on UE or network-side with generalization, fine-tuning over different N’TRP
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	
	
	
	
	
	
	
	
	
	

	CIR
	UE pos [x,y]
	18TRPs
	9TRPs Approach1-A
	18TRPs
	4.5
	0
	0.5
	0.896
	1

	
	
	
	
	
	
	2.5%
	
	17.068
	19.04908

	
	
	
	
	
	
	5%
	
	17.172
	19.16515

	
	
	
	
	
	
	10%
	
	21.164
	23.62051

	
	
	
	
	
	
	25%
	
	25.53
	28.49327

	
	
	
	
	
	
	50%
	
	25.962
	28.97541

	
	
	
	
	
	
	100%
	
	15.051
	16.79797



[bookmark: _Ref142562584]For different N’TRP, e.g., N’TRP =18, 9, evaluation results from Table 56 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  19.049* , 19.165* , where  is the full training accuracy for the original setting A.

1. Evaluation of labelling error 

	Agreement 
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy   
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range.  
· Value L is up to sources.  
· Other models are not precluded 
· [Whether/how to study the impact of labelling error to label-based model monitoring methods] 
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.] 



According to the above agreement, we have evaluated the influence of labelling error on direct AI positioning. The ground truth label error in each dimension of x-axis and y-axis is modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters. The direct AI/ML model is trained by dataset with labelling error and tested by dataset without label error. The results are shown in the below.
Table 57. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different standard deviation of labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0
	L=0
	32400
	3600
	464.24K
	0.266G
	0.896

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0.2
	L=0
	32400
	3600
	464.24K
	0.266G
	1.029

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0.5
	L=0
	32400
	3600
	464.24K
	0.266G
	1.649

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=2
	L=0
	32400
	3600
	464.24K
	0.266G
	4.115

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0
	L=0
	32400
	3600
	463.95K
	0.264G
	0.998

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0.2
	L=0
	32400
	3600
	463.95K
	0.264G
	1.025

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0.5
	L=0
	32400
	3600
	463.95K
	0.264G
	1.308

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=2
	L=0
	32400
	3600
	463.95K
	0.264G
	4.137



When the standard deviation increases, the positioning performance will decrease. As can be seen from the simulation results. If the positioning accuracy needs to reach sub-meter level, the standard deviation of label error should be less than 0.2.
[bookmark: _Ref142562593]Performance of direct AI/ML positioning degrades with the increasement of labelling error.
[bookmark: _Ref142562609]When the standard deviation of label error is less than 0.2, the positioning accuracy can reach the sub-meter level with the UE density 4.5UEs/ in the scenario InF-DH({60%, 6m, 2m}).

1. Performance monitoring of direct AI/ML positioning 
We propose that the direct AI/ML model can output additional soft information corresponding to the estimated location for performance monitoring. Based on the soft information, the performance of the direct AI/ML model can be monitored whether the data is labeled or not.


Figure 10. The direct AI/ML model output estimated location and soft information
We use mixture density network as direct AI/ML model, and the standard deviation of the estimated location is output by direct AI/ML model. The smaller the standard deviation value is, the higher the estimation accuracy is. 
The CDF of the standard deviation of estimated location is shown below. First, we monitor the direct AI/ML model trained by dataset of scenario InF-DH({60%, 6m, 2m}), when the environment changes and dataset from scenario InF-DH({40%, 2m, 2m}) is provided for model monitoring, it can be observed that the standard deviation is larger than 1. Assuming this value is larger than a metric threshold that meets the positioning requirements, and the model re-training or model switch need to be performed. Finally, when the appropriate direct AI/ML model for scenario {40%,2m,2m} is selected, the standard deviation is significantly reduced.
[image: ]
Figure 11. CDF of the standard deviation of the monitoring dataset {40%,2m,2m} when the model is trained by dataset {60%,6m,2m} and {40%,2m,2m}, respectively.
The monitoring metrics can be calculated based on the soft information and estimated location if the ground truth label available, for example, there is a weighted sum of the soft information and the difference between estimated location and known location,

Where () is known location; () is estimated location,  if the ground truth label is not available.
[bookmark: _Ref142562617]Soft information can be used to monitor the performance of the direct AI/ML positioning.
[bookmark: _Ref142562625]Based on the soft information, the performance of the direct AI/ML model can be monitored whether the data is labeled or not.
Proposal 10 [bookmark: _Ref142562791]: For model monitoring of direct AI/ML positioning, support the soft information associated to the estimated location as model output.

