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1 Introduction
In last meeting, additional evaluation methodology were discussed and extensive observations are made. And there are still some issues unsolved 
In this contribution, we will continue discussing the remaining issues and share the our simulation results. 
2 Preliminary simulation results for sub-use cases 
2.1 Description of the sub use cases  
Direct positioning and indirect positioning were agreed for further study. For the direct positioning, the positioning coordinates of the devices can be directly inferenced by the AI model. And for the indirect positioning, the output of the inference is the intermediate parameters. 
In this section, we will conduct evaluation for both direct positioning and indirect positioning.  For the direct positioning, the input of the AI model is the CIR and the output is the coordinates as shown in Fig. 1. For the indirect positioning, the input of the AI model is also the CIR points and the output is the ToA. In addition, the input CIR is the CIR from 18 TRPs and the output is the predicated ToA for 18 TRPs. Based on the inferenced ToA,  the coordinates is obtained by utilizing the traditional TDOA solution as shown in Fig. 2
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Figure 1 Illustration of the fingerprinting positioning
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Figure 2 Illustration of the AI-based ToA predication
2.2 Performance gain for AI-based positioning and Discussion
Results for the direct AI-based positioning and AI-based ToA prediction a for scenarios with different clutter parameters are summarized in the associated excel.  Fig.3 depicts the positioning results when using traditional TDOA positioning solution. We will discuss and compare the evaluation results case by case. 
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Figure 3 CDF of positioning error for TDOA-based solution
· AI-based solution VS traditional non-AI based solution
In the TDOA-based method, the positioning error @ 90% for the scenario of inF-DH{60%, 6m, 2m} is up to 14m and even in the scenario of inF-DH{40%, 2m, 2m} , the positioning error @90% is still up to 12m. While for the AI-based solution, the performance is improved greatly. Depending on direct AI-based solution or indirect AI-based solution used, the performance is slightly different. Anyway, no matter which AI-based solution is used, the positioning error @90% is less than 1m.  In the scenario of inF-DH{60%, 6m, 2m}, the positioning error could achieve around 0.45m~0.65m if using the AI model trained by the data set of inF-DH{60%, 6m, 2m} and the positioning error is around 0.75m~0.85m if using the AI model trained by mix data set. In the scenario of inF-DH{40%, 2m, 2m}, the positioning error could achieve around 0.75m~0.85m if using the AI model trained by the data set of inF-DH{40%, 2m, 2m}. 
Observation 1: 
· AI-based solution could greatly improve the positioning accuracy performance for both direct AI-based positioning and AI-based ToA prediction
· The positioning error is less than 1m for both direct AI-based positioning and AI-based ToA prediction

· Direct AI-based positioning VS AI-based ToA predication
Generally, the performance of direct AI-based positioning and the AI-based ToA predication are similar for all evaluation cases and the positioning error difference is less than 0.2m in most cases. In addition, in all cases, the direct AI-based positioning show slightly better performance.  The reason is some performance loss is expected in the traditional TDOA based solution, while the end-to-end coordinates predication by using AI model could remedy this loss. 
Observation 2:
· The direct AI-based positioning outperforms the AI-based ToA predication solution slightly
2.3 Generalization study    
In this section, we will study the generalization performance.  We mainly focus on the study the impact of different clutter parameters , the impact of network synchronization and the impact of UE receiving timing error. 
2.3.1 Impact of different clutter parameters 
· Different clutter parameter for training and test 

We considered two inF-DH scenarios, InF-DH with the cluster parameter {60%, 6m, 2m} and InF-DH with cluster parameter {40%, 2m, 2m}. Two training data sets are generated.  One is the dataset purely generated in InF-DH {60%, 6m, 2m}, another one is the dataset purely generated in InF-DH {40%, 2m, 2m}. Two AI models are trained based on these two data sets, respectively. For the test, data sets of different clutter parameter are used. 

