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Discussion
CSI Compression  
Functionality & Model identification
In RAN1 #112-bis-e, conditions (referred to as conditions in UE capability report) and additional conditions (referred to as conditions that do not fit to UE capability report) were further discussed in the context of both functionality and model identification. In particular, RAN1 agreed to the following, 
	Agreement
· For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models:
· Functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability.
· Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG.
· FFS: Signaling to support functionality-based LCM operations, e.g., to activate/deactivate/fallback/switch AI/ML functionalities
· FFS: Whether/how to address additional conditions (e.g., scenarios, sites, and datasets) to aid UE-side transparent model operations (without model identification) at the Functionality level
· FFS: Other aspects that may constitute Functionality
· FFS: which aspects should be specified as conditions of a Feature/FG available for functionality will be discussed in each sub-use-case agenda.
· For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models:
· model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.
· FFS: Which aspects should be considered as additional conditions, and how to include them into model description information during model identification will be discussed in each sub-use-case agenda.
· FFS: Relationship between functionality and model, e.g., whether a model may be identified referring to functionality(s).
· FFS: relationship between functionality-based LCM and model-ID-based LCM
· Note: Applicability of functionality-based LCM and model-ID-based LCM is a separate discussion.

Agreement
For model identification of UE-side or UE-part of two-sided models, categorize model identification types as follows, and further study relevant aspects, necessity, and specification impact (if any).
· Type A: Model is identified to NW (if applicable) and UE (if applicable) without over-the-air signaling
· The model may be assigned with a model ID during the model identification, which may be referred/used in over-the-air signaling after model identification. 
· FFS: Spec impact to other WGs
· Type B: Model is identified via over-the-air signaling, 
· Type B1: 
· Model identification initiated by the UE, and NW assists the remaining steps (if any) of the model identification
· the model may be assigned with a model ID during the model identification
· FFS: details of steps
· Type B2: 
· Model identification initiated by the NW, and UE responds (if applicable) for the remaining steps (if any) of the model identification
· the model may be assigned with a model ID during the model identification
· FFS: details of steps
· Note: The support and applicability of each model identification Type is a separate discussion. This study does not imply that model identification is necessary.

Agreement
· Once models are identified, UE can indicate supported AI/ML model IDs for a given AI/ML-enabled Feature/FG in a UE capability report as starting point.
· FFS: applicability to model identification, Type A, type B1 and type B2 
· FFS: Using a procedure other than UE capability report
· Note: model identification using capability report is not precluded for type B1 and type B2




As mentioned in the above agreement, for UE-sided models and UE-part of two-sided models, RAN1 shall first identify the conditions for supported functionality/functionalities of a given sub-use case (ML-enabled feature). In functionality identification and functionality-based LCM, knowing the UE conditions (including parameters/configurations) is required at the network as the first step before any other, as this shall reveal the background conditions when using ML models for supporting a given ML-enabled feature. 
Proposal 1: For the two-sided CSI feedback compression sub-use case, RAN1 shall define conditions for functionalities to enable functionality-based LCM. 
We expect the CSI feedback compression sub-use case to consider the following set of applicable conditions:
1. CSI-RS measurement conditions
- Defines the maximum number of CSI-RS ports/resources that can be simultaneously active per band or per band combination. “Simultaneous” for CSI-RS means, in any slot, the number of active CSI-RS resources/ports
a) Maximum number of simultaneously active CSI-RS ports/resources
e.g.:
· maxNumberSimultaneousNZP-CSI-RS-PerCC / totalNumberPortsSimultaneousNZP-CSI-RS-PerCC per band [MIMO-ParametersPerBand]
· maxNumberSimultaneousNZP-CSI-RS-ActBWP-AllCC / totalNumberPortsSimultaneousNZP-CSI-RS-ActBWP-AllCC] per band combination [CA-ParametersNR]

b) Maximum number of simultaneously active CSI-RS ports/resources for each AI/ML-based CSI type
- Defines a list of triplets (max # ports per resource, max # resources, total # ports) indicating the number of ports/resources that can be simultaneously active for a specific type of CSI report
e.g.:
· supportedCSI-RS-ResourceList per band [codebookParametersPerBand]
· supportedCSI-RS-ResourceList per band combination [codebookParametersPerBC]
· supportedCSI-RS-ResourceList for concurrent CSI reports of different codebook types per band [codebookComboParametersPerBand]
· supportedCSI-RS-ResourceList for concurrent CSI reports of different codebook types per band combination [codebookComboParametersPerBC]
 
2. CSI-RS and CSI reports configuration conditions
- Defines the maximum number of CSI-RS/IM ports/resources and CSI Report Settings that can be configured per BWP (regardless of whether they are active)
a) Maximum number of configured CSI-RS/IM ports/resources (e.g., in CSI-RS-IM-ReceptionForFeedback)
b) Maximum number of configured CSI Report Settings (e.g., in csi-ReportFramework)

3. CSI calculation conditions (i.e., number of occupied CPUs)
- Defines the maximum number of CPUs that can be simultaneously occupied by all CSI or beam reports in any given symbol
e.g.:
· simultaneousCSI-ReportsPerCC per band [MIMO-ParametersPerBand]
· simultaneousCSI-ReportsAllCC per band combination [CA-ParametersNR]

4. Output CSI conditions
- Defines the supported definitions/conditions on the output CSI

5. Compression ratio conditions (e.g., CR4, CR8, …)
- Defines the supported compression ratios of the compressed CSI codebook supported by the UE.

6. Quantizer conditions (e.g., SQ1, VQ1, …)
- Defines the supported quantization modes for compressed CSI codebook supported by the UE.

7. Model ID(s)
- Indicates a model ID (interpretable by the NW based on offline model identification) to match the UE side and NW side models[footnoteRef:2]. One model ID can be reported by a bit field defined in the spec (e.g., 3 or 4 bits) which allows NW to consider selecting a matching model on the NW side. [2:  One example of model ID relevant feature agreement between UE side and NW side is supported pre-processing scheme(s) on the channel information, prior to ML encoder, i.e., the supported pre-processing schemes at UE which can improve AIML decoder performance when informed, e.g., representation of the channel information to amplitude and phase (rather than real and imaginary part), matrix parameterization scheme on channel eigenvector matrix, for example Givens or Householder rotation, etc.] 

Note: RAN1 #113 meeting agreed that model-ID can be reported via capability signaling, where the UE and NW can identify the models offline, and UE can refer to one or more of the identified model-ID(s) during the capability signaling.

8. Conditions on supporting ML functionalities
a. Max number of supported functionalities (1, 2, 4, 8, …)
- Indicates the maximum number of functionalities (e.g., number of parameter combinations that enable ML-enabled feature) that can be configured toward the UE 
b. Delay in activating a functionality (2 ms, 4 ms, …)
- Indicates the delay required when activating or switching a functionality
c. Generalization condition of functionalities (yes, no)
- Indicates that the UE supports any functionality configured considering the parameter combinations of 1-4 and can be used towards the UE without any validation whether functionality is applicable or not.

Proposal 2: For the two-sided CSI feedback compression sub-use case, RAN1 to study the following conditions for functionalities,  
•	CSI-RS measurement conditions 
•	CSI-RS and CSI reports configuration conditions
•	CSI calculation conditions (i.e., number of occupied CPUs)
•	Output CSI conditions
•	Compression ratio conditions (e.g., CR4, CR8, …)
•	Quantizer conditions (e.g., SQ1, VQ1, …)
•	Pairing ID (e.g., model ID, dataset ID)
•	Generic conditions on supporting ML functionalities

RAN WG#1 #112 and #112-bis-e agreed that UE capability reporting serves as the first step for identifying functionalities, where the conditions shall be reported as UE feature group (FG) components in the legacy UE capability reporting framework. 
When considering the reporting of conditions via UE capability reporting, the listed components associated with the conditions are reported by the UE capability signaling with the candidate values defined by the specification for FG components. Some components may be defined as basic components and others may define as optional components. 
There may be other variants for reporting additional conditions. However, it is not yet fully clear what exactly these additional conditions are referring and further discussion is needed prior to defining the reporting framework. 
Proposal 3: For the two-sided CSI feedback compression sub-use case, identify the additional conditions prior to discussing any reporting framework for that. 
Similar to our contribution in AI 9.2.1, as agreed in RAN1 #112-bis-e meeting, the functionalities are configured by the NW and the functionality is known to the UE only after receiving the NW configuration. After NW configures functionalities, the UE may report feasible or applicable functionalities to use the two-sided model, where this applicability may be determined by the UE based on additional conditions that UE is conditioned with when using the two-sided model (e.g., to address additional conditions like scenario, site, or other aspects which are not feasible to define by the specs). 
Proposal 4: For the two-sided CSI feedback compression sub-use case, after NW configures functionalities to the UE, study a reporting framework to report applicable functionalities at the UE side. 

Quantization Alignment 
	Agreement
In CSI compression using two-sided model use case, further study the necessity and potential specification impact on quantization alignment, including at least: 
· For vector quantization scheme, 
· The format and size of the VQ codebook
· Size and segmentation method of the CSI generation model output 
· For scalar quantization scheme,
· Uniform and non-uniform quantization
· The format, e.g., quantization granularity, the distribution of bits assigned to each float.
· Quantization alignment using 3GPP aware mechanism.




We may align the quantization between UE and gNB using the following parameters:
1. Segment size (): The segmentation size () is an integer in range [1, ], where  denotes the the dimensionality of encoder output. The segment size needs to be a divisor of E. For scalar quantization, the segment size is equal to 1 ().
2. Quantization bits/Segment (): The number of considered quantization bits per segment () determines the number of quantization levels in a SQ or number of codewords in a VQ is determined.  The number of quantization levels/codewords is .
3. Type of quantization Alignment: An entity (NW or UE) may consider following options for quantization alignment:
A. Providing quantization setting: In this case, the NW or UE needs to share the information regarding (i) DIST: distribution of the quantization levels/codewords, (ii) a Scaling Factor (SF) to provide the possibility for fit the codewords to the encoder output statistics, and (iii) METRIC of obtaining the quantization codewords. It is commonly assumed that Euclidean distance is the metric of choice for obtaining the quantization levels/codewords, but if a different metric is chosen, for example, SGCS, etc., the METRIC needs to be shared as well.
B. Providing quantization levels/codebook: Alternatively, NW or UE can share the obtained codebook. The overhead of sharing a quantization codebook depends on the number of codewords in the codebook and dimensionality of each codeword. Note that option A (providing quantization setting) is more suitable when the codebook size is large. 

