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1 [bookmark: _Toc14497]Introduction
According to discussion in 3GPP RAN1#113 meeting [1], some progress has been made on evaluation methodology for CSI feedback enhancement. In this contribution, we provide our views on further details for evaluation methodology and share some evaluation results. In our companion contribution [2], potential specification impacts are discussed accordingly.
2 [bookmark: _Toc17114]Evaluation of the high-resolution quantization of the ground-truth CSI 
In RAN1#110bis-e meeting [3], several high-resolution quantization methods were mentioned, e.g., Float32, Float16, R16 Type II-like method with new parameter combinations. Several companies showed that R16 Type II-like method with new parameter combinations can achieve attractive performances with low overhead [4]-[7], while some companies consider the current parameter combinations are enough. Therefore, RAN1#113 meeting [1] agreed to consider the legacy values of eType-II PC6 and eType-II PC8 for performance comparison.
	· In RAN1#113 meeting
Agreement
For the evaluation of the R16 eType II-like codebook based high resolution quantization of the ground-truth CSI in the CSI compression for AI/ML training, regarding the evaluation of new values of eType II parameters, consider the legacy values of PC6&PC8 as the baseline/lower-bound of performance comparison.
· Note: it has been agreed that Float32 is adopted as the baseline/upper-bound of performance comparison.


In this section, our evaluation results for R16 Type II-like methods with existing and new parameter combinations are shown, wherein the existing parameter combinations are PC6 and PC8, and two new parameter combinations mentioned in [4] are used. In addition, float32 format is used as an ideal performance baseline. For convenience, the two parameter combinations are denoted by eType-II PC9 and eType-II PC10 respectively, and the details are as following:
· eType-II PC9: L = 8, , , Reference amplitude = 8 bits, Differential amplitude = 4 bits, Phase = 6 bits
· eType-II PC10: L = 10, , , Reference amplitude = 8 bits, Differential amplitude = 4 bits, Phase = 6 bits
To achieve a higher resolution, the two new parameter combinations of eType-II PC9 and eType-II PC10 have larger L values and larger  values than legacy eType-II PCs, to achieve a higher resolution. Table 2-1 shows the maximum overhead and SGCS (first layer and second layer) for the ground-truth CSI quantized by eType-II PC6, eType-II PC8, eType-II PC9, eType-II PC10 and float32 for rank 2. The overheads of the eType-II PCs are compressed to only 1.01% to 3.8% compared to float32. As shown in Table 2-1, the new parameters can achieve higher SGCS than the existing parameter combinations, which may lead to a good AI model performance when the corresponding data is used for training. Moreover, Table 2-2 shows SGCS performance for models trained on data in different quantization methods, where the test data for all the methods applies float32 format. Compared to float 32 format, the model trained on eType II PC6 and eType II PC8 show a large performance loss in terms of SGCS. However, only a marginal performance loss is observed when the training data is based on the new parameter combinations (i.e., PC9 and PC10). 

Table 2-1: Maximum overhead and SGCS for the ground-truth CSI quantization methods for Rank = 2
	
	eType II PC6
	eType II PC8
	eType II PC9
	eType II PC10
	float 32

	Maximum overhead (bits)
	539(1.01%)
	635(1.2%)
	1358(2.5%)
	2011(3.8%)
	53248(100%)

	SGCS
	0.8571/0.7729
	0.8792/0.8037
	0.9334 /0.8852
	0.9561 /0.9249
	1.0/1.0


Tabel 2-2: SGCS for output of model trained on quantized dataset
	Feedback Overhead(bit)
	model trained on eType II PC6 dataset
	model trained on eType II PC8 dataset
	model trained on eType II PC9 dataset
	model trained on eType II PC10 dataset
	model trained on float32 dataset

	120 bits
	0.6672/0.5178 (-7.31%/-12.03%)
	0.6923/0.5589
(-3.82%/-5.05%)
	0.7025/0.5842
(-2.40%/-0.75%)
	0.7157/0.5873
(-0.57%/-0.22%)
	0.7198/0.5886
(0%/0%)

	644 bits
	0.8342/0.7314 (-9.50%/-15.55%)
	0.8711/0.7951
(-5.50%/-8.19%)
	0.9083/0.8458
(-1.46%/-2.34%)
	0.9182/0.8603
(-0.39%/-0.67%)
	0.9218/0.8661
(0%/0%)