Associated simulation results excel sheets summarize the evaluation results and other parameters for the fingerprint and the AI-based ToA predication. If the same clutter parameter is set for the training dataset and the test dataset, optimal positioning accuracy could be achieved for both direct AI-based positioning and AI-based ToA prediction as shown in section 2.2. While, once the clutter parameter for test data set is different from that of the training data set, the inference performance degrades sharply. In the direct AI-based positioning, take the AI model trained by InF-DH{60%, 6m, 2m} dataset as example.  The positioning error @90% is less than 0.5m when using InF-DH{60%, 6m, 2m} test dataset , while the positioning error @90% is up to 7m when using InF-DH {40%, 2m, 2m} test dataset. That is to say, lack of generalization capability would happen if the dataset only generated in one scenario without change of parameters.  
Observation 3: 

· For AI-model trained by dataset generated from one scenario without parameter change,  inferior generalization capability is observed 

· Mixed clutter parameter setting for training  
In this case, the data set is generated by mixing the dataset from inF-DH{60%, 6m, 2m } and inF-DH{40%, 2m, 2m }. And the AI model is trained by the mixed data set and tested by the data set with clutter parameter {40%, 2m, 2m } and test dataset from inF-DH{60%, 6m, 2m }, respectively.
Associated simulation results excel sheets summarize the evaluation results. It is observed that using mixed dataset the positioning accuracy is improved greatly. For both the fingerprint and the AI-based ToA prediction, the positioning accuracy @90% is less than 1m. That is to say, for the AI model trained with mix dataset, the generalization problem can be relieved. 
Observation 4: 
· Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability 
· Model fine-tuning 
In this case, the model is firstly trained by data set with clutter parameter inF-DH{60%, 6m, 2m }or inF-DH {40%, 2m, 2m} and then fine-tuned by data set with different clutter parameters. In the evaluation, we test different number of samples for fine-tuning. 

When the clutter parameter of test data set is the same with that of fine-tuning data set, the positioning accuracy is improved compared with the case without fine-tuning. For example, for the AI model trained by clutter parameter {60%, 6m, 2m } and fine-tuned by data set with clutter parameter {40%, 2m, 2m } , when applying this model in the scenario with clutter parameter {40%, 2m, 2m }, the positioning error is reduced from to ~7m to ~1.5 in both fingerprint method and ToA predication method. In addition, with the increase of samples for fine-tuning, the positioning accuracy increases according when the test data set and fine-tuning data set share the same clutter parameter. 
While on the hand, when the clutter parameter of test data set is the same with clutter parameter of training data set, the positioning accuracy degrades compared with the case without fine-tuning. With the increase of   fine-tuning samples, there is some fluctuation in the positioning accuracy. 
Observation 5: For the AI model is training with one clutter parameter setting and fine-tuned by different clutter parameter setting 
· When the clutter parameter of test data set is the same with that of fine-tuning data set, the positioning accuracy is improved compared with the case without fine-tuning. The positioning accuracy is improved accordingly with the increase of fine tuning sample. 
· When the clutter parameter of test data set is the same with that of training data set, the positioning accuracy degrades compared with the case without fine-tuning.  
2.3.2 Impact of network synchronization error  

In this section, we test the generalization performance with the non-ideal network synchronization. The timing errors and network synchronization error are modelled according to TR 38.857, where network synchronization error are modelled as truncated Gaussian distribution with zero mean and standard deviation of [image: image5.png]


 ns, with a truncated range as [image: image7.png][—2Ty, 2T,]



. And we test the performance of AI model trained by dataset generated with the cluster parameter {60%, 6m, 2m}, dataset generated with the cluster parameter {40%, 2m, 2m}. 
· Training data set with ideal network synchronization and test data set with 50ns network synchronization error  

Firstly, we test the case in which the AI/ML model is trained by dataset with ideal network synchronization and then is tested by dataset with 100ns network synchronization error. The results are summarized in the associated excel. It is observed that no matter in the direct AI-based positioning method or the AI-based ToA predication method, the positioning error @90% is poor and the positioning error is more than 10m. 
Observation 6: 

· If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed 

· Mixed training data set with network synchronization error {0n, 30ns, 40ns, 50ns} and test data set with 50ns network synchronization error  

