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Introduction
In the RAN1 #109-e meeting to RAN1 #113 meeting, based on insightful discussions, many agreements were made on the evaluation methodology and KPIs for AI/ML for beam management [1], [2], [3], [4], [5], [6], [7]. We hereby recollect the agreements/working assumptions/conclusions made in the last RAN1 meeting, i.e., RAN1 #113. 
Agreements/conclusions made in RAN1#113 are as follows [7]:
	Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· Companies report the specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Agreement
· The performance impact of the relative L1-RSRP measurement error can be optionally evaluated for both DL Tx beam and beam pair prediction, where the relative L1-RSRP measurement error can be modelled as noise among beams as a starting point
·  Additive Gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise for the error due to baseband and/or RF impairment.
· Other modelling methods are not precluded and can be reported by companies.   
· Companies’ report includes how to model the measurement error and the measurement accuracy range in training and test data and labels.
· Companies’ report includes the baseline performance with the relative L1-RSRP measurement error. 




[bookmark: _Hlk100228640]In this document, we further discuss our views on some of the open aspects of AI/ML for beam management and present our evaluation results. 
1. [bookmark: _Toc100923943]Generalizability of the AI/ML Model for Beam Management
Starting from RAN1 #112-e meeting, observations are being drawn from the simulation results submitted by different companies. With regard to the generalizability of an AI/ML model, the observations capture the how each KPI (e.g., beam prediction accuracy, overhead reduction) changes when the model is operated under different network conditions/scenarios/parameter values. While these detailed observations paint a detailed picture about the generalizability of an AI/ML model, it would be useful if we can also draw some high-level observations, or, equivalently, make an observation on whether AI/ML model can be considered useful or not with regard to the generalizability aspect. For example, It might be useful to say whether the generalizability falls under the category of “Low” or “Moderate” or “High”, or “Acceptable”. 
For categorizing the generalizability qualitatively into Low/Moderate/High/Acceptable, we need to agree on quantification of different levels of generalizability. Once we evaluate and tabulate all the KPIs of an AI/ML model under each of the different network conditions/scenarios/parameter values, the question would be, how can we say whether the AI/ML model falls under a particular category of generalizability? 
For illustrative purposes, consider an AI/ML model and assume we evaluate its performance in two network scenarios (or, network settings, network conditions) A and B, for knowing whether it is generalizable or not. Assume that, for A and B, its gains are  (compared to the agreed baseline), respectively, for a particular KPI. Note that, here, we consider only two scenarios and only one kind of gain (e.g., beam prediction accuracy) as an example for the purpose of illustration. In practice, we will have to consider multiple scenarios, all kinds of gains and all incurred costs.     
In the ideal case of a truly generalizable, or a universal, AI/ML model, . However, in practice,  and  would be different. We propose that, such a decision should be based on . 
The generalization ability of an AI/ML model can be considered as Low or Moderate or High or Acceptable by appropriately selecting three threshold values for the gain where  and by employing the following decision rule:
· If   and , the generalization ability of the model is Low
· If    and , the generalization ability of the model is Moderate
· If   the generalization ability of the model is High
It is more important to say whether AI/ML generalization ability is acceptable or not for the beam management use case. This can be determined by fixing a value, denoted by , such that, 
If   the generalization ability of the model is considered Acceptable. 
The above stated approaches can be extended for a more realistic situation where we have a greater number of gains and costs which are computed by evaluating the AI/ML model across many network scenarios/settings (rather than in just two scenarios as in the previous example).   
Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study.   
 
Evaluation Results
In this section, evaluation is performed for Tx-RX beam pair prediction and DL Tx beam prediction, respectively, based on AI/ML model which outputs predicted beam pairs and corresponding predicted RSRPs simultaneously.
Simulation results summary
[bookmark: _Hlk127534340]We provide tables to collect our evaluation conditions and results for AI on beam management as listed Table 1 and Table 2. The evaluation in this paper focuses on BM-Case1, i.e., AI/ML for spatial beam prediction. The detailed simulation assumptions and extensive performance results can be found in section 2.2 and section 2.3. 
[bookmark: _Ref126746802]Table 1 Evaluation results without model generalization for Tx-Rx beam pair prediction
	Parameters
	Lenovo (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	128

	
	Number of beam pairs in Set B
	32
	16
	8

	
	Baseline scheme
	Option 1

	AI/ML model
input/output
	Model input
	L1-RSRPs of all beam pairs in Set B

	
	Model output
	[bookmark: OLE_LINK4]RSRPs of top-K beam pairs and the corresponding Tx-Rx beam IDs in Set A

	Data Size
	Training
	20,000 samples
	20,000 samples
	20,000 samples

	
	Testing
	10,000 samples
	10,000 samples
	10,000 samples

	AI/ML model
	Short model description
	5-layer DNN {32,128,256,256,128}
	5-layer DNN {16,128,256,256,128}
	5-layer DNN {32,128,256,256,128}

	
	Model complexity
	~14k parameters
	~14k parameters
	~14k parameters

	
	Computational complexity
	~14k MACs
	~14k MACs
	~14k MACs

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top1/1
	81.90%
	51.81%
	36.86%

	
	
	Top3/1
	96.76%
	74.95%
	59.52%

	
	
	Top5/1
	98.71%
	82.62%
	71.38%

	
	
	1dB margin
	93.76%
	64.90%
	47.24%

	
	
	2dB margin
	97.71%
	74.24%
	56.14%

	
	L1-RSRP
	Average L1-RSRP diff.  (dB)
	0.18
	1.39
	3.23

	
	
	Average predicted L1-RSRP diff. (dB)
	0.83
	1.94
	2.60

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	[bookmark: OLE_LINK1]RS overhead Reduction KPI:
1-N/M=1-32/128=75%
	[bookmark: OLE_LINK2]RS overhead Reduction KPI:
1-N/M=1-16 /128=87.5%
	RS overhead Reduction KPI:
1-N/M=1-8 /128=93.75%


[bookmark: _Ref134635589][bookmark: _Ref126839050][bookmark: _Ref127533418]Table 2 Evaluation results without model generalization for DL Tx beam prediction
	Parameters
	Lenovo (BM-Case1)

	DL Tx beam assumptions
	Number of beam pairs in Set A
	32

	
	Number of beam pairs in Set B
	8
	6
	4

	
	Baseline scheme
	Option 1

	AI/ML model
input/output
	Model input
	L1-RSRPs of all Tx beam in Set B

	
	Model output
	RSRPs of top-K beam pairs and the corresponding Tx-Rx beam IDs in Set A

	Data Size
	Training
	20,000 samples
	20,000 samples
	20,000 samples

	
	Testing
	10,000 samples
	10,000 samples
	10,000 samples

	AI/ML model
	Short model description
	5-layer DNN {8,128,256,256,128}
	5-layer DNN {6,128,256,256,128}
	5-layer DNN {4,128,256,256,128}

	
	Model complexity
	~14k parameters
	~14k parameters
	~14k parameters

	
	Computational complexity
	~14k MACs
	~14k MACs
	~14k MACs

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy
	Top1/1
	85.62%
	79.67%
	71.14%

	
	
