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1 Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface was approved [1] with the following evaluation goals briefly summarized as below:
· AI/ML positioning sub use cases
· Decide on what AI/ML positioning sub use cases to be evaluated
· Data modelling and generation: 
· [bookmark: _Int_nZNORfDe]Decide on any required extensions to 3GPP evaluation methodology and 3GPP channel modelling, (from TR 38.901 [2] and TR 38.857 [3]) for AI/ML positioning use case
· Decide if any field and/or raytracing data generation is required for AI/ML positioning use case and whether this is required for any robustness studies related to AI/ML positioning
· Decide if having common datasets should be required for AI/ML positioning evaluation

· Training strategy and generalization requirements:
· Decide on any requirements for separating training, validation, and testing data for AI/ML positioning use case
· Decide on whether common AI model is required for cross-checking and discuss related calibration 
· Decide on training assumptions that need to be reported by companies 
· Decide on any requirements to evaluate the generalization of trained AI/ML models 

· KPIs:
· Decide on AI/ML positioning KPIs for the selected sub use cases
· Decide on benchmarking scheme to evaluate the selected sub use cases
· Decide on KPIs related to AI/ML model operation (e.g., latency, complexity, hardware requirements – memory, power, etc.) and comparing them with baseline benchmarking scheme
In our previous contributions  [4] [5] [6] [7] [8] [9] [10] , we covered various aspects related to AI/ML positioning evaluation, including evaluation methodology, targeted scenarios, dataset generation, KPIs, and generalization evaluation. In this document, we provide additional evaluations and discussions on open issues, including characterization for reporting overhead, impact of TRP selection, and finetuning evaluations. The new material is presented in Section 2. Updated prominent aspects on AI/ML positioning are discussed in [11]. Our updated views on general AI/ML framework for air interface are discussed in [12]. In Appendix A and Appendix B, we provide detailed discussions for generalization and LCM related evaluations.

2 Discussion on open issues for evaluation of AI/ML positioning and updated evaluations
2.1 Model complexity and dataset spatial density evaluations
We evaluate different model complexity and datasets sizes, as shown in Table 1 and Table 2. For a given dataset size, increasing model complexity enhances the positioning accuracy up until a given point after which  the accuracy starts to decrease again. For example, we start with a model complexity of 29k parameters and increases the model size gradually to 37k and 84k parameters. We observe the accuracy enhances from 29k to 37k but then starts to detriorate again. For a given positioning task and model architecture, there seems to be an optimal model complexity after which the accuracy may not be enhanced.

Observation 1: For direct AI/ML positioning evaluation and given model architecture, increasing model complexity (size and computation) improves the positioning accuracy gain until a point reached and then gain starts to reduce again. 

[bookmark: _Ref142600678]Table 1 Evaluation results for AI/ML model deployed on UE-side, without model generalization, different model complexities with CIR measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	1.44M 
	894M FLOPs
	1.50

	CIR (18,1, 256)
	2D
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.084M
	124.4M FLOPs
	0.61

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.037M
	56.2M FLOPs
	0.37

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.029M
	29.7M FLOPs
	1.08

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.02

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.084M
	124.4M FLOPs
	1.81

	CIR (18,1, 256)
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M
	56.2M FLOPs
	1.45

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.029M
	29.7M FLOPs
	1.62




[bookmark: _Ref142600681]Table 2 Evaluation results for AI/ML model deployed on UE-side, without model generalization, different training dataset sizes with CIR measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	100k
	18k
	0.037M
	56.2M FLOPs
	0.37

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	64k
	18k
	0.037M
	56.2M FLOPs
	0.52

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	32k
	18k
	0.037M
	56.2M FLOPs
	0.87

	CIR (18,1, 256)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M
	56.2M FLOPs
	1.45




2.2 Measurement size and reporting overhead calculations
2.2.1 Concept of path vs. sampleAgreement RAN1-111-9.2.4.1
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


In the previous meeting during the discussion on model input and measurement size optimization, there was a debate about the distinction between path and time-domain samples. Our understanding is that a path and time-domain sample are not same but are quite related. A path describes the signal trajectory/route between a TRP and UE. A time domain sample in CIR/PDP, on the other hand, is a signal processing quantity that helps conveying the path power and timing. Specifications (up until Rel18) do not specify how time domain samples are obtained because it is an implementation choice. The UE/TRP needs to report measurements that describe the timing and power for a given path. It is also possible for UE/TRP to report additional measurements that can correspond to additional paths between the UE and TRP. How the UE/TRP leverages time domain samples to convey the timing and power measurements for a given path is out of the scope of specifications and left for implementation. In the previous meetings, sample and path have been both used without being careful on their actual meaning and distinction. Our understanding is that they were both used to discuss reporting of measurements from UE/TRP to LMF with underlying understanding that they incorporate time, power, and/or phase information. Therefore, to avoid confusion for future discussions, we propose to use the terminology “measurement” when discussing aspects and evaluations related to reporting between UE/TRP and LMF.
Observation 2: Path is used to describe trajectory between TRP and UE while time-domain sample is a signal processing quantity that can be used to convey timing, power, and/or phase information for a potential path.
Proposal 1: For TR and agreement description, consider using the terminology “measurement” to replace sample and/or path when discussing reporting from UE/TRP to LMF.

2.2.2 Calculation of reporting overhead
Agreement  RAN1-112-9.2.4.1
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

Agreement RAN1-112be-9.2.4.1
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 


In the previous meetings, companies agreed to provide reporting overhead and measurement size evaluations for different measurement types, quantities, etc. There was also an attempt to agree on some options to calculate reporting overhead for sake of evaluation and understanding the positioning accuracy gains versus the required reporting overhead. However, no success was achieved to agree on options and providing overhead calculations was too limited in previous meeting contributions. To draw a fair conclusion on expected reporting overhead for different measurement types and measurement size optimizations, we consider three options listed in Table 4. The first option considers no differential reporting while the second option considers representing timing information using a bit map. The third option is aligned with current reporting specified in specifications in which additional timing and power information of additional measurements for a given link between a UE and TRP can be expressed in a differential fashion relative to a reference measurement. The default values for legacy positioning measurement time and power bit representations are shown in Table 3. We adopt the following values for computing the measurement size and reporting overheads, while assuming reporting for one TRP and one antenna port: N’TRP=1, Nport=1, Bt = 13 bits, Bt_f = 16 bits, Bt_a = 9 bits, Breal,CIR = Breal,PDP = 6 bits, Breal,CIR_f = Breal,PDP_f = 6 bits, Breal,CIR_a = Breal,PDP_a = 5 bits, Nt = 256. We run calculations for all options while considering different numbers for measurement quantity (i.e., N’t) and measurement type including, timing, power, and/or phase (i.e., CIR vs. PDP vs. DP), summarized in Table 5. For additional number of TRPs and/or antenna ports, it only needs to linearly scale the numbers in the table.


[bookmark: _Ref142519162]Table 3 Description and format for reporting measurement power and timing information for paths [TS 37.355]
	
	IE
	#bits

	First path power
	[bookmark: _Int_VEsN8NLA]nr-DL-PRS-RSRP-Result-r16 INTEGER (0..126) 
	7 bits

	Additional path differential/relative power
	[bookmark: _Int_gnJeDLeV]nr-DL-PRS-RSRP-ResultDiff-r16 INTEGER (0..61) 
	6 bits

	First path timing
	nr-RSTD-r16 CHOICE { 
[bookmark: _Int_4SPR1x7w]k0-r16 INTEGER (0..1970049), 
[bookmark: _Int_UnUEEpOK]k1-r16 INTEGER (0..985025), 
[bookmark: _Int_5h1RmojR]k2-r16 INTEGER (0..492513),
[bookmark: _Int_cAzgI1u6]k3-r16 INTEGER (0..246257), 
k4-r16 INTEGER (0..123129), 
k5-r16 INTEGER (0..61565)}

	
21 bits
20 bits
19 bits
18 bits
17 bits
16 bits

	Additional path differential/relative timing
	nr-RelativeTimeDifference-r16 CHOICE { 
k0-r16 INTEGER(0...16351),
k1-r16 INTEGER(0..8176),
k2-r16 INTEGER (0...4088),
k3-r16 INTEGER (0...2044),
k4-r16 INTEGER (0...1022),
k5-r16 INTEGER (0...511)}
	

14 bits
13 bits
12 bits
11 bits
10 bits
9 bits





[bookmark: _Ref142519137]Table 4 Options for calculating measurement reporting size for different measurement types (option3 is aligned with existing measurement reporting measurement size)
	
	CIR
	PDP
	DP

	Option1
	N'TRP * Nport * N't * (Bt + 2 * Breal,CIR) bits
	N'TRP * Nport * N't * (Bt + 1 * Breal,PDP) bits
	N'TRP * Nport * N't * (Bt) bits

	Option2
	N'TRP * Nport * Nt  + N'TRP * Nport * N't * (2 * Breal,CIR) bits
	N'TRP * Nport * Nt + N'TRP * Nport * N't * (1 * Breal,PDP) bits
	N'TRP * Nport * Nt bits

	Option3
	N'TRP * Nport * 1* (Bt_f + 2 * Breal,CIR_f) + N'TRP * Nport * (N't -1) * (Bt_a + 2 * Breal,CIR_a) bits
	N'TRP * Nport * 1 * (Bt_f + 1 * Breal,PDP_f) + N'TRP * Nport * N't * (Bt_a + 1 * Breal,PDP_a) bits
	N'TRP * Nport * 1 * (Bt_f) + N'TRP * Nport * (N't -1) * (Bt_a)  bits

	N'TRP is the number of TRPs to be reported
Nport is the number of antenna ports to be reported
Nt is the number of consecutive measurements (paths/samples) to be considered for obtaining N’t
N't is the number of measurements (paths/samples) to be reported
Bt  is the number of bits to represent timing information
Bt_f is the number of bits to represent timing information of first arrival
Bt_a  is the number of bits to represent timing information of an additional arrival
Breal,CIR is the number of bits to represent magnitude information [real/imaginary part]
Breal,CIR_f is the number of bits to represent magnitude information [real/imaginary part] of first arrival
Breal,CIR_a is the number of bits to represent magnitude information [real/imaginary part] of an additional arrival

Breal,PDP is the number of bits to represent magnitude/power information
Breal,PDP_f is the number of bits to represent magnitude/power information of first arrival
Breal,PDP_a is the number of bits to represent magnitude/power information of an additional arrival



  

[bookmark: _Ref142519123]Table 5 Measurement reporting size (bits) of timing, power, and/or phase information for one TRP and antenna port (N’TRP=1, Nport=1, Bt = 13 bits, Bt_f = 16 bits, Bt_a = 9 bits, Breal,CIR = Breal,PDP = 6 bits, Breal,CIR_f = Breal,PDP_f = 6 bits, Breal,CIR_a = Breal,PDP_a = 5 bits, Nt = 256)
	
	N't = 256
	N't = 64
	N't = 32
	N't = 16
	N't = 8

	CIR: option1
	6400
	1600
	800
	400
	200

	CIR: option2
	3328
	1024
	640
	448
	352

	CIR: option3
	4873
	1225
	617
	313
	161

	PDP: option1
	4864
	1216
	608
	304
	152

	PDP: option2
	1792
	640
	448
	352
	304

	PDP: option3
	3592
	904
	456
	232
	120

	DP: option1
	3328
	832
	416
	208
	104

	DP: option2
	256
	256
	256
	256
	256

	DP: option3
	2311
	583
	295
	151
	79




2.2.2.1 Measurement size/ reporting overhead based on quantity

Reporting additional measurement quantities may lead to positioning performance enhancement, however, it is important to understand the potential increase in reporting overhead required to realize such enhancement. We compare the measurement size ratio of different measurement quantities for the three calculation options and measurement types. We consider the N’t=8 measurement quantity to be the baseline and compute the average measurement size ratios for other N’t values, as shown in Table 6 and summarized in the following observation.

Observation 3: For evaluation of model input measurement size and reporting overhead, multiple reporting options and measurement types are considered and the reporting overhead/measurement size for different measurement quantities observed as follows:
· The average measurement size/reporting overhead for N’t = 16 can be 1.69 of the N’t = 8
· The average measurement size/reporting overhead for N’t = 32 can be 3.07 of the N’t = 8
· The average measurement size/reporting overhead for N’t = 64 can be 5.84 of the N’t = 8



[bookmark: _Ref142519070][bookmark: _Ref142519061]Table 6 Measurement reporting overhead ratio for different measurement reporting quantities
	
	Size16/Size8
	Size32/Size8
	Size64/Size8 

	CIR: option1
	2.0
	4.0
	8.0

	CIR: option2
	1.27
	1.82
	2.9

	CIR: option3
	1.94
	3.83
	7.61

	PDP: option1
	2.0
	4.0
	8.0

	PDP: option2
	1.16
	1.47
	2.11

	PDP: option3
	1.93
	3.8
	7.53

	DP: option1
	2.0
	4.0
	8.0

	DP: option2
	1.0
	1.0
	1.0

	DP: option3
	1.91
	3.73
	7.37

	Average
	1.69
	3.07
	5.84




2.2.2.2 Measurement size/ reporting overhead based on measurement type
We consider the increase in measurement size and reporting overhead needed to report different measurement types. Reporting additional measurement types (e.g., phase information) may lead to positioning performance enhancement, however, it is important to understand the potential increase in reporting overhead associated with additional types. We compare the measurement size ratio of different measurement types (i.e., CIR, PDP, and DP) for the three calculation options and measurement quantities. We consider the PDP and DP measurement types to as baseline and compute the average measurement size ratios for other CIR, as shown in Table 7 and summarized in the following observation.