1. Conclusion
In this contribution, we summarize the following observations and proposals. 
Observation 1:The soft-decision approach outperforms the hard-decision approach for AI/ML assisted LOS/NLOS identification positioning.
Observation 2:High user density of training dataset provides an improvement in LOS/NLOS identification accuracy over the low user density.
Observation 3:Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario. And the performance is improved when mix InF-DH and InF-SH training data.
Observation 4:Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.
Observation 5:AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
Observation 6:Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.
Observation 7:AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Observation 8:For AI/ML assisted LOS/NLOS identification positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.
Observation 9:Performance of AI/ML assisted LOS/NLOS identification positioning degrades with increasement the of labelling error.
Observation 10:The proposed model monitoring scheme can achieve model monitoring for AI/ML assisted LOS/NLOS identification positioning.
Observation 11:Multi-TRP approach outperforms single-TRP for AI/ML assisted TOA estimation positioning.
Observation 12:The soft-decision approach outperforms the hard-decision approach for AI/ML assisted TOA estimation positioning.
Observation 13:High user density of training dataset provides an improvement in AI/ML assisted TOA estimation positioning over the low user density.
Observation 14:Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.
Observation 15:Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.
Observation 16:AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
Observation 17:Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.
Observation 18:AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Observation 19:If the new deployment scenario has different clutter parameters with the deployment scenario the model was trained for, fine-tuning an existing model requires similarly large training dataset size as training the model from scratch, in order to achieve the converged performance for the new deployment scenario.
Observation 20:If synchronization error of new deployment scenario is smaller than the deployment scenario the model was trained for, model fine-tuning with a small dataset size is most useful for enhancing positioning accuracy. If synchronization error of new deployment scenario is bigger than the deployment scenario the model was trained for, model fine-tuning with a big dataset size is still not useful for enhancing positioning accuracy.
Observation 21:With less amount of labelled data, semi-supervised learning with more un-labelled data provides a more accurate position accuracy than supervised learning for AI/ML assisted TOA estimation positioning.
Observation 22:For AI/ML assisted TOA estimation positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.
Observation 23:Performance of AI/ML assisted TOA estimation positioning degrades with increasement the of labelling error.
Observation 24:For reduced number of TRP evaluation approach 1-A and approach 2-A, performance of AI/ML assisted TOA estimation positioning will not significantly degrade when number of TRPs (N’TRP) is 9.
Observation 25:For reduced number of TRP evaluation approach 1-B and approach 2-B, performance of AI/ML assisted TOA estimation positioning degrade with the decrease of number of TRPs (N’TRP).
Observation 26:For reduced number of TRP evaluation approach 2-A and approach 2-B, computational complexity can be significantly reduced with the decrease of number of TRPs (N’TRP).
Observation 27:If all labels are from non-AI positioning, AI/ML positioning performance gain is limited.
Observation 28:The timing format of CIR/PDP/DP based on TOF cannot be used as model input in real implementation.
Observation 29:Direct AI positioning can significantly improve the positioning performance in heavy-NLOS scenarios compared to conventional methods.
Observation 30:The evaluation results show that the positioning performance of 2 transmit antenna ports (by different polarization) is better than the existing 1 antenna port in the spec.
Observation 31:The performance of relative power as model input is comparable to that of CIR/PDP as model input.
Observation 32:Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different drops.
Observation 33:For different drops, evaluation results from Table 30 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 3.579* , 3.075* , where  is the full training accuracy for the new setting B.
Observation 34:For different drops, evaluation results from Table 31 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.764* , 5.397* , where  is the full training accuracy for the original setting A.
Observation 35:Training the AI model with mixed dataset can be an effective way to improve the performance of direct AI positioning when the model is deployed at different clutter settings.
Observation 36:For different clutter parameter settings, e.g., {60%,6m,2m} and {40%, 2m, 2m}, evaluation results from Table 33 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.232* , 1.917* , where  is the full training accuracy for the new setting B.
Observation 37:For different clutter parameter settings, e.g., {60%,6m,2m} and {40%, 2m, 2m}, evaluation results from Table 34 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  3.247* , 3.013* , where  is the full training accuracy for the original setting A.
Observation 38:Direct AI/ML model trained with large timing error dataset can be generalized to dataset with small timing error.
Observation 39:The positioning performance of direct AI/ML can be improved by mixing dataset with different timing errors at the cost of the training complexity.
Observation 40:For different timing errors, e.g., rms = 0ns and 50ns, evaluation results from Table 36 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.406* , 2.221* , where  is the full training accuracy for the new setting B.
Observation 41:For different timing errors, e.g., rms = 0ns and 50ns, evaluation results from Table 37 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.953* , 5.923* , where  is the full training accuracy for the original setting A.