Encoder output segmentation
The most straightforward choice for segmentation is to just group every S consecutive elements of the encoder outputs in a segment. The encoder outputs are compressed representations of input CSI, therefore the correlation between the encoder output elements is usually low. This property results in no significant performance gain by considering any other grouping approach than the consecutive segmentation choice.
Proposal 5: Consider consecutive grouping of every S elements of encoder outputs as the segmentation method.
Figure 1 shows the obtained VQ codebooks for uniformly distributed codewords with 16 and 8 codewords. Note that the VQ codebook in Figure 1 a) can be replaced with a USQ, but the codebook in Figure 1 b) cannot be constructed with a USQ. Figure 2 illustrates the optimal VQ codebooks with Gaussian-distributed codewords. We consider two scaling factors 1/4 and 1/3 to show the ability of matching the VQ codebook to the encoder output distribution. 
[image: ]
[bookmark: _Ref142057335]Figure 1 Vector quantization with segment size of 2 (S = 2) considering 2D uniform distribution with, a) Four bits/segment (B = 4), and b) three bits/segment (B=3).
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[bookmark: _Ref142477195]Figure 2 Vector quantization (S = 2) with 2D standard Gaussian distribution including 16 codewords (B = 4) with two scaling factors a) SF = 1/4, b) SF = 1/3.
Proposal 6: The segmentation size and allocated quantization bits/segment should be aligned between NW and UE.
Proposal 7: RAN1 to support that the quantization levels/codebook can be aligned eighter by sharing the quantization properties (distribution, scaling factor, etc.) or directly sharing the considered/obtained quantization levels/codewords.
The considered quantization bits/segment determines the size of VQ codebook (). As VQ codebook may need to be shared with the other network entity, sharing a large VQ codebook may cause problems. Therefore, RAN1 should limit the possibilities for quantization bits/segment (B) according to the selected segment size. In addition, for scalar quantization (S=1), results from various companies have shown saturation in considering more than 4 quantization bits per element, where the performance of a USQ with 4 bits/element is very close to no-quantization scheme. Similar bit allocation can be considered for VQ. The following tables show proposals for quantization bit allocation (B) depending on the segmentation size (S). By limiting the options for S and B, quantization alignment between the NW and UE can be done with sharing a few bits.
	Segment size (S)
	bits/segment (B)

	1
	1

	
	2

	
	3

	
	4


	Segment size (S)
	bits/segment (B)

	2
	2

	
	3

	
	4

	
	6



	Segment size (S)
	bits/segment (B)

	4
	4

	
	6

	
	8

	
	10


	Segment size (S)
	bits/segment (B)

	8
	8

	
	10

	
	12

	
	14



Proposal 8: To ease quantization alignment between NW and UE, RAN1 shall limit options for segment size (S) and allocated quantization bits per segment (B).

Discussion on two-sided model training alternatives 
In RAN1#110 and RAN1#113, the followings have been agreed with respect to AI/ML model training, respectively:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, respectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
Other collaboration types are not excluded.

	Agreement
Type 2 Joint training of the two-sided model at network side and UE side, respectively.
· Note: Joint training includes both simultaneous training and sequential training, in which the pros and cons could be discussed separately
· Note: Sequential training includes starting with UE side training, or starting with NW side training



In case of Type 1 training, proprietary model information cannot be kept confidential, but needs to be shared with other party. In case of both Type 1 and Type 2 joint simultaneous training, developing a new model for a new UE device type or vendor can lead to a large engineering effort across multiple vendors involved in a common model, if the NW-side or UE-side adopts a common model for multiple models at the other side [5].
Due to the negative aspects of Type 1 and 2 joint simultaneous training options mentioned above, we focus our discussions on Type 3 separate training and one specific use case of Type 2 joint sequential (i.e., “freeze-and-train”) here. Since a parallel training method has not gained so much interest in 3GPP so far, our scope is limited to separate sequential training schemes, i.e., UE-first and NW-first separate training. As point-to-point training aspect and the associated training strategies, e.g., composition of the shared training data set and loss function input arguments, have been dealt with in another document [4], we examine various Type 3 options as well as Type 2 joint sequential training from the viewpoints below.
· Device specifics
Some UE receiver modem vendors [5] have concern about possible adverse impact of not considering device-to-device variation for two-sided model training. Potential device differences can be caused by device construction, RF aspects, and/or implementation differences across vendors/device models/chipsets, etc. [7]. Device variation/specifics can be categorized into two parts for clarify of further discussion, as follows.
· Non-AIML part prior to AI encoder
This refers to the signal processing path operation before AIML encoder at UE device side, e.g., impact of RF impairment/nonlinearity, antenna imbalance, channel estimation algorithm and its implementation practice, SVD or any other pre-processing algorithm and its practical implementation, etc. See Figure 3 for better understanding.  
· AIML encoder model related part
This part corresponds to AIML encoder model and its related operation, i.e., model structure, trained parameter set, SQ or VQ quantizer, resulting codebook (in case of VQ), etc., and their possible updates.  
· Generalization across multiple vendors
To deal with possible existence of multiple UE vendors (and corresponding AIML encoder models as well as non-AIML part prior to AI encoder) and multiple NW vendors in a practical manner, UE AIML encoder model should be able to generalize over multiple NW-side models, and vice versa. Hence it is important to consider how to develop a common encoder model from UE-side and/or a common decoder model for NW-side, and its maintenance at the event of model update (or non-AIML part update in case of UE-side when taking care of device-to-device variations).
· Backward compatibility consideration
As described in detail in [5], there can be the cases in which a new UE-side model is to be developed and deployed to the already deployed cell with common encoder and/or common decoder being trained, due to a new device or chipset release. Likewise, a new NW-side model needs to be developed and deployed due to the event of a new cell-site deployment or an upgrade of the existing cell-site. When a generalized common encoder or decoder is involved, we may face the situation that all the associated counter-part encoder(s)/decoder(s) should be trained subsequently to guarantee a certain level of performance, if a new UE-side or NW-side model is to be included for common decoder or encoder, respectively. In order to avoid this kind of large model maintenance effort, we need to make sure that the two-sided model training framework should strive for the principle of engineering isolation.


[bookmark: _Ref129271776][bookmark: _Ref142613102]Figure 3 High level block diagram of AIML (autoencoder) supported CSI feedback scheme ( estimated channel eigenvector, which is a “target CSI”)

UE-first separate sequential training (Type 3)
UE-first separate sequential training is Type 3 training scheme, and the training sequence starts with the AIML encoder training at the UE-side first, as the name suggests. At the time of UE-side AIML encoder training, the training entity, e.g., UE vendor, should have an assumption of the counterpart AIML decoder at NW-side, i.e., hypothetical decoder model. Once the AIML encoder training is completed at UE-side, UE vendor should generate the training dataset for AIML decoder training and share it with the NW-side model training entity (e.g., NW-vendor). Training dataset can include (input to AI encoder (target CSI), corresponding quantized AI encoder output (latent vector)). Quantizer-Dequantizer training, if it is a subject of training, can be integrated into UE-side model training procedure.
NW-side, after taking training dataset from UE-side, can start training of AIML decoder, without having to consider hypothetical encoder in mind, since it has access to input to AIML decoder (dequantized latent vector), and corresponding label (target CSI).
· Device specifics
As UE vendors can collect input to AI encoder with their own device-specific features in mind, device specifications can be taken into account for the model training.
· Generalization across multiple vendors
As depicted in Figure 4, the model generalization, if required, should take place at NW-side decoder training phase. A common AIML decoder model (step ①) can be trained which supports multiple UE-vendor’s AIML encoder models, via using a mixed dataset, for example.
Note here that any change of the previously shared training dataset, i.e., change in input to AIML encoder or change in the corresponding AIML encoder output, will trigger re-training of the common AIML decoder at NW-side, which has been generalized over the associated multiple UE-vendors. This implies that any change in non-AIML part prior to AIML encoder or update in AIML encoder model related part can initiate common decoder training.
· Backward compatibility aspects
As illustrated in Figure 4 with a yellow-glowing colour (steps ②, ③, ④), addition of the new device or new encoder model will necessitate either re-training of the (previously trained) common decoder model at NW-side or training of the separate dedicated decoder model specialized in the new device/model at the cost of maintenance of multiple decoder models at NW-side.


[bookmark: _Ref142613337]Figure 4 UE-first separate sequential training: multi-UE vendor training scenario

NW-first sequential training (Type 2 and 3)
In another contribution of ours [4], we have shown that NW-first separate sequential training with raw (unquantized) dataset sharing scheme brings about noticeable performance improvements compared to “conventional” NW-first separate sequential training with quantized latent vector dataset sharing, and its performance is on par with Joint end-to-end scheme (Type 1) or other types in comparison, e.g., UE-first separate sequential training, NW-first joint sequential training (“Freeze-and-Train”). The only foreseeable cost of this scheme is possible increase of dataset size in terms of the required memory (we need to share unquantized floating point latent vectors, rather than their quantized version). Quantization-Dequantization rule can be shared by the first training entity (NW-side) to the second training entity (UE-side), if required.

Proposal 9: In CSI compression using a two-sided model with a training framework of NW-first separate sequential training, adopt a raw (unquantized) latent vector sharing scheme for better training performance.

In this subsection, we investigate three different variants of the NW-first sequential training schemes. When it comes to Type 3 variants (NW-first separate sequential training), i.e., Option 1 and Option 2, we assume both options are based on raw (unquantized) latent vector dataset sharing.