Observation 4: For evaluation of model input measurement size and reporting overhead, multiple reporting options and measurement quantities are considered and the reporting overhead/measurement size for different measurement types observed as follows:
· The average measurement size/reporting overhead for CIR can be 1.38 of the PDP
· The average measurement size/reporting overhead for CIR can be 2.84 of the DP
· The average measurement size/reporting overhead for PDP can be 1.92 of the DP
As can be seen from the observation, adding power information (i.e., PDP) can increase the average reporting size by 1.92 when compared to timing reporting (i.e., DP), while adding phase information (i.e., CIR) can increase the reporting size by 1.38 when compared to power and timing reporting (i.e., 1.38). 

[bookmark: _Ref142519365]Table 7 Measurement reporting overhead ratio for different measurement types
	
	N't = 256
	N't = 64
	N't = 32
	N't = 16
	N't = 8

	S_CIR/S_PDP: option1
	1.32
	1.32
	1.32
	1.32
	1.32

	S_CIR/S_PDP: option2
	1.86
	1.6
	1.43
	1.27
	1.16

	S_CIR/S_PDP: option3
	1.36
	1.36
	1.36
	1.35
	1.34

	Average S_CIR/S_PDP 
	1.38

	S_PDP/S_DP: option1
	1.46
	1.46
	1.46
	1.46
	1.46

	S_PDP/S_DP: option2
	7
	2.5
	1.75
	1.375
	1.19

	S_PDP/S_DP: option3
	1.55
	1.55
	1.55
	1.54
	1.52

	Average S_PDP/S_DP 
	1.92

	S_CIR/S_DP: option1
	1.92
	1.92
	1.92
	1.92
	1.92

	S_CIR/S_DP: option2
	13
	4
	2.5
	1.75
	1.375

	S_CIR/S_DP: option3
	2.11
	2.10
	2.09
	2.07
	2.04

	Average S_CIR/S_DP 
	2.84



X.2.2.y Measurement size/ reporting overhead based on reporting options
We also consider how the different reporting options compare with each other. We calculate the measurement size ratios for Option1 and Option2 when compared to Option3, as shown in Table 8. Option3 has more efficient reporting overhead when compared to Option1 while Option2 can sometimes produce more efficient reporting than Option3. On average, Option3 produces more efficient reporting than Option2. Option3 aligns with legacy positioning reporting and offers scalable reporting for different timing resolutions and bandwidth assumptions. 
Observation 5: For evaluation of model input measurement size and reporting overhead, multiple measurement quantities and types are considered and the reporting overhead/measurement size for different reporting options observed as follows:
· The average measurement size/reporting overhead for option1 can be 1.33 of option3 (legacy Rel17 reporting)
· The average measurement size/reporting overhead for option2 can be 1.22 of option3 (legacy Rel17 reporting)


[bookmark: _Ref142519690]Table 8 Measurement reporting overhead ratio for different reporting format options
	
	N't = 256
	N't = 64
	N't = 32
	N't = 16
	N't = 8

	S_option1/S_option3: CIR
	1.31
	1.306
	1.30
	1.28
	1.24

	S_option1/S_option3: PDP
	1.35
	1.345
	1.33
	1.31
	1.27

	S_option1/S_option3: DP
	1.44
	1.43
	1.41
	1.38
	1.32

	Average S_option1/S_option3
	1.33

	S_option2/S_option3: CIR
	0.68
	0.84
	1.04
	1.43
	2.19

	S_option2/S_option3: PDP
	0.50
	0.71
	0.98
	1.52
	2.53

	S_option2/S_option3: DP
	0.11
	0.44
	0.87
	1.70
	3.24

	Average S_option2/S_option3
	1.25




2.3 Optimizing model input size – I (measurement selection, quantity, and type)
In the previous meetings, one of the evaluation options for reducing the measurement size was to select N’t measurement quantities out of Nt measurements. The selection methodology is assumed to be based on strongest power selection and the underlying assumption for Nt to be time-domain consecutive measurements. We find that the current selection methodology (i.e., strongest power) may not always produce the best evaluation performance. We next study the impact of measurement selection methodology, measurement quantity N’t, and measurement type (e.g., CIR vs. PDP). Our results are summarized in Table 9 (Model1) and Table 10 (Model2). The detailed evaluations are shown in Table 14 to Table 17 for two model complexities and two selection methodologies for N’t measurements.


[bookmark: _Ref142549432][bookmark: _Ref142549419]Table 9 Horizontal positioning error at 90% percentile (meter) for different measurement quantities, types, and selection methodology (Model1)
	
	N’t: 256
	N’t: 64
	N’t: 32
	N’t: 16
	N’t: 8

	CIR with strongest power N’t measurements selection
	2.02
	2.30
	2.24
	2.42
	2.94

	CIR with flexible N’t measurements selection 
	N/A
	2.12
	2.22
	2.70
	2.76

	PDP with strongest power N’t measurements selection
	1.98
	2.06
	2.15
	2.20
	2.67

	PDP with flexible N’t measurements selection 
	N/A
	2.02
	1.94
	2.51
	2.61



[bookmark: _Ref142549436]Table 10 Horizontal positioning error at 90% percentile (meter) for different measurement quantities, types, and selection methodology (Model2)
	
	N’t: 256
	N’t: 64
	N’t: 32
	N’t: 16
	N’t: 8

	CIR with strongest power N’t measurements selection
	1.53
	1.37
	1.56
	1.81
	2.61

	CIR with flexible N’t measurements selection 
	NA
	1.45
	1.66
	1.81
	2.09

	PDP with strongest power N’t measurements selection
	1.78
	1.71
	2.2
	2.19
	2.47

	PDP with flexible N’t measurements selection 
	NA
	1.64
	2.16
	1.97
	2.01




2.3.1 Impact of N’t measurements selection methodology
We compare the performance gains for two selection methodologies of N’t measurements: strongest power measurements selection and a proprietary measurement selection (i.e., flexible). For the flexible measurement selection, the UE/TRP can apply a proprietary algorithm to select the best measurements that better represent the underlying multipath propagation in the wireless environment. Our results are summarized in Table 11.  As can be observed for most cases, the strongest power N’t selection shows a worse or comparable performance to the proprietary selection methodology. On average, the positioning error with strongest power selection is 1.04 of proprietary selection methodology.


Observation 6: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that the positioning performance depends on the selection methodology of N't measurements. Selecting N't measurements based on the strongest power on most cases (i.e., different N't values, measurement types, and model complexities) does not provide the best performance. For example,
· For 4 out of 16 evaluations, positioning error with strongest power N’t measurements is 0.88 to 0.94 of the case with a proprietary N’t measurements selection.
· For 12 out of 16 evaluations, positioning error with strongest power N’t measurements is 1 to 1.24 of the case with a proprietary N’t measurements selection.

Proposal 2: For direct AI/ML positioning, the selection of the N't measurements to be reported should be made flexible. 

[bookmark: _Ref142552217]Table 11 Ratio of horizontal error with strongest power and flexible measurement selection for different models, measurement types and quantities
	
	N’t: 64
	N’t: 32
	N’t: 16
	N’t: 8

	Model1: CIR E_strongest_power/E_flexible
	1.08
	1.01
	0.89
	1.07

	Model1: PDP E_strongest_power/E_flexible
	1.02
	1.11
	0.88
	1.02

	Model2: CIR E_strongest_power/E_flexible
	0.945
	0.94
	1
	1.25

	Model2: PDP E_strongest_power/E_flexible
	1.04
	1.02
	1.11
	1.23

	Average E_strongest_power/E_flexible
	1.04




2.3.2 Impact of N’t measurements quantity
We compare the performance gains for increasing N’t measurement quantity from 8 to 64. We consider N’t =8 as the baseline as it aligns with existing measurement quantity in legacy reporting. We evaluate the impact of increasing N’t measurement quantities for two measurement types (i.e., CIR and PDP), measurement selection methodology (strongest and flexible), and model complexities (Model1 and Model2). Our results are summarized in Table 12.  and the following observations


Observation 7: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show:
· when N’t increased from 8 to 16, the average reporting overhead/measurement size increases 1.69 folds and the average positioning error with N’t=16 is 0.88 of N’t=8 (E16/E8 is 0.69 – 0.98).  
· when N’t increased from 8 to 32, the average reporting overhead/measurement size increases 3.07 folds and the average positioning error with N’t=32 is 0.81 of N’t=8 (E32/E8 is 0.60 – 1.07).  
· when N’t increased from 8 to 64, the average reporting overhead/measurement size increases 5.84 folds and average positioning error with N’t=64 is 0.73 of N’t=8 (E64/E8 is 0.52 – 0.81).  
· when N’t increased from 16 to 32, the average reporting overhead/measurement size increases 1.8 folds and the average positioning error with N’t=32 is 0.92 of N’t=16 (E32/E16 is 0.77 – 1.1).  
· when N’t increased from 32 to 64, the average reporting overhead/measurement size increases 1.9 folds and the average positioning error with N’t=64 is 0.91 of N’t=32 (E64/E32 is 0.77 – 1.1).  

Observation 8: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show:
· increasing N’t from 8 to 16 can offer on average 12% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.69 times.
· increasing N’t from 8 to 32 can offer on average 19% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 3.07 times.
· increasing N’t from 8 to 64 can offer on average 27% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 5.84 times.
· increasing N’t from 16 to 32 can offer on average 8% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.8 times.
· increasing N’t from 32 to 64 can offer on average 9% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.9 times.

Observation 9: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show the required measurement size/reporting overhead need to be almost exponentially increased to maintain linear enhancement in positioning accuracy. 
Proposal 3: For direct AI/ML positioning and due to huge reporting overhead and limited accuracy enhancement, deprioritize reporting beyond N’t =8 measurements.


[bookmark: _Ref142554868]Table 12 Ratio of horizontal error with respect to N’t=8, N’t=16, and N’t=32 for different model complexities, measurement types and measurement selection methodology
	
	E16/E8
	E32/E8
	E64/E8
	E32/E16
	E64/E32

	Model1: CIR with strongest N’t measurements selection
	0.82
	0.76
	0.78
	0.93
	1.03

	Model1: CIR with flexible N’t measurements selection
	0.98
	0.80
	0.76
	0.82
	0.95

	Model1: PDP with strongest N’t measurements selection
	0.82
	0.81
	0.771
	0.98
	0.96

	Model1: PDP with flexible N’t measurements selection
	0.96
	0.74
	0.774
	0.77
	1.04

	Model2: CIR with strongest N’t measurements selection
	0.69
	0.60
	0.52
	0.86
	0.88

	Model2: CIR with flexible N’t measurements selection
	0.87
	0.79
	0.693
	0.92
	0.87

	Model2: PDP with strongest N’t measurements selection
	0.88
	0.89
	0.692
	1.00
	0.77

	Model2: PDP with flexible N’t measurements selection
	0.98
	1.07
	0.82
	1.10
	0.76

	Average
	0.88
	0.81
	0.73
	0.92
	0.91



2.3.3 Impact of measurement type
We compare the performance gains for different measurement two measurement types. Existing specifications allows reporting of timing and power information for additional measurements. Release 18 is expected to report phase information for first measurement that corresponds to LOS/first arrival. Enabling phase reporting for additional measurements need to be justified in terms of performance enhancement and required increase in reporting overhead. We evaluate the impact of adding phase reporting for different N’t measurement quantities measurement selection methodology (strongest and flexible), and model complexities (Model1 and Model2). Our results are summarized in Table 13.  As can be observed for most cases, adding phase reporting has limited average performance enhancement, the horizontal positioning error for CIR is 0.98 of PDP, while reporting overhead of CIR can be 1.38 of PDP reporting.
Observation 10: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that Ecir/Epdp is 0.98 and range Ecir/Epdp is 0.71- 1.12, while the average reporting overhead/measurement size of CIR can be almost 1.38 of PDP.
Proposal 4: For direct AI/ML positioning evaluation, no significant average gain has been identified for CIR vs. PDP as measurements for model input. Gains of reporting additional phase information requires more evaluation and study.  

[bookmark: _Ref142556841]Table 13 Ratio of horizontal error of CIR with respect to PDP measurement types for different model complexities, measurement quantities, and measurement selection methodology
	
	N’t: 64
	N’t: 32
	N’t: 16
	N’t: 8

	Model1: E_CIR/E_PDP with strongest N’t measurements selection
	1.12
	1.04
	1.1
	1.1

	Model1: E_CIR/E_PDP with flexible N’t measurements selection
	1.05
	1.14
	1.08
	1.06

	Model2: E_CIR/E_PDP with strongest N’t measurements selection
	0.80
	0.71
	0.83
	1.06

	Model2: E_CIR/E_PDP with flexible N’t measurements selection
	0.88
	0.77
	0.92
	1.04

	Average 
	0.98




2.3.4 Detailed evaluation tables for optimizing model input size (measurements)

[bookmark: _Ref142550285]Table 14 Evaluation results for AI/ML model deployed on UE-side, without model generalization, Model1 with CIR measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.02

	CIR (18,1, 64) [strongest power N’t measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.3

	CIR (18,1, 64) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.12

	CIR (18,1, 32) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.24

	CIR (18,1, 32) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.22

	CIR (18,1, 16) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.42

	CIR (18,1, 16) [proprietary N’t  measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.70

	CIR (18,1, 8) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.94

	CIR (18,1, 8) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	0.894G FLOPs
	2.76





Table 15 Evaluation results for AI/ML model deployed on UE-side, without model generalization, Model1 with PDP measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	PDP (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	1.98

	PDP (18,1, 64) [strongest power N’t measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.06

	PDP (18,1, 64) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.02

	PDP (18,1, 32) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.15

	PDP (18,1, 32) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	1.94

	PDP (18,1, 16) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.20

	PDP (18,1, 16) [proprietary N’t  measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.51

	PDP (18,1, 8) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.67

	PDP (18,1, 8) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.44M 
	894M FLOPs
	2.61




Table 16 Evaluation results for AI/ML model deployed on UE-side, without model generalization, Model2 with CIR measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.53

	CIR (18,1, 64) [strongest power N’t measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.37

	CIR (18,1, 64) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.45

	CIR (18,1, 32) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.56

	CIR (18,1, 32) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.66

	CIR (18,1, 16) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.81

	CIR (18,1, 16) [proprietary N’t  measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.81

	CIR (18,1, 8) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.61

	CIR (18,1, 8) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.09




[bookmark: _Ref142550291]Table 17 Evaluation results for AI/ML model deployed on UE-side, without model generalization, Model2 with PDP measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP, Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	PDP (18,1, 256) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.78

	PDP (18,1, 64) [strongest power N’t measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.71

	PDP (18,1, 64) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.64

	PDP (18,1, 32) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.2

	PDP (18,1, 32) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.16

	PDP (18,1, 16) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.19

	PDP (18,1, 16) [proprietary N’t  measurements selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.97

	PDP (18,1, 8) [strongest power N’t measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.47

	PDP (18,1, 8) [proprietary N’t  measurements selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.01



 
2.4 Model input measurement optimization II (TRPs)Agreement RAN1-112be-9.2.4.1
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP - N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP - N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18 - N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.