Observation 42:For different timing errors, e.g., rms = 50ns and 10ns, evaluation results from Table 38 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 1.416* , 1.338* , where  is the full training accuracy for the new setting B.
Observation 43:For different timing errors, e.g., rms = 50ns and 10ns, evaluation results from Table 39 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  1.119* , 1.149* , where  is the full training accuracy for the original setting A.
Observation 44:The direct AI Model trained by dataset with large channel estimation error can be generalized to dataset with small channel estimation error.
Observation 45:The positioning performance can be improved by mixing dataset with different channel estimation errors at the cost of the training complexity.
Observation 46:In fact, channel estimation errors can be used as a type of data augmentation to enhance trained model performance and to increase the model robustness to various channel estimation errors.
Observation 47:For different channel estimation errors, e.g., 20dB and 0dB, evaluation results from Table 41 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.785* , 2.331* , where  is the full training accuracy for the new setting B.
Observation 48:For different channel estimation errors, e.g., 20dB and 0dB, evaluation results from Table 42 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  5.949* , 4.409* , where  is the full training accuracy for the original setting A.
Observation 49:Fine-tuning a model with samples of new parameter setting (e.g., drop, clutter setting, channel estimation error, timing error, scenario) can achieve positioning accuracy improvement when the pre-trained model is transferred to a new parameter setting for direct AI/ML positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained parameter setting.
Observation 50:For evaluation of direct AI/ML positioning over different SNRs, the generalization performance of a model trained with data of S1(dB) and tested with data of S2(dB) is worse than the model trained and tested with data of S1(dB), and the generalization performance degrades with the increases of difference between S1(dB) and S2(dB).
Observation 51:For different scenarios, e.g., InF-DH and InF-SH, evaluation results from Table 44 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 2.797* , 2.347* , where  is the full training accuracy for the new setting B.
Observation 52:For different scenarios, e.g., InF-DH and InF-SH, evaluation results from Table 45 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  8.332* , 8.661* , where  is the full training accuracy for the original setting A.
Observation 53:Performance of direct AI/ML positioning degrades when there is time varying change between the training data and test data, and fine-tuning can improve the performance.
Observation 54:Performance of direct AI positioning decreases as the UE density decreases.
Observation 55:Semi-supervised learning with large amounts of unlabeled data can improve performance over supervised learning when labelled data is limited.
Observation 56:By selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.
Observation 57:The performance of direct AI/ML positioning decreases with the decrease of N’TRP.
Observation 58:Due to dynamic activation of TRPs, the performance of Approach 2-B is significantly lower than that of Approach 2-A, the performance of Approach 2-B can be improved by using TRP information as model input.
Observation 59:For dynamical TRP activation (Approach 1-B and Approach 2-B), the performance is related to the TRP activation method.
Observation 60:For different N’TRP, e.g., N’TRP =18, 9, evaluation results from Table 55 show that, when fine-tuning dataset size is %, %,%,%,%, 100% of full training dataset size, the positioning error is 3.288* , 2.827* , where  is the full training accuracy for the new setting B.
Observation 61:For different N’TRP, e.g., N’TRP =18, 9, evaluation results from Table 56 show that, when fine-tuning dataset size is  %, %,%,%,%, 100% of full training dataset size, the positioning error is  19.049* , 19.165* , where  is the full training accuracy for the original setting A.
Observation 62:Performance of direct AI/ML positioning degrades with the increasement of labelling error.
Observation 63:When the standard deviation of label error is less than 0.2, the positioning accuracy can reach the sub-meter level with the UE density 4.5UEs/ in the scenario InF-DH({60%, 6m, 2m}).
Observation 64:Soft information can be used to monitor the performance of the direct AI/ML positioning.
Observation 65:Based on the soft information, the performance of the direct AI/ML model can be monitored whether the data is labeled or not.


Proposal 1: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.
Proposal 2: Study the trade-off between performance and complexity by choosing the appropriate Nt and N’t for AI/ML assisted positioning evaluation.
Proposal 3: Support differenced CIR/PDP/DP based on TOA as model input for AI/ML positioning.
Proposal 4: At least support PDP as model input for direct AI/ML positioning, and further study CIR to check whether the phase part in CIR is useful.
Proposal 5: Support relative path power (the ratio of path power to the peak power) as model input.
Proposal 6：For AI/ML positioning, support better training dataset construction (e.g., mix dataset with different clutter parameters, different timing errors, and different channel estimation errors) for AI/ML model generalization.
Proposal 7: Further evaluate performance of AI/ML positioning for non-uniform UE distribution.
Proposal 8: It is recommended that TRP information be used as model input along with CIR/PDP to improve the performance if Approach 2-B is used.
Proposal 9: The dynamical TRP activation method should be sent to UE/PRU by network for data collection or other aspects of AI/ML LCM (e.g., training, updating, monitoring, inference) if Approach 1-B or Approach 2-B is used.
Proposal 10: For model monitoring of direct AI/ML positioning, support the soft information associated to the estimated location as model output.
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