	Top3/1
	98.38%
	94.48%
	91.57%

	
	
	Top5/1
	99.29%
	97.38%
	95.76%

	
	
	1dB margin
	95.33%
	87.90%
	79.90%

	
	
	2dB margin
	97.57%
	92.05%
	85.71%

	
	L1-RSRP
	Average L1-RSRP diff.
	0.15
	0.45
	0.84

	
	
	Average predicted L1-RSRP diff. (dB)
	0.79
	1.48
	1.78

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	RS overhead Reduction KPI:
1-N/M=1-8/32=75%
	RS overhead Reduction KPI:
1-N/M=1-6/32=81.25%
	RS overhead Reduction KPI:
1-N/M=1-4/32=87.5%


[bookmark: _Ref134556914]Simulation Assumptions 
In the section, we further describe simulation assumptions for spatial beam prediction evaluation.
Set B selection 
In our simulations, Set B is a subset of Set A with all beam pairs/ DL Tx beams of a BS-UE link, which can be obtained through various patterns, such as random Set B pattern and designed Set B pattern:
· Random Set B pattern: Set B with a random pattern is generated through selecting beams randomly from Set A. 
· Designed Set B pattern: Set B with a designed pattern is generated based on a special pattern which is different for different size of Set B. 
No matter which type of Set B pattern is used, it is fixed across training and inference in our simulations.
AI model structure
In the evaluation of AI for spatial beam prediction, we adopt Deep Neural Network (DNN) model with 5 layers, i.e., {32, 128, 256, 256, 128} for Tx-Rx beam pair prediction and {8,128,256,256,32} for DL Tx beam prediction, and use L1-RSRP measurements of beams in Set B as the input to the DNN model, with RSRPs of all beams in Set A as the output. Based on the predicted RSRPs of all beams in Set A, the predicted beam IDs were obtained by simple post-processing, i.e., the beam indices with K highest RSRPs are selected as the Top-K beam pairs. 
Non-AI based BM approaches to be compared with AI-based spatial beam prediction
To better illustrate the performance of AI-based spatial beam prediction, we consider two typical non-AI based beam management approaches as below:
· Baseline (exhaustive beam sweeping): Select the best Tx-Rx beam pair/DL Tx beam within Set A based on exhaustive beam search. Obviously, this is the upper bound of spatial beam prediction performance. 
· Non-AI BM: A UE randomly select a Rx beam for P2 and with the chosen UE Rx beam, best Tx beam is selected based on measurements of all Tx beams. In P3, the gNB repeats the UE reported best Tx beam and UE sweeps all the RX beams to find the best RX beam. The selected Tx-Rx beam pair consists of the best Tx beam on P2 and the best Rx beam in P3. This is for comparison with Tx-Rx beam pair prediction.
Note that the RS resource overheads for above BM schemes are different: given Rx beams and  Tx beams, Baseline (exhaustive beam sweeping) scheme has largest RS resource overhead, i.e., , and achieves the upper bound of performance. Non-AI BM requires  RS resources to find the best Rx beam during P3 BM procedure, and it needs RS resources to find the best Tx beam during P2 BM procedure, making the resource overhead for BM using Non-AI BM equal to . 
System level simulation assumptions for data generation and performance evaluation
In our simulations, we consider Dense Urban scenario for data generation and performance evaluation. The detailed system level simulation assumptions are summarized in Table 3. 1000 UEs are dropped in each sector per site to generate beam measurement data for AI model training, while 10 UEs per sector are used for AI model inference evaluation. gNB Tx beam codebook consists of 8 horizontal beams and 4 vertical beams, and UE Rx beam codebook consists of 4 horizontal beams and 1 vertical beam. 
[bookmark: _Ref126769348]Table 3 System level simulation assumption for data generation and performance evaluation
	Parameters
	Values

	Frequency range
	FR2 @ 30 GHz, SCS: 120 kHz

	Deployment scenario 
	Dense Urban. 
200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	System BW
	80MHz

	BS Tx power
	40dBm

	UE distribution
	10 UEs per sector/cell for model inference evaluation.
1000 UEs per sector/cell for model training.
80% indoor UE and 20% outdoor UE.

	BS antenna configuration
	(M, N, P, Mg, Ng ; Mp Np) = (4, 8, 2, 1, 1; 2,2), (dV, dH) = (0.5, 0.5) λ 

	UE antenna configuration
	(M, N, P, Mg, Ng ;Mp Np)= (2,4,2,1,2; 1,1)

	Traffic model
	Full buffer

	[bookmark: _Hlk133173913]BF scheme 
	· gNB 32 Tx beamforming scheme: 
· [bookmark: _Hlk133172904]8 DFT beams in azimuth and 4 DFT beams in elevation  
· UE 4 Rx beamforming scheme: 
· 4 DFT beams in azimuth and 1 DFT beams in elevation


KPIs  
The KPIs related to spatial beam pair/beam prediction performance used in this document includes:
Beam prediction accuracy:
· Top-1 (%): the percentage of “the Top-1 genie-aided beam pair/beam is Top-1 predicted beam pair/beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam pair/beam is one of the Top-K predicted beams pair/beam”
· X dB margin (%): the percentage of “L1-RSRP difference of top-1 predicted beam pair/beam and top-1 genie-aided beam pair/beam is less than X dB”
L1-RSRP diff.: the difference between the actual L1-RSRP of Top-1 predicted beam pair/beam and the actual L1-RSRP of the Top-1 genie-aided beam pair/beam.
Predicted L1-RSRP diff.: the difference between the predicted L1-RSRP of Top-1 predicted beam pair/beam and the actual L1-RSRP of the same beam pair/beam.
System performance KPIs: 
· RS overhead: the number of beam pairs/beams (with reference signal (SSB and/or CSI-RS)) required for measurement.
· RS overhead reduction (%) = 1-N/M; RS overhead = N
· where N is the number of beam pairs/beams (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beam pairs/beams to be predicted. 
[bookmark: _Ref126839056]Detailed performance results
In this section, we show performance results in detail with different conditions for spatial beam prediction. 
[bookmark: _Ref142313833]Tx-Rx beam pair prediction
Performance of beam prediction accuracy and L1-RSRP
In our simulations, we have evaluated beam prediction accuracy performance and L1-RSRP performance of AI-based BM approach for BM-Case1. 
Set B pattern design has impact on performance of AI-based beam prediction. Performance with different Set B selection has been investigated. Firstly, we consider Tx-Rx beam pair prediction with random Set B pattern and designed Set B pattern which are described in Section 5.2. Two random Set B pattens and two designed Set B patterns for 32 beam pairs of Set B are shown in Figure 1 and Figure 2, respectively.