A second option to optimize measurement size is to limit the number of TRPs to be measured and reported. Two issues raise when optimizing the TRP reporting are the number of TRPs and their selection methodology. In the previous meeting, companies agreed to consider two approaches for optimizing measurement and reporting for TRPs (Approach 1 and Approach 2). Approach 1 considers a model that can accommodate different TRP numbers while Approach 2 assumes a model is specifically designed for a certain number of TRPs. The two approaches also have two sub approaches in which the first sub approach (i.e., Approach X-A) considers a fixed TRP selection and the second sub approach (i.e., Approach X-B) considers a flexible TRP selection. From reporting perspective, we find the sub approaches more relevant as they dictate how the UE/gNB do the TRP selection. The choice of Approach 1 vs. Approach 2 is an implementation decision. We evaluated different TRP numbers and selections as summarized in Table 18. The detailed evaluation of these results is listed in Table 21

[bookmark: _Ref142558153]Table 18 Horizontal positioning error (meters) at 90% percentile for different TRP numbers and TRP selection methodologies.
	
	CIR 32
	PDP 32
	CIR 16
	PDP 16

	18 TRPs
	1.56
	2.2
	1.81
	2.19

	8 TRPs [fixed selection]
	2.74
	2.73
	3.24
	2.94

	8 TRPs [flexible selection]
	2.91
	2.84
	3.35
	3.20

	4 TRPs [fixed selection]
	4.11
	3.91
	5.56
	5.03

	4 TRPs [flexible selection]
	4.29
	4.27
	4.57
	4.56




2.4.1 Impact of TRPs numbers N’TRP

We evaluate the impact of reducing the number of TRPs N’TRP from 18 to 8 and 4. We consider the N’TRP =18 as the baseline and compute the ratio of horizontal error for N’TRP =8 and N’TRP =4 with respect to N’TRP =18 for different TRP selection methodology, measurement quantity N’t, and measurement type (e.g., CIR and PDP). Our results are summarized in Table 19. As can be observed, reducing number of TRPs N’TRP from 18 to 8 can lead to increase in positioning error by 1.57 folds, while reducing N’TRP from 18 to 4 can lead to increase in positioning error by 1.57 folds, while reducing N’TRP from 18 to 4 can lead to increase in positioning error by 2.38 folds.


Observation 11: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show:
· reducing N’TRP from 18 to 8 can result in 1.57 average increase in positioning error (E8trp/E18trp is 1.29 – 1.87) but can reduce the reporting overhead/measurement size by 66%
· reducing N’TRP from 18 to 4 can result in 2.38 average increase in positioning error (E4trp/E18trp is 1.78 – 3.07) but can reduce the reporting overhead/measurement size by 78%


[bookmark: _Ref142564099]Table 19 Ratio of horizontal positioning error at 90% percentile for different TRP numbers while considering different TRP selection methodologies, measurement types, and measurement quantities
	
	CIR 32
	PDP 32
	CIR 16
	PDP 16

	E8trp/E18trp [fixed selection]
	1.76
	1.24
	1.79
	1.34

	E8trp/E18trp [flexible selection]
	1.87
	1.29
	1.85
	1.46

	E8trp/E18trp (average)
	1.57

	E4trp/E18trp [fixed selection]
	2.63
	1.78
	3.07
	2.29

	E4trp/E18trp [flexible selection]
	2.74
	1.94
	2.52
	2.08

	E4trp/E18trp (average)
	2.38




2.4.2 Impact of TRP selection
We also evaluate the impact of TRP selection methodology: fixed TRP selection (i.e., Approach X-A) vs. flexible TRP selection (i.e., Approach X-B). In approach A, a fixed and predetermined set of TRPs are reported, in which TRPs are selected to ensure UE is within their convex hull for most of the times to ensure low GDOP. For 8 TRPs case, the UE/gNB reports TRP IDs {0,2,6,8,9, 11, 15,17}. For 4 TRPs case, the UE/gNB reports TRP IDs TRPs= {0,2,15,17}. We consider the flexible TRP selection as the baseline and investigate whether having a specific TRP selection can enhance the performance. The flexible TRP selection offer more scalability and allows a more dynamic TRP selection.  We compare the two TRP selection options for different number of TRPs, measurement quantity N’t, and measurement type (e.g., CIR and PDP). Our results are summarized in Table 20. As can be observed, the fixed TRP selection has a marginal enhancement to positioning accuracy when compared to flexible TRP selection. The positioning error of fixed TRP selection is 0.997 the positioning error of flexible selection. The fixed TRP selection still requires additional signalling to tell gNB/UE what TRPs to measure and report, while the flexible TRP selection avoids this additional signalling.

Observation 12: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show a fixed selection of TRPs (i.e., Approach X-A) has positioning error 0.92 – 1.22 when compared to a flexible selection of TRPs (i.e., Approach X-B)

Observation 13: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, consider flexible TRP selection for measurements and reporting.

[bookmark: _Ref142564161]Table 20 Ratio of horizontal positioning error at 90% percentile for different TRP selection methodologies while considering different TRP numbers, measurement types, and measurement quantities
	
	CIR 32
	PDP 32
	CIR 16
	PDP 16

	E8trp_fixd/E8trp_flex 
	0.94
	0.96
	0.97
	0.92

	E4trp_fixd/E4trp_flex
	0.96
	0.92
	1.22
	1.1

	Average E_fixd/E_flex
	0.997



2.4.3 Detailed evaluation tables for optimizing model input size (TRPs)
[bookmark: _Ref142558251]Table 21 Evaluation results for AI/ML model deployed on UE/NW-side, without model generalization, Model2 with CIR and PDP measurement input, UE distribution area = 120x60 m
	Model input
(N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,1, 32) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.53

	CIR (8,1, 32) [Fixed TRP selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.74

	CIR (8,1, 32) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.91

	CIR (18,1, 16) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	1.81

	CIR (8,1, 16) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	3.24

	CIR (8,1, 16) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	3.35

	PDP (18,1, 32) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.2

	PDP (8,1, 32) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.73

	PDP (8,1, 32) [Flexible TRP selection]
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.84

	PDP (18,1, 16) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.19

	PDP (8,1, 16) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	2.94

	PDP (8,1, 16) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	3.2

	CIR (4,1, 32) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	4.11

	CIR (4,1, 32) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	4.29

	CIR (4,1, 16) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	5.56

	CIR (4,1, 16) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	4.57

	PDP (4,1, 32) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	3.91

	PDP (4,1, 32) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	4.27

	PDP (4,1, 16) [Fixed TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	5.03

	PDP (4,1, 16) [Flexible TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	0.037M 
	56.2M FLOPs
	4.56



2.5 Model finetuning
One of the remaining issues from previous meeting was to summarize observations for finetuning evaluations. We conducted evaluations as per FL’s request to understand the enhancement of positioning accuracy when a model trained on setting A is finetuned with dataset from a new setting B. We consider setting A and B as two different drops. We show the baseline performance for model training on the two settings and compare the performance of the finetuned model on different number of samples, as summarised in Table 22.
[bookmark: _Ref142560737]Table 22 Horizontal positioning error (meters) at 90% percentile for different finetuning options  at original A and new B settings
	Model Description/Training
	Finetuning size
	Test on Drop A
	Test Drop B

	
	
	E
	yA
	E
	yB

	Model trained on Drop A 
	0
	1.53
	1.00
	9.22
	5.01

	Model trained on Drop A
	200 [x=~0.025 samples/m2]
	6.67
	4.36
	7.80
	4.24

	Model trained on Drop A
	350 [x=~0.05 samples/m2]
	6.36
	4.16
	7.18
	3.9

	Model trained on Drop A
	700 [x=~0.1 samples/m2]
	6.86
	4.48
	6.53
	3.55

	Model trained on Drop A
	1800 [x=0.25 samples/m2]
	7.07
	4.62
	5.70
	3.10

	Model trained on Drop A
	3600 [x=0.5 samples/m2]
	7.44
	4.86
	4.97
	2.70

	Model trained on Drop B
	0
	10.39
	6.79
	1.84
	1.00



2.5.1 Model finetuning – performance on new setting B
For positioning performance enhancements on new setting B, we observe that enhancement in positioning performance is marginal, as shown in Table 23. Finetuning the model with relatively large number of sample (e.g., 3600 samples) still far from reaching the performance when compared to a full dataset training. 
Observation 14: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 2.5% sample/m2, the positioning error is 4.24*1.84 m, where 1.84m is the full training accuracy for the new setting B.

Observation 15: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 5% sample/m2, the positioning error is 3.9*1.84m, where 1.84m is the full training accuracy for the new setting B.

Observation 16: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 10% sample/m2, the positioning error is 3.54*1.84m, 1.84m is the full training accuracy for the new setting B.

Observation 17: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 25% sample/m2, the positioning error is 3.1m*1.84m, where 1.84 is the full training accuracy for the new setting B.

Observation 18: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 50% sample/m2, the positioning error is 2.7m*1.84m, where 1.84m is the full training accuracy for the new setting B.
[bookmark: _Ref142560983]Table 23 Evaluation results for AI/ML model deployed on UE/NW-side for new setting B, with model generalization using finetuning, Model2 with CIR and measurement input, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	CIR (18,1,256)
	2D
	Drop 
	NA
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	9.22
	5.01

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	7.80
	4.24

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	7.18
	3.9

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	6.53
	3.55

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	5.70
	3.10

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	4.97
	2.70

	CIR (18,1,256)
	2D
	Drop 
	NA
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	1.84
	1.00



2.5.2 Model finetuning – performance on original setting A
For positioning performance on the original setting A, we observe that the positioning performance deteriorates significantly as the model is finetuned on small dataset from the new setting B, as shown in Table 24. Finetuning the model with small number of samples (e.g., 200 samples) from a new setting can negatively affect the performance at the original setting. 

Observation 19: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 2.5% sample/m2, the positioning error is 6.67*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 20: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 5% sample/m2, the positioning error is 6.34*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 21: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 10% sample/m2, the positioning error is 6.86*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 22: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 25% sample/m2, the positioning error is 7.07*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 23: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 50% sample/m2, the positioning error is 7.44*1.53m, where 1.53m is the full training accuracy for the original setting A.

[bookmark: _Ref142561232]Table 24 Evaluation results for AI/ML model deployed on UE/NW-side for original setting A, with model generalization using finetuning, Model2 with CIR and measurement input, UE distribution area = 120x60 m
	Model input
	Model output
	Settings (e.g., drops, clutter param)
	Sample density (#samples/m2) of dataset
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune (%) *
	Test
	Absolute accuracy (m)
	Relative accuracy**

	CIR (18,1,256)
	2D
	Drop 
	NA
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	1.53
	1.00

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	6.67
	4.36

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	6.36
	4.16

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	6.86
	4.48

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	7.07
	4.62

	CIR (18,1,256)
	2D
	Drop 
	Drop 
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	7.44
	4.86

	CIR (18,1,256)
	2D
	Drop 
	NA
	Drop 
	15k (2.08 samples/m2)
	
	2k (0.028 samples/m2)
	10.39
	6.79





3. List of observations and proposals





Observation 1: For direct AI/ML positioning evaluation and given model architecture, increasing model complexity (size and computation) improves the positioning accuracy gain until a point reached and then gain starts to reduce again. 
Observation 2: Path is used to describe trajectory between TRP and UE while time-domain sample is a signal processing quantity that can be used to convey timing, power, and/or phase information for a potential path.
Observation 3: For evaluation of model input measurement size and reporting overhead, multiple reporting options and measurement types are considered and the reporting overhead/measurement size for different measurement quantities observed as follows:
· The average measurement size/reporting overhead for N’t = 16 can be 1.69 of the N’t = 8
· The average measurement size/reporting overhead for N’t = 32 can be 3.07 of the N’t = 8
· The average measurement size/reporting overhead for N’t = 64 can be 5.84 of the N’t = 8
Observation 4: For evaluation of model input measurement size and reporting overhead, multiple reporting options and measurement quantities are considered and the reporting overhead/measurement size for different measurement types observed as follows:
· The average measurement size/reporting overhead for CIR can be 1.38 of the PDP
· The average measurement size/reporting overhead for CIR can be 2.84 of the DP
· The average measurement size/reporting overhead for PDP can be 1.92 of the DP
Observation 5: For evaluation of model input measurement size and reporting overhead, multiple measurement quantities and types are considered and the reporting overhead/measurement size for different reporting options observed as follows:
· The average measurement size/reporting overhead for option1 can be 1.33 of option3 (legacy Rel17 reporting)
· The average measurement size/reporting overhead for option2 can be 1.22 of option3 (legacy Rel17 reporting)

Observation 6: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that the positioning performance depends on the selection methodology of N't measurements. Selecting N't measurements based on the strongest power on most cases (i.e., different N't values, measurement types, and model complexities) does not provide the best performance. For example,
· For 4 out of 16 evaluations, positioning error with strongest power N’t measurements is 0.88 to 0.94 of the case with a proprietary N’t measurements selection.
· For 12 out of 16 evaluations, positioning error with strongest power N’t measurements is 1 to 1.24 of the case with a proprietary N’t measurements selection.
Observation 7: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show:
· when N’t increased from 8 to 16, the average reporting overhead/measurement size increases 1.69 folds and the average positioning error with N’t=16 is 0.88 of N’t=8 (E16/E8 is 0.69 – 0.98).  
· when N’t increased from 8 to 32, the average reporting overhead/measurement size increases 3.07 folds and the average positioning error with N’t=32 is 0.81 of N’t=8 (E32/E8 is 0.60 – 1.07).  
· when N’t increased from 8 to 64, the average reporting overhead/measurement size increases 5.84 folds and average positioning error with N’t=64 is 0.73 of N’t=8 (E64/E8 is 0.52 – 0.81).  
· when N’t increased from 16 to 32, the average reporting overhead/measurement size increases 1.8 folds and the average positioning error with N’t=32 is 0.92 of N’t=16 (E32/E16 is 0.77 – 1.1).  
· when N’t increased from 32 to 64, the average reporting overhead/measurement size increases 1.9 folds and the average positioning error with N’t=64 is 0.91 of N’t=32 (E64/E32 is 0.77 – 1.1).  