[bookmark: _Toc27461][bookmark: _Toc21071][bookmark: _Toc16608][bookmark: _Toc15753][bookmark: _Toc18658][bookmark: _Toc2840][bookmark: _Toc17680][bookmark: _Toc28962][bookmark: _Toc31164][bookmark: _Toc2580][bookmark: _Toc8253][bookmark: _Toc322][bookmark: _Toc31458][bookmark: _Toc17683]The R16 Type II method with larger L values and larger  values than legacy eType-II PCs has the possibility to achieve high resolution quantization with low overhead and maintain the model performance.
Compared to float 32 format, the model trained on eType II PC6 and the model trained on eType II PC8 show a large performance loss in terms of SGCS.
[bookmark: _Toc8658][bookmark: _Toc30518][bookmark: _Toc22349][bookmark: _Toc28555]To evaluate various high-resolution quantization methods of the ground-truth CSI for model training, companies should use float32 dataset as test data for easy comparison.
[bookmark: _Toc32356][bookmark: _Toc14896][bookmark: _Toc24192][bookmark: _Toc26533][bookmark: _Toc15022][bookmark: _Toc22215][bookmark: _Toc1376][bookmark: _Toc5729][bookmark: _Toc1553][bookmark: _Toc341]New parameter combinations for enhanced R16 Type II method should be supported/evaluated to achieve high resolution CSI with acceptable overhead for ground-truth CSI collection.
3 [bookmark: _Toc19190]Evaluation of CQI determination
Some agreements were achieved in RAN1#112 meeting [8] and RAN1#112bis-e meeting [9], some CQI determination methods were mentioned as following.
	· In RAN1#112 meeting
Agreement
In CSI compression using two-sided model use case, further study the following options for CQI determination in CSI report, if CQI in CSI report is configured.    
· Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement  
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment 
· Option 1c: CQI is calculated based on legacy codebook
· Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Note: CSI reconstruction part at the UE can be different comparing to the actual CSI reconstruction part used at the NW. 
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.   
· Other options are not precluded
· Note1: feasibility of different options should be evaluated 
· Note2: Gap analyses between the UE side CQI calculation results and the NW side results, as well as the impact on the scheduling performance should be evaluated
· Note3: Complexity of CQI calculation needs to be evaluated, including the computing complexity and potential RS/signaling overhead
· In RAN1#112bis-e meeting
Agreement
For the evaluation of CSI compression, companies are allowed to report (by introducing an additional field in the template to describe) the specific CQI determination method(s) for AI/ML, e.g.,
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment
· Option 2a-1: The CSI reconstruction part for CQI calculation at the UE same as the actual CSI reconstruction part at the NW
· Option 2a-2: The CSI reconstruction part for CQI calculation at the UE is a proxy model, which is different from the actual CSI reconstruction part at the NW
· Option 2b: CQI is calculated using two stage approach, UE derives CQI using precoded CSI-RS transmitted with a reconstructed precoder
· Option 1a: CQI is calculated based on the target CSI from the realistic channel estimation
· Option 1b: CQI is calculated based on the target CSI from the realistic channel estimation and potential adjustment
· Option 1c: CQI is calculated based on traditional codebook
· Other options if adopted, to be described by companies


We have provided our analysis of pros and cons for different options in our companion contribution [2]. In this contribution, the performance of Option 1a, Option 2a-1 and Option 2a-2 for CQI determination are evaluated in SLS. For Option 2a-2, more details can be found in our companion contribution [2]. In Figure 1, the performance of the different CQI determination options compared to eType-II scheme and Ideal CSI scheme are shown. With regard to average sector throughput gain, Option 2a-1 and Option 2a-2 have similar performance. The average sector throughput gains of Option 2a-1 and Option 2a-2 are obviously higher than Option 1a and eType-II scheme. Option 1a has worse performance than eType-II scheme in low CSI feedback overhead, and better performance than eType-II scheme in high CSI feedback overhead, which is due to that the mismatch on PMI and CQI is hard to be adjusted by gNB side unless high SINR is observed.
[image: ]
Figure 1 Average sector throughput gain
However, for Option 2a-1, it is an issue that CSI reconstruction model is not available at the UE, which can be an upper-bound to compare different options. For Option 2a-2, the working mode is similar as model monitoring as we discussed in [2] and section 6. Therefore, for further study on CQI determination, the feasibility of practical deployment should be considered for different options.
[bookmark: _Toc5251][bookmark: _Toc13763][bookmark: _Toc2299]Option 2a-1 is not practical in reality, but it can provide a performance upper-bound to compare different options.
[bookmark: _Toc11360][bookmark: _Toc16901]With regard to average sector throughput gain, Option 2a-1 and Option 2a-2 have similar performance. The average sector throughput gains of Option 2a-1 and Option 2a-2 are obviously higher than Option 1a and eType-II scheme. 
[bookmark: _Toc1258][bookmark: _Toc8605]Option 1a has worse performance than eType-II scheme in low CSI feedback overhead, and better performance than eType-II scheme in high CSI feedback overhead, which is due to that the mismatch on PMI and CQI is hard to be adjusted by gNB side.
4 [bookmark: _Toc10311]Evaluation of model performance monitoring
In RAN1#112b-e meeting [9] and RAN1#113 meeting [1], several agreements were achieved on intermediate KPI based monitoring as following.
	· In RAN1#112bis-e meeting
Agreement #1
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, the model monitoring methodology is considered as:
· Step1: Generate test dataset including K test samples
· FFS how to obtain the K test samples
· Step2: For each of K test samples, a bias factor of monitored intermediate KPI () is calculated as a function of , where  is the actual intermediate KPI, and  is the genie-aided intermediate KPI.
· Step3: Calculate the statistical result of the  over K test samples which represents the monitoring accuracy performance.
· Note:  is introduced for the evaluation and comparison purpose; it may not be available in the real network.
· Note: the complexity, overhead and latency of the monitoring scheme are reported by companies. FFS how to evaluate latency.
Agreement #2
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded
Agreement #3
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1