Figure 1 Random Set B pattern with different size of Set B for Tx-Rx beam pair prediction

[bookmark: _Ref134556496]Figure 2 Designed Set B pattern with different size of Set B for Tx-Rx beam pair prediction
Table 4 and Table 5 show that performance of beam prediction accuracy and L1-RSRP for AI-based BM with different Set B pattern selection method. 
In detail, with designed Set B pattern, up to 81.90% and 98.71% beam prediction accuracy can be obtained by AI model considering KPI of top1/1 beam predication accuracy and top5/1 beam prediction accuracy respectively. Up to 93.76% and 97.71% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. AI model with designed Set B pattern can achieve average/5%ile/95%ile L1-RSRP difference of 0.18dB/0dB/1.24dB, which means that the actual L1-RSRP of predicted beam pair is very close to actual L1-RSRP of ideal beam pair. From the perspective of L1-RSRP, the performance gap of predicted beam pair and ideal beam pair is marginal. Average/5%ile/95%ile predicted L1-RSRP difference of 0.83dB/0.06dB/2.36dB can be obtained by AI model with designed Set B pattern, which reveals that the L1-RSRP predicted by AI model is very closed to actual L1-RSRP.
The results of Table 4 and Table 5 show that AI-based BM with different Set B pattern have different performance that the designed Set B pattern achieves better performance than random Set B pattern, i.e.,  ~10% gap on top1/1 beam prediction accuracy and ~0.4dB gap on average L1-RSRP difference compared to random Set B pattern. 
[bookmark: _Ref126769364]Table 4 Beam prediction accuracy for AI-based BM with different Set B pattern
	[bookmark: _Hlk134611893] Set B pattern with 32 of size
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	[bookmark: OLE_LINK3]Random pattern 1
	65.67%
	88.00%
	94.10%
	78.38%
	85.33%

	Random pattern 2
	71.86%
	92.52%
	96.10%
	84.14%
	90.90%

	Designed pattern 1
	80.05%
	96.67%
	98.33%
	91.62%
	95.95%

	Designed pattern 2
	81.90%
	96.76%
	98.71%
	93.76%
	97.71%


[bookmark: _Ref131512966][bookmark: _Ref126769368]Table 5 L1-RSRP performance for AI-based BM with different Set B pattern
	[bookmark: _Hlk134611925]Set B pattern with 32 of size
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Random1
	0.69
	0
	3.72
	1.25
	0.10
	2.82

	Random2
	0.51
	0
	2.95
	1.31
	0.09
	3.71

	Designed1
	0.26
	0
	1.73
	0.86
	0.06
	2.70

	Designed2
	0.18
	0
	1.24
	0.83
	0.06
	2.36


[bookmark: _Ref131512995]Then, the performance of Tx-Rx beam pair prediction with different size of Set B has been investigated. The designed Set B patterns with 8/16 beam pairs of Set B are shown in Figure 2.

[bookmark: _Ref134611547]Figure 3 The designed Set B patterns with 8/16 beam pairs of Set B for Tx-Rx beam pair prediction
Table 6 and Table 7 show that performance of beam prediction accuracy and L1-RSRP for AI-based BM with different size of Set B. Based on the results of Table 6 and Table 7, it can be observed that beam prediction accuracy and L1-RSRP difference from AI-based BM for spatial beam prediction increases as the size of Set B, i.e., size of AI model input, increases.
[bookmark: _Ref131514699]Table 6 Beam prediction accuracy for AI-based BM with different size of Set B
	Size of Set B with designed pattern
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	8
	36.86%
	59.52%
	71.38%
	47.24%
	56.14%

	16
	51.81%
	74.95%
	82.62%
	64.90%
	74.24%

	32
	81.90%
	96.76%
	98.71%
	93.76%
	97.71%


[bookmark: _Ref131512997][bookmark: _Ref134556531]Table 7 L1-RSRP performance for AI-based BM with different size of Set B
	Size of Set B with un- designed pattern
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	8
	3.23
	0
	12.20
	2.60
	0.15
	9.17

	16
	1.39
	0
	6.42
	1.94
	0.13
	5.14

	32
	0.18
	0
	1.24
	0.83
	0.06
	2.36


Observation 1 [bookmark: _Ref134627476][bookmark: _Hlk131690298][bookmark: _Ref134627499]The beam prediction accuracy performance of AI-based BM is strongly related with the Set B pattern selection.
Observation 2 With designed Set B pattern, up to 98.71% beam prediction accuracy can be obtained by AI model considering KPI of top5/1 beam prediction accuracy. 
Observation 3 With designed Set B pattern, up to 93.76% and 97.71% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. 
Observation 4 Actual L1-RSRP of top-1 predicted beam pair from AI-based spatial beam prediction is very close to actual L1-RSRP of ideal beam pair with average/5%ile/95%ile difference of 0.18dB/0dB/1.24dB.
Observation 5 Predicted L1-RSRP of top-1 predicted beam pair from AI-based BM is very close to actual L1-RSRP of the top-1 predicted beam pair with average/5%ile/95%ile difference of 0.83dB/0.06dB/2.36dB.
[bookmark: _Hlk127459800]In addition, Figure 3 shows the CDFs of L1-RSRP of predicted beam using different BM approaches, which shows that the L1-RSRP performance of predicted beam with AI-based BM is better than that of non-AI based BM, and is very close to that of the baseline, i.e., upper bound of performance. The gap between the predicted L1-RSRP corresponding to prediected beam from AI model and the actual L1-RSRP of the same beam is negligible. 
[image: ]
[bookmark: _Ref134638347]Figure 4 Performance of L1-RSRP of predicted beam using different BM
L1-RSRP quantization 
According to the agreement realized in RAN1#112 meeting, it is deemed to be a consideration that performance impact of quantization error of inputted L1-RSRP (for training and inference) for AI/ML model in beam management. We have evaluated the performance of AI/ML model for spatial beam management with L1-RSRP quantization method in the current spec., i.e., 1dB quantization step for best beam and 2dB for the difference to the best beam. With this L1-RSRP quantization, we have also studied the performance impact of beam reporting method, i.e., legacy refers to4 reported beams in a beam reporting and one-shot means all reported beams in a beam reporting. The L1-RSRP quantization method and the beam reporting is applied during both model training phase and model inference phase.
Table 8 and Table 9 show that the performance of beam prediction accuracy and L1-RSRP, respectively, for AI-based spatial beam management. From the results of Table 8 and Table 9, we can observe that quantization method for L1-RSRP in the current spec leads to minor performance loss in beam prediction accuracy and L1-RSRP difference compared to case of unquantized L1-RSRP. 
With quantization method for L1-RSRP in the current spec, we evaluated the performance with different beam reporting method, i.e., legacy beam reporting method and one-shot beam reporting method. In detail, adopting legacy beam reporting method, beam prediction accuracy and L1-RSRP performance with L1-RSRP quantization is close to that without L1-RSRP quantization, i.e., less than 3.52% loss of beam prediction accuracy, 0.02dB loss of average L1-RSRP diff. and 0.34dB loss of average predicted L1-RSRP diff.
Meanwhile, adopting one-shot beam reporting method, the performance will be reduced slightly compared to legacy beam reporting method. As the evaluation results show, compared to legacy beam reporting method, one-shot beam reporting method leads to 1.38% loss of top1/1 beam prediction accuracy and 0.03dB loss of average L1-RSRP diff. and 0.37dB loss of average predicted L1-RSRP diff. 
[bookmark: _Ref131516129]Table 8 Beam prediction accuracy with L1-RSRP quantization error for AI-based spatial beam management
	Quantization
	Beam reporting method
	Beam prediction accuracy