For NW-first separate sequential training (Option 1, Option 2):
NW-first separate sequential training is Type 3 training scheme, and the training sequence starts with the AIML decoder training at the NW-side first. At the time of NW-side AIML decoder training, the training entity, e.g., NW vendor, should have an assumption of input-CSI-NW (hypothetical input to AIML encoder, which would have gone through Rx antenna with possible imbalance, RFIC, channel estimation, pre-processing like SVD operations), as well as the counterpart AIML encoder at UE-side, i.e., hypothetical encoder model. Once the AIML decoder training is completed at NW-side, NW vendor should generate the training dataset for AIML encoder training and share it with the UE-side model training entity (e.g., UE-vendor). Training dataset can include (input-CSI-NW, corresponding raw (unquantized) hypothetical AI encoder output (latent vector)). Quantizer-Dequantizer training, if it is a subject of training, can be integrated into NW-side model training procedure. UE-side, after taking training dataset from NW-side, can start training of AIML encoder.

We should note here that acquisition of input-CSI-NW can be not straightforward for NW-vendors; NW-vendors simply do not have access to device specific operation of non-AIML part prior to AI encoder, which is UE vendor proprietary, and mostly implementation specific.
There are two possible ways for NW-side to acquire input-CSI-NW, by:
· Definition of Reference (device-common) input-CSI-NW (Option 1)
Reference input-CSI-NW dataset can be defined and agreed between UE-vendors, to reflect their device-specific features and at the same time to come up with reliable common input data to AIML encoder, which can be used by NW-vendors as input-CSI-NW for NW-first separate sequential training.
· Relying on UE-providing (device-specific) input-CSI-NW (Option 2)
Alternatively, UE device-specific input to AIML encoder dataset can be provided by the UE-vendor to NW-side, to be used as input-CSI-NW (technically speaking, this can be coined as “input-CSI-UE” to be consistent with other 3GPP terminology).  
Option 1 (Type 3): Separate sequential training based on reference input-CSI-NW
· Device specifics
This factor depends on how well UE vendors can come up with reference input-CSI-NW dataset. Assumption is that reference input-CSI-NW dataset should be specific enough to reflect device-variants of the involved UE-vendors.
· Generalization across multiple vendors
As depicted in Figure 5, common model training shall be done at UE-side, to come up with a common AIML encoder which can handle possibly multiple AIML decoder models at NW-side. Any cell-site change/update may trigger AIML decoder model updates which in turn lead to common encoder re-training at UE-side. On the other hand, UE-side changes/update is confined to UE-side model update, as long as it conforms to the requirement of the reference input-CSI-NW dataset.
· Backward compatibility aspects
A new UE device or new AIML encoder model would not trigger any AIML decoder re-training, as long as its input-CSI conforms to the requirements of the reference input-CSI-NW dataset.
The key factor for success of the proposed scheme is how to define reference input-CSI-NW. There are trade-offs in its required features, as follows.
· Reference input-CSI-NW dataset
· Should be specific enough to reflect UE device-specific variants.
· Should be generic enough to represent common input CSI over multiple involved UE vendors and their multiple chipsets/models.
· Should have a well-defined requirement set. As long as these requirements are met (“conformation to reference input-CSI-NW dataset”), re-training of AIML decoder model is not required. 
First of all, requirements for definition of reference input-CSI-NW should be studied and agreed by UE vendors, if not specified in 3GPP.

Proposal 10: In CSI compression using a two-sided model with a training framework of NW-first separate sequential training, reference input-CSI-NW dataset can play the essential role for successful deployment of this framework. UE vendors should formulate and agree on requirements for reference input-CSI-NW dataset definition and provide NW-side with reference input-CSI-NW dataset. 



[bookmark: _Ref142613627]Figure 5 NW-first separate sequential training (with reference input-CSI-NW dataset): multi-gNB vendor training scenario
Option 2 (Type 3): Separate sequential training based on UE-providing input-CSI-NW
Alternatively, UE vendors can provide NW-side with device-specific pre-processed channel information (input-CSI), as a preparation for NW-side separate sequential training (step ⓪ in Figure 6). This can be more straightforward than Option 1, which requires definition of reference input-CSI-NW. However, this scheme has one critical fundamental issue – this makes the whole training framework dependent on UE-side device-specific features. One of the major benefits (not only for NW-vendors, but also for UE-vendors) of NW-first separate sequential training is separation/isolation of UE-side encoder training events and their cascading effect on counterpart NW-side decoder training. This benefit will be gone by providing NW-side with UE device-specific input-CSI to be used for NW-side decoder training.
For example, let’s assume both Device A and B are to be served by both gNB 1 and gNB 2. Device A and B vendors generate and provide input-CSI dataset {}, {} to NW-sides, respectively. gNB vendors, having taken device-specific datasets, need to develop either dedicated decoder models per each device, or to train the common decoder models which can cover both devices A and B. For maintenance cost reason, we think the latter case (common decoder model) is more likely. As a result, the trained common decoder model at NW-side should be re-trained whenever its associated devices A or B has updates in its non-AIML part prior to AIML encoder, which can bring about changes in previously shared {} or {}. This decoder re-training and subsequent update of decoder model will lead to re-training of the common encoder at UE-side, which has been trained to deal with multiple gNB vendor’s decoders.
· Device specifics
UE device-specific features can be considered from the beginning of the whole training procedure, i.e., NW-side decoder training.
· Generalization across multiple vendors
As for NW-first separate sequential training case, common model training shall be done at UE-side, to come up with a common AIML encoder which can handle possibly multiple AIML decoder models at NW-side. However, common AIML decoder should be considered at NW-side as well, to efficiently manage multiple UE device-specific variants which are reflected in input-CSI dataset. Any cell-site change/update may trigger AIML decoder model updates which in turn lead to common encoder re-training at UE-side. UE-side changes/update is not confined to UE-side model update any longer – it can propagate to trigger decoder model re-training at NW-side and eventually common encoder re-training at UE-side. 
· Backward compatibility aspects
As illustrated in Figure 6 with a yellow-glowing colour (steps ④, ⑤, ⑥), addition of the new device or new encoder model will necessitate either re-training of the (previously trained) common decoder model at NW-side or training of the separate dedicated decoder model customized for the new device/model at the cost of maintenance of multiple decoder models at NW-side. Moreover, re-training of the (previously trained) common encoder model at UE-side can be triggered as well.


[bookmark: _Ref142613904]Figure 6 NW-first separate sequential training (with UE device-specific input-CSI-NW dataset): multi-gNB vendor training scenario

Option 3 (Type 2): Joint sequential training based on activation and gradient exchange (a.k.a. “Freeze-and-Train”)
NW-side AIML decoder model is trained first, then NW-side provides UE-side with an API of the trained decoder model, such that UE-side training should be done in an interactive manner, i.e., with API accepting target CSI and CSI feedback (quantized latent vector) as input, returning gradients as output.
This option may have benefits over other options as claimed in [5], but for NW-vendor perspective, there is privacy concern – trained AIML decoder model details can be reverse engineered to reveal its proprietary information.
Other than privacy concern, it is questionable how well the pre-trained decoder model can cope with a new device (or updated device). As the parameters at decoder are frozen, possible training improvement can take place by AIML encoder model training at UE-side only. How far we can go with this set up? This aspect needs to be investigated thoroughly, in case this training option is to be decided to be further studied in 3GPP.  
Comparison of the two-sided sequential training schemes
	  Training types
	UE-first Separate Sequential
	NW-first Sequential

	
	
	Separate training w/raw (unquantized) dataset sharing
	Opt3: Freeze and Train
(gradient exchange based)

	
	
	Opt1: Reference input-CSI-NW
	Opt2: UE device-specific input-CSI-NW
	

	Input CSI type
	UE device-specific
	Reference input-CSI (agreed by UE vendors)
	UE device-specific
	UE device-specific

	Training loss*
	On output CSI
	On raw (unquantized) CSI feedback
	On raw (unquantized) CSI feedback
	On output CSI

	Common ENC or DEC training§ 
	On NW-side
	On UE-side
	On UE-side and NW-side
	On UE-side and NW-side

	UE-side triggering event
	Impact propagation** of non-AIML part update at UE-side
	Common DEC model re-training
	None
	Common DEC model re-training
	None

	
	Impact propagation** of ENC model update at UE-side
	Common DEC model re-training
	None
	None
	None

	
	Impact propagation** of new UE device
	Common DEC model re-training or Addition of 1:1 DEC
	None
	Common DEC model re-training or Addition of 1:1 DEC
	None

	NW-side triggering event
	Impact propagation** of cell-site update
	None
	Common ENC re-training
	Common ENC re-training
	Common ENC re-training

	Major concern/challenge
	Model maintenance effort
	Reference input-CSI-NW dataset (currently not defined)
	Model maintenance effort
	NW-side model privacy concern


[*]: According to the preliminary evaluation, there is no significant performance difference being observed between candidates (<0.1dB in SGCS [4]).
[**] “Impact propagation”: this item excludes the evident direct impact, i.e., ENC training of the new device when a new UE device is introduced, but rather refers to its subsequent impact, i.e., DEC re-training at the opposite side.
[§] This item indicates whether either common encoder at UE-sides (to serve multiple NW-side models) or common decoder at NW-sides (to serve multiple UE-side models) is required, or both common encoder at UE-sides and common decoder at NW-sides are required, for better maintenance of the training framework.

Considering the number of UE / receiver modem vendors and their associated potential UE-side model re-training triggering events, UE-first Separate Sequential training poses high risk of too frequent model re-training. Therefore, this case may be considered with lower priority.

Proposal 11: When it comes to two-sided sequential model training framework, deprioritize UE-first separate sequential training, due to its high model maintenance efforts. We propose to focus on NW-first sequential training framework and the associated options for further investigation.

Performance monitoring
[bookmark: _Hlk118347304]The measured channel data in real-world radio environments can be different from those in the training datasets. To ensure proper behaviour of the deployed models, performance monitoring is important and provides useful inputs for gNB to make decisions such as model activation/deactivation/updating/switching. The following agreement was reached in [1].
	Agreement
In CSI compression using two-sided model use case, study potential specification impact for performance monitoring including: 
· NW-side performance monitoring:  NW monitors the performance and make decisions of model activation/ deactivation/updating/switching    
· UE-side performance monitoring: UE monitors the performance and reports to Network, NW makes decisions of model activation/ deactivation/updating/switching   

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to potential co-existence and fallback mechanisms between AI/ML-based CSI feedback mode and legacy non-AI/ML-based CSI feedback mode.