· In RAN1#113 meeting
Agreement #4
For the intermediate KPI monitoring of CSI compression, for the FFS issue on the value of threshold of  KPIth_1 in Option 1, the candidate threshold values are set as 0.02, 0.05 and 0.1
Agreement #5
For the intermediate KPI monitoring of CSI compression, for the FFS issue on the value of threshold of KPIth_2 and KPIth_3 in Option 2, consider KPIth_2 = KPIth_3.
Agreement #6
For the intermediate KPI monitoring of CSI compression, between the two options to calculate KPIdiff achieved in the RAN1#112bis-e meeting, as baseline for calibration purpose, consider Option 1 (Gap between KPIActual and KPIGenie). 
· Option 2 (Binary state of KPIActual and KPIGenie relationship) as optional and up to companies to report.
· Results subject to Option 2, may be captured as a note in observation



Two options were agreed for calculating the  in RAN1#112bis-e meeting [9]. Option 1 uses the KPI gap between  and  to evaluate the monitoring accuracy. Option 2 shows the relationship between the monitoring threshold and the results of  and , where  can reflect whether the model performance is applicable. In RAN1#113 meeting [1], the candidate threshold values of KPIth_1 in Option 1 were agreed to be set as {0.02, 0.05, 0.1}, and it was agreed to consider KPIth_2 = KPIth_3 in Option 2.
In the following section, the monitoring accuracy for Case 1 and Case 2-1 is evaluated based on the methods of Option 1 and Option 2, where SGCS is used as intermediate KPI.
Case 1: NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side
Intermediate KPIs are calculated by NW based on traditional CSI and CSI reconstruction model output. As shown in Figure 2, due to the fact that network cannot directly obtain the ground-truth label to calculate the monitoring metrics, UE should report ground-truth CSI (e.g., via traditional codebook) to for network to calculate the monitoring metrics. In order to improve the performance of network-based model monitoring, a higher resolution ground-truth CSI needs to be reported by UE.
[image: ]
Figure 2 Intermediate KPIs calculated by NW based on traditional CSI and CSI reconstruction model output
In our evaluation, the high-resolution CSI of eType-II PC8 (the average SGCS between the eType-II PC 8 and Float 32 is 0.8792) and the CSI of eType-II PC10 (the average SGCS between the eType-II PC 10 and Float 32 is 0.9561) are used as the ground-truth CSI respectively. For convenience, the details of eType-II PC10 [11] are listed as following:
· eType-II PC10: L = 10, , , Reference amplitude = 8 bits, Differential amplitude = 4 bits, Phase = 6 bits
For Option 1, the monitoring accuracy is the percentage of the samples in which . Table 4-1 shows the evaluation result for Rank 1 in terms of monitoring accuracy under different thresholds. As shown from Table 4-1, if the ground truth CSI is eType-II PC8, the monitoring accuracy is 23.28%, 54.90% and 91.21% in threshold 0.02, 0.05 and 0.1 respectively. If the ground truth CSI is eType-II PC10, the monitoring accuracy is 70.32%, 98.52% and 99.92% in threshold 0.02, 0.05 and 0.1 respectively. It seems that the threshold of 0.1 provides such a wide range that a risk of leading to a severe performance loss often occurs. For example, if SGCS equaling to 0.9 can satisfy the current condition, however, actual SGCS equaling to 0.8 is considered correct in the threshold 0.1, which may cause significant performance loss.
Table 4-1: Monitoring accuracy of Option 1 with different parameter combinations of ground-truth CSI
	Ground truth CSI format: eType-II PC8