In this case, mixed training data set is used by considering different network synchronization. According to the simulation results, it is observed that the positioning error @90% is reduced to around 1.27m and 2.3m for direct AI-based positioning and AI-based ToA prediction, respectively. Compared with the results with totally different network synchronization error between training and test, using mixed data set could improve the positioning accuracy greatly. 
Observation 7: 

· Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability 
· Training data set with ideal network synchronization error and fine-tuned data set with 50 ns network synchronization error  

In this case, we test the case where the AI/ML model is trained by dataset with ideal network synchronization and further fine-tuned by data set with 50 ns network synchronization error. AI models with different number of samples for fine-tuning are developed.  Then the AI models are tested by data set with 50ns network synchronization error and by data set with ideal synchronization error.  

The results are summarized in the companion simulation results excel. When the AI model is tested by data set with 50ns network synchronization error, there is improvement in the positioning accuracy compared with the results without fine-tuning. When the number of samples for fine-tuning is 10% of the number of samples for training, the positioning accuracy can achieves around 1m. In addition, with the increase of samples for fine-tuning, the positioning accuracy increase accordingly
While on the hand, when the  AI model is tested by data set with ideal network synchronization. The performance degrades compared with the case that the AI model is trained by data set with ideal network synchronization and tested by data set with ideal network synchronization. With the increase of samples for fine-tuning, the positioning accuracy decreases in most cases.  
Observation 8: 
· For the AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 50ns network synchronization error
· When the AI model is tested by data set with 50ns network synchronization error, the positioning accuracy is improved compared with the case without fine-tuning. The positioning accuracy is improved accordingly with the increase of fine tuning sample. 

· When the AI model is tested by data set with ideal network synchronization, the positioning accuracy degrades compared with the case without fine-tuning.  

2.3.3 Impact of receive timing error  

In this section, we test the generalization performance with the non-ideal UE Rx timing. The timing errors are modelled according to TR 38.857, where Rx timing error are modelled as truncated Gaussian distribution with zero mean and standard deviation of [image: image9.png]
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. And we test the performance of AI model trained by dataset generated with the cluster parameter {60%, 6m, 2m}, dataset generated with the cluster parameter {40%, 2m, 2m}. 

· Training data set with ideal Rx timing and test data set with 10ns network synchronization error  

Firstly, we test the case in which the AI/ML model is trained by dataset with ideal Rx timing and then is tested by dataset with 10ns Rx timing error. The results are summarized in the associated excel. It is observed the positioning error @90% is around 2.58 m for direct AI-based positioning and AI-based ToA prediction with clutter parameter of {0.4,2,2}. 
Observation 9: 

· If the AI/ML model is trained with data set of ideal Rx timing and the tested by  data set is with Rx timing error, there is some positioning accuracy degradation
· Mixed training data set with Rx timing error {0n, 10ns, 20ns, 30ns} and test data set with 10ns Rx timing error  

In this case, mixed training data set is used by considering different Rx timing error. According to the simulation results, it is observed that the positioning error @90% is reduced to around 1.3 m for direct AI-based positioning and AI-based ToA prediction with clutter parameter of {0.4,2,2}. Compared with the results with totally different error between training and test, using mixed data set could improve the positioning accuracy. 

Observation 10: 

· Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability 
3 Impact of the size of training data set 
One recommendation is last meeting is to study how AI/ML positioning accuracy is affected by user density/size of training data set. In this section, we will provide our test results. In the test, positioning accuracy @90% is collected for different training data size. Clutter parameter {0.6,6,2} is set for both the training data set and test data set. The detailed relationship between positioning accuracy and training data size is illustrated in Figure 3  and Figure 4 for direct AI-based positioning and AI-based ToA predication, respectively. 
According to the test results, it is observed that with the increase of training data size, the positioning accuracy improves accordingly. While, on the other hand, the improvement become marginal when the size of training data set exceed certain threshold. For example, in the following figure, it shows when the size of data set exceed 30000, then the positioning accuracy would become stable. 
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Figure 3 Relationship between size of training data set and positioning accuracy for direct AI-based positioning 
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Figure 4 Relationship between size of training data set and positioning accuracy for ToA-based prediction
Observation 11:
· The positioning accuracy would be improved with the increase of training data set size 