	
	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	No
	NA
	80.05%
	96.67%
	98.33%
	91.62%
	95.95%

	Yes
	Legacy
	77.57%
	96.57%
	98.28%
	90.48%
	95.48%

	
	One-shot
	76.95%
	95.81%
	97.86%
	88.57%
	94.71%


[bookmark: _Ref131516134][bookmark: _Ref134556613]Table 9 L1-RSRP performance with L1-RSRP quantization error for AI-based spatial beam management
	Quantization
	Beam reporting method
	L1-RSRP diff. (dB)
	Predicted L1-RSRP diff. (dB)

	
	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	No
	NA
	0.26
	0
	1.73
	0.86
	0.06
	2.70

	Yes
	Legacy
	0.28
	0
	1.86
	1.20
	0.10
	3.01

	
	One-shot
	0.31
	0
	2.06
	1.63
	0.14
	3.92


Observation 6 Quantization method for L1-RSRP in the current spec leads to minor performance loss in beam prediction accuracy and L1-RSRP difference compared to case of unquantified L1-RSRP.
Observation 7 With quantization method for L1-RSRP in the current spec, one-shot beam reporting method leads to slight performance loss in beam prediction accuracy and L1-RSRP difference compared to legacy beam reporting method.
Measurement error on L1-RSRP
Measurement error on L1-RSRP is modeled through an additional Gaussian error with 95% of the density function within the measurement accuracy range that is assumed as ±3dB and ±6dB in our simulation. In detail, the measurement error is generated through truncated Gaussian distribution where mean is 0dB and standard error is calculated by

We have evaluated the performance of AI-based BM with L1-RSRP measurement error and compared it with non-AI based beam management with L1-RSRP measurement error. The non-AI based beam management is option 1 baseline agreed in previous meetings, i.e., selecting the “best” beam based on the measurement of beams of Set A. The evaluation results are shown in Table 10.
[bookmark: _Ref142382364]Table 10 Beam prediction accuracy for AI-based BM with L1-RSRP measurement error
	Scheme
	measurement accuracy range
	Beam prediction accuracy

	
	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Non-AI- based 
	±3dB
	67.48%
	94.19%
	97.71%
	82.24%
	93.52%

	
	±6dB
	45.62%
	78.57%
	89.38%
	58.38%
	72.38%

	AI-based
	0dB(No error)
	80.05%
	96.67%
	98.33%
	91.62%
	95.95%

	
	±3dB
	70.19%
	94.76%
	97.71%
	82.62%
	90.90%

	
	±6dB
	55.52%
	85.29%
	93.48%
	66.71%
	76.52%



It can be expected that with L1-RSRP measurement error, the beam prediction accuracy of AI-based BM is degraded compared to that of AI-based BM without L1-RSRP measurement error, and the degradation increases with the increase of the measurement accuracy range of L1-RSRP, i.e., ~10% degradation of the top1/1 beam prediction accuracy with ±3dB of measurement accuracy range, ~25% degradation of the top1/1 beam prediction accuracy with ±6dB of measurement accuracy range. But with same L1-RSRP measurement error, the beam prediction performance of AI-based BM is still better than that of non-AI based BM.
Observation 8 With L1-RSRP measurement error, the beam prediction accuracy of AI-based BM is degraded compared to that of AI-based BM without L1-RSRP measurement error. But with same L1-RSRP measurement error, the beam prediction performance of AI-based BM is still better than that of non-AI based BM.
Generalization performance 
According to the agreement made in the past RAN1 meeting, we’ve evaluated the spatial beam prediction performance of our AI model with different scenarios/configurations. In our simulations, 4 different scenario/configurations have been considered to evaluate the generalization performance of AI-enabled beam prediction, as follows:
· Scenario/configuration 1: Under UMa deployment scenario with ISD of 200m, the AI model is trained with Set B of 32 beam pairs, i.e., 8Tx  4Rx, and Set A of 128 beam pairs, i.e., 32Tx  4Rx.
· Scenario/configuration 2: Compared to the Case1, this case only changes the ISD from 200m to 500m while keeping other configurations the same.
· Scenario/configuration 3: Compared to the Case1, this case only changes the deployment scenario from UMa to UMi.
· Scenario/configuration 4: Different from the assumptions used for data collection, in this case, Set B has 16 beam pairs, i.e., 4Tx  4Rx, and Set A has 64 beam pairs, i.e., 16Tx  4Rx. In this case, a simple pre-processing and post-processing are applied to handle the input size and output size of AI model. For pre-processing, the input of AI model are expended through duplicating beam pair measurements of Set B, e.g., {RSRP1, RSRP1, RSRP2, RSRP2,…,RSRP16, RSRP16}. For post-processing, the predicted RSRPs of 128 beam pairs of AI model are mapped into RSRPs of 64 beam pairs. The predicted beam pairs can be obtained based on the RSRPs of 64 beam pairs.
We train an AI model for spatial beam prediction in Scenario/configuration 1. Then, we evaluate beam predication performance of the AI model in Scenario/configuration 1/2/3/4, which are called Inference case1/2/3/4, respectively.
[bookmark: _Ref126760920]Table 11 Generalization performance of beam prediction accuracy for AI-aided spatial beam prediction_1
	[bookmark: _Hlk133162931]Inference case
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Inference case1
	80.05%
	96.67%
	98.33%
	91.62%
	95.95%

	Inference case2
	78.14%
	96.00%
	98.10%
	89.86%
	95.43%

	Inference case3
	69.00%
	89.24%
	93.33%
	79.52%
	86.38%

	[bookmark: _Hlk126762615]Inference case4
	60.81%
	77.57%
	85.29%
	68.29%
	73.10%


[bookmark: _Ref142382426][bookmark: _Ref131518589]Table 12 Generalization performance of L1-RSRP for AI-aided spatial beam prediction_1
	[bookmark: _Hlk133163074]Inference case
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Inference case1
	0.26
	0
	1.73
	0.86
	0.06
	2.70

	Inference case2
	0.29
	0
	1.91
	1.04
	0.07
	3.14

	Inference case3
	0.81
	0
	4.45
	1.87
	0.08
	7.03

	Inference case4
	2.33
	0
	 11.76
	6.53
	0.57
	18.78


Table 11 and Table 12 show the generalization performance of AI model for spatial beam prediction. When only changing the ISD to 500m (inference case2), the AI model achieves up to 98.10% of Top5/1 beam prediction accuracy, 0.29dB/0dB/1.91dB of average/5%ile/95%ile L1-RSRP difference and 1.04dB/0.07dB/3.14dB of average/5%ile/95%ile predicted L1-RSRP difference. When only changing the scenario to UMi (inference case3), the AI model achieves up to 93.33% of Top5/1 beam prediction accuracy, 0.81dB/0dB/4.45dB of average/5%ile/95%ile L1-RSRP difference and 1.87dB/0.08dB/7.03dB of average/5%ile/95%ile predicted L1-RSRP difference. When changing sizes of Set A and Set B for testing (inference case4), beam prediction accuracy and L1-RSRP are degraded, i.e., top5/1 beam prediction accuracy from 98.33% to 85.29%, average/5%ile/95%ile L1-RSRP difference from 0.26dB/0dB/1.73dB to 2.33dB/0dB/11.76dB, and average/5%ile/95%ile predicted L1-RSRP difference from 0.86dB/0.06dB/2.70dB to 6.53dB/0.57dB/18.78dB. 
Observation 9 A same AI model for spatial beam prediction can achieve good performance in different ISDs, e.g., training with ISD1 and testing with ISD2 with the agreed simulation assumptions.
Observation 10 The beam prediction accuracy and average L1-RSRP difference are degraded when the size of Set A and Set B or deployment scenario during testing is different from that for the training.