Observation 8: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show:
· increasing N’t from 8 to 16 can offer on average 12% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.69 times.
· increasing N’t from 8 to 32 can offer on average 19% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 3.07 times.
· increasing N’t from 8 to 64 can offer on average 27% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 5.84 times.
· increasing N’t from 16 to 32 can offer on average 8% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.8 times.
· increasing N’t from 32 to 64 can offer on average 9% reduction in positioning error however this requires increasing the average reporting overhead/measurement size by almost 1.9 times.

Observation 9: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show the required measurement size/reporting overhead need to be almost exponentially increased to maintain linear enhancement in positioning accuracy. 
Observation 10: For direct AI/ML positioning evaluation, when N't measurements (CIR or PDP) are considered for model input, evaluation results show that Ecir/Epdp is 0.98 and range Ecir/Epdp is 0.71- 1.12, while the average reporting overhead/measurement size of CIR can be almost 1.38 of PDP.

Observation 11: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show:
· reducing N’TRP from 18 to 8 can result in 1.57 average increase in positioning error (E8trp/E18trp is 1.29 – 1.87) but can reduce the reporting overhead/measurement size by 66%
· reducing N’TRP from 18 to 4 can result in 2.38 average increase in positioning error (E4trp/E18trp is 1.78 – 3.07) but can reduce the reporting overhead/measurement size by 78%

Observation 12: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, evaluation results show a fixed selection of TRPs (i.e., Approach X-A) has positioning error 0.92 – 1.22 when compared to a flexible selection of TRPs (i.e., Approach X-B)

Observation 13: For direct AI/ML positioning evaluation, when measurements (CIR or PDP) from N’TRP TRPs are considered for model input, consider flexible TRP selection for measurements and reporting.


Observation 14: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 2.5% sample/m2, the positioning error is 4.24*1.84 m, where 1.84m is the full training accuracy for the new setting B.

Observation 15: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 5% sample/m2, the positioning error is 3.9*1.84m, where 1.84m is the full training accuracy for the new setting B.

Observation 16: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 10% sample/m2, the positioning error is 3.54*1.84m, 1.84m is the full training accuracy for the new setting B.

Observation 17: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 25% sample/m2, the positioning error is 3.1m*1.84m, where 1.84 is the full training accuracy for the new setting B.

Observation 18: For scenario of direct AI/ML positioning with different drops, evaluation results show that, when fine-tuning is 50% sample/m2, the positioning error is 2.7m*1.84m, where 1.84m is the full training accuracy for the new setting B.

Observation 19: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 2.5% sample/m2, the positioning error is 6.67*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 20: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 5% sample/m2, the positioning error is 6.34*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 21: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 10% sample/m2, the positioning error is 6.86*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 22: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 25% sample/m2, the positioning error is 7.07*1.53m, where 1.53m is the full training accuracy for the original setting A.

Observation 23: For scenario of direct AI/ML positioning with different drops evaluation results show that, when fine-tuning is 50% sample/m2, the positioning error is 7.44*1.53m, where 1.53m is the full training accuracy for the original setting A.



Proposal 1: For TR and agreement description, consider using the terminology “measurement” to replace sample and/or path when discussing reporting from UE/TRP to LMF.
Proposal 2: For direct AI/ML positioning, the selection of the N't measurements to be reported should be made flexible. 
Proposal 3: For direct AI/ML positioning and due to huge reporting overhead and limited accuracy enhancement, deprioritize reporting beyond N’t =8 measurements.
Proposal 4: For direct AI/ML positioning evaluation, no significant average gain has been identified for CIR vs. PDP as measurements for model input. Gains of reporting additional phase information requires more evaluation and study.  






Appendix A1 Discussion on Evaluating Complexity, Reporting Overhead, and Generalization of AI/ML Positioning
AI/ML methods offer significant enhancement to positioning accuracy in challenging multipath & NLOS conditions as they can take advantage of prominent spatial and temporal features of the wireless channel and learn mapping between these features and ground truth position. 


A1.1 Studying AI/ML positioning performance & signaling/reporting complexityAgreement RAN1-111-9.2.4.1
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Agreement  RAN1-112-9.2.4.1
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

Agreement RAN1-112be-9.2.4.1
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 





In the previous agreement, companies agreed to study the tradeoff among model performance, model complexity, and signaling overhead for model inference. The first step is to lay down a common methodology for quantifying the signaling/reporting overhead for which companies can report the signaling/reporting overhead. The overhead of reporting can be quantified by counting the number of quantities to be reported in bit representation. Timing information can be represented with  Bt bits. A real quantity such as power value can be represented with Breal,cir bits and a complex value can be treated as two quantities (i.e., magnitude and phase) represented with 2*Breal,cir bits. An optimization of CIR reporting may consider smaller number of TRPs N’TRP  NTRP  and subsampling of samples or paths N’t   Nt. We use the following formulations to compute the reporting overhead for different reporting options (as summarized in Table 1):
· Reporting location information: 2*Bloc bits, where Bloc is the number of bits needed to report one coordinate of the location information. 
· Reporting multipath timings of N’t paths for N’TRP TRPs: N’TRP * N’t * Bt bits
· Reporting magnitude and phase of optimized N’t CIR samples plus a bitmap of their timing information for N’TRP and Nport ports: N’TRP * Nport * N’t * 2 * Breal,CIR  + N’TRP * Nport * Nt  bits


[bookmark: _Ref131587821]Table 25 Reporting/signalling overhead computation for different cases and measurements
	Case
	Reporting
	Reporting/signaling overhead (bits)
	Notes

	Case1
	UE location
	2*Bloc 
	2D UE location (horizontal UE location)

	Case2a
	Existing DL-TDoA signal measurements with first path (i.e., N’t =1)
	N’TRP * 1 * Bt
	measurements include timing for first path (single port)

	Case2a/Case2b (existing or enhanced measurements)
	Existing DL-TDoA signal measurements with N’t  path timing information (i.e., firth path and N’t – 1 additional paths)
	N’TRP * N’t * Bt
	measurements include timing for N’t paths (single port)

	Case2b (new measurements)
	New CIR measurements 
	N’TRP * Nport * N’t * 2 * Breal,CIR  + N’TRP * Nport * Nt  
	measurements include magnitude, phase, and timing for reported samples



The evaluation of performance for different measurement types needs to consider positioning accuracy and reporting overhead for both existing and new potential measurements. So far, companies agreed on evaluating tradeoff between complexity, accuracy, and overhead for new potential measurements. It is encouraged to provide evaluations of accuracy and reporting overhead when considering existing reporting (e.g., RSTD, additional multipath timing, additional multipath RSRPP, etc..). 
Proposal 1: For the study on accuracy and reporting overhead in AI/ML positioning, companies evaluate accuracy, model complexity, and reporting overhead for existing measurements (e.g., timing of first and/or additional multipath measurement reporting) for LMF-sided models.

The evaluation template needs to be enhanced for incorporating reporting/signaling overhead required during inference.
Proposal 2: For the study on accuracy and reporting overhead in AI/ML positioning, enhance the template for reporting AI/ML positioning evaluation results to include signaling and reporting overhead (e.g., number of quantities, including location, magnitude, phase, and/or timing/angle).
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Reporting/signaling overhead (bits)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity 
	Computation complexity
	
	AI/ML

	
	
	
	
	
	
	
	
	
	
	



We evaluate the tradeoff between performance and reporting overhead for different cases and reporting options in Section A2.1.
A1.2 Common model complexity and dataset evaluation
For easiness of analyzing results submitted by companies, it is recommended that each company considers a common model complexity for its reported evaluations. This helps draw conclusions and analyze results from different approaches and evaluations. For example, if a company wants to compare generalization settings A with B, the model complexities considered in settings A and B are better to be same. Similarly, if a company wants to compare Case A with Case B, then both cases need to consider the same model complexity for fair comparison. Each company can pick the common model complexity on its own. Companies are still encouraged to investigate other model complexities in addition to their common ones. The same applies to training and testing dataset sizes (as applicable). When comparing different schemes, scenarios, or settings, it is good to have common dataset sizes for training and testing. 

Proposal 3: For evaluating AI/ML positioning, each company considers a common model complexity for its reported evaluations. The common complexity can be different across companies. Companies are still encouraged to investigate other model complexities in addition to their common ones.

Proposal 4: For evaluating AI/ML positioning, each company considers a common dataset size for its reported evaluations. The common dataset size can be different across companies. Companies are still encouraged to investigate other dataset sizes in addition to their common ones.

A1.3 Studying model robustness and generalization for AI/ML positioning
Direct AI/ML positioning methods, e.g., RF (Radio Frequency) fingerprinting (RFFP), usually utilize the entire multipath observation (i.e., both LOS and NLOS) to estimate the position. While this results in excellent positioning accuracy, this makes the RFFP more sensitive to environmental changes that significantly affect the multipath profile. 
AI/ML assisted positioning methods, on the other hand, usually utilize multipath observation differently. A subset of methods uses enhanced estimation related to existing parameters primarily focusing on the LOS component of the channel. These methods are expected to be robust to changes in the multipath profile of the channel if the LOS path is not strongly impacted. A second subset of methods (ex. ML-based soft information reporting), which focus on reporting new parameters (such as soft-information of the timing estimate, e.g., likelihood/probability of timing) may also be partially sensitive to changes in the multipath environment. 
We thus focus on studying the robustness and generalization for direct AI/ML methods and the ML-based soft information reporting-based method. We first note that evaluating true generalization performance due to environment changes is not feasible due to the statistical nature of the 3gpp 38.901 channel model used for evaluations. With this constraint, we discuss a few options to modify the statistical channel generation to enable the evaluation of robustness to changes in multipath profiles. We consider the following categorizations for evaluating generalization and robustness of AI/ML positioning:
· Type 1: Heterogeneous inter-site (or heterogeneous inter-zone): Performance of AI/ML model on unseen deployment type (e.g., Umi vs. InF scenarios)

· Type 2: Homogeneous inter-site (or homogeneous inter-zone): Performance of AI/ML model on unseen deployment of the same type (e.g., trained on drop 1 and tested on drop 2 of the same scenario) 

· Type 3: Time varying changes: Performance of AI/ML model on unseen time variations within the same site (or zone) (e.g., moving objects, small environment variations over time in a factory, floor, warehouse, etc.)

· Type 4: Cross-configuration: Performance of AI/ML models across TX/RX configurations (e.g., training and testing can have different beam or transmit powers/SNR mismatch, synchronization/timing errors, etc.).
We first remind ourselves that direct AI/ML positioning methods rely on learning the multipath characteristics of the channel to estimate the UE position. In other words, direct AI/ML models for positioning are zone specific by design and hence it is hard for them to generalize across zones (i.e., sites). Consequently, we note that direct AI/ML methods in general are not expected to generalize across unseen zones (i.e., Type 1 and Type 2 generalization) as the multipath realization (i.e., propagation delays and arrival/departure angles of NLOS taps) has no correlation across different zones. 
While multipath realization is different across different drops, some aspects such as LOS probability, path loss, etc., are consistent across scenarios. Thus, while a model trained on zone 1 (drop 1) may not generalize well to zone 2 (drop 2), a model trained on a composite dataset of many drops is expected to learn common characteristics across the zones and provide marginal generalization performance on unseen sites. 
Robustness of AI/ML positioning performance against channel variations due to moving objects and environment changes over time is important. Thus, it is important to study robustness to Type 3 changes. 
A1.4 Channel modeling for robustness and generalization study
In this document, we denote training dataset as “dataset A” and testing dataset as “dataset B.” For evaluating model’s generalization, train the model on a mixture of datasets, e.g., , ,… ,  and evaluate the model on unseen changes, e.g., datasets , ,… , , where training and evaluation datasets reflect the change expected in real scenario. The model trained on mixed datasets, i.e., , ,… , , can be compared to a baseline model that is trained on a single dataset, e.g., . The intention is to show training on mixture of datasets show better generalization to unseen changes than single dataset training.
In meeting (RAN1-110), companies agreed on studying generalization for Type1, Type2, and some aspects of Type 4 generalizations (TX/RX timing errors) and discussed related modeling options.Agreement (RAN1-110)
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
· Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
· Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
· Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement (RAN1-110)
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).




In meeting (RAN1-111), companies also agreed on studying Type 3 changes and additional aspects related to generalization for Type4 (including SNR mismatch and channel estimation error). Agreement (RAN1-111)
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error


A1.4.1 Studying Type1 and Type2 generalization using 3gpp channel models
To study Type 1 generalization, we can generate datasets A and B using different scenarios (e.g., different clutter settings) within the same evaluation methodology. For Type 2 generalization, we can generate datasets A and B using different drops (i.e., same scenario and clutter setting but with different random seeds) within the same evaluation methodology. For example, datasets A and B can be generated with InF-DH scenario and {60%, 6, 2} clutter settings but using different random seeds. We also provide evaluations to show Type 2 generalization of direct AI/ML positioning in Section A2.2.2.1 and Type1/Type2 generalization for AI/ML assisted positioning in Sections A2.3.5 and Section A2.3.6.