· When the size of training data set exceeds certain threshold, the accuracy improvement would become marginal 
4 Impact from the label error 

For the AI-based positioning, it is also possible to collect the labels based on UE or LMF by using positioning methods. In this case, the collected labels are non-ideal and some error is included in the label. During last meeting, how to model the label error was agreed. Based on the error modelling method, we perform simulation to evaluate the impact on positioning accuracy from different label error setting for both direct AI-based positioning and AI assisted positioning 
Table 1 Evaluation results for direct AI-based positioning with label error, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error L=0.3 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	0.6032

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error L=0.8 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	0.9500

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error L=1.5 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.1748

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error L=2 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.7503


Table 2 Evaluation results for AI-based ToA prediction with label error, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	18*1 ToA
	18*1 ToA
L=0.5 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	0.9051

	18*256*1 CIR
	18*1 ToA
	18*1 ToA
L=1 m

	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.3010

	18*256*1 CIR
	18*1 ToA
	18*1 ToA
L=1.5 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.6199


According to the simulation results, it is observed that with labelling error, there is positioning error degradation for both direct AI-based positioning and the AI-based ToA prediction.  But on the other hand,  when the labelling error is controlled within certain range (e.g., with the L< 0.8m for direct AI-based positioning and L<0.5 for the AI-based ToA prediction ), the positioning accuracy of less than 1m could still be maintained. 

Observation 12:  The positioning accuracy can be maintained within 1m if the labelling error is controlled within a small range 
5 Impact of different TRP pattern 

To investigate the impact of different TRP patterns, the following approaches were agreed for study. 
	Agreement

For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.

· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP ( N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set such that the (NTRP ( N’TRP) TRPs do not affect model output.

· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.

· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.

· Note: for Approach 1, one model is provided to cover the entire evaluation area.

· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP ( N’TRP) TRPs are ignored by the given model.

· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.

· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18 ( N’TRP) TRPs.

· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.

· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 

· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Note:  The agreement is updated from agreement made in RAN1#112bis.




Besides the approach above, two additional approaches are considered further for approach 1 in our evaluation
Approach 3-A: Model input size stays constant as NTRP=18. One model is training by mixture of several data sets. The value of N’TRP  is the same for the measurements from the same data set but different among different data sets. The measurements from the same data set are from fixed N’TRP TRPs
· In our evaluation, the model is trained by 3 data sets. One data set contains the measurements from 18 TRPs, another one contains measurements from fixed 9 TRP and the other contains measurements from fixed 6 TRPs 

Approach 3-B: Model input size stays constant as NTRP=18. One model is trained by mixture of several data sets. The value of N’TRP  is the same for the measurements from the same data set but different among different data sets. The measurements for the same data set are from randomly selected N’TRP TRPs

· In our evaluation, the model is trained by 3 data sets. One data set contain the measurements from 18 TRPs, another one contains measurements from  randomly selected 9 TRPs and the other contains measurements from randomly selected 6 TRPs 

Table 3 Evaluation results for different TRP patterns

	Approach
	Model input
	Model output
	TRP patter for training 
	TRP pattern for test 
	AI/ML complexity 
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	
	Model complexity

(Millions)
	Computation complexity

(Millions) 
	