	
	Monitoring Accuracy

	0.02
	23.28%

	0.05
	54.90%

	0.1
	91.21%

	Ground truth CSI format: eType-II PC10

	
	Monitoring Accuracy

	0.02
	70.32%

	0.05
	98.52%

	0.1
	99.92%


For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE side, the threshold 0.1 for Option 1 is not an appropriate value to conclude the effectiveness of performance monitoring based on the ground-truth CSI.
For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE side, 
· when the threshold for Option 1 is 0.02, the monitoring accuracy are 23.28% and 70.32% for eType-II PC8 and eType II PC10 respectively;
· when the threshold for Option 1 is 0.05, the monitoring accuracy are 54.90% and 98.52% for eType-II PC8 and eType II PC10 respectively.
The enhanced eType-II (i.e., PC10) as ground-truth CSI can provide sufficient monitoring accuracy compared with the legacy eType-II (i.e., PC8).
With KPIDiff in Option 2, the same threshold value is applied to  and  and the monitoring accuracy is the percentage of the samples for which . Thresholds of 0.7 and 0.8 are used respectively. Table 4-2 shows the evaluation results for Rank 1 in terms of monitoring accuracy. As shown from Table 4-2, under a large feedback overhead of AI model, for the SGCS threshold of 0.8, with the ground-truth CSI format of eType-II PC8, the monitoring accuracy is lower than 90%, while for others, the monitoring accuracy is higher than 95%.
Table 4-2: Monitoring accuracy of Option 2 with different parameter combinations of ground-truth CSI
	Ground truth CSI format: eType-II PC8

	Threshold (, )
	Monitoring Accuracy

	0.7
	96.63%

	0.8
	88.31%

	Ground truth CSI format: eType-II PC8

	Threshold (, )
	Monitoring Accuracy

	0.7
	99.32%

	0.8
	97.61%


For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, with KPIDiff in Option 2, the monitoring accuracy is lower than 90% based on the ground-truth CSI format of eType-II PC8 when the SGCS threshold is 0.8, while for SGCS threshold smaller than 0.8, the monitoring accuracy is higher than 95%.
For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, with KPIDiff in Option 2, the monitoring accuracy is higher than 97% based on the ground-truth CSI format of eType-II PC10 when the SGCS threshold is 0.8, and for SGCS threshold smaller than 0.8, the monitoring accuracy is higher than 99%.
[bookmark: _Toc29211][bookmark: _Toc12710]For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination can be used as ground-truth CSI at NW to achieve a good monitoring accuracy.
 
Case 2-1: UE-side monitoring based on the output of the proxy CSI reconstruction model at the UE side
Intermediate KPIs are calculated by UE based on the output of the proxy CSI reconstruction model at the UE side. As shown in Figure 3, UE has its own proxy reconstruction part in CSI generation model which is not the same as the actual CSI reconstruction model used at the NW side. Hence, CSI generation model has two output modules. The first one is feedback part, which is used for model input of CSI reconstruction model. The second output (i.e., proxy output) is for model monitoring. As shown in the Figure 3, the proxy output data is trained to imitate reconstruction model output as much as possible via knowledge distillation technology [10]. By doing this, UE can monitor the  to check the . If the monitoring metrics between input and proxy output cannot meet a target requirement, so as the monitoring metrics between input and actual output.
[image: ]
Figure 3 Intermediate KPIs calculated by UE based on the output of the proxy CSI reconstruction model at UE
In this simulation, Generalization Case 1 and Case 2 are considered. Table 4-3 shows the monitoring accuracy with KPIDiff in Option 1, and Table 4-4 shows the monitoring accuracy with KPIDiff in Option 2. With KPIDiff in Option 1, UE-side monitoring has similar accuracy with NW-side monitoring based on the ground truth CSI format of eType-II PC10, as well as with KPIDiff in Option 2. In testing scenarios of UMA and UMI, the monitoring accuracy of Generalization Case 2 is slightly less than that of Generalization Case 1 from views of KPIDiff in Option 1 or in Option 2. In testing scenarios of InH, the monitoring accuracy of Generalization Case 2 in training scenarios of UMA and UMI is much less than that of Generalization Case 1 from views of KPIDiff in Option 1, while the monitoring accuracy of Generalization Case 2 in training scenarios of UMA is slightly less than that of Generalization Case 1 from views of KPIDiff in Option 2. In addition, the monitoring accuracy of Generalization Case 2 in training scenarios of UMI is about 10% less than that of Generalization Case 1 from views of KPIDiff in Option 2 under the threshold of 0.8. 
Table 4-3: Monitoring Accuracy in Option 1 at UE side
	
	training: UMA
testing: UMA
	training: UMA
testing: UMI
	training: UMA
testing: InH