Both NW- and UE-side performance monitoring need to be studied to help gNB make proper decisions. 
	Agreement
In CSI compression using two-sided model use case, further study at least the following options for performance monitoring metrics/methods:
· Intermediate KPIs as monitoring metrics (e.g., SGCS)
· Eventual KPIs (e.g., Throughput, hypothetical BLER, BLER, NACK/ACK).
· Legacy CSI based monitoring: schemes using additional legacy CSI reporting
· Other monitoring solutions, at least including the following option:
· Input or Output data based monitoring: such as data drift between training dataset and observed dataset and out-of-distribution detection

Agreement
In CSI compression using two-sided model use case, further study potential specification impact related to assistance signaling and procedure for model performance monitoring. 




In RAN1 #112, #112-bis, and 113 meeting, the following were further agreed.
	Agreement
In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.

Agreement
In CSI compression using two-sided model use case, for UE-side monitoring, further study potential specification impact on triggering and means for reporting the monitoring metrics, including periodic/semi-persistent and aperiodic reporting, and other reporting initiated from UE.

Agreement
In CSI compression using two-sided model use case, for NW-side monitoring, further study the necessity, feasibility and potential specification impact to enable performance monitoring using an existing CSI feedback scheme as the reference.
· The association between AI/ML scheme and existing CSI feedback scheme for monitoring
· Note: The metric for monitoring and comparison includes intermediate KPI and eventual KPI.
Other aspects are not precluded.

Agreement
In CSI compression using two-sided model use case, further study the necessity, complexity, overhead, latency and potential specification impact on ground truth CSI report for NW side data collection for model performance monitoring, including:   
· Scalar quantization for ground-truth CSI
· FFS: any processing applied to the ground-truth CSI before scalar quantization
· Codebook-based quantization for ground-truth CSI
· FFS: Parameter set enhancement of existing eType II codebook, based on evaluation results in 9.2.2.1
· RRC signaling and/or L1 signaling procedure to enable fast identification of AI/ML model performance
· Aperiodic/semi-persistent or periodic ground-truth CSI report.




In CSI compression using two-sided model use case, the SGCS is calculated based on the target (ground-truth) CSI and the NW-reconstructed CSI. If the SGCS is monitored at the UE side, the UE needs to know the NW-reconstructed CSI information. With Type 1 Joint training, the UE can calculate the SGCS since it knows the specific model used on the gNB side. With Type 2 Joint training, there’s no way for UE to do so since the knowledge about the decoder is unknown at UE. With Type 3 Separate training, if the UE-first approach is adopted, even though the UE still does not have the exact knowledge about the decoder, it could try to use the hypothetical decoder used in training as the proxy to derive the NW-reconstructed CSI. If SGCS is monitored at the Network side, it requires UE to send back the ground-truth CSI for calculating SGCS. Since it would introduce large overheads, the frequency of such reports needs to be considered, possibly jointly designed with the data collection process.
Another possible way to do performance monitoring is the model-based calculation of the distance between representations, where representation refers to the encoder output in general. The representation could be quantized or unquantized, and proper definitions of the distance and the corresponding metric threshold can be studied. Unlike comparing the measured channels and the training data sets which are only doable on the UE side, the calculation of the distance between representations is doable at both UE and gNB ends.
When it comes to UE-side monitoring, employing a two-sided model can affect how triggers are activated and how monitoring metrics are reported. To ensure the usefulness of such reports, the network needs to configure the UE side appropriately.
The UE can be configured to send periodic reports to enable the network to monitor the performance of the underlying system continuously. However, the reporting interval should not be too short due to the associated overheads.
Since there could be outlier downlink channel measurement samples, it might be necessary to perform some averaging over a period of time. One solution is to utilize triggering for semi-persistent reporting. The network can configure the UE to report KPIs such as SGCS semi-persistently, based on predefined events, such as performance degradation beyond a network-configured threshold. The reported KPIs can be transmitted via UCI or RRC reports.
To minimize overhead on the air interface, a one-shot (aperiodic) event can be configured for reporting. In case the UE detects a failure in the model, it can then trigger an event report to the network via RRC signaling.
We also believe that network-side monitoring is necessary due to the following reasons:
1. Some UE-side monitoring mechanisms may require proxy models, which can introduce additional inaccuracies in KPI measurement. In contrast, KPI calculation at the network side can be more precise, as the gNB has access to the output CSI and can receive the target CSI from the UE.
2. The network can obtain target CSI reports from multiple UEs. If the model degradation is due to changes in radio environments that affect these UEs, network-side monitoring can provide a more accurate estimate by utilizing the reports from multiple UEs.
3. The ground-truth target CSI can be directly used for other purposes, such as precoding.

Network-side monitoring requires the transmission of ground-truth target CSI, which can be conveyed in PUSCH. However, due to the overhead involved, such reports cannot be transmitted too frequently.
Proposal 12: For CSI compression, RAN1 shall consider the potential specification impact for performance monitoring by considering 
· Methods of performance monitoring 
· Option 1 (Fully-NW-sided): Use existing CSI feedback scheme for monitoring performance.  
· Option 2 (NW-sided, UE-assisted): UE determines performance metrics and reports them based on NW-defined/configured measurement resources, monitoring parameters, and reporting framework. 
· Option 3 (UE-sided, NW-assisted): UE determines performance metrics (not report) based on UE-sided assumptions, and requires some assistance from the NW for monitoring  
· This is mainly for model LCM (can also be transparent to the NW)
· Consider changes to the reporting framework for Option 1, Option 2
· For Option 1, strive to reuse the legacy CSI reporting framework. 
· For Option 2, study the enhancements of performance monitoring metrics and thresholds (if any), reporting quantities, reporting timelines, and other spec impacts 
· Consider changes to the measurement framework for Option 1, Option 2, and Option 3
· e.g., configure monitoring resources and periodicities
· Consider functionality LCM aspects related to the performance monitoring 


Data collection aspects

In RAN1 #112 meeting, the following was further agreed.
	Agreement
· In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact of UE side data collection enhancement including at least  
· Enhancement of CSI-RS configuration to enable higher accuracy measurement.
· Assistance information for UE data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc.
· The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.
· Signaling for triggering the data collection
· In CSI compression using two-sided model use case, further discuss the necessity, feasibility, and potential specification impact for NW side data collection including at least:   
· Enhancement of SRS and/or CSI-RS measurement and/or CSI reporting to enable higher accuracy measurement. 
· Contents of the ground-truth CSI including:  
· Data sample type, e.g., precoding matrix, channel matrix etc.
· Data sample format: scaler quantization and/or codebook-based quantization (e.g., e-type II like). 
· Assistance information (e.g., time stamps, and/or cell ID, Assistance information for Network data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc., and data quality indicator)
· Latency requirement for data collection
· Signaling for triggering the data collection




In summary, data collection can serve several purposes, including:
· Performance monitoring.
· Model fine-tuning.
· Training models offline, which could be given lower priority as it can result in increased signaling and data transmission overhead.

By collecting data, the network can evaluate the performance of the model and identify areas for further improvement. Offline training can be conducted using the collected field data to develop new models or improve existing ones. Fine-tuning can also be performed to adjust the model's parameters and improve its accuracy, enabling it to adapt to different radio environments. 
The network bears the responsibility for ensuring optimal system performance. Therefore, the network should control the procedures for data collection and the use of the collected data. For instance, although it is possible to fine-tune the encoder on the UE side, to ensure that such a change is successful, the network needs to be informed of when a model change is necessary, authorize it, and take the required follow-up actions accordingly.
When reporting DL channels, the raw channel matrices may be too large for systems with big antenna arrays. In this case, it is necessary to pre-process the data to reduce its size. Pre-processing techniques such as channel matrix transformation, channel clipping, and channel sub-sampling can be used to condense the data without compromising its accuracy too much. By employing these techniques, the data can be made more manageable and easier to process, making data collection feasible for channel matrix reporting.
When it comes to accuracy in using collected data for performance monitoring, it is not always necessary to use high-precision data formats, especially in cases where a certain level of imprecision can be tolerated without a significant impact on the overall calculation of the monitored KPIs. One way to reduce the precision of data is to use low-precision floating-point formats, which can represent numbers with fewer bits than standard floating-point formats. Another approach to reducing precision is codebook-based quantization. While codebook-based quantization can result in some loss of fidelity, it can be an effective way to balance data accuracy with computational and storage efficiency, especially when the codebook-based feedback mechanism is already implemented on the UE side.
Assistance information such as time stamps and cell IDs can be beneficial because they help the network determine the most efficient way to utilize data. By analyzing this information, the network can make informed decisions on how to organize and use the collected data. For instance, time stamps can help the network determine the age of the data and prioritize its processing accordingly. 
Moreover, providing the network with knowledge about the characteristics of the data can also be helpful in training or updating the model. Understanding key factors such as channel delay spread and Doppler spread can aid in the selection of appropriate models and parameters to use. To reduce transmission overhead, it may be beneficial to preprocess the data on the UE side before transmitting it to the network. By doing so, the amount of data that needs to be transmitted can be minimized, improving the overall efficiency of the network. Additionally, including UE vendor-related information and data quality indicators in the data can be beneficial, allowing the network to effectively integrate the data into existing datasets. This can facilitate multi-vendor model training and improve the network's overall performance.
Proposal 13: In CSI compression using a two-sided model, consider the following for the data collection, 
· CSI-RS measurements and reporting enhancements for data collection shall be mainly focused on performance monitoring or model fine-tuning, and considerations on the data collection for model training shall not be the main focus. 
· UE-sided data collection, 
· Existing CSI-RS configuration shall be used as the starting point for any form of data collection
· NW-sided data collection, 
· Enhancement of CSI reporting to enable higher accuracy reporting
· FFS: Assistance information reporting  

Discussion on model complexity
[bookmark: _Hlk142315023]Knowledge distillation (KD) is a potentially effective approach to reduce the CSI feedback model complexity by transferring the knowledge from a complex teacher model (such as NW-side model) to a simpler student model (such as UE-side model). A well-performing but large teacher model is used to train a smaller student model, which is computationally more efficient.
Knowledge Distillation for Complexity Reduction (SQ)
The concept of transferring information from a complex teacher model to a simpler student model can be applied to reduce complexity to individually on NW and UE side or to the entire two-sided ML based CSI feedback model. Feature distillation broadly encapsulates the idea of using hidden feature maps of the teacher model to guide the student model beyond the hard decision guide of the teacher model output. The possible mismatch in feature map dimension between teacher and student can be moderated using an additional feedforward layer in the teacher model without significantly impacting its performance. In case of separate training, the encoder and decoder of the teacher model can be stored separately or as one unified model with the capability of invoking individual components from them. In NW–first separate training, the trained and frozen teacher encoder is used as it is representing the hypothetical encoder. The teacher decoder with hidden feature information and hard decision boundary acts as the guide for NW side student decoder. The corresponding evaluation results can be found in the accompanying contribution [4].