	1-A
	CIR
	Pos.
	Fixed 9 TRP

(1: 2:17)
	Fixed 9 TRP

(1: 2:17)
	21.28
	5760
	0.598

	1-A
	CIR
	Pos.
	Fixed 6 TRP

(0:4:16)
	Fixed 6 TRP

(0:4:16)
	21.28
	5760
	0.629

	1-B
	CIR
	Pos.
	Random 9 TRP
	Random 9 TRP
	21.28
	5760
	0.893

	1-B
	CIR
	Pos.
	Random 6 TRP
	Random 6 TRP
	21.28
	5760
	1.563

	2-A
	CIR
	Pos.
	Fixed 9 TRP

(1: 2:17)
	Fixed 9 TRP

(1: 2:17)
	21.28
	3380
	0.604

	2-A
	CIR
	Pos.
	Fixed 6 TRP

(0:4:16)
	Fixed 6 TRP

(0:4:16)
	21.28
	2070
	0.658

	2-B
	CIR
	Pos.
	Random 9 TRPs
	Random 9 TRP
	21.28
	3380
	>10m

	2-B
	CIR
	Pos.
	Random 6 TRPs
	Random 6 TRP
	21.28
	2070
	>10m

	2-B
	CIR
	Pos.
	Random 9 TRP with knowing TRP coordinates
	Random 9 TRPs with knowing TRPs coordinates
	21.28
	
	1.45

	2-B
	CIR
	Pos.
	Random 6 TRP with knowing TRP coordinates
	Random 6 TRPs with knowing TRP coordinates
	21.28
	
	4.44

	3-A
	CIR
	Pos.
	Mix of 18 TRP, 9 fixed TRP and fixed 6 TRP
	Fixed 9 TRPs
	21.28
	5760
	0.475

	3-A
	CIR
	Pos.
	Mix of 18 TRP, 9 fixed TRP and fixed 6 TRP
	Fixed 6 TRPs
	21.28
	5760
	0.594

	3-B
	CIR
	Pos.
	Mix of 18 TRP, 9 random TRP and random 6 TRP
	Random 9 TRPs
	21.28
	5760
	1.227

	3-B
	CIR
	Pos.
	Mix of 18 TRP, 9 random TRP and random 6 TRP
	Random 6 TRPs
	21.28
	5760
	2.192


Table. 3 summarizes the simulation results for all approaches. According to the simulation, the following comparison can be carried out 
· Approach 1-A VS Approach 2-A VS Approach 3-A:  Approach 1-A and Approach 2-A achieve similar positioning accuracy. Approach 3-A achieve slightly better positioning accuracy.  In addition, Approach 3-A is more flexible since more TRP numbers can be supported by one model. The AI/ML complexity is smaller  for a single AI model in Approach 2-A, but multiple AI models are needed for supporting different number of TRPs, then the total AI/ML complexity does not decrease when multiple AI models are needed. 
· Approach 1-B VS Approach 2-B VS Approach 3-B : When there is no additional information, the positioning accuracy performance of Approach 2-B degrades sharply.  When additional information is considered in Approach 2-B e.g., associated active TRP coordinates for each sample, the performance could be recovered to some extent. While for Approach 1-B could still maintain relatively acceptable performance due to the TRP information is included in the input. For Approach 3-B, the performance of positioning accuracy is a bit worse than that of Approach 1-B. But more input scalability can be provided since one AI could support different number TRPs and the active TRP for a given TRP number can change dynamically. The AI/ML complexity is smaller  for a single AI model in Approach 2-B, but multiple AI models are needed for supporting different input dimensions due to different TRP numbers, then the total AI/ML complexity is larger than that of Approach 3-B when multiple AI models are needed.
· Approach 1-A VS Approach 1-B/ Approach 2-A VS Approach 2-B/ Approach 3-A VS Approach 3-B:  Approach x-A could achieve better performance than that of Approach x-B. The difference is not significant. While from the perspective of deployment flexibility, Approach X-B is better since the TPRs to provide measurements can change dynamically. 
Observation 13:
· Reducing the number of TRP for input measurement could still maintain acceptable positioning accuracy 

· Include TRP information in Approach 2-B could help to guarantee the positioning accuracy performance. 