A1.4.2 Studying Type3 robustness using 3gpp channel models
One aspect of generalization is the robustness of AI/ML positioning model to zone-specific time varying changes, i.e., intra-site robustness, in which model needs to be tested against time varying changes in each site (e.g., movement of reflecting objects, small environment variation over time, etc.). In the meeting (RAN1-110), there was a request for further clarification on how site time changes can be modeled based on the channel models in TR 38.901. We provide a detailed modeling of Type 3 changes and how to evaluate robustness in Appendix 1. Another option for modeling Type 3 changes can be based on the blockage modeling in TR 38.901, i.e., Blockage Model A and Blockage Model B (Section 7.6.4 [2]). We provide evaluations to show robustness to time varying changes of direct AI/ML positioning in Section A2.2.2.2 and Section A2.2.2.3 and robustness of AI/ML assisted positioning in Section A2.3.7 based on the modeling in Appendix A3.
Proposal 5: For evaluating AI/ML positioning and studying the impact of time varying changes (e.g., mobility of clutter objects and blockers in the environment), the following modelling approaches can be considered:
· Option1: Modeling approach listed in Appendix 1
· Option2: Blocker Model A or Blocker Model B in TR 38.901 (Section 7.6.4 [2]).

A1.4.3 Studying Type 4 robustness using 3gpp channel models
We also study robustness of AI/ML positioning to different Type 4 changes, including timing and synchronization errors in Section A2.2.2.4, and SNR/TX power mismatch in Section A2.2.2.5. 

A1.5 Studying model LCM (Life Cycle Management) for AI/ML positioning
A1.5.1 Studying model LCM: finetuning
In meeting (RAN1-110), companies agreed on aspects for evaluating model finetuning. Agreement (RAN1-110)
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.
Agreement: RAN1-110-9.2.4.1
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
horizontal positioning accuracy (in meters) before and after model finetuning.

Agreement RAN1-111-9.2.4.1
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.


While it is possible to do extensive training data collection for positioning at a few points in time (e.g., every few months), it would be difficult and challenging to do it frequently (e.g., every day). Model finetuning can be a solution to help models adapt to continuously changing wireless environments. The feasibility of model finetuning depends on the size and availability of finetuning dataset. Depending on the expected change in the environment, the size of finetuning dataset required to enhance positioning performance can be quite large. 
Observation 1: Positioning enhancement gains of AI/ML model fine-tuning depends on the size of fine-tuning data. 
Therefore, model finetuning can be a solution to address zone-specific changes (e.g., movement of reflecting objects, small environment variation over time, etc.), in which small training dataset can be collected continuously and used to finetune a zone-specific AI/ML positioning model. Considering finetuning as a solution for addressing inter-site generalizations (i.e., Type1 and Type2) might not be the right approach because these types entail substantial changes and require extensive data collection. We provide evaluations to finetuning and show the infeasibility of finetuning to address inter-site generalizations in Section A2.2.3.1. 
A1.5.2 Studying model LCM: switching
In the meeting (RAN1-110be AI 9.2.1), companies agreed on considering model switching as one of the approaches to enhance performance across different scenarios, configurations, sites, etc. 
Agreement (RAN1-110be AI 9.2.1)
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
i. Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
ii. Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
iii. Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Some AI/ML positioning models are site specific and can guarantee excellent performance when tested under settings that match their training ones. Such models should not be expected to generalize to unseen settings (e.g., sites with significantly different multipath profiles). Model switching allows activating the right model that suites the operating condition and thereby achieving excellent performance across different scenarios, configurations, sites, etc. Model switching can ensure the scalability of site-specific AI/ML positioning models and secure their desired excellent positioning performance. 
Observation 2: Site-specific AI/ML positioning models achieve excellent performance within their intended coverage area (i.e., the trained site). 
Observation 3: Model switching can help scaling the excellent performance of site-specific AI/ML positioning models across different sites. 
To evaluate model switching, companies can consider a situation in which a UE moves between multiple sites. These sites can be modelled with different drop values, clutter settings, or scenarios. Companies can train multiple site-specific models for these sites. Then, two cases can be evaluated: ‘no model switching’ and ‘model switching.’ In the ‘no model switching’ case, the UE keeps using the same model that is trained only on dataset from one (or multiple) site across all seen and unseen sites. In the ‘model switching’ case, the UE, on the other hand, can switch its model as it moves between these sites and use the right model that matches the site under test. The performance KPI can show the AI/ML positioning performance for the two cases across all sites. 
Proposal 6: To evaluate AI/ML positioning enhancement with model switching, consider multiple sites (e.g., N sites) that have different drop values, clutter settings, and/or deployment scenario. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L sites among the N sites (where L<N), and test on all N sites using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N sites, and test on all N sites while switching between the M trained models and picking the right model that fits the testing site. 
We provide evaluations to show the feasibility of model switching to address inter-site generalizations in Section A2.2.3.2. 

A1.5.3 Discussion on model LCM for AI/ML positioning approaches
Agreement RAN1-111-9.2.4.1
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary.


In the previous meeting, companies agreed to provide inputs on identifying generalization aspects for which different LCM approaches can be beneficial (i.e., model switching, mixed training dataset, and model finetuning). While the agreement only covers the AI/ML assisted positioning approach, we would like to indicate our general observations for both direct AI/ML and AI/ML assisted approaches. These approaches are valid options for ensuring proper model generalization and high accuracy. However, each approach has its own pros and cons. We find that model switching can offer the best accuracy and generalization to different settings if the switching is done timely and properly. The mixed training dataset approach can also offer good accuracy when the AI/ML positioning model is tested on the same settings included in the mixed dataset. However, the mixed training dataset approach can be slightly worse than model switching. The mixed training dataset construction helps overcome the need for timely and proper model switching but learning mixture of datasets comes at expense of reduced performance when compared with the case of learning single dataset. The model finetuning can be helpful to adapt to slight changes using small dataset size. However, it cannot adapt and generalize well when significant changes are expected. 
Proposal 7: For AI/ML positioning evaluation, consider the following observations on LCM approaches (i.e., model switching, mixed training dataset, and model finetuning) for AI/ML positioning:
· Model switching offers the best positioning accuracy followed by mixed training dataset construction and model finetuning
· Model finetuning with small dataset size can only be feasible for enhancing positioning accuracy for small unseen changes 

In terms of the AI/ML positioning approach, we find that the best approach for achieving high accuracy is direct AI/ML positioning, followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction, respectively. We also find that the AI/ML assisted positioning with single-TRP input construction and soft-information output achieves higher accuracy than having a hard-information output. The AI/ML assisted positioning with single-TRP input construction can, on the other hand, offer better generalization performance to unseen changes than direct AI/ML and AI/ML assisted positioning with multi-TRP input construction when no LCM is applied. Our findings and views are shown in Figure 1. 

Proposal 8: For AI/ML positioning evaluation, consider the following observations on AI/ML positioning approaches:
· Direct AI/ML positioning approach offers the best positioning accuracy followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction approaches, respectively
· AI/ML assisted positioning with single-TRP input construction approach offers the best generalization performance (when applying no model LCM to other approaches).
· AI/ML assisted positioning with soft-information output offers higher positioning accuracy than AI/ML assisted positioning with hard-information output.


[image: ]
[bookmark: _Ref127460590]Figure 1 Accuracy and generalization performance for different LCM options (top) and AI/ML positioning approaches (1model finetuning with reasonable small dataset size, 2 Generalization without applying LCM).


Appendix A2 Performance Results
We provide evaluations for both direct AI/ML and AI/ML-assisted positioning approaches. We consider the RFFP [11]  as the direct AI/ML positioning approach and we use it to show the gain that AI/ML can offer in extreme NLOS indoor scenarios and its robustness to zone-specific generalizations. For the AI/ML assisted approach, we evaluate the ML-based soft information reporting for DL-TDoA scheme [11] and show its enhancements to both indoor and outdoor scenarios as well as its robustness to inter-site generalizations. In our evaluations we consider a baseline scheme that is based on TDoA. The baseline scheme has also SNR pruning enabled and RANSAC for outliers’ rejection. The evaluations consider 100 MHz bandwidth. Our simulation parameters are in line with those in TR 38.857 [3] and reflect updates agreed in previous meeting (RAN1-109e). The spatial consistency is enabled according to Section 7.6.3, TR 38.901 [2] with decorrelation distance 10 meters and the grid-based method discussed in Section 5.3 [13]. We also provide evaluations based on field dataset in Section A2.2.4 and raytracing dataset in Section A2.2.5. 

A2.1 Impact of measurement reporting optimization and noisy data labelling
A2.1.1 Evaluating reporting overhead and accuracy: Measurement type
We evaluate the trade-off between performance and signalling overhead for various cases and settings, as shown in Table 2 and Figure 2. The reporting overhead is calculated according to formulations in Table 1 with Bt=8 bits, Nt=64, Bcir_real=8bits, and Bloc=12 bits. We show the performance for Case1, Case2a, and Case2b along with their reporting overhead. For Case2b, we investigate different reporting options, including existing multipath reporting in DL-TDoA and new measurement reporting of CIR complex values. For the two options, we also investigate different optimizations of the number of paths or samples to be reported. 
For Case2b with existing measurement reporting, the UE finds up to N’t paths for each TRP and reports their timing to the LMF. The LMF decides the mapping of each sample to model input index based on the multipath timings. We evaluate two values for multipath timing reporting, i.e., N’t =8 and N’t=16. For Case2b with new CIR measurements, the UE finds the strongest N’t samples in CIR, and reports them to LMF along with their timing information (represented in bitmap). We evaluated different realizations of CIR optimizations, i.e., N’t = {8, 16, 64, 400}.
We observe the following:
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 24 bits).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 272 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 1152 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 1152 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 2304 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 2304 vs. 78336 bits) than Case2b with CIR of N’t =64 samples.
We conclude from the above observations that Case2b can achieve a higher positioning accuracy with multipath reporting than CIR measurements reporting (see cases with N’t < 64) and smaller reporting overhead. Case2b can also achieve a comparable positioning accuracy with up to 16 multipath reporting and much smaller reporting overhead when compared to CIR measurement reporting with N’t = 64. Any reporting of CIR measurements with  N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). In summary, for a given reporting overhead, Case2b with multipath reporting achieves higher positioning accuracy than Case2b with new CIR measurement reporting. We find CIR measurement reporting has unjustified huge reporting overhead and minimal enhancement when compared to existing multipath reporting. We propose to deprioritize CIR measurement reporting for Case2b.
[bookmark: _Ref131752857][bookmark: _Ref131763072]

Table 26 Evaluation results for AI/ML model complexity and reporting overhead when deployed on UE- or NW-side for different model input and measurement types (Bt=8 bits, Nt=64, Bcir_real=8bits, Bloc=12 bits), without model generalization, CNN, UE distribution area = 120x60 m
	Model input
(N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Reporting/signalling complexity (bits)
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	
	AI/ML

	Case1: CIR (18,4, 400) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	24 bits
	2.24

	Case2a: RSTD (17,1,1) + RSRP (17,1,1)  
	17x (RSTD, RSRP)
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	272 bits
	2.92

	Case2b: Multipath timing (18,1, 8) 
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	1152 bits
	2.52

	Case2b: Multipath timing (18,1, 16)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	2304 bits
	2.31

	Case2b: CIR (18,4, 8)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	13824 bits

	3.17

	Case2b: CIR (18,4, 16)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	23040 bits

	2.51


	Case2b: CIR (18,4, 64)
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	78336 bits

	2.29


	Case2b: CIR (18,4, 400)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	489600 bits

	2.24




[bookmark: _Ref131754848]Figure 2 Horizontal positioning error at 90%-tile versus reporting overhead for different cases and measurement reporting types.
Observation 4: We observe the following regarding the trade-off between positioning accuracy and reporting overhead for AI/ML positioning: 
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 24 bits).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 272 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 1152 vs. 13824 bits) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 1152 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 2304 vs. 23040 bits) than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 2304 vs. 78336 bits) than Case2b with CIR of N’t =64 samples.

Observation 5: For AI/ML positioning evaluation of reporting overhead (Case2b), evaluations show that reporting of CIR measurements with N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). 
Observation 6: For AI/ML positioning evaluation of reporting overhead (Case2b), evaluations show that reporting of CIR measurements with N’t  64 can have less or comparable performance gain to multipath reporting and has higher reporting overhead. 
Observation 7: For AI/ML positioning evaluation of reporting overhead (Case2b), when considering same reporting overhead for N’t  64, evaluations show that Case2b achieves higher positioning accuracy with multipath reporting than CIR measurement reporting. 
Proposal 9:  For specifying model input in Case2b in AI/ML positioning, deprioritize CIR measurement reporting due to its the huge reporting overhead and comparable or minimal performance gain when compared to existing multipath reporting. 

A2.1.2 Evaluating reporting overhead and accuracy: TRP numbers and selection
We also investigate the benefits of TRP selection and the potential reporting overhead benefits when reducing the number of TRPs. We consider two scenarios for reducing the number of TRPs to be reported. In the first approach, the set of reported TRPs can be dynamic, in which the UE can report the top-K strongest power TRPs. In the second approach, a fixed and predetermined set of TRPs are reported, in which TRPs are selected to ensure UE is within their convex hull for most of the times to ensure low GDOP. We consider the model input as optimized CIR and reduce the number of TRPs from 18 to 8 and 4. Our evaluations are summarized in Table 3. We observe that reducing the number of TRPs can significantly degrade the positioning accuracy. For example, in the first approach with dynamic TRP selection, the positioning accuracy drops from 3.17m to 3.89m and 5.32m, when the number of TRPs reduces from 18 to 8 and 4, respectively. In the second approach with fixed TRP selection, the positioning accuracy drops from 3.17m to 3.34m and 12.02m, when the number of TRPs reduces from 18 to 8 and 4, respectively. 