Further, we train AI models for spatial beam prediction in Scenario/configuration 1/2/3/4 which are called Training cases, respectively, then evaluate beam prediction performance of these AI models in Scenario/configuration 1. 

[bookmark: _Ref142325280]Table 13 Generalization performance of beam prediction accuracy for AI-aided spatial beam prediction_2
	Training case
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Training case 1
	80.05%
	96.67%
	98.33%
	91.62%
	95.95%

	Training case 2
	73.76%
	93.10%
	96.33%
	86.33%
	92.24%

	Training case 3
	71.52%
	94.10%
	97.62%
	84.67%
	92.10%

	Training case 4
	51.48%
	90.38%
	96.05%
	79.38%
	94.62%


[bookmark: _Ref142325281]Table 14 Generalization performance of L1-RSRP for AI-aided spatial beam prediction_2
	Inference case
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Training case 1
	0.26
	0
	1.73
	0.86
	0.06
	2.70

	Training case 2
	0.41
	0
	2.73
	1.36
	0.14
	3.34

	Training case 3
	0.44
	0
	2.71
	1.26
	0.07
	3.77

	Training case 4
	0.51
	0
	2.07
	1.03
	0.06
	2.92


Table 13 and Table 14 show the generalization performance of AI model for spatial beam prediction when AI models trained in different scenario/configurations are tested in a same scenario/configuration. When only changing the ISD to 500m (training case2), the AI model achieves up to 96.10% of Top5/1 beam prediction accuracy, 0.41dB/0dB/2.73dB of average/5%ile/95%ile L1-RSRP difference and 1.36dB/0.14dB/3.34dB of average/5%ile/95%ile predicted L1-RSRP difference. When only changing the scenario to UMi (training case3), the AI model achieves up to 97.62% of Top5/1 beam prediction accuracy, 0.44dB/0dB/2.71dB of average/5%ile/95%ile L1-RSRP difference and 1.26dB/0.07dB/3.77dB of average/5%ile/95%ile predicted L1-RSRP difference. When changing sizes of Set A and Set B for testing (training case4), beam prediction accuracy and L1-RSRP are degraded, i.e., top1/1 beam prediction accuracy from 80.05% to 51.48%. 

Tx beam prediction 
In this part, we have investigated the Tx beam prediction performance in beam prediction accuracy and L1-RSRP difference for BM-case1. Set A consists of 32 Tx beams at gNB.
Set B selection 
Designed pattern is adopted to generate beams of Set B for Tx beam prediction. For different size of Set B, the Set B patterns are shown in Figure 4:

[bookmark: _Ref134556676]Figure 5 Set B patterns with different size of Set B for Tx beam prediction
Note that it is assumed for this part that best Rx beam with exhaustive beam sweeping for each Tx beam within Set B.
Fixed set B pattern for Tx beam prediction
Table 15 and Table 16 show the performance of AI-based Tx beam prediction with different size of Set B in beam prediction accuracy and L1-RSRP difference. The Set B pattern is fixed among model training and model inference.  
[bookmark: _Ref134556692]Table 15 Beam prediction accuracy for AI-based Tx beam prediction with different size of Set B
	Size of Set B with designed pattern
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	4
	71.14%
	91.57%
	95.76%
	79.90%
	85.71%

	6
	79.67%
	94.48%
	97.38%
	87.90%
	92.05%

	8
	85.62%
	98.38%
	99.29%
	95.33%
	97.57%


[bookmark: _Ref134556698]Table 16 L1-RSRP difference for AI-based Tx beam prediction with different size of Set B
	Size of Set B with un- designed pattern
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	4
	0.84
	0
	5.25
	1.78
	0.09
	5.81

	6
	0.45
	0
	3.01
	1.48
	0.08
	4.57

	8
	0.15
	0
	0.88
	0.79
	0.04
	2.16


From the results above, for Tx beam prediction, we observed that with larger size of Set B comes better beam prediction performance, i.e., with 8 beam within Set B(1/4 of Set A), AI/ML model achieves 85.62% top1/1 beam prediction accuracy, 95.33% and 97.57% beam prediction accuracy with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference, average/5%ile/95%ile L1-RSRP difference of 0.15dB/0dB/0.88dB, and average/5%ile/95%ile predicted L1-RSRP difference of 0.79dB/0.04dB/2.16dB.
Observation 11 For Tx beam prediction, with 8 beam within Set B(1/4 of Set A), AI/ML model achieves 85.62% top1/1 beam prediction accuracy, 95.33% and 97.57% beam prediction accuracy with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference, average/5%ile/95%ile L1-RSRP difference of 0.15dB/0dB/0.88dB, and average/5%ile/95%ile predicted L1-RSRP difference of 0.79dB/0.04dB/2.16dB.
Opt2D Set B selection for Tx beam prediction
During RAN1#112 meeting, an option (opt2D) on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) was agreed for beam prediction performance study, as follows:
· Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g., Top-K beams(pairs) of Set C.
Assuming that Set C consists of 8 Tx beams generated from Set A, we evaluated the performance in beam prediction accuracy and L1-RSRP difference when Set B is top-K beams of Set C. Table 17 and Table 18 show performance in beam prediction accuracy and L1-RSRP difference for AI-based beam prediction with opt2D Set B selection, where different values of K are studied. We have compared the performance of using top-K beams within Set C with that of using all K measured beams(i.e., only K beams are measured and inputted to AI model). The results show that with same UE reporting overhead, using top-K beams within Set C can obtain better performance in beam prediction accuracy and L1-RSRP difference compared to using all K measured beams.  Also, comparing the performance of using top-K beams within Set C with that of using all beams within Set C, we can observe  ~6% performance loss in top1/1 beam prediction accuracy and less than 0.22dB performance loss in average L1-RSRP difference. The performance loss can be further reduced through predicting more beams.
[bookmark: _Ref134556722]Table 17 Beam prediction accuracy for AI-based beam prediction with opt2D Set B selection
	Set B selection
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	All 4 measured beams
	71.14%
	91.57%
	95.76%
	79.90%
	85.71%

	All 6 measured beams
	79.67%
	94.48%
	97.38%
	87.90%
	92.05%

	All 8 measured beams
	85.62%
	98.38%
	99.29%
	95.33%
	97.57%

	Top4 beams within Set C
	78.95%
	95.29%
	97.48%
	88.57%
	93.24%

	Top6 beams within Set C
	79.48%
	96.05%
	98.71%
	89.90%
	94.52%


[bookmark: _Ref134556727]Table 18 L1-RSRP performance for AI-based BM with opt2D Set B selection
	Set B selection
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	All 4 measured beams
	0.84
	0
	5.25
	1.78
	0.09
	5.81