· Compared with Approach 1-A/2-A/3-A, Approach 1-B/ 2-B / 3-B could provide more flexibility in the realistic deployment while maintain acceptable positioning accuracy  

· Compared with Approach 1-B/Approach 2-B, when achieving similar input scalability, less AI/ML complexity is required for Approach 3-B. 
6 Semi-supervised training 
Different from other AI/ML use cases, AI-based positioning use case face the challenge of less ideal label. Currently, PRU is identified for the ideal label collection, but the number of PRU is limited in realistic network. To cope with this challenge, semi-supervised training is proposed for the training. In this section, we would test the feasibility of semi-supervised training. 
Table 4 Evaluation results for semi-supervised training for direct AI-based positioning 
	Input
	Out
	Sample for training
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Label ratio
	Composition (w/ label + w/o label)
	

	CIR
	Pos.
	5% 
	1,000 + 
19,000 
	0.888610

	CIR
	Pos.
	5% 
	2000+38000
	0.767934

	CIR
	Pos.
	5% 
	4000+76000
	0.564586

	CIR
	Pos.
	10%
	2000+18000
	0.9269844

	CIR
	Pos.
	10% 
	4000+36000
	0.6127753

	CIR
	Pos.
	10% 
	8000+72000
	0.5086012

	CIR
	Pos.
	20%
	4000+16000
	0.9869672

	CIR
	Pos.
	20%
	8000+32000
	0.7609796

	CIR
	Pos.
	20%
	16000+64000
	0.7199332


According to the simulation results, the following observation can be made. 

Observation 14:

· Semi-supervised training can achieve desirable positioning accuracy 

· For a given total number of samples, the positioning accuracy increases with the increase of the label ratio

· For a given label ratio, the positioning accuracy increases with the increase of the total number of samples 

· For a given number of samples with label, the positioning increase with the increase of samples without label 

7 Conclusion
In this contribution, we discuss the evaluation methodology and show the initial simulation results. Based on the discussion and evaluation results, our views and observations are summarized as follow 
Observation 1: 
· AI-based solution could greatly improve the positioning accuracy performance for both direct AI-based positioning and AI-based ToA prediction

· The positioning error is less than 1m for both direct AI-based positioning and AI-based ToA prediction

Observation 2:
· The direct AI-based positioning outperforms the AI-based ToA predication solution slightly

Observation 3: 

· For AI-model trained by dataset generated from one scenario without parameter change,  inferior generalization capability is observed 

Observation 4: 

· Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability
Observation 5: For the AI model is training with one clutter parameter setting and fine-tuned by different clutter parameter setting 
· When the clutter parameter of test data set is the same with that of fine-tuning data set, the positioning accuracy is improved compared with the case without fine-tuning. The positioning accuracy is improved accordingly with the increase of fine tuning sample. 
· When the clutter parameter of test data set is the same with that of training data set, the positioning accuracy degrades compared with the case without fine-tuning.  
Observation 6: 

· If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed 

Observation 7: 

· Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability 
Observation 8: 

· For the AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 50ns network synchronization error
· When the AI model is tested by data set with 50ns network synchronization error, the positioning accuracy is improved compared with the case without fine-tuning. The positioning accuracy is improved accordingly with the increase of fine tuning sample. 

· When the AI model is tested by data set with ideal network synchronization, the positioning accuracy degrades compared with the case without fine-tuning.  

Observation 9: 

· If the AI/ML model is trained with data set of ideal Rx timing and the tested by  data set is with Rx timing error, there is some positioning accuracy degradation

Observation 10: 

· Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability 
Observation 11:

· The positioning accuracy would be improved with the increase of training data set size 

· When the size of training data set exceeds certain threshold, the accuracy improvement would become marginal 
Observation 12:  The positioning accuracy can be maintained within 1m if the labelling error is controlled within a small range
Observation 13:

· Reducing the number of TRP for input measurement could still maintain acceptable positioning accuracy 

· Include TRP information in Approach 2-B could help to guarantee the positioning accuracy performance. 

· Compared with Approach 1-A/2-A/3-A, Approach 1-B/ 2-B / 3-B could provide more flexibility in the realistic deployment while maintain acceptable positioning accuracy  
· Compared with Approach 1-B/Approach 2-B, when achieve similar input scalability, less AI/ML complexity is required for Approach 3-B
Observation 14:

· Semi-supervised training can achieve desirable positioning accuracy 

· For a given total number of samples, the positioning accuracy increases with the increase of the label ratio

· For a given label ratio, the positioning accuracy increases with the increase of the total number of samples 

· For a given number of samples with label, the positioning increase with the increase of samples without label 
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