	
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.02
	71.31%
	67.4%
	60.79%

	0.05
	94.21%
	93.32%
	80.27%

	0.1
	99.22%
	99.14%
	90.80%

	
	training: UMI
testing: UMA
	training: UMI
testing: UMI
	training: UMI
testing: InH

	
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.02
	60.54%
	65.63%
	46.58%

	0.05
	90.73%
	94.39%
	73.4%

	0.1
	98.45%
	99.3%
	88.38%

	
	training: InH
testing: UMA
	training: InH
testing: UMI
	training: InH
testing: InH

	
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.02
	66.67%
	57.82%
	84.00%

	0.05
	92.24%
	88.86%
	97.33%

	0.1
	99.04%
	98.36%
	99.74%



Table 4-4: Monitoring Accuracy in Option 2 at UE side
	
	training: UMA
testing: UMA
	training: UMA
testing: UMI
	training: UMA
testing: InH

	Threshold (, )
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.7
	98.22%
	98.33%
	96.31%

	0.8
	96.11%
	95.30%
	91.70%

	
	training: UMI
testing: UMA
	training: UMI
testing: UMI
	training: UMI
testing: InH

	Threshold (, )
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.7
	97.25%
	98.44%
	95.85%

	0.8
	94.42%
	95.88%
	89.83%

	
	training: InH
testing: UMA
	training: InH
testing: UMI
	training: InH
testing: InH

	Threshold (, )
	Monitoring Accuracy
	Monitoring Accuracy
	Monitoring Accuracy

	0.7
	97.3%
	96.19%
	99.8%

	0.8
	95.58%
	93.62%
	99.04%



If model generalization of proxy model is not considered, UE-side monitoring has similar monitoring accuracy with NW-side monitoring based on the ground-truth CSI eType-II PC10 for both Option 1 and Option 2. 
The proxy model can maintain its monitoring accuracy between UMI and UMA scenarios when model generalization of proxy model is considered.
The monitoring accuracy degrades about 7%~17% when the proxy model is trained in UMI/UMA scenario and tested in InH scenario for Option 1. The monitoring accuracy degrades about 2%~6% when the proxy model is trained in UMI/UMA scenario and tested in InH scenario for Option 2.
Discussion on False alarm and Misdetection for model monitoring performance
False alarm and Misdetection for model monitoring performance are still FFS. The monitoring accuracy shows the monitoring performance in a coarse manner, and False alarm and Misdetection show the monitoring performance in a fine-grained manner. False alarm is the case that model performance is judged to be invalid but it is actually valid.  Misdetection is the case that model performance is judged to be valid but it is actually invalid. False alarm rate (FAR) can be used for the statistic of False alarm, and miss alarm rate (MAR) can be used for the statistic of misdetection. The definition of FAR and MAR are as following:
FAR:


MAR:

Table 4-5 shows the evaluation results of Rank 1 for Case 1 in terms of FAR and MAR, where  and  use the same threshold value. For the threshold of 0.8, based on the ground-truth CSI of eType-II PC8, the FAR is 11.75%, and the MAR is 10.99%; based on the ground-truth CSI of eType-II PC10, the FAR is 1.86%, and the MAR is 8.38%. For the threshold of 0.7, based on the ground-truth CSI of eType-II PC8, the FAR is 3.05%, and the MAR is 21.91%; based on the ground-truth CSI of eType-II PC10, the FAR is 0.42%, and the MAR is 15.6%.
Table 4-5: FAR and MAR of model performance monitoring methods with different types of ground-truth CSI
	Reference CSI: eType-II PC8