	All 6 measured beams
	0.45
	0
	3.01
	1.48
	0.08
	4.57

	All 8 measured beams
	0.15
	0
	0.88
	0.79
	0.04
	2.16

	Top4 beams within Set C
	0.37
	0
	2.52
	1.05
	0.07
	3.34

	Top6 beams within Set C
	0.28
	0
	2.07
	1.22
	0.11
	3.21


Observation 12 With same UE reporting overhead, using top-K beams within Set C can obtain better performance in beam prediction accuracy and L1-RSRP difference compared to using all K measured beams.
Observation 13 ~6% performance loss in top1/1 beam prediction accuracy and less than 0.22dB performance loss in average L1-RSRP diff. are caused by using top-K beams within Set C with less UE reporting overhead compared to using all beams within Set C, where performance loss can be further reduced through predicting more beams.
To study opt2D on the selection of Set B of beams to improve beam prediction performance or to reduce UE reporting overhead at least for DL Tx beam prediction.
Rx beam selection  
Unlike beam pair prediction, performance of Tx beam prediction has strong connection with Rx beam selection associated with Tx beam in model input. In the part, 8 Tx beams within Set B are inputted to predict 32 Tx beam within Set A. Performance of Tx beam prediction with 4 methods of Rx beam selection was evaluated. 
· Random Rx beam: Receiving beam for each Tx beam is determined by randomly selecting a Rx beam for each model sample.
· Fixed Rx beam for all Tx beam for each samples: Fixed Rx beam (e.g., second Rx beam) is used to receive for all Tx beam for each sample.
· Best Rx beam of a certain Tx beam for each sample: A Tx beam for each sample is selected randomly and then best Rx beam of this Tx beam is determined by Rx beam sweeping for each model sample.
· Optimal Rx beam: Best Rx beam with exhaustive beam sweeping for each Tx beam within Set B.
[bookmark: _Hlk134620308]Table 19 and Table 20 show that performance of AI-based Tx beam prediction with different Set B selection in beam prediction accuracy and L1-RSRP difference. Optimal Rx beam with exhaustive beam sweeping achieves the best performance with huge RS overhead of Rx beam sweeping. Considering  Tx beams within Set B and  candidate receiving beams at UE,  RS overhead is required for Rx beam sweeping for a UE. On the other end, random Rx beam achieves worst and unacceptable performance without RS overhead of Rx beam sweeping, i.e., 25.57% top1/1 beam prediction accuracy, 6.9dB average L1-RSRP difference and 13.22dB average predicted L1-RSRP difference. 
Adopting specific Rx beam with special Rx beam selection, the performance could be improved closing to optimal Rx beam with less RS overhead. 
[bookmark: _Ref134556741]Table 19 Beam prediction accuracy for AI-based Tx beam prediction with different Rx beam selections
	Rx beam selection
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Random Rx beam 
	25.57%
	68.71%
	70.33%
	30.24%
	35.33%

	Fixed Rx beam for all Tx beams for each sample
	69.14%
	90.33%
	94.90%
	78.62%
	84.71%

	Best Rx beam of a certain Tx beam for each sample
	77.38%
	93.24%
	96.10%
	86.05%
	91.0%

	Optimal Rx beam
	85.62%
	98.38%
	99.29%
	95.33%
	97.57%


[bookmark: _Ref134556747]Table 20 L1-RSRP difference for AI-based Tx beam prediction with different Rx beam selections
	Rx beam selection
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Random Rx beam
	6.90
	0
	18.54
	13.22
	0.88
	33.60

	Fixed Rx beam for all Tx beams for each sample
	0.98
	0
	6.24
	4.77
	0.47
	10.20

	Best Rx beam of a certain Tx beam for each sample
	0.57
	0
	3.57
	1.52
	0.09
	5.03

	Optimal Rx beam
	0.15
	0
	0.88
	0.79
	0.04
	2.16


Observation 14 Adopting specific Rx beam with special Rx beam selection, the performance could be improved closing to optimal Rx beam with less RS overhead.
Rx beam selection for DL Tx beam prediction should be studied for improving beam prediction performance or reducing RS overhead of Rx beam sweeping.

Reduced Set B beam measurement
According to the observations of AI/ML-enabled spatial beam prediction so far, the beam prediction performance is proportional to the size of Set B input of AI model, i.e., within a certain range, the more input beam measurements, the higher the beam prediction accuracy. However, the RS/measurement overhead, and the UE reporting overhead if NW-side AI/ML model, for AI beam prediction also escalates as the size of Set B increases. 
In fact, it is the few strongest beams within Set B that play a critical role in AI/ML-enabled beam prediction. As is shown by companies’ evaluation for Opt2D Set B pattern[8][9][10], reporting measurement of a subset of a larger measured beam set, e.g., measurement of the strongest beams or beams with L1-RSRP more than a certain threshold, for beam prediction with NW-side AI/ML model can reduce the UE reporting overhead and ensure the beam prediction performance with the same RS/measurement overhead. The RS/measurement overhead for beam prediction, however, is not reduced, since all beams of the larger measured beam set must be transmitted/measured to find the partial beams at every AI-enabled beam prediction. Thus, how to further reduce the RS/measurement overhead for AI-enabled beam prediction should be studied by considering reduced Set B beam measurement. 
How to further reduce the RS/measurement overhead for AI-enabled beam prediction should be studied by considering reduced Set B beam measurement.
We have evaluated the performance of Tx-Rx beam pair prediction considering reduced Set B beam measurement and compared with that with common Set B beam measurement.
· Case1 (Common Set B beam measurement): RSs corresponding to common Set B are transmitted and measured, and the measured results are inputted to AI model for beam prediction. The measured beam set and inputted beam set is same and fixed.
· Case2 (Reduced Set B beam measurement): RSs corresponding to reduced Set B is transmitted and measured to input AI/ML model at each subsequent beam prediction until next transmission of RSs corresponding to the common Set B, where the reduced Set B is a subset of the common Set B and periodicity of RS corresponding to the common Set B is multiple times than that of RS corresponding to the reduced Set B, as shown in Figure 5. The reduced Set B is selecting the strongest beams of previous common Set B.