Knowledge distillation for VQ-enabled NW-first separate training
The process involves training the student model to mimic the soft logits produced by the teacher model, in addition to the ground truth hard labels. This enables the student model to learn not only from the hard decisions of the teacher model but also from its uncertainty. Conventionally, the quantized level for scalar quantization or codeword indices for vector quantization are used as the hard labels for separate training. Below are presented ways to extend the hard labels to soft logits as well as corresponding separate training frameworks, which leads to significant complexity reduction by knowledge distillation.
We provide the KD-based NW-first separate sequential training with VQ as shown in Figure 7. The NW firstly comes up with and trains a hypothetical encoder, a codebook and a decoder. After finishing the NW-side model training and codebook determination (by learning or mathematical derivation), the NW-side entity generates a training dataset shared with UE. The shared dataset is the collection of separate training data sample, which is composed of the stored raw CSI and its associated logits vector . We elaborate the generation of  in the following. The latent vector in VQ is commonly divided into multiple segments in the case of long latent vector and short codeword in codebook. For each segment, its distances with all codewords in codebook are calculated as .  denotes the segment index. In the conventional scheme, the codeword index corresponding to the minimum distance is used as the feedback codeword. Here, we propose to use soft logits instead of the hard label for UE-side separate training. A logits vector can be obtained by passing  through a SoftMax layer with a hyperparameter called “temperature”. The complete logits vector  is then produced by concatenating all logits vectors from all segments. 
On completion of training dataset reception by UE, the UE-side encoder is trained with a classifier model whose hybrid loss function is the weighted sum of the regression loss (such as KL divergence) between the output latent vector with the logits vector  and the cross-entropy loss between the output latent vector with the hard-label (one-hot vector directly calculated from ).
[image: ]
[bookmark: _Ref142630204]Figure 7 Knowledge distillation for VQ-enabled NW-first separate training

Proposal 14: RAN1 shall consider the trade-off between CSI feedback model complexity and CSI reconstruction performance to accommodate devices with limited computational capability.
Proposal 15: RAN1 shall consider the possible use of soft logits capturing the quantization operation to enhance the separate training with reduced model complexity.

Other specification impacts
In RAN1 #112bis-e meeting, the following has been agreed.
	Agreement
The study of AI/ML based CSI compression should be based on the legacy CSI feedback signalling framework. Further study potential specification enhancement on
· CSI-RS configurations (No discussion on CSI-RS pattern design enhancements)
· CSI reporting configurations 
· CSI report UCI mapping/priority/omission
· CSI processing procedures.   
· Other aspects are not precluded.



The CSI feedback configuration could include: the number of feedback bits; quantization information; type of the associated decoder output (output CSI); indicator for possible post-processing.
In the current standards, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s), where CQI may need more resources for feedback in the case of sub-band reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver. For neural network-based solutions, CSI compression feedback is accomplished by using two-sided models, where an encoder is deployed on the UE side and decoder on the gNB side. If UE has complete knowledge about the decoder, approaches similar to legacy codebook-based solutions can still be considered for RI determination, and CQI can be calculated based on the decoder output inferred on the UE side. If UE does not have complete knowledge about the decoder, CQI could be calculated based on input to the encoder on the UE side, which, for example, can be eigenvector(s) or W2. In this case, there would be a mismatch between the calculated CQI and the real CQI, and the CQI reports could be optimistic. This is another source of SINR estimation error. Practically, OLLA can alleviate the problem by adjusting the SINR offset.
Additionally, since the reconstruction capability of the decoder model heavily depends on the underlying subject of compression, it is necessary to have well-defined model outputs, which can include antenna port configurations, sub-band configurations, the type of model output, and possibly others. As indicated in previous sub-sections, the type of model output can be the raw channels, the eigenvectors, or W2-like information. Potential post-processing can include linearly combining DFT vectors if the model output type is W2-like.
Regarding the exact CSI feedback sent from the UE to the network, it is expected that the format of the compressed information (output of the encoder) will be specified to a certain degree. There are several open issues to address there such as integrating ML-enabled CSI compression reports and legacy non-ML CSI reports, combining reporting of ML-enabled/compressed parts of CSI report with legacy non-ML parts, and method of providing scalable and flexible ML-based CSI reporting. To fit into the legacy CSI reporting set-up, mapping of compressed CSI into fixed/configurable/known-payload part (similar to CSI Part 1) and variable/predictable size (similar to CSI Part 2) may also be required with compressed CSI.  With such considerations, the ML-based CSI report can be efficiently integrated into the existing CSI reporting framework. When discussing CSI parts 1 and 2 in the CSI compression framework, as these get different priorities in the NR framework, the decoding and decompressing of the compressed CSI part 1 is also needed, and necessary info and also some level of CSI (e.g., lower resolution) may be sent using such a CSI part 1. Compressed CSI part 2 may provide additional information for CSI (e.g., higher resolution) which can be used together with CSI part 1 to decompress the full CSI.  

On UCI format of the CSI report
According to the agreements so far, 3GPP supports both scalar quantization (SQ) and vector quantization (VQ) for quantization of the latent vector. UCI payload size can be determined by the number of latent vector elements, i.e., dimension of the latent vector, and its quantization resolution, i.e., the number of allocated bits per each latent vector element (in case of SQ), or the dimension of sub-vector and the codebook size for sub-vector quantization (in case of VQ). The dimension of the latent vector, in turn, is associated with subband/transmit antenna port configuration, bandwidth (BW), receive antenna configuration, supported rank, compression ratio (CR), and so on, which can be possibly aligned by the UE and NW vendors via an associated pairing ID. This implies that an UCI format for the two-sided ML-based CSI feedback (with focus on PMI) should be flexible enough to be capable of representing various combinations of pairing attributes, e.g., subband/port configurations, BW, CR, quantization scheme (SQ or VQ), quantization resolution (word length), etc. It might be beneficial to limit the scope of possible combinations by collective agreement between companies, to render UCI format resource-efficient and practical. It may be worthwhile to investigate if there exists different level of quantization resolution requirement for different layer, e.g., high resolution for dominant eigenvector, medium/low resolution for others, to identify area for further improvement of bit allocation strategy.
Besides, there was a proposal in the last meeting to study reporting of eigenvalues or soft-rank as well as the precoding matrix (channel eigenvectors) for two-sided AI/ML CSI feedback [3]. It would be good if reporting of eigenvalues can be supported, if it deems beneficial from system performance perspective.
Proposal 16: Consider UCI format design scheme which provides flexibility to cope with various subband/port configuration, rank, CR, quantization scheme. It is desired that the UCI format can be easily augmented to convey channel eigenvalues as an optional feature, if configured.
Proposal 17: Consider differential quantization resolution per layer to make efficient bit allocation of UCI format for AI/ML CSI feedback.

Error in DL and UL Channel
Because of the noise in the DL channel, a UE always measures noisy reference signals (pilots), which results to imperfect CSI. So, the CSI is estimated in the UE using CSI-RS and a UE-specific channel estimator, resulting in eCSI:

where  is the error introduced by the imperfect DL channel estimation. As ϵ_1 is the main source of error in CSI feedback, it is important to mitigate the impact of it either at UE or NW side. Depending on UE capabilities, a UE may consider a simple or complex channel estimation. In case a UE is not capable of denoising the estimated CSI, UE may coordinate to mitigate the noise impact at the NW side.
The eCSI is then encoded by the encoder part of the AIML autoencoder into the bit vector C. The code C then undergoes a typical OFDM transmission over an UL control channel (i.e., the bits are encoded – typically using Polar codes, modulated onto QAM symbols, and then into an OFDM waveform). The OFDM waveform travels over a wireless propagation channel and it is contaminated by noise and interference. In the gNB, the signal undergoes an OFDM reception, including decoding, and an estimated code  is produced, where the estimation quality depends on the wireless conditions and the robustness of the transmission scheme:

where  is the error at the input of the AIML decoder. 
Observation 1: As an error in the code results to select a wrong level/codeword from the quantization codebook, it is necessary to:
A. UE and NW should coordinate on considering a proper indexing (permutation) for VQ codebook (like gray coding for SQ) to minimize the effects of wrong codeword selection,
B. NW coordinates with UE to detect/correct potential errors in the received code. 