[bookmark: _Ref134796239]Table 27 Evaluation results for AI/ML model complexity and reporting overhead when deployed on NW-side for different TRP measurement optimizations (Bt=8 bits, Nt=64, Bcir_real=8bits, Bloc=12 bits), without model generalization, CNN, UE distribution area = 120x60 m 
	Model input
(N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Reporting/signalling complexity (bits)
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	
	AI/ML

	Case2b: CIR (18,4, 8)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	13824 bits

	3.17

	Case2b: CIR (8,4, 8) [dynamic TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	6144 bits

	3.89

	Case2b: CIR (4,4, 8) [dynamic TRP selection]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3072 bits

	5.32

	Case2b: CIR (8,4, 8) [Fixed TRP selection: TRPs= {0,2,6,8,9, 11, 15,17}]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	6144 bits

	3.34

	Case2b: CIR (4,4, 8) [Fixed TRP selection: TRPs= {0,2,15,17}]
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3072 bits

	12.02

	Case2b: CIR (18,4, 400)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	489600 bits

	2.24



Observation 8: For Case2b in AI/ML positioning, reducing the number of reported TRPs degrades the positioning accuracy; in dynamic TRP selection with CIR measurement type, the positioning accuracy drops from 3.17m to 3.89m and 5.32m, when the number of TRPs reduces from 18 to 8 and 4, respectively; in fixed TRP selection with CIR measurement type, the positioning accuracy drops from 3.17m to 3.34m and 12.02m, when the number of TRPs reduces from 18 to 8 and 4, respectively. 


A2.1.3 Evaluating data labelling using classical schemes
We investigate the impact of data labelling using NR RAT legacy positioning method. We consider a scenario with limited number of labelled samples (1k samples) under clutter settings of {60%, 6, 2}, and consider other 350 samples labelled using DL-TDoA and whose label error is up to 3.5meter. We show the performance of direct AI/ML positioning model when trained on 1k clean labelled samples and mixture of the 1k clean and 350 noisy labelled samples, as shown in Table 4. We observe that the performance of direct AI/ML positioning can improve when trained with mixture of clean and noisy labels, when compared to training on a smaller set of clean labelled samples. The positioning performance improves from 13.76m to 8.72m when the model is trained with additional 350 noisy labels. 
Observation 9: For data labelling in AI/ML positioning, evaluations show it is feasible to consider data labelling using NR RAT-positioning methods when the number of clean labelled data is limited. The performance of direct AI/ML positioning with 1k clean labelled samples improves from 13.76m to 8.72m when considering additional 350 samples that are labelled using NR-RAT positioning method.
Proposal 10: For data labelling in AI/ML positioning, consider the feasibility of data labelling using NR RAT-positioning methods.
 

[bookmark: _Ref134798799]Table 28 Evaluation results for feasibility of labelling using NR RAT positioning methods when deployed on UE- or NW-side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
(N’TRP , Nport , N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,4, 400)
	2D 
	0%
	Drop A 
	Drop A 
	1k clean labels
	2k
	1.5M 
	1.54G FLOPs
	13.76

	CIR (18,4, 400)
	2D 
	25.9% noisy label
	Drop A 
	Drop A 
	1k clean+ 350 noisy labels (NR RAT positioning)
	2k
	1.5M 
	1.54G FLOPs
	8.72




A2.2 Direct AI/ML positioning: RFFP 
We consider three indoor deployments for evaluating RFFP, including 3GPP InF-DH deployment based on synthetic statistical modelling from TR 38.901, over-the-air indoor deployment, and raytracing-generated indoor deployment. The three deployments include sufficiently significant NLOS conditions that help showing gain of RFFP in zone specific scenarios. 
[bookmark: _Ref101994076]A2.2.1 Performance evaluation of RFFP using TR 38.901 channel model
We consider the InF-DH deployment [2], as shown in Figure 3. To simulate extreme NLOS condition, clutter parameters are set to {60%, 6, 2}. We drop 17K Ues uniformly in the whole hall layout and use15K for RFFP training. The UE area density of training dataset is 2.2 Ues/m2. The testing set has 2K Ues widely spread in the whole hall layout, as summarized in Table 5. The RFFP ML model takes a truncated CIR (Channel Impulse Response) input received from different gNBs as input and produces estimated position as output.
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[bookmark: _Ref101875857]Figure 3 InF-DH deployment (red triangles: TRPs, blue dots: UE locations).

[bookmark: _Ref115427203]Table 29 Evaluation results for AI/ML model deployed on UE-side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,4, 400)
	2D 
	0%
	Drop A (with UE clock drift)
	Drop A (with UE clock drift)
	15k
	2k
	1.5M params
	1.54G FLOPs
	2.77



In Figure 4, we plot CDF of horizontal positioning error for RFFP and classical benchmarking schemes. The RFFP scheme offers significant improvement to positioning accuracy. The 90th percentile of RFFP and classical schemes are ~3 m and >20 m, respectively. Due to the extremely low LOS probability in the InF-DH scenario with {60%, 6, 2} clutter setting, the classical scheme diverges and cannot provide accurate results. This proves the significant enhancement that RFFP can offer in extreme NLOS environments. We also discuss next further ML enhancements that helps pushing positioning error to smaller values.


[image: ]
[bookmark: _Ref101879247]Figure 4 CDF of horizontal positioning error for RFFP and classical schemes.
The impact of enabling spatial consistency on RFFP scheme is investigated in Figure 5. The RFFP performance shows better performance when trained on channel realizations generated according to Section 7.6.3 [2] and Section 5.3 [13].
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[bookmark: _Ref101879576]Figure 5 CDF of horizontal positioning error for RFFP scheme under different channel modelling assumptions (blue plot: channel model involves spatial consistency as modeled in Section 7.6.3 [2] and Section 5.3 [13]; black plot: channel model is based on TR 38.901 but does not involve spatial consistency modeling in Section 7.6.3 3 [2] and Section 5.3 [13]).

The impact of UE area density on RFFP performance is investigated in Figure 6. We consider multiple realizations of the RFFP ML model with different UE area densities. Other training assumptions for the considered UE area densities are the same. To simulate different UE densities, we consider a smaller region of 25 sq. mt. in the layout for training and testing. We increase the UE area density from 2.2 Ues/m2 to 640 Ues/m2. As observed, increasing UE area density when doing training helps reducing positioning error significantly. The 90th percentile of error reduces to ~50 cm (see the black solid plot). Considering performance improvement as function of UE area density is important because it helps companies decide on data collection strategies and signalling requirements depending on the sub use case of interest. 
While density of training samples is important for studying the performance of supervised trained RFFP, we note that, in practice, we can train the RFFP via semi-supervised training using a lot fewer training sample. Thus, the above sampling density requirement does not diminish the feasibility of RFFP.
Observation 10: In direct AI/ML positioning, evaluations show that AI/ML positioning can demonstrate different performance metrics depending on the UE area density considered for training. 
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[bookmark: _Ref101884490]Figure 6 CDF of horizontal positioning error for RFFP under different UE area densities (blue plot: sparse UE area density; black: dense UE area density).

A2.2.2 Generalization and robustness evaluation for RFFP
A2.2.2.1 RFFP generalization to drops
We evaluate inter-site generalization performance, i.e., Type 2, of RFFP positioning. We generate two datasets, i.e., Drop A and Drop B, with different random seed values. Ues in the two drops experience different multipath realizations and mimic two different sites having same clutter settings, i.e., {60%, 6, 2}. The ML model is trained with 15K Ues from Drop A that are uniformly dropped in the whole hall layout. We test the trained model on another 2K Ues from Drop A and another 2K Ues from Drop B. We plot the CDF of horizontal positioning errors in Figure 7 and summarize the error at different percentiles in Table 6. As can be observed, the RFFP demonstrates superior performance when tested on the site it has been trained on, but it is sensitive when tested on a different site of different multipath profiles. This is because RFFP method learns the mapping between the entire multipath realization and position at a given UE location. At a different site, the multipath profile at the given UE location is entirely different and this results in misleading outputs.
Observation 11: In direct AI/ML positioning, evaluations show that AI/ML positioning is site-specific and can provide excellent performance when operated on the site being trained on. It should not be expected to generalize over unseen sites that have entirely different reflections and multipath realization.

[bookmark: _Ref111123281][bookmark: _Ref111123274]Table 30 Horizontal positioning error (meters) of RFFP with Type 2 generalizations
	Train
	Test
	50%
	67%
	80%
	90%tile

	Drop A
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	Drop B
	5.98
	7.81
	9.88
	12.33

	Classical – Drop A
	14.65
	>20
	>20
	>20

	Classical – Drop B
	13.88
	>20
	>20
	>20
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[bookmark: _Ref111123220][bookmark: _Ref111123211]Figure 7 CDF of horizontal positioning errors of direct AI/ML positioning (solid plots: Baseline performance; dashed plots: Type 2 generalizations).

A2.2.2.2 RFFP robustness to time varying changes
We study the impact the robustness of RFFP to zone-specific changes (i.e., time varying changes). To do so, we generate multiple datasets that have slightly different cluster realizations. This reflects, for example, appearance of blocking objects that may create or block a multipath cluster 
To mimic such scenario, we generate datasets that have same clutter settings and random seed value but with partially common cluster assignments, as discussed in Appendix 1. The partially common cluster assignment between datasets ensure they correspond to the same site in which additional reflections and/or blocking occurs due to dynamically varying environment such as moving objects. Clusters are ordered based on their delays. The index of cluster number indicates how early the rays arrive at a given UE location. We consider the following cluster assignments for generating datasets of robustness study:
· Odd clusters: Consider odd-numbered clusters when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 1&3: Consider odd-numbered clusters except for the first and third ones when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 1&5: Consider odd-numbered clusters except for the first and fifth ones when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 5&7: Consider odd-numbered clusters except for the fifth and seventh ones when generating channel coefficients at all UE locations and TRP links.
· Odd with clusters 2&4: Consider odd-numbered clusters plus the second and forth ones when generating channel coefficients at all UE locations and TRP links.
· Odd with clusters 6&8: Consider odd-numbered clusters plus the sixth and eighth ones when generating channel coefficients at all UE locations and TRP links.
· Odd with random addition and removal of clusters: For a given UE link, consider odd-numbered clusters except at most two random odd-numbered clusters. In addition, add at most two random even clusters.

The different cluster assignments above mimic addition of up to two reflections and/or blocking of up to two paths. We train RFFP model with 15K Ues from the dataset of odd clusters and test its performance over different cluster assignments. The horizontal positioning errors of different tests are summarized in Table 7. The RFFP method shows good robustness to adding new reflections as can be observed from the testing performance on datasets with additional clusters, i.e., ‘odd with clusters 2&4’ and ‘odd with clusters 6&8’. The 90th percentile of positioning accuracy only drops from 2.74m to 2.88m and 2.89m when adding clusters 2&4 and 6&8, respectively. 
Observation 12: In direct AI/ML positioning, evaluations show that AI/ML positioning shows good robustness to subtle and moderate unseen reflections and multipath components that are different from training.
We study how blocking can affect RFFP method. We test the trained RFFP model on unseen changes that mimic blocking by considering the datasets with cluster removal. Introducing a blocker removes cluster contributions when computing channel coefficients. We test the RFFP model on datasets ‘odd except clusters 1&3’, ‘odd except clusters 1&5’, and ‘odd with clusters 5&7’. We see that RFFP model experiences different sensitivity to adding a blocker depending on which paths get blocked. We observe that blocking the earliest clusters brings more degradation to RFFP performance. The 90th percentile of positioning error drops from 2.74m to 5.63m, 5.62m, and 3.16m when blocking clusters 1&3, 1&5, and 5&6, respectively. We note that RFFP experiences performance losses when blocking occurs on earliest clusters as they have more power contributions. Our performance evaluations of RFFP robustness to Type 3-time variations are summarized in Table 8.
[bookmark: _Ref111127320]
[bookmark: _Ref118476604]Table 31 Horizontal positioning error (meter) for RFFP method robustness with Type 3-time varying changes (ML model trained on one channel realization, i.e., channel with odd clusters)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Odd clusters
	Odd clusters
	1.27
	1.65
	2.13
	2.74

	Odd clusters
	Odd except clusters 1&3 
	2.87
	3.69
	4.54
	5.63

	Odd clusters
	Odd except clusters 1&5
	2.73
	3.60
	4.60
	5.62

	Odd clusters
	Odd except clusters 5&7
	1.47
	1.91
	2.41
	3.16

	Odd clusters
	Odd with clusters 2&4
	1.33
	1.75
	2.19
	2.88

	Odd clusters
	Odd with clusters 6&8
	1.30
	1.69
	2.18
	2.89

	Odd clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.60
	2.11
	2.67
	3.46




[bookmark: _Ref115427598]Table 32 Evaluation results for AI/ML model deployed on UE-side, with Type 3-time varying changes, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train 
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd clusters) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.74

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd except clusters 3&5) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.16

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd with clusters 2&4) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.88

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd with removal & addition of two random clusters) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.46