	Threshold
	FAR
	MAR
	Monitoring Accuracy

	0.7
	3.05%
	21.91%
	96.63%

	0.8
	11.75%
	10.99%
	88.31%

	Reference CSI: eType-II PC10

	Threshold
	FAR
	MAR
	Monitoring Accuracy

	0.7
	0.42%
	15.60%
	99.32%

	0.8
	1.86%
	8.38%
	97.61%


For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, the FAR (False Alarm Rate) is higher than 11% based on the ground-truth CSI of eType-II PC8 when the SGCS threshold is 0.8, while for other cases, the FAR is lower than 4%.
For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination achieve a good performance for monitoring accuracy and FAR/MAR.
[bookmark: _Toc26515][bookmark: _Toc10213][bookmark: _Toc11485][bookmark: _Toc28472][bookmark: _Toc30625][bookmark: _Toc20153][bookmark: _Toc24556]For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination can be used as ground-truth CSI at NW to achieve a good FAR and MAR.
[bookmark: _Toc7719][bookmark: _Toc18400][bookmark: _Toc31365][bookmark: _Toc5203][bookmark: _Toc12640][bookmark: _Toc26086][bookmark: _Toc23329]FAR (false alarm rate) and MAR (miss alarm rate) can be used in addition to monitoring accuracy to analyze monitoring performance. The definition of FAR and MAR are as following:
FAR:


MAR:


5 Evaluation Results of CSI compression
We perform a preliminary simulation on spatial-frequency domain CSI compression sub-use case to evaluate the performance of AI models, and the Rel-16 eTypeII is also simulated as baseline. In SLS, we further compare the throughput between AI-based feedback and ideal CSI feedback to see how much performance margin that AI-based approach has in comparison with an upper bound, where ideal eigenvector feedback is used as ideal CSI feedback. For Rel-16 eTypeII, 8 parameter combinations are used, and wherein paramCombination 7 and paramCombination 8 are directly extended for Rank=3 and Rank=4. In order to fairly compare the SLS performance, AI-based approach has the same overhead as that of Rel-16 eTypeII, i.e., corresponding to the 8 parameter combinations. For SLS evaluation metric, the weighted Avg. overhead calculation is adopted. The detailed simulation assumptions are shown in Table 9-1. In addition, detailed AI model training parameters are listed in Table 9-2. The system-level channel data is generated from 3000 simulation drops and 210 UEs per simulation drop, which results in 630K samples in total. Then, the datasets are randomly divided into three parts which are training, validation, and testing datasets with 600K, 10K, and 20K samples respectively. In our evaluation, ideal sub-band eigenvectors are used as the input of AI models for training, validation and testing. The number of parameters for a model ranges from about 9M-11M, where the CSI generation part is about 4M-5M and the CSI reconstruction part is 5M-6M. In addition, the FLOPs of CSI generation part and CSI reconstruction part are approximately 25M-26M and 27M-29M, respectively.
Based on the table templates, our evaluation results for CSI compression are collected in 4 tables in the attachment as following:
· Table 1. 1-on-1 joint training
· Table 2. Evaluation results for CSI compression with model generalization
· Table 3. Evaluation results for CSI compression with model scalability
· Table 5. separate training
In Ran1#113 meeting [1], observations have been achieved on general issues for CSI compression. In this section, we provide some observations on some remaining issues.
5.1 [bookmark: _Toc29501]Model scalability 
In this section, we provide some results for the evaluation of model generalization capability.   
Various configurations on bandwidth:
We simulate AI generalization for different datasets with bandwidths of 10MHz (52RBs) and 20MHz (104RBs). According to agreements made in previous meetings, 4RBs per sub-band for 10MHz and 8RBs per sub-band for 20MHz are adopted, so the AI input sizes keep the same for both datasets. These results are shown in Table 3. Evaluation results for CSI compression with model scalability (2nd sheet: Bandwidths, rank=2 or 4). According to the evaluation results, we have following observations:
[bookmark: _Toc6404][bookmark: _Toc24876]AI/ML approaches can achieve good generalization performance for the case that the training dataset and testing dataset are generated with different bandwidth configurations but with the same model input size.
Model generalization across layers:
[bookmark: _Toc27212][bookmark: _Toc23371][bookmark: _Toc26465][bookmark: _Toc14324][bookmark: _Toc27616][bookmark: _Toc9266][bookmark: _Toc14165][bookmark: _Toc25193][bookmark: _Toc27164][bookmark: _Toc9665]Model generalization across layers is shown in Table 3. Evaluation results for CSI compression with model scalability (8th sheet: Rank-layer Num, Max rank = 4). According to the evaluation results, we have following observations:
[bookmark: _Toc26732][bookmark: _Toc23480]The AI/ML model shows a good generalization capability across layers in the following cases:
[bookmark: _Toc11650][bookmark: _Toc13864]Trained with data from all layers and tested for different layers
[bookmark: _Toc7323][bookmark: _Toc29106]Trained with data from the first layer and tested for different layers
[bookmark: _Toc27453][bookmark: _Toc11752]Trained with data from the first two layers and tested for different layers
5.2 [bookmark: _Toc30843]Performance evaluation for Type 3 sequential training
Performance for Type 3 sequential training is evaluated in this section, where both NW-first training and UE-first training are considered. These results are shown in Table 5. separate training. According to the evaluation results, we have following observations:
[bookmark: _Toc32424][bookmark: _Toc26264]For both Type 3 training with NW-first and Type 3 training with UE-first, two cases have similar performance. Type 3 training with NW-first has nearly the same performance as Type 1 training, while Type 3 training with UE-first has a slightly lower performance than Type 1 training.
5.3 Evaluation of quantization type (VQ vs SQ)
Evaluation of quantization is shown in Table 1. 1-on-1 joint training (7th sheet: IntermediateKPI). One is vector quantization with training awareness Case 2-2, where the quantization method/parameters are updated in together with the AI/ML models during the training. When training is finished, the final quantization codebook is applied for the inference phase. The other is scalar quantization with training awareness Case 2-1, where fixed/pre-configured quantization method/parameters are applied during the training phase. The same quantization codebook is applied for the inference phase, and 2-bit uniform quantization is used for the scalar quantization. According to the evaluation results, the we have following observations:
2-bit scalar quantization with training awareness Case 2-1 has similar SGCS gain with vector quantization with training awareness Case 2-2, where the scalar quantization has a slightly higher SGCS gain over vector quantization under X/Y overhead, and has a slightly lower SGCS gain over vector quantization under Z overhead.
6 [bookmark: _Toc3858]Evaluation Results of CSI Prediction
Based on the templates, our evaluation results for CSI compression are collected in in 2 tables in the attachment as following:
· Table 6. CSI prediction without generalization
· Table 7. CSI prediction with generalization
In Ran1#113 meeting [1], observations have been achieved on general issues for CSI prediction. In this section, we further provide some observations and proposals on CSI prediction without generalization.
6.1 CSI prediction without generalization
We perform a preliminary simulation on the sub-use case of CSI prediction to evaluate the performance of AI models. In addition, the nearest historical CSI and a non-AI approach (i.e., Wiener filtering) are adopted for performance comparison. These results are shown in Table 6. CSI prediction without generalization. According to the evaluation results, we have following observations and proposals:
[bookmark: _Toc23855][bookmark: _Toc14126]Both AI-based CSI prediction and Wiener filtering-based CSI prediction can completely outperform the nearest historical CSI. Moreover, Wiener filtering-based non-AI CSI prediction shows even better performance than the AI-based approach when enough historical CSIs are applied. 
[bookmark: _Toc21547][bookmark: _Toc27769]The prediction accuracy of AI-based approach and Wiener filtering-based approach drops seriously when the predicted time becomes longer due to the channel aging. However, AI-based CSI prediction can maintain the performance for a longer time than Wiener filtering-based CSI prediction.
[bookmark: _Toc3305][bookmark: _Toc6902][bookmark: _Toc9837][bookmark: _Toc2251][bookmark: _Toc14633]After eTypeII quantization on the predicated CSI via post-processing, AI/ML based CSI prediction and Wiener filtering-based non-AI CSI prediction have similar SGCS performances, where both the methods completely outperform the CSI predication based on the nearest historical CSI.
[bookmark: _Toc16318][bookmark: _Toc18380][bookmark: _Toc23751]The prediction accuracy of both AI-based approach and Wiener filtering-based approach improve with the increased number of historical CSIs as input and presents certain positive correlation with the number of input historical CSIs.
[bookmark: _Toc18757][bookmark: _Toc8688][bookmark: _Toc11135]AI-based CSI prediction shows less or even no performance gain over Wiener filtering-based algorithm with the increased number of historical CSIs in model input.    
[bookmark: _Toc3011][bookmark: _Toc15804][bookmark: _Toc20476][bookmark: _Toc22802][bookmark: _Toc18735][bookmark: _Toc29886][bookmark: _Toc23152][bookmark: _Toc13869][bookmark: _Toc23677][bookmark: _Toc31714][bookmark: _Toc5209][bookmark: _Toc32556]Various lengths of observation window and prediction window should be evaluated to have a fair comparison between AI-based CSI prediction and non-AI based CSI prediction 
[bookmark: _Toc29163][bookmark: _Toc5360][bookmark: _Toc18733]The prediction accuracy of AI-based approach outperforms non-AI approaches when sub-band eigenvectors are adopted as model input. 
[bookmark: _Toc17178][bookmark: _Toc17473][bookmark: _Toc25033]The performance of eigenvector prediction for AI-based approach drops dramatically compared with the input of raw channel, and AI-based approach shows marginal performance gain over non-AI algorithms.
7 [bookmark: _Toc17447]Conclusion
In this contribution, the evaluations on AI/ML for CSI feedback enhancement are discussed, and simulation results are provided. We have the following observations and proposals.
Proposal 1: To evaluate various high-resolution quantization methods of the ground-truth CSI for model training, companies should use float32 dataset as test data for easy comparison.
Proposal 2: New parameter combinations for enhanced R16 Type II method should be supported/evaluated to achieve high resolution CSI with acceptable overhead for ground-truth CSI collection.
Proposal 3: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination can be used as ground-truth CSI at NW to achieve a good monitoring accuracy.
Proposal 4: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination can be used as ground-truth CSI at NW to achieve a good FAR and MAR.
Proposal 5: FAR (false alarm rate) and MAR (miss alarm rate) can be used in addition to monitoring accuracy to analyze monitoring performance. The definition of FAR and MAR are as following:
FAR:


MAR:

Proposal 6: Various lengths of observation window and prediction window should be evaluated to have a fair comparison between AI-based CSI prediction and non-AI based CSI prediction.

Observation 1: The R16 Type II method with larger L values and larger  values than legacy eType-II PCs has the possibility to achieve high resolution quantization with low overhead and maintain the model performance.
Observation 2: Compared to float 32 format, the model trained on eType II PC6 and the model trained on eType II PC8 show a large performance loss in terms of SGCS.
Observation 3: Option 2a-1 is not practical in reality, but it can provide a performance upper-bound to compare different options.
Observation 4: With regard to average sector throughput gain, Option 2a-1 and Option 2a-2 have similar performance. The average sector throughput gains of Option 2a-1 and Option 2a-2 are obviously higher than Option 1a and eType-II scheme.
Observation 5: Option 1a has worse performance than eType-II scheme in low CSI feedback overhead, and better performance than eType-II scheme in high CSI feedback overhead, which is due to that the mismatch on PMI and CQI is hard to be adjusted by gNB side.
Observation 6: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, the threshold 0.1 for Option 1 is not an appropriate value to conclude the effectiveness of performance monitoring based on the ground-truth CSI.
Observation 7: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side,
• when the threshold for Option 1 is 0.02, the monitoring accuracy are 23.28% and 70.32% for eType-II PC8 and eType II PC10 respectively;
• when the threshold for Option 1 is 0.05, the monitoring accuracy are 54.90% and 98.52% for eType-II PC8 and eType II PC10 respectively.
Observation 8: The enhanced eType-II (i.e., PC10) as ground-truth CSI can provide sufficient monitoring accuracy compared with the legacy eType-II (i.e., PC8).
Observation 9: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, with KPIDiff in Option 2, the monitoring accuracy is lower than 90% based on the ground truth CSI format of eType-II PC8 when the SGCS threshold is 0.8, while for SGCS threshold smaller than 0.8, the monitoring accuracy is higher than 95%.
Observation 10: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, with KPIDiff in Option 2, the monitoring accuracy is higher than 97% based on the ground truth CSI format of eType-II PC10 when the SGCS threshold is 0.8, and for SGCS threshold smaller than 0.8, the monitoring accuracy is higher than 99%.
Observation 11: If model generalization of proxy model is not considered, UE-side monitoring has similar monitoring accuracy with NW-side monitoring based on the ground truth CSI eType-II PC10 for both Option 1 and Option 2. 
Observation 12: The proxy model can maintain its monitoring accuracy between Umi and Uma scenario when model generalization of proxy model is considered.
Observation 13: The monitoring accuracy degrades about 7%~17% when the proxy model is trained in Umi/Uma scenario and tested in InH scenario for Option 1; The monitoring accuracy degrades about 2%~6% when the proxy model is trained in Umi/Uma scenario and tested in InH scenario for Option 2.
Observation 14: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, the FAR (False Alarm Rate) is higher than 11% based on the ground-truth CSI of eType-II PC8 when the SGCS threshold is 0.8, while for other cases, the FAR is lower than 4%.
Observation 15: For NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side, eType II CSI with new parameter combination achieve a good performance for monitoring accuracy and FAR/MAR.
Observation 16: AI/ML approaches can achieve good generalization performance