Observation 2: A study on the effects of interference and noise on the performance of CSI-compression task and how new CSI-RS patterns can help in this process may be needed. The study should assess whether the auto-encoder architecture can deal with interference and noise in the estimated CSI. 
Proposal 18: RAN1 shall consider the impact of errors associated with the DL/UL reception on the performance of ML-based CSI compression and where/how to mitigate the noise impact at UE and NW including codebook permutation solutions.
In RAN1 #113 meeting, the FL summary suggested that the company should provide a more concise summary of the advantages and disadvantages of different training collaboration types. The following table captures the pros/cons of training collaboration types 1: 
	   Training types



Characteristics
	NW side Type 1
	Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively 
 

	UE side Type 1

	
	Unknown model structure at UE
	Known model structure at UE
	Unknown model structure at UE followed by retraining at UE side
 
	
	Unknown model structure at NW
	Known model structure at NW

	Whether ENC model can be kept proprietary from NW
	No
	No
	Yes
	Yes
	N/A
	N/A

	Whether DEC model can be kept proprietary from UE
	N/A
	N/A
	N/A
	Yes
	No
	No

	Whether require privacy-sensitive dataset sharing
	No
	No
	No
	No
	No
	No

	Flexibility to support cell/site/scenario/configuration specific model
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether gNB specific optimization is allowed
	Yes
	Yes
	Yes
	Yes
	No
	Yes

	Whether device specific optimization is allowed
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment (note 3)
	Semi-flexible
	Semi-flexible
	Semi-flexible
	Semi-flexible
	Semi-flexible
	Semi-flexible

	Feasibility of allowing UE side to develop/update models separately
	Infeasible
	Infeasible
	Feasible
	Infeasible
	Feasible
	Feasible

	Feasibility of allowing NW side to develop/update models separately
	Feasible
	Feasible
	Feasible
	Infeasible
	Infeasible
	Infeasible

	Whether gNB can maintain/store a single/unified model over different UE vendors [for a CSI report configuration]
	Yes
	Yes
	Yes
	Yes
	No
	Yes

	Whether UE device can maintain/store a single/unified model over different NW vendors [for a CSI report configuration]
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Whether training data distribution can match the inference device
	No guarantee
	No guarantee
	No guarantee
	No guarantee
	No guarantee
	No guarantee

	Software/hardware compatibility (Whether device capability can be considered for model development)
	Compatible
	Compatible
	Compatible
	Compatible
	Compatible
	Compatible



The following table captures the pros/cons of training collaboration types 2 and type 3:  
		      Training types
Characteristics
	Type 2
	Type 3

	
	Simultaneous
	Sequential
	NW first
	 UE first

	Whether model can be kept proprietary 
	Yes
	Yes
	Yes
	Yes

	Whether require privacy-sensitive dataset sharing
	No (Note 1)
	No (Note 1)
	No (Note 1)
	No (Note 1)

	Flexibility to support cell/site/scenario/configuration specific model
	More difficult than type 3
	Semi-flexible.
	Semi-flexible.
	Semi-flexible. With assisted information signaling

	Whether gNB/device specific optimization is allowed
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment (note 3)
	Not flexible
	Semi-flexible
	Semi-flexible
	Not flexible

	Feasibility of allowing UE side and NW side to develop/update models separately
	Infeasible
	Feasible
	Feasible
	Feasible

	Whether gNB can maintain/store a single/unified model over different UE vendors [for a CSI report configuration]
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Yes
(Note 4)
	Pending evaluation in 9.2.2.1 (Note 5)

	Whether UE device can maintain/store a single/unified model over different NW vendors [for a CSI report configuration]
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Yes per camped cell. 
Generalization over multiple NW pending 9.2.2.1
(Note 5)
	Yes
(Note 4)

	Extendibility: to train new UE-side model compatible with NW-side model in use; 
	Yes
	Yes
	Yes
	Possible with the nominal/hypothetical decoder, but may introduce performance degradation

	Extendibility: To train new NW-side model compatible with UE-side model in use
	Yes
	Possible with the nominal/hypothetical encoder, but may introduce performance degradation
	Possible with the nominal/hypothetical encoder, but may introduce performance degradation
	Yes

	Whether training data distribution can match the inference device
	No guarantee
	No guarantee
	No guarantee
	No guarantee

	Software/hardware compatibility (Whether device capability can be considered for model development)
	Compatible 
	Compatible
	Compatible
	Compatible

	Model performance based on evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1



Note 1: Assume precoding matrix is not privacy sensitive data. FFS: other information such as channel matrix and assisted information. 
Note 2: Assume information on model structure disclosed in training collaboration does not reveal proprietary information.
Note 3: Flexibility after deployment is evaluated by the amount of offline cross-vendor co-engineering effort. Flexible indicates minimum additional co-engineering between vendors, semi-flexible indicates additional co-engineering effort between vendors.  
Note 4: Under the assumption that the vendor training first has engineering freedom to design its own model, the condition follows naturally. [To understand the effects of long-term evolution of the AI/ML model in the eco-system, further studies are needed].
Note 5: Additional assistance signaling may be needed. Once the first side has done training, a model defines a mapping between latent space codeword and CSI, i.e., implicitly defining a codebook. If multiple vendors are part in the first-side training, those multiple models may represent multiple codebooks. For the second side to train a unified model, it would require assistance information to ensure that a unified model compresses/decompresses according to the correct codebook.
Note 6: The need for matching the inference device in training can be limited, when mixing datasets from different device Types are used.

CSI Prediction
Time domain CSI prediction using UE-sided models has been agreed upon as one sub-use case for the AI/ML study item in RAN1#112. In RAN1#112b-e it has been agreed, to make a final conclusion whether to address the potential spec impact of CSI prediction in RAN#100, which resulted in following conclusion: 
	From RAN#100: 
•RAN tasks RAN WGs to study a subset of the specification impacts of CSI prediction limited to the following aspects:
•data collection procedures reusing as much as possible what is defined for UE side use cases
•monitoring procedure and associated fallback mechanism to legacy CSI reporting




Our proposed applicable conditions can be found in R1-2302629. This contribution provides further analysis over standard impacts.

[bookmark: _Hlk141804116]Specification Impacts
We analyze the potential specification impact for two cases. For the first case CP1 the UE sided channel prediction is implemented with no, or almost no 3GPP specification impact. In this case, the assumption is to reuse the Rel-18 MIMO WI agreements for ‘CSI Enhancement Type-II-Doppler’ as far as possible. The UE is then basically replacing the PHY layer rule-based channel predictor by a related AI/ML model, but otherwise behaves the same as a Rel-18 MIMO UE. Note that the Rel-18 MIMO WI is not finalized yet, but the basic concept is already visible.  
In the second case CP2, the UE sided channel prediction is assisted by the gNB, for example, to support basic AI/ML related functionalities with the goal to achieve higher performance and reliability, e.g., due to finetuning. To minimize the related standardization effort, it had been agreed in RAN100 to follow as far as possible the agreements for other UE sided use cases. We use as reference the ongoing work for the UE sided beam management and take the related proposals and agreements as starting point for the sub use case channel prediction. Due to the agreement for UE sided channel prediction from following agreement only Alt. 2 and Alt. 3 are of relevance.   
	RAN1#111 Agreement
For the sub use case BM-Case1 and BM-Case2, at least support Alt.1 and Alt.2 for AI/ML model training and inference for further study:
· Alt.1. AI/ML model training and inference at NW side
· Alt.2. AI/ML model training and inference at UE side
· The discussion on Alt.3 for BM-Case1 and BM-Case2 is dependent on the conclusion/agreement of Agenda item 9.2.1 of RAN1 and/or RAN2 on whether to support model transfer for UE-side AI/ML model or not
· Alt.3. AI/ML model training at NW side, AI/ML model inference at UE side



For the discussion of the case CP1 versus case CP2, we assume the general architecture as currently discussed, e.g., in RAN2. 
[image: A diagram of a model training

Description automatically generated]
Figure 8:  General architecture for AI/ML

Case CP1: UE sided channel prediction and LCM with no/minimum gNB assistance
First let us consider case CP1, which assumes no to minimum standardization impact compared to Rel-18 MIMO CSI enhancements.
· UE vendor specific LCM: or case CP1 the control of the data retrieval, model training, channel prediction inference, model monitoring, selection, update, switching, (de)activation, etc. is all up to the UE vendor. Similarly, the generalization to different UE speeds, carrier frequencies, scenarios, HW configurations has to be ensured by the UE vendor. Table 1‑1 provides for the case CP1 the proposed mapping of AI/ML functions to physical entities. 
[bookmark: _Ref141787960]Table 1‑1: The mapping of AI/ML functions to physical entities for UE-sided channel prediction for case CP1
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training
	UE, OTT server

	a1)
	finetuning
	UE

	b)
	Model transfer/delivery
	OTT server->UE

	c)
	Inference
	UE

	d)
	Model/functionality monitoring
	UE

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	UE



· CSI RS configurations: 
CSI RS configurations for channel prediction are one essential part of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI discussions. It can be expected that the proposed configurations should be a good starting point for ML based channel prediction as well. One should note that the basic physical layer effects are independent from the method used for the channel prediction. Relevant issues are then:

1. Ensure that aperiodic plus periodic CSI RS configurations provide sufficient flexibility to support different mobile speeds and Carrier frequencies with high prediction performance. 
2. Allow for sufficiently long observation windows with an appropriate number of CSI observations and a sufficiently high CSI RS repetition rate. Especially, for model fine tuning and/or training data collection long to very long observation windows over hundred to several hundreds of ms might be needed.   
3. In R1-2209367 we illustrated the benefits of a high bandwidth for the CSI RSs for an improved channel prediction performance. It must be checked how far current configurations allow a high CSI RS bandwidth, especially in combination with a high number of UEs. Potential limitations for the CSI RS configuration have to be analyzed.  
· CSI reporting method:
1. One possible CSI reporting scheme follows the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI, which will probably report the CSI evolution into the future by a Doppler domain matrix Wd on top of W1, W2, Wf. Note that for AI/ML UE sided channel prediction the UE is quite flexible in implementing any useful CSI reporting method, i.e., can adapt to the outcome of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI. Reusing this way of reporting of predicted CSI avoids/minimizes the effort for standardization.  
2. There are more discussions in the WI related to the CQI reporting, which goes into the direction of reporting two CQI values for two prediction time instances. This scheme can be reused as a first baseline assumption.  
3. More details have to be checked when there is a final solution defined for the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI, but generally ML based channel prediction is quite flexible compared to filter-based methods and might easily adapt.  
· Overfitting or short retraining of ML models to specific channel conditions seems to be useful as it overcomes degradations for generalized ML models. Therefore, it might reduce the number of switchings between scenario specific ML models (see Annex 1). For the case CP1 the finetuning of ML models is in the hand of the UE vendor. At the same time, it will involve to some extent the gNB as the gNB has to transmit the reference signals needed for channel measurements. In a first option, the UE vendor might avoid any fine tuning by applying ML models with high generalization capabilities. A second option is to reuse existing reference signals like persistent and semi persistent CSI RS configurations for the purpose of fine tuning. The related possibilities and limitations like high configuration overhead must be checked, especially with respect to what is provided by the ongoing CSI Enhancement Type-II-Doppler Rel-18 MIMO WI.  