A2.2.2.3 RFFP robustness to time varying changes with mixed dataset training
It is expected that blockers come and go during data collection. Therefore, it better reflects the practical reality to construct the training dataset based on a mixture of several different clutter assignments. Therefore, in the next experiment, we train the RFFP model on a mixture of datasets, including ‘odd clusters’ and ‘odd clusters with random addition and removal of clusters,’ and then test it on unseen zone-specific changes. We summarize testing results in Table 9. We also plot a comparison between testing results of the RFFP model trained on mixture of zone-specific changes and the earliest one trained on dataset containing only odd clusters, as shown in Figure 8. The solid plots correspond to the RFFP model trained with only odd clusters while the dashed plots correspond to the RFFP model trained on mixture of datasets. It should be noticed that, in the Mixed Training scenarios, the testing datasets with fixed addition and removal of clusters consist of unseen cluster assignments that do not present in the training dataset. As can be seen, the RFFP method shows enhanced robustness to unseen zone-specific changes when it is trained on mixture of zone-specific changes. 
Observation 13: In direct AI/ML positioning, evaluations show that AI/ML positioning can show improved robustness to slight environment changes such as time-varying blocking when trained on mixture of such changes.
[bookmark: _Ref111138292]Table 33 Horizontal positioning error (meter) for RFFP robustness with Type 3 ‘time varying changes’ (ML model trained on mixture of channel realizations)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Mixed clusters
	Odd clusters
	1.33
	1.59
	2.19
	2.80

	Mixed clusters
	Odd except clusters 1&3
	2.41
	3.07
	3.81
	4.87

	Mixed clusters
	Odd except clusters 1&5
	2.21
	2.97
	3.72
	4.64

	Mixed clusters
	Odd except clusters 5&7
	1.45
	1.84
	2.42
	3.15

	Mixed clusters
	Odd with clusters 2&4
	1.39
	1.63
	2.25
	2.89

	Mixed clusters
	Odd with clusters 6&8
	1.34
	1.60
	2.23
	2.87

	Mixed clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.50
	1.822
	2.46
	3.17



[image: ]
[bookmark: _Ref111138461]Figure 8 CDF of horizontal positioning error of RFFP method for different Type 3-time varying changes (solid plots: ML model trained on odd clusters; dashed plots: ML model trained on odd clusters while randomly removing and adding up to two odd and even cluster).
[bookmark: _Ref127461042]A2.2.2.4 RFFP robustness to synchronization and timing errors
AI/ML offers advantages to positioning that go beyond improving accuracy. AI/ML can be leveraged to enhance positioning performance against network and UE impairments, including UE clock drift and TRP synchronization. RFFP ML model can be trained to account for UE clock drifts and TRP mis-synchronization. We evaluate the impact of accounting for these impairments on the generalization performance of RFFP scheme. In Figure 9, we plot the CDF of positioning error for RFFP scheme under two scenarios: ‘no clock drift’ and ‘clock drift.’ The two scenarios have same training complexity. The ‘no clock drift’ scenario corresponds to an ideal setting where UE clock is tightly coupled and synchronized with TRPs, while the ‘clock drift’ scenario represents the RFFP testing performance when UE clock drift is set variable within [-150, 150] nanoseconds. We train RFFP ML model to account for such drift. As can be observed, RFFP ML model can be trained to be robust against UE clock drifts. It should be noted that the gap between ‘no clock drift’ and ‘clock drift’ scenarios can be further tightened by applying further optimizations. 
The Impact of TRP mis-synchronization is evaluated in Figure 10. For the ‘relaxed TRPs sync.’ Scenario, we relax TRP synchronization assumption and add artificial synchronization error within [-10,10] nanoseconds during training. This helps accounting for potential residual clock synchronization offsets between TRPs that could happen in real deployments. RFFP ML model is can account for such error and provide comparable performance to ideal synchronization settings, as seen in the ‘relaxed TRP sync.’ Scenario. In conclusion, with careful training, RFFP can be made robust to network and UE impairments. We also would like to mention that ML can be trained to learn compensating other static impairments such as group delays. 
Observation 14: In direct AI/ML positioning, evaluations show that AI/ML positioning can be made robust to network and UE timing errors (e.g., UE clock drift, network synchronization, etc.), by taking timing impairments into the training dataset.
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[bookmark: _Ref101880951]Figure 9 CDF of horizontal positioning error for RFFP scheme under different UE clock drift conditions (green plot: RFFP performance in ideal settings when no clock drift present; blue plot: training accounts for UE clock drift and testing includes UE clock drift within [-150,150] nanoseconds).
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[bookmark: _Ref101883668]Figure 10 CDF of horizontal positioning error for RFFP scheme under different TRPs’ synchronization assumptions (blue plot: TRPs are synchronized; magenta plot: TRPs have random synchronization error within [-10, 10] nanoseconds).

A2.2.2.5 RFFP robustness to SNR mismatch
We investigate the sensitivity of RFFP to SNR mismatch between the training and testing. To model SNR mismatch, we consider different transmit power settings for training and testing. We consider two baseline transmit powers for training, including 12 dBm and 18 dBm. Two models are trained for each value. For testing, in addition to baseline transmit powers, we consider two additional transmit powers, i.e., 21 dBm and 24 dBm. Except for the transmit powers, all other simulation parameters are common between all training and testing datasets. To rule out any factors that may affect the performance, other than the transmit power, we consider timing errors in both training and testing datasets to be perfectly compensated. 
We show the performance for both matched and mismatched SNR setting of training and testing in Table 10. First, for the matched SNR setting, we observe, as expected, that increasing the SNR helps improving the performance. For example, increasing SNR by 6 dB (by increasing the transmit power from 12 dBm to 18 dBm) offers enhancement to the positioning accuracy (almost 7.2% reduction in positioning error). Second, for the mismatched SNR setting with 12 dBm training, the positioning accuracy experience some slight and moderate degradation. For example, the testing on 18 dBm, 21 dBm, and 24 dBm, shows 23%, 40%, and 50% increase in the positioning error, respectively, when compared to the baseline case of 12 dBm testing. This happens because as SNR improves in testing new unseen multipath information become available at RFFP model input, and this causes additional positioning errors. We observe that this degradation in performance becomes smaller as training SNR gets higher. For example, for the mismatched SNR setting with 18 dBm training, the positioning accuracy experiences less degradation than that with 12 dBm training. For example, the testing on 12 dBm, 21 dBm, and 24 dBm, show 21.7%, 2.5%, and 7.1% increase in the positioning error, respectively, when compared to the baseline case of 18 dBm testing. We conclude that training on higher SNR settings can help making direct AI/ML positioning robust to SNR mismatch at testing time.

Observation 15: In direct AI/ML positioning, evaluations show that AI/ML positioning can have reliable performance for applicable range of SNR settings.


[bookmark: _Ref127449378]Table 34 Evaluation results for AI/ML model deployed on UE-side, with different TX power settings, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm) 
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.6

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.12

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.64

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.89

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.91

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.39

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.45

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.56


 

A2.2.3 Model LCM evaluation for RFFP
A2.2.3.1 RFFP model LCM evaluation: Model finetuning for inter-site generalization
We investigate amount of data needed to finetune a trained direct AI/ML positioning model for enhancing performance for inter-site generalization. We consider small datasets of 100, 240, and 500 samples from Drop B and use them to finetune the model trained with 15K samples from Drop A dataset. We plot the CDF of horizontal positioning errors in Figure 11 and summarize the error at different percentiles in Table 11 for different finetuning dataset sizes. Finetuning the model with 100 samples offer slight enhancement to inter-site generalization performance. The positioning error at 90th percentile improves from 12.33m to 10.47m. As we double the size of training samples, we observe good gain. The positioning error at 90th percentile improves from 12.33m to 6.92m when finetuning with 240 samples. However, this gain starts to saturate as more samples are considered. By doubling the size of finetuning samples from 240 to 500 samples, we only see slight enhancement as the positioning error at 90th percentile improves from 6.92m to 6.07m.  However, this still far from the desired baseline performance around ~3m. 
Observation 16: In direct AI/ML positioning, evaluations show that model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of AI/ML positioning when tested with different drops (i.e., inter-site generalization).
As can be seen, although model finetuning with small dataset size can help enhance the performance for inter-site generalization, it cannot be relied on when having inter-site operation. Direct AI/ML positioning approaches rely on learning multipath operation and as the UE moves between different zones (i.e., inter-site), it requires large dataset size to tune the model and achieve excellent performance. Thus, online finetuning would not be a suitable approach to maintain the excellent performance of direct AI/ML positioning. Instead, offline finetuning (e.g., transfer learning) can be a better solution in which data can be collected from new sites and model can be retrained or finetuned offline. Our performance evaluations are summarized in Table 12. 
[bookmark: _Ref118476422]Table 35 Horizontal positioning error (meters) of RFFP with finetuning for Type 2 generalizations
	Training
	Finetuning (Drop B)
	Testing
	50%
	67%
	80%
	90%

	Drop A
	--
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	--
	Drop B
	5.98
	7.81
	9.88
	12.33

	Drop A
	500 samples
	Drop B
	3.09
	4.02
	4.98
	6.07

	Drop A
	240 samples
	Drop B
	3.54
	4.55
	5.61
	6.92

	Drop A
	100 samples
	Drop B
	5.17
	6.64
	8.46
	10.47
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[bookmark: _Ref115257478]Figure 11 CDF of horizontal positioning errors of direct AI/ML positioning (solid red plot: Baseline performance; solid green plot: Type2 generalization without finetuning; dashed and dotted plots: Type 2 generalizations with fine tuning).

[bookmark: _Ref115427518]Table 36 Evaluation results for AI/ML model deployed on UE-side, with model finetuning generalization (Type 2 – different drops), CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	train
	finetune
	Test
	Train 
	Finetune
	Test
	Model complexity [parameters]
	Computational complexity FLOPs
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	drop A (with UE clock drift)
	--
	drop B (with UE clock drift)
	15k
	0
	2K
	1.5M 
	1.54G 
	12.33

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	100
	2K
	1.5M 
	1.54G 
	10.47

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	240
	2K
	1.5M 
	1.54G 
	6.92

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	500
	2K
	1.5M 
	1.54G 
	6.07



A2.2.3.2 RFFP model LCM evaluation: Model switching for inter-site generalization
We evaluate the model switching to enhance performance for inter-site generalization. We emulate a scenario in which a UE keeps moving between two sites with significantly different realization of blocking and reflections. We evaluate two cases: ‘no model switching’ and ‘model switching.’ In the ‘no model switching’ case, the UE keeps using the same model that is trained only on dataset from the first site, while in the ‘model switching’ case, the UE switches the model as it moves between the two sites and uses the right model that matches the testing site. Each model is trained with 15K samples. The testing in each site considers 2K samples. The two sites are modelled with two different drop values. In Table 13 and Table 14, we summarize the performance for the two cases. We also plot the evaluation results in Figure 12 . As can be observed, the positioning performance is maintained to an excellent level when model switching is enabled, while it deteriorates when UE does not consider model switching. The positioning error at 90th percentile improves from 9.54m to 2.75m when model switching is considered. 
Observation 17: In direct AI/ML positioning, evaluations show that with model switching, AI/ML positioning offers excellent performance when considering generalization across different drops. 
By comparing the enhancement of finetuning and model switching, we notice that model switching offers better enhancement and maintains the excellent performance of direct AI/ML positioning. Model finetuning, on the other hand, offers only a mild enhancement and is still far from achieving the performance with model switching. This can be observed by comparing the numbers in Table 10 and Table 13. The positioning error at 90th percentile with model finetuning is 6.07m and it is still far from the site-specific testing performance of 2.74m. On the other hand, the positioning error at 90th percentile with model switching is 2.75m, and it is comparable to the site-specific performance of 2.74m. 
Observation 18: In direct AI/ML positioning, evaluations show that model switching offers superior performance enhancement than model fine-tuning when considering generalization of AI/ML positioning across different drops. 
When considering generalization of direct AI/ML positioning approach across different sites (i.e., different drops), model switching should be considered the baseline solution and future discussions on specification impacts to enhance direct AI/ML positioning model generalization should prioritize model switching. 

[bookmark: _Ref118298315]Table 37 Horizontal positioning error (meters) of RFFP with model switching for Type 2 generalizations (different drops)
	Testing on two drops
	50%
	67%
	80%
	90%tile

	No model switching
	2.56
	4.42
	7.01
	9.45

	Model switching
	1.34
	1.72
	2.16
	2.75
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[bookmark: _Ref118299768]Figure 12 CDF of horizontal positioning errors of direct AI/ML positioning (solid red plot: Performance with model switching on two drops; solid blue plot: Performance without model switching on two drops – model is trained on one drop only).

[bookmark: _Ref118298364]Table 38 Evaluation results for AI/ML model deployed on UE-side, with model switching for generalization (Type 2 – different drops), CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Model switching (number of models)

	Setting ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Training 
	Test 
	Model complexity [parameters]
	Computational complexity [FLOPs]
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	2
	two drops (with UE clock drift)
	two drops (with UE clock drift) 
	15k
	2k
	1.5M 
	1.54G
	2.75

	CIR (18,4,400)
	2D
	0%
	1
	one drop (with UE clock drift)
	two drops (with UE clock drift)
	15k 
	2k
	1.5M 
	1.54G
	9.45




A2.2.4 Performance evaluation of RFFP using field data
We employ field data to verify on previous findings from statistical channel models. We conduct experiment using an in-house testbed that has six TRPs and UE mounted on an Automated Ground Vehicle (AGV), as shown in Figure 13. To emulate NLOS condition, we introduce a metal sheet blocker that causes blocking to two TRPs, i.e., TRP 3 and TRP 4. This deployment considers positioning using uplink SRS signals with 100 MHz channel centred at 3.75 GHz. We conduct 3D positioning using RFFP and classical schemes. The CDFs of horizontal positioning error for the two schemes are shown in Figure 14. The RFFP scheme offers good improvement to positioning accuracy when compared to classical scheme. We would like to mention that classical scheme in this experiment applies time filtering using Kalman filter to further improve positioning performance. The RFFP performance still outperforms the classical one and aligns with our findings in previous section.
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[bookmark: _Ref101905917][bookmark: _Ref101905912]Figure 13 In-house positioning prototype.
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[bookmark: _Ref101905963]Figure 14 CDF of horizontal positioning error for RFFP and classical schemes based on OTA field data.