[bookmark: _Ref142485738]Figure 6 Illustration of Case 2
The simulation assumption is aligned with section 2.3.1. In addition, the evaluation has considered the effect of two parameters on reduced Set B beam measurement: ratio of reduced Set B and size of reduced Set B. The ratio of reduced Set B is ratio of beam measurement for the reduced Set B in time scale, e.g., 1/2 or 3/4 of the ratio of reduced Set B means once or three times reduced Set B measurement per once common Set B measurement, respectively. The size of reduced Set B (S) indicates how many beams within the reduced Set B is selected from the common Set B. 
[bookmark: _Ref142315293]Table 21 Evaluation results for the measured beam set adaptation
	Case
	Description
	Adaptation parameter
	RS overhead reduction compared to Case1
	Beam prediction accuracy

	
	
	Ratio of Set B
	S
	
	Top1/1
	Top3/1
	Top5/1

	Case1
	Common Set B only
	0
	NA
	0
	80.59%
	96.4%
	98.26%

	Case2
	Both common Set B and reduced Set B
	1/2
	24
	12.5%
	78.02%
	95.77%
	98.11%

	
	
	1/2
	20
	18.75%
	75.41%
	94.27%
	97.33%

	
	
	3/4
	24
	18.75%
	76.79%
	95.43%
	97.99%


The evaluation results are shown in Table 21. When the ratio of reduced Set B is 1/2 and the size of reduced Set B is 24, the reduced Set B beam measurement can reduce 12.5% RS/measurement overhead compared to the common Set B beam measurement, while the top 1/1 beam prediction accuracy loses only 2.57% and the top 5/1 beam prediction accuracy has almost no loss. With the decrease of the ratio of reduced Set B or size of reduced Set B, the RS/measurement overhead reduction is increased, the beam prediction accuracy has slightly loss as well. When the ratio of reduced Set B is 1/2 and the size of reduced Set B is 20, the reduced Set B beam measurement can reduce 18.75% RS/measurement overhead compared to the common Set B beam measurement, while the top 1/1 beam prediction accuracy loses 5.18% and the top 5/1 beam prediction accuracy loses only 0.93%. When the ratio of reduced Set B is 1/4 and size of reduced Set B is 24, the reduced Set B beam measurement can reduce 18.75% RS/measurement overhead compared to the common Set B beam measurement, while the top 1/1 beam prediction accuracy loses 3.8% and the top 5/1 beam prediction accuracy loses only 0.27%. From the results above, it could be observed that with the reduced Set B beam measurement, RS/measurement overhead for AI-enabled beam prediction can be further reduced with slightly or almost no beam prediction accuracy loss. 
Observation 15 Reduced Set B beam measurement can further reduce up to 18.75% RS/measurement overhead for AI-enabled beam prediction compared to common Set B beam measurement, with slightly or almost no beam prediction accuracy loss.
Reduced Set B beam measurement can be studied to further reduce the RS/measurement overhead for AI-enabled beam prediction.

Differential L1-RSRP reporting for multiple beam measurements in BM-case2
For BM-case2, Set B in multiple past time instances would be measured and inputted to AI/ML model to infer the best beams in multiple future time instances. If the AI/ML model is deployed at NW-side, the measurements of Set B in multiple past time instances should be reported to gNB. A related agreement has been achieved in agenda item 9.2.3.2 of RAN1#113 meeting, which encourages to study necessity, benefit(s), and potential specification impact of multiple measurement reporting in one reporting instance considering UCI payload overhead for AI model inference in BM-case2, as follows: 
Agreement
For BM-Case2, study necessity, benefit(s) and potential specification impact from the following additional aspects for AI model inference:
· Reporting information about measurements of multiple past time instances in one reporting instance for BM-Case2 
· Note: only applicable to network-side AI/ML model
· Note: The potential performance gains of measurement reporting should be justified by considering UCI payload overhead

[bookmark: OLE_LINK5]In legacy beam reporting, if the number of reported beam in a reporting instance is more than one, UE shall use the differential quantization based reporting, where the largest measured value of L1-RSRP is quantized to a 7-bit value in the range [-140, -44] dBm with 1dB step size, and the differential L1-RSRP is quantized to a 4-bit value which is computed with 2 dB step size with a reference to the largest measured L1-RSRP value[11]. With legacy beam reporting, multiple past measurements reporting for AI model inference leads to huge UCI payload overhead, especially in the case of Set B is same with Set A for BM-case2. In fact, there is a correlation between the measurements at adjacent measurement time instances due to UE trajectory continuity and corresponding spatial channel state consistency. This correlation can be applied to enhance measurement reporting of Set B in multiple past time instances for reduce the UCI payload overhead. 
The correlation between the measurements at adjacent time instances should be applied to enhance measurement reporting for reducing the UCI payload overhead in BM-case2.
For example, we can use the differential RSRP for a same beam in adjacent time instance with less than 4 quantization bits other than the global differential RSRP among all the reported beams. It is rarely happened that dramatical change of the L1-RSRP value to a same beam in a short term due to continuity of UE trajectory and corresponding spatial consistency of channel state. In other words, the differential value of L1-RSRP to a same beam in adjacent measurement time instance has relative smaller range of variation. Thus, with differential quantization in temporal domain of L1-RSRP measurement, less quantization bit for L1-RSRP can be applied to save UCI payload overhead. 
To analysis the correlation of L1-RSRP to the same beam in adjacent time instance, we have performed system level simulation based on the agreed assumption for BM-case2. The option 4 in agreed UE trajectory models is applied, i.e., random direction straight-line trajectory. L1_RSRPs of the same beam to the same UE in consistent measurements have been obtained based on the trajectories of 210 UEs (10 UEs per cell, 21 cells). Each of the 210 UEs moves with velocity of 120km/h and the beam measurement of each UE is performed with a periodicity Tper. The CDF of L1_RSRP difference of the same beam at adjacent measurements is shown in Figure 6. 
[image: ]
[bookmark: _Ref142409867][bookmark: _Ref142409854]Figure 7 CDF of L1-RSRP difference of the same beam at adjacent measurements
From the figure, it can be observed that with the beam measurement periodicity Tper of 40ms/80ms/160ms/320ms, 98%/96%/90%/78% of the L1-RSRP difference ranges from -8dB to 8dB when UE velocity is 120km/h. In other words, the vast majority of the L1-RSRP difference is within a relative smaller range, e.g., [-8dB ,8dB]. Thus, the L1-RSRP difference of a beam can be quantized with less bit, e.g., 3-bit with 2dB quantization step size, than the legacy beam reporting. Therefore, differential RSRP reporting for measurement in adjacent time instance can be studied to reduce the UCI payload overhead for measurement reporting in BM-case2. 
Observation 16 The vast majority of the L1-RSRP difference to the same beam in adjacent time instance is within a relative smaller range, e.g., [-8dB ,8dB]. 
Study differential RSRP reporting for measurement in adjacent time instance to reduce the UCI payload overhead of UE reporting for AI model inference in BM-case2. 
In addition, the uneven distribution of  L1-RSRP difference in the range can be observed also from the results, i.e., the L1-RSRP difference occurs frequently around zero dB and gets lower frequency of occurrence away from zero dB. Inspired by this phenomenon, multi-resolution quantization for beam measurement reporting may be studied to enhance the quantization precision in BM-case2.
[bookmark: _Hlk100923477]Conclusion
[bookmark: _Toc100924111][bookmark: _Toc100924138][bookmark: _Toc100924174]We have presented our views on some aspects of AI/ML for beam management along with simulation results. We have the following proposals and observations:
1. Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of the gains achieved, and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study. 
1. To study opt2D on the selection of Set B of beams to improve beam prediction performance or to reduce UE reporting overhead at least for DL Tx beam prediction.
1. Rx beam selection for DL Tx beam prediction should be studied for improving beam prediction performance or reducing RS overhead of Rx beam sweeping.
1. How to further reduce the RS/measurement overhead for AI-enabled beam prediction should be studied by considering reduced Set B beam measurement.
1. Reduced Set B beam measurement can be studied to further reduce the RS/measurement overhead for AI-enabled beam prediction.
1. The correlation between the measurements at adjacent time instances should be applied to enhance measurement reporting for reducing the UCI payload overhead in BM-case2.
1. Study differential RSRP reporting for measurement in adjacent time instance to reduce the UCI payload overhead of UE reporting for AI model inference in BM-case2. 