Observation 3: UE sided AI/ML based channel prediction seems to be feasible with no/minimum changes compared to the PHY based channel prediction as provided in the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI. 
Proposal 19: Consider UE sided channel prediction with no/minimum specification impact as baseline reference, which mostly follows the PHY based channel prediction solution of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI.
Observation 4: Finetuning and/or retraining of ML models might be inefficient, e.g., with respect to the aperiodic CSI RS triggering. Data set based training and/or retraining of ML models is not supported by the Rel-18 MIMO WI.
Proposal 20: Analyse the final agreed PHY based channel prediction solution of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI and identify potential limitations for AI/ML channel predictors. Potential standard relevant changes have to be motivated by clear benefits.

Case CP2: UE sided channel prediction with gNB assistance 
For case CP2 we evaluate the potential benefits of gNB assistance, which might help to improve the overall performance of the AI/ML based channel prediction compared to case CP1. LCM is still expected to be mainly in the hands of the UE vendor. gNB assistance means that it will include at least some standardization effort, which has to be paid off by some other benefits.   
· In a first option, similar to Alt. 2 for beam management, ML model selection, updating, switching, (de)activating, data preprocessing, etc. is UE vendor specific. As we assume here a one-sided model, there is no direct need for the gNB to know the ML model used at the UE side. 
· Alt. 3 for beam management assumes NW sided ML model training and inference at UE side. This requires an effective model transfer from the gNB to the UE. Beneficial might be the higher processing power and memory available at the gNB for training with large data sets. Collaboration level z based CSI prediction, i.e., including the exchange of ML models in Table 1‑2 includes also the options for model training, model monitoring etc. at other entities than the UE, similar as discussed in RAN2 for other sub use cases.   
     
· Instead of a full training of a new ML model, more often a retraining based on latest channel observations might be needed. Collaboration level y based CSI prediction, i.e., including the signaling for support of procedures like model fine tuning of ML models at the UE side are then required. To achieve an efficient retraining process, for example, predefined CSI RS configurations with a predefined rate and a few possible time durations might be revoked depending on the current side conditions at the UE.  

[bookmark: _Ref141797914]Table 1‑2: The mapping of AI/ML functions to physical entities for UE-sided channel prediction for case CP2
	
	AL/ML functions (if applicable)
	Mapped entities

	a)
	Model training 
	UE, gNB, OAM, OTT server

	a1)
	Finetuning/retraining
	preferably at UE

	b)
	Model transfer/delivery
	gNB->UE, or OAM->UE, or OTT server->UE

	c)
	Inference
	UE

	d)
	Model/functionality monitoring
	UE, gNB

	e)
	Model/functionality control (selection, (de)activation, switching, fallback)
	gNB if monitoring resides at UE or gNB, 
UE if monitoring resides at UE



gNB support and possible assistance: 
Differently to case CP1, here we assume that the gNB can, or, might assist the UE in some specific ways, which might then lead to some related signaling as well as specification impact for the assistance information. For example, following issues might be relevant and useful: 
· In a first step the gNB may check by some UE capability reports the applicable conditions for the ML based channel prediction functionality, which might be as defined in the Annex I and might include for example:
a. UE capabilities like latency, processing complexity, number of parallel APs, CSI RS configurations, type of prediction, supported prediction horizon, 
b. Max number of supported functionalities (1, 2, 4, 8, ...)
c. Max number of functionalities 
d. Delay in activating a functionality (2 ms, 4 ms, ...)
e. Generalization condition of functionalities, etc.
By agreeing on the applicable conditions, it is possible to ensure a proper operation mode for the channel prediction and the gNB can properly adapt, e.g., its downlink precoding and scheduling strategies. 
· LCM: in this case CP2 the gNB might support the UE for the LCM with respect to the data retrieval, model training, model monitoring, selection, update, switching, (de)activation, etc. and related functionalities might be mapped corresponding to Table 1‑2. The benefit might be, for example, the increased processing capabilities of a gNB compared to a UE. 
· The gNB might provide cell and/or scenario specific training data sets, which can be adaptive, for example, with respect to the different UE locations within the gNB cell. These training data can be learned by the gNB over longer time periods based on previous UE feedbacks. Efficient methods like training data generators might be used to transfer the potentially otherwise huge training data sets from the gNB to the UEs. A training data generator might be implemented by a set of predefined channel models plus the tuning of some channel model parameters. The scenario specific training data sets might be used to exploit the AI/ML capabilities like adaptability and flexibility to specific scenarios or environments with the expectation of an improved channel prediction performance. We assume a transfer learning solution with mainly a retraining of the predefined UE ML models with a reasonably low processing effort.  
· Similarly, the gNB might support the UE overfitting or fine tuning as discussed in Annex 1. Finetuning of ML models to the latest channel conditions is one option to get best channel prediction performance with one or few ML models, which are generalized to a wide range of scenarios. Due to this wide range of scenarios, there can be a more or less noticeable performance drop compared to a specialized ML model in not so well covered scenarios. The finetuning is then used to recover from the performance drop. The gNB assistance might then cover following steps:
a) in a first step the UE observes the radio channel for one to few CSI instances, infers a closeness value plus reports this closeness value to the gNB  
b) the gNB configures then CSI RSs for the fine tuning (overfitting) at the UE side, which is then optimized for the reported closeness value
i. As there might be more than one UE in the cell the gNB might broadcast or multicast a DCI message indicating the fine-tuning opportunity for all UEs
ii. To support the best performance for the fine tuning the gNB might configure on cell level or over multiple cells specific interference free or low inference CSI RSs. This helps the UEs to better overfit to the radio channels and for suitable implementations enables then an increased noise reduction effect, which is especially welcome for cell edge UEs. 

Proposal 21: Consider gNB control of applicable conditions per UE to ensure proper operation for different configurations and in different environments.
Observation 5: From evaluation results so far, it seems that generalized ML models have small to moderate performance degradations compared to scenario specific trained or fine-tuned ML models. 
Observation 6: Finetuning and/or retraining of ML models can overcome in certain scenarios limited generalization performance. Finetuning requires support of the gNB, i.e., the gNB has to transmit a proper set of CSI RSs to allow the UE a channel estimation over few to several hundreds of ms. 
Proposal 22: Consider fine tuning and/or retraining of AI/ML models as part of the AI/ML framework for UE sided channel prediction. For that purpose, support efficient setup of CSI RS configurations with CSI RS transmissions over potentially few hundreds of ms as well as efficient transfer of training data sets, e.g., by the means of training data generators.  
   
· Model monitoring

For the related UE sided sub use case beam management there is following agreement with respect to Model monitoring:

	RAN1#110bis Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, study the following alternatives for model monitoring with potential down-selection: 
· Atl1. UE-side Model monitoring
· UE monitors the performance metric(s) 
· UE makes decision(s) of model selection/activation/ deactivation/switching/fallback operation
· Atl2. NW-side Model monitoring
· NW monitors the performance metric(s) 
· NW makes decision(s) of model selection/activation/ deactivation/switching/ fallback operation
· Alt3. Hybrid model monitoring
· UE monitors the performance metric(s) 
· NW makes decision(s) of model selection/activation/ deactivation/switching/ fallback operation



This agreement keeps all options for monitoring open. For UE sided channel prediction Alt1 and Alt3 are more promising, where the UE compares its predicted with the latest CSI estimates for the predicted time instance .  Then, there is only a minor impact to the gNB as it just has to transmit CSI RS aligned with the CSI prediction time instance  so that the UE can make such a comparison. The monitoring requires the UE to compare its predicted and reported CSI with the ground truth CSI at the time . Especially, for UEs in low SINR conditions estimation of an accurate ground truth CSI might be challenging. For that purpose, one can consider the additional transmission of monitoring CSI RSs as illustrated in Figure 9. The monitoring CSI RSs might be configured so that a higher SINR can be achieved for the channel estimation. For, example, one can consider power boosting, transmission over more than one resource element per AP with or without power boosting, ZP CSI RSs in adjacent cells to ensure a low inter cell interference, etc. In case the monitoring happens with a relatively low rate compared to the legacy CSI RSs then the related overhead will be small. 
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[bookmark: _Ref141892500]Figure 9: Conventional CSI RSs (red) used for channel prediction for the prediction time instances tpred (black circles). For estimation of the ground truth the gNB transmits ‘monitoring CSI RSs’ (blue), which are transmitted at the prediction time instances.
Figure 10 illustrates a variant for monitoring CSI RSs, where these are transmitted in parallel to legacy CSI RSs. That way the legacy CSI RSs are not interrupted so that a continuous channel prediction over a sliding window is possible. The monitoring is similarly possible over a sliding window. Here the assumption is that the monitoring CSI RSs are transmitted on resource elements directly adjacent to the legacy CSI RSs. Note that in case of orthogonal cover codes of length two the legacy and the monitoring CSI RSs might be transmitted for the same resource elements.     

[image: Ein Bild, das Text, Screenshot, Schrift, Grafiken enthält.

Automatisch generierte Beschreibung]
[bookmark: _Ref140067997]Figure 10: Monitoring CSI RSs (blue) transmitted regularly in parallel to the conventional CSI RS (red) allocated to different close by resource elements.