Observation 19: In direct AI/ML positioning, evaluations show that AI/ML positioning demonstrates excellent performance in practical field setup under NLOS conditions.
A2.2.5 Performance evaluation of RFFP using raytracing data
Raytracing offers spatially consistent modelling of radio propagation for indoor and outdoor scenarios. Path gain and phase can be accurately modelled to capture the impact of different propagation phenomena, including reflection, refraction, diffraction, and diffuse scattering. We build an indoor 3D factory model and use raytracing to generate channel impulse responses, as shown in Figure 15. This layout is 100 by 150 sq. mt. and has sophisticated modelling of materials. Raytracing tool uses shoot and bounce raytracing methodology and employs sophisticated modelling of reflection and refraction, using geometrical optics, as well as diffraction, using uniform theory of diffraction (UTD). Our setup has eight TRPs and dense UE deployment in the right-most middle room. In this room, Ues have extreme NLOS condition and most TRPs do not have LOS path with them. We evaluate positioning using this layout with 100 MHz channel bandwidth centred at 3.5 GHz. The CDF of horizontal positioning error is shown in Figure 16. The ML RFFP scheme still shows excellent performance when compared to the classical one. This highlights the significant improvement that AI/ML can provide for positioning and aligns with findings obtained from statistical models. 
Observation 20: In direct AI/ML positioning, evaluations show that AI/ML positioning demonstrates excellent performance in ray tracing simulations under extreme NLOS conditions.
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[bookmark: _Ref101907916]Figure 15 Indoor factory modelling using raytracing.
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[bookmark: _Ref101908442]Figure 16 CDF of horizontal positioning error of RFFP and classical schemes based on raytracing-generated data.

A2.3 AI/ML-assisted positioning: ML-based soft-information reporting for UE-assisted DL-TdoA 

AI/ML model

CER à                             à Probability distribution of timing (e.g., TDoA)
 
In multipath scenarios, combining soft information about the LOS path can outperform a hard-decision based approach. This section evaluates the performance of such an ML-assisted algorithm: ML-based soft information reporting for DL-TdoA.

· For each TRP, the UE uses an AI/ML model to derive the probability distribution of DL-TdoA from the channel energy response (CER). We model the probability distribution as a Gaussian mixture, which is completely described by the weights, means and standard deviations of the mixture components. 
· The UE reports the distribution to the LMF server (e.g., the parameters of a Gaussian mixture), 
· The LMF server fuses the likelihoods across TRPs to derive the position estimate. 

A2.3.1 Comparison of ML-based timing approaches
Companies have previously reported results for AI/ML-assisted positioning where the ML model estimates a single value of the timing. Instead of such a hard-decision approach, we could improve accuracy by deriving soft information about the LOS path. In this section, we compare the performance of the two approaches.

Consider the following scenario with three TRPs, where TRP1 experiences NLOS. Suppose the UE reports soft information, for instance, for TRP1, its report could inform the network that the time-of-arrival could have two values, together with the relative confidence associated with the values. By combining with the reports based on the other two TRPs, the network can improve its position estimate.
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Figure 17 ML-based soft information reporting to address impact of multipath.


In Table 15, we compare the performance of the following approaches for the InF-DH layout (FR1) with clutter parameters set to {60%, 6m, 2m}. 
· Hard-decision approach (ML-based timing estimation): We train a ML model at the UE-side to estimate the timing based on the channel energy response (CER) from a single TRP. The TDOA is signalled to the LMF. The LMF then uses RANSAC to estimate the position based on the TDOAs from all TRPs. 
· Soft-information approach (ML-based soft information reporting): The UE-side ML model learns a probability distribution of the timing based on the CER from a single TRP. The RSTD distribution is then reported to the LMF. At the LMF, the position is then estimated using a likelihood fusion approach that combines the distributions across TRPs.

[bookmark: _Ref118477681]Table 39 Evaluation results for the {60%, 6m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs, UE distribution area = 120x60 m
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of timing
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	1000 UEs x 18 TRPS
	1000 UEs x 18 TRPS)
	0.02M params
	0.21M FLOPs per TRP
3.7M FLOPs for 18 TRPs
	25.0

	Soft information
	CER (1,2, 256)
	Distribution of timing
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	16000 UEs x 18 TRPS
	2000 UEs x 18 TRPS
	2.1M params
	37.59M FLOPs per TRP

676.62M FLOPs for 18 TRPs
	4.7
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Figure 18 Comparison of ML-based soft information and hard-decision approaches in the {60%, 6m, 2m} clutter setting.

In Table 16, we report on the comparison for the InF-DH layout (FR1) with clutter parameters set to {40%, 4m, 2m}.
[bookmark: _Ref118477740]Table 40 Evaluation results for the {40%, 4m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs, UE distribution area = 120x60 m
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of timing
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	1000 UEs x 18 TRPs
	1000 UEs * 18 TRPs
	0.02M params
	0.21M FLOPs per TRP
3.7M FLOPs for 18 TRPs
	14.8

	Soft information
	CER (1, 2, 64)
	Distribution of timing
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	1000 UEs x 18 TRPs
	1000 UEs x 18 TRPs
	2.1M params
	37.59M FLOPs per TRP

676.62M FLOPs for 18 TRPs
	0.5



Observation 21: In AI/ML assisted positioning, evaluations show that the ML-based soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 4.7 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 

A2.3.2 Intermediate performance metric 
We consider the following intermediate performance metrics for AI/ML-assisted positioning:
· Soft-information approach: We consider the top-K error in timing as the intermediate metric, computed as follows. For each link between UE and TRP, the AI/ML model outputs multiple hypotheses for the timing along with their probabilities. We find the K most likely hypotheses of timing and report the lowest of the K timing errors.
· Hard decision approach: The error in the timing derived by the AI/ML model is reported as the intermediate metric.
Proposal 11: For AI/ML assisted positioning with soft information reporting, consider the 90th percentile of the top-K error in timing is reported as an intermediate KPI. FFS: the value of K to be reported.
A2.3.3 Comparison of single-TRP and multi-TRP approaches

For AI/ML-assisted positioning, the UE can train an AI/ML model in two approaches:
1. Single-TRP approach: Using as input the channel response from a single TRP, the AI/ML model outputs the timing associated with that TRP. The same model is used for all TRPs.
2. Multi-TRP approach: The AI/ML model uses as input the channel responses from all 18 TRPs, and outputs 18 timings jointly.
A multi-TRP approach is expected to perform better than a single-TRP approach when the training and test sets contain identical sets of TRP locations, however, the multi-TRP approach may require higher complexity. It would be preferable to instead do direct AI/ML positioning if we use channel responses from all TRPs as the direct AI/ML can achieve better performance (e.g., direct AI/ML positioning can achieve 2.24m vs. 2.92m for the multi-TRP approach - see Table 2). Given that multi-TRP provides enough information (triangulation, trilateration) to derive positioning directly, we can view the multi-TRP approach to be direct AI/ML positioning in disguise. If so, it would make more sense to directly derive positioning (i.e., direct AI/ML positioning) if we were to use multi-TRP observation as input to an AI/ML.


A2.3.4 Performance evaluation of ML-based soft information reporting

Figure 19 reports the CDF of the horizontal positioning error for the InF-DH layout (FR1) with clutter parameters set to {60%, 6m, 2m}. The channel model incorporates spatial consistency and absolute time-of-arrival modelling for NLOS links, as described in TR 38.901 [2]. We randomly drop 18K UEs and use 16K for training and the remaining 2K UEs for testing.
Observation 22: In AI/ML assisted positioning, evaluations show that ML-based soft information reporting method provides a significant improvement in positioning accuracy over the classical scheme. The 90th percentile of the horizontal positioning error reduces from >20 m for the classical scheme to 4.74 m. 
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[bookmark: _Ref118478283]Figure 19 CDF of horizontal positioning error for ML-based soft information reporting and classical schemes (InF-DH layout).
[image: Chart

Description automatically generated]
[bookmark: _Ref118478246]Figure 20 ML-based soft information reporting vs. classical scheme for Umi layout.
Figure 20 reports results for the outdoor Umi layout, where the 90th percentile of the horizontal positioning error reduces from 17 m. for the classical scheme to 7.9 m. for the ML-based scheme. The types of generalization problems in outdoor wide-area settings may be different from indoor scenarios. Use of a different ML model for each cell vs. a common model across cells can also affect performance.
Proposal 12: For AI/ML assisted positioning evaluation, consider outdoor wide-area scenario, e.g., Umi, as an additional baseline scenario for evaluation. 
A2.3.5 Generalization across homogeneous inter-site (Type 2) changes
Figure 21 compares performance between training and testing on the same drop and testing on a different set of drops. Each drop contains 2K UEs and corresponds to a different seed value for the random variables used to generate large scale parameters.
Observation 23: For AI/ML assisted positioning, evaluations show that the ML-based soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
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[bookmark: _Ref118478222]Figure 21 CDF of horizontal positioning error for ML-based soft information reporting across drops
A2.3.6 Generalization across clutter settings
Figure 22 compares performance between training and testing on the same clutter setting, and training on a mix of (60%, 6m, 2m) and (40%, 2m, 2m) clutter and testing on each of the two. 
Observation 24: In AI/ML assisted positioning, evaluations show that training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 4.74 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 
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Figure 22. CDF of horizontal positioning error for ML-based soft information reporting across clutter settings

A2.3.7 Robustness to time varying changes
Figure 23 reports on performance across time varying changes for a specific zone. We compare training and testing on the same subset of clusters (blue and cyan curves), with training on a different subset of clusters as compared to the test set (red and green curves).
Observation 25: In AI/ML assisted positioning, evaluations show that the ML-based soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
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Figure 23. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.

A2.4 Summary of direct and AI/ML assisted positioning evaluations
A summary of the performance of direct AI/ML (RFFP), AI/ML-assisted (ML-based soft information reporting) and classical (RANSAC) approaches is shown in Table 17, Table 18, and Table 19. Both AI/ML approaches provide significant gains over the classical scheme. RFFP is the most accurate positioning method in site-specific scenarios (Table 17 and Table 19), while soft-information fusion yields better generalization across inter-site changes (Table 18). 
[bookmark: _Ref118479639]Table 41 Horizontal positioning accuracies (m) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on the same drop
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	2.77             

	AI/ML-assisted (ML-based soft information reporting)
	4.74

	Classical (RANSAC)
	>20



[bookmark: _Ref118479641]Table 42 Generalization performance across homogeneous inter-site changes (i.e., Type 2 generalization) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on different drops
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	12.33

	AI/ML-assisted (ML-based soft information reporting)
	6.38

	Classical (RANSAC)
	>20



[bookmark: _Ref118479642]Table 43 Robustness of performance to zone-specific changes (i.e., Type 3-time varying changes)
	Setting
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	Train and test on odd clusters
	2.74

	
	Train on mixed clusters, test on odd clusters while removing up to two random odd clusters and adding up to two random even ones
	3.17

	AI/ML-assisted (ML-based soft information reporting)
	Train and test on odd clusters
	6.23

	
	Train on odd clusters, test on even clusters
	6.54




Observation 26: In AI/ML positioning, evaluations show that direct AI/ML approach may be better suited for scenarios where model switching is possible, or for scenarios where devices operate only within a given premises (e.g., AGVs in a factory), while AI/ML assisted approach may be better suited for scenarios where a common model is required for different scenarios.



Appendix A3: Modelling of Type3 changes – zone-specific time variations
To model Type 3 changes, we can generate training datasets  and testing dataset  with partially unseen reflections by slightly changing multipath realizations to mimic subtle changes in the environment (e.g., movement of reflecting objects, small environment variation over time, etc.). One simple approach to achieve this could be by addition or removal of a few paths from the generated channel (e.g., based on equations 7.6-43 and 7.44 in TR 38.901 [2]):  

	(7.6-43)
	.	(7.6-44)
Note that the first summation in (7.6-43) above goes over the set of clusters and consider their contribution to the generated channel coefficient. By running the sum over partially different cluster sets, we can model zone-specific changes in which mild to moderate changes in reflections and blockings happen in the given zone. Let  be set of  clusters between a UE and given TRP. For dataset , consider a set  for generating channel coefficients for the link between UE and TRP, and consider a set  for generating channel coefficients of dataset . There should be many common clusters between  and  so that the change between training and testing dataset represents changes due to subtle environment variations. The channel coefficient generation for training dataset  can follow these updated equations:
 (Training dataset ) 	
	.  (Training dataset )	

Note that the only difference we apply is running the first summation on clusters considered for dataset , i.e., , instead to consider all  clusters. Channel coefficient generation for testing dataset  can follow the same procedure as follows:

 (Testing dataset ) 	
	. (Testing dataset )	
The first order summations in above equations go over the set of clusters of testing set , i.e., . Sets  and  still have common clusters and are not completely different, mimicking zone-specific changes in which mild to moderate changes in reflections and blockings happen in the given zone.
Proposal 13: In AI/ML positioning evaluation, to investigate the model robustness capability to time varying changes, the following aspect is also considered for the evaluation of AI/ML based positioning:
· Time variation in multipath 
· Training dataset from datasets {A0, A1, …, AN-1}, test dataset  from partially unseen reflections and blockings (i.e., partially different reflections and blockings than any in {A0, A1, …, AN-1} due to movement of reflecting objects, small environment variation over time, etc.). Here N>=1. FFS: modelling of {A0, A1, …, AN-1} and   based on TR 38.901.

Proposal 14: In AI/ML positioning evaluation, to model changes for investigating AI/ML positioning model robustness to time variations at a given link between UE and TRP,  one option is to consider a set  for generating channel coefficients for training dataset , and consider a set  for generating channel coefficients of dataset , where  is set of  clusters between the UE and TRP. Then, the channel coefficient generation for training dataset  can follow these updated equations:
 (training dataset  - NLOS) 	
	.  (training dataset  - LOS)		
and channel coefficient generation for testing dataset  can follow these updated equations:
 (Testing dataset ) 	
	. (Testing dataset )	
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Performance and reporting overhead for existing and new potential measurements 
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