Observation 1 The beam prediction accuracy performance of AI-based BM is strongly related with the Set B pattern selection.
Observation 2 With designed Set B pattern, up to 98.71% beam prediction accuracy can be obtained by AI model considering KPI of top5/1 beam prediction accuracy. 
Observation 3 With designed Set B pattern, up to 93.76% and 97.71% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. 
Observation 4 Actual L1-RSRP of top-1 predicted beam pair from AI-based spatial beam prediction is very close to actual L1-RSRP of ideal beam pair with average/5%ile/95%ile difference of 0.18dB/0dB/1.24dB.
Observation 5 Predicted L1-RSRP of top-1 predicted beam pair from AI-based BM is very close to actual L1-RSRP of the top-1 predicted beam pair with average/5%ile/95%ile difference of 0.83dB/0.06dB/2.36dB.
Observation 6 Quantization method for L1-RSRP in the current spec leads to minor performance loss in beam prediction accuracy and L1-RSRP difference compared to case of unquantified L1-RSRP.
Observation 7 With quantization method for L1-RSRP in the current spec, one-shot beam reporting method leads to slight performance loss in beam prediction accuracy and L1-RSRP difference compared to legacy beam reporting method.
Observation 8 With L1-RSRP measurement error, the beam prediction accuracy of AI-based BM is degraded compared to that of AI-based BM without L1-RSRP measurement error. But with same L1-RSRP measurement error, the beam prediction performance of AI-based BM is still better than that of non-AI based BM.
Observation 9 A same AI model for spatial beam prediction can achieve good performance in different ISDs, e.g., training with ISD1 and testing with ISD2 with the agreed simulation assumptions.
Observation 10 The beam prediction accuracy and average L1-RSRP difference are degraded when the size of Set A and Set B or deployment scenario during testing is different from that for the training.
Observation 11 For Tx beam prediction, with 8 beam within Set B(1/4 of Set A), AI/ML model achieves 85.62% top1/1 beam prediction accuracy, 95.33% and 97.57% beam prediction accuracy with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference, average/5%ile/95%ile L1-RSRP difference of 0.15dB/0dB/0.88dB, and average/5%ile/95%ile predicted L1-RSRP difference of 0.79dB/0.04dB/2.16dB.
Observation 12 With same UE reporting overhead, using top-K beams within Set C can obtain better performance in beam prediction accuracy and L1-RSRP difference compared to using all K measured beams.
Observation 13 ~6% performance loss in top1/1 beam prediction accuracy and less than 0.22dB performance loss in average L1-RSRP diff. are caused by using top-K beams within Set C with less UE reporting overhead compared to using all beams within Set C, where performance loss can be further reduced through predicting more beams.
Observation 14 Adopting specific Rx beam with special Rx beam selection, the performance could be improved closing to optimal Rx beam with less RS overhead.
Observation 15 Reduced Set B beam measurement can further reduce up to 18.75% RS/measurement overhead for AI-enabled beam prediction compared to common Set B beam measurement, with slightly or almost no beam prediction accuracy loss.
Observation 16 The vast majority of the L1-RSRP difference to the same beam in adjacent time instance is within a relative smaller range, e.g., [-8dB ,8dB]. 

References
RAN1 Chair’s Notes, RAN1#109-e, May 9-20, 2022
RAN1 Chair’s Notes, RAN1#110, Aug. 22-26, 2022
RAN1 Chair’s Notes, RAN1 #110-bis-e, Oct. 10-20, 2022
RAN1 Chair’s Notes, RAN1 #111, Nov. 14-18, 2022
RAN1 Chair’s Notes, RAN1 #112, Feb. 27 - Mar 3, 2023
RAN1 Chair’s Notes, RAN1 #112-e, Apr. 17 - 26, 2023
RAN1 Chair’s Notes, RAN1 #113, May 22 - 26, 2023	
 R1-2305657, Evaluation on AI/ML for beam management, MediaTck Inc.
 R1-2305507, Evaluation on AI/ML for beam management, Samsung.
 R1-2304536, Evaluation on AI beam management, ZTE Corporation
3GPP.NR; TS 38.214, Physical layer procedures for data.



4
image3.emf
 

a) 8 Tx-Rx beam pairs within Set B

4 Tx beams 

4 Rx beams 

b) 16 Tx-Rx beam pairs within Set B

Set A

Set B

4 Tx beams 

2 Rx beams


image4.png
CDF

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

0.1

-130

CDFs of L1-RSRP of predicted beam pair using dfferent BM
1 : | : [ \ | |

0.5 ¢

0.45 |

04

0.35 |

03

Baseline

Non-Al based BM

——— Al-based BM,predicted RSRP of predicted beam pair

—— Al-based BM, actual RSRP of predicted beam pair
I I I I

| | T

-120 -110 -100 -90 -80 -70 -60 -50
L1-RSRP of predicted beam pair (dBm)




image5.svg
                                                      -130  -120  -110  -100  -90  -80  -70  -60  -50  L1-RSRP of predicted beam pair (dBm)                           0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  CDF  CDFs of L1-RSRP of predicted beam pair using dfferent BM         Baseline    Non-AI based BM    AI-based BM,predicted RSRP of predicted beam pair    AI-based BM, actual RSRP of predicted beam pair                            -95  -90  -85  -80               0.3  0.35  0.4  0.45  0.5     


image6.emf
 

4 Tx beams within Set B 6 Tx beams within Set B

8 Tx beams within Set B

Set A

Set B


image7.emf
 

Ă Ă

Common Set B

Ă Ă Ă

Reduced Set B

Time

Beam 

prediction

Beam 

prediction

Beam 

prediction

Ă

Beam 

prediction


image8.png
CDF

T I —
| 1
0.9 ! .
[ [
[ [
0.8 - I I .
[ [
0.7 1 I _
[ [
0.6 ! [ i
[ [
0.5 - : ' i
[ UE speed=120kmy
04 - 1 -
I Tper = 40ms
0.3 L I Tper = 80ms
! Tper = 160ms
02 - : Tper = 320ms
I = = =Right margin
0.1 [ = = =Left marigin
[
0 — i T I l 1
-10 -8 5 0 5 8 10

L1_RSRP difference (dB)




image9.svg
                                                -10  -8  -5  0  5  8  10  L1_RSRP difference (dB)                           0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  CDF            Tper = 40ms    Tper = 80ms    Tper = 160ms    Tper = 320ms    Right margin    Left marigin       UE speed=120km/h


image1.emf
 

Tx beam

Rx beam

a) Random pattern1

Tx beam

Rx beam

b) Random pattern2

Set A

Set B

Red circle: the same beam pair is used 

twice in SetB

Green circle: the beam is used once in 

Set B.


image2.emf
 

8 Tx beams 

4 Rx beams

a) Designed pattern1

8 Tx beams 

4 Rx beams

b) Designed pattern2

Set A

Set B