Under the assumption that the UE reports legacy Type II CSI then the UE can calculate and compare the inferred and reported CSI with that calculated from the ground truth estimate using the monitoring CSI RSs. In that case, the GSCS is a good candidate as intermediate KPI to monitor the channel prediction performance.   
The processing overhead for calculating this KPI is moderately low and the latency requirements for monitoring are generally quite relaxed, i.e., latencies of  100ms or even more should be acceptable. Therefore, UE sided monitoring is the natural choice. The relatively large overhead for reporting of ground truth CSI to the network side to enable NW sided monitoring should be justified. Instead, the UE might report from time its current monitoring status. 
The gNB assistance is then related to the configuration and transmission of monitoring CSI RSs properly aligned with the legacy CSI RSs and the reporting of predicted CSI. In addition, the NW side might configure monitoring thresholds, i.e., minimum intermediate KPI values like a minimum GSCSmonitor the UE channel predictor ML model has to achieve. As different SINRs lead to different channel prediction performance one option is to i) define an SINR dependent GSCSmonitor (SINR), or, ii) there is a minimum relative gain over the CSI without prediction, i.e., over ZOH.  
· Fallback mode: 
A robust and simplest fallback mode can be implemented by observing the outcome of the ML model monitoring. In case the channel prediction quality drops over a certain number of time instances fallback below a certain predefined threshold fallback then the inference of the ML predictor might be replaced by a ZOH prediction. Note that ZOH prediction is often the most robust solution, even so with an obviously limited performance. 
In principle, the fallback mode can be handled for UE sided channel prediction directly by the UE. At the same time a fallback mode will typically affect the channel prediction performance. Therefore, it might be of interest for the gNB to know if the UE is in fallback mode or is able to provide highest channel prediction performance. In addition, the gNB might control the fallback mode in case it observes unusual behavior in its cell from one or multiple UEs, e.g., by setting values for fallback and fallback. In that case there might be some definitions related to:
· Trigger conditions
· Minimum performance threshold before fallback
· Time to fallback
· Scalability
The scalability of the ML channel predictor to various gNB, UE and cell configurations like different antenna configurations, different CSI RS bandwidth, etc. might be supported by related messages providing information describing, e.g., the used antenna configuration at the gNB. That avoids the need for the UE to infer this information from measurements with the possibility to make a wrong conclusion.
· Data preprocessing
Data preprocessing is due to the single sided operation still UE vendor specific. Only in case there is an impact to the reporting characteristics then it might be of interest for the gNB to know or control the data pre-processing. 
· CSI RS configurations and related DCI messages: 
The CSI RS configurations are expected to reuse Rel-18 MIMO methods as far as possible. If there is any need for more advanced configurations is to be studied carefully, for example, when considering:  
a) High speed UEs as well as high Carrier frequencies, which might lead to an under-sampling of the radio channel 
b) wideband CSI RS configurations with low overhead and for large UE user groups
· CSI reporting methods:
· Rel-18 MIMO WI defines reporting of predicted CSI based on the Doppler delay domain matrix W4 with N4 values. Alternatively, one can consider reporting CSI for a single prediction time instance tpredict. Together with an interpolation one can recover the channel evolution up to tpredict. This saves the extra overhead for reporting of the matrix W4 and has the same overhead as Rel 16 Type II CSI. Pros and cons of both options might be checked and even switching between the option depending on use cases or UE capabilities might be considered.

Observation 7: Performance monitoring and the switching into fallback mode might benefit from gNB assisted configurations. For example, specific monitoring CSI RSs can improve the UE sided estimation of the ground truth CSI, thereby leading to an improved monitoring accuracy and a more precise fallback mode decision.
Proposal 23: Consider gNB assistance for performance monitoring and the handling of the fallback mode like the transmission of ground truth CSI RSs.  

Way forward with channel prediction: 
Accurate channel prediction over longer prediction times with high reliability is a challenging task. Currently, AI/ML is able to infer predicted CSI so that it leads to at least some system level gains over ZOH. Practical and theoretical performance limitations have been identified for a given observation time duration and frequency bandwidth as well as a given SINR. We see potential to overcome these limits by, e.g., more advanced schemes like two-sided instead of single sided channel prediction to mention only one, eventually leading to higher SL performance gains and longer prediction times. Similarly, fine tuning or overfitting of ML models to specific radio channel conditions might help to limit the number of scenario specific ML models as well as can be seen as a useful method for noise reduction.    

Conclusion
In this contribution, we have discussed the details of CSI compression sub-use case. Our proposals and observations are:

CSI compression sub-use case:
 
Proposal 1: For the two-sided CSI feedback compression sub-use case, RAN1 shall define conditions for functionalities to enable functionality-based LCM. 
Proposal 2: For the two-sided CSI feedback compression sub-use case, RAN1 to study the following conditions for functionalities,  
•	CSI-RS measurement conditions 
•	CSI-RS and CSI reports configuration conditions
•	CSI calculation conditions (i.e., number of occupied CPUs)
•	Output CSI conditions
•	Compression ratio conditions (e.g., CR4, CR8, …)
•	Quantizer conditions (e.g., SQ1, VQ1, …)
•	Pairing ID (e.g., model ID, dataset ID)
•	Generic conditions on supporting ML functionalities
Proposal 3: For the two-sided CSI feedback compression sub-use case, identify the additional conditions prior to discussing any reporting framework for that. 
Proposal 4: For the two-sided CSI feedback compression sub-use case, after NW configures functionalities to the UE, study a reporting framework to report applicable functionalities at the UE side. 
Proposal 5: Consider consecutive grouping of every S elements of encoder outputs as the segmentation method.
Proposal 6: The segmentation size and allocated quantization bits/segment should be aligned between NW and UE.
Proposal 7: RAN1 to support that the quantization levels/codebook can be aligned eighter by sharing the quantization properties (distribution, scaling factor, etc.) or directly sharing the considered/obtained quantization levels/codewords.
Proposal 8: To ease quantization alignment between NW and UE, RAN1 shall limit options for segment size (S) and allocated quantization bits per segment (B).
Proposal 9: In CSI compression using a two-sided model with a training framework of NW-first separate sequential training, adopt a raw (unquantized) latent vector sharing scheme for better training performance.
Proposal 10: In CSI compression using a two-sided model with a training framework of NW-first separate sequential training, reference input-CSI-NW dataset can play the essential role for successful deployment of this framework. UE vendors should formulate and agree on requirements for reference input-CSI-NW dataset definition and provide NW-side with reference input-CSI-NW dataset. 
Proposal 11: When it comes to two-sided sequential model training framework, deprioritize UE-first separate sequential training, due to its high model maintenance efforts. We propose to focus on NW-first sequential training framework and the associated options for further investigation.
Proposal 12: For CSI compression, RAN1 shall consider the potential specification impact for performance monitoring by considering 
· Methods of performance monitoring 
· Option 1 (Fully-NW-sided): Use existing CSI feedback scheme for monitoring performance.  
· Option 2 (NW-sided, UE-assisted): UE determines performance metrics and reports them based on NW-defined/configured measurement resources, monitoring parameters, and reporting framework. 
· Option 3 (UE-sided, NW-assisted): UE determines performance metrics (not report) based on UE-sided assumptions, and requires some assistance from the NW for monitoring  
· This is mainly for model LCM (can also be transparent to the NW)
· Consider changes to the reporting framework for Option 1, Option 2
· For Option 1, strive to reuse the legacy CSI reporting framework. 
· For Option 2, study the enhancements of performance monitoring metrics and thresholds (if any), reporting quantities, reporting timelines, and other spec impacts 
· Consider changes to the measurement framework for Option 1, Option 2, and Option 3
· e.g., configure monitoring resources and periodicities
· Consider functionality LCM aspects related to the performance monitoring 
Proposal 13: In CSI compression using a two-sided model, consider the following for the data collection, 
· CSI-RS measurements and reporting enhancements for data collection shall be mainly focused on performance monitoring or model fine-tuning, and considerations on the data collection for model training shall not be the main focus. 
· UE-sided data collection, 
· Existing CSI-RS configuration shall be used as the starting point for any form of data collection
· NW-sided data collection, 
· Enhancement of CSI reporting to enable higher accuracy reporting
· FFS: Assistance information reporting  

Proposal 14: RAN1 shall consider the trade-off between CSI feedback model complexity and CSI reconstruction performance to accommodate devices with limited computational capability.
Proposal 15: RAN1 shall consider the possible use of soft logits capturing the quantization operation to enhance the separate training with reduced model complexity.
Proposal 16: Consider UCI format design scheme which provides flexibility to cope with various subband/port configuration, rank, CR, quantization scheme. It is desired that the UCI format can be easily augmented to convey channel eigenvalues as an optional feature, if configured.
Proposal 17: Consider differential quantization resolution per layer to make efficient bit allocation of UCI format for AI/ML CSI feedback.
Observation 1: As an error in the code results to select a wrong level/codeword from the quantization codebook, it is necessary to:
A. UE and NW should coordinate on considering a proper indexing (permutation) for VQ codebook (like gray coding for SQ) to minimize the effects of wrong codeword selection,
B. NW coordinates with UE to detect/correct potential errors in the received code. 
Observation 2: A study on the effects of interference and noise on the performance of CSI-compression task and how new CSI-RS patterns can help in this process may be needed. The study should assess whether the auto-encoder architecture can deal with interference and noise in the estimated CSI.
Proposal 18: RAN1 shall consider the impact of errors associated with the DL/UL reception on the performance of ML-based CSI compression and where/how to mitigate the noise impact at UE and NW including codebook permutation solutions.
CSI prediction sub-use case:
Observation 3: UE sided AI/ML based channel prediction seems to be feasible with no/minimum changes compared to the PHY based channel prediction as provided in the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI. 
Proposal 19: Consider UE sided channel prediction with no/minimum specification impact as baseline reference, which mostly follows the PHY based channel prediction solution of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI.
Observation 4: Finetuning and/or retraining of ML models might be inefficient, e.g., with respect to the aperiodic CSI RS triggering. Data set based training and/or retraining of ML models is not supported by the Rel-18 MIMO WI.
Proposal 20: Analyse the final agreed PHY based channel prediction solution of the CSI Enhancement Type-II-Doppler Rel-18 MIMO WI and identify potential limitations for AI/ML channel predictors. Potential standard relevant changes have to be motivated by clear benefits.
Proposal 21: Consider gNB control of applicable conditions per UE to ensure proper operation for different configurations and in different environments.
Observation 5: From evaluation results so far, it seems that generalized ML models have small to moderate performance degradations compared to scenario specific trained or fine-tuned ML models. 
Observation 6: Finetuning and/or retraining of ML models can overcome in certain scenarios limited generalization performance. Finetuning requires support of the gNB, i.e., the gNB has to transmit a proper set of CSI RSs to allow the UE a channel estimation over few to several hundreds of ms. 
Proposal 22: Consider fine tuning and/or retraining of AI/ML models as part of the AI/ML framework for UE sided channel prediction. For that purpose, support efficient setup of CSI RS configurations with CSI RS transmissions over potentially few hundreds of ms as well as efficient transfer of training data sets, e.g., by the means of training data generators.  
Observation 7: Performance monitoring and the switching into fallback mode might benefit from gNB assisted configurations. For example, specific monitoring CSI RSs can improve the UE sided estimation of the ground truth CSI, thereby leading to an improved monitoring accuracy and a more precise fallback mode decision.
Proposal 23: Consider gNB assistance for performance monitoring and the handling of the fallback mode like the transmission of ground truth CSI RSs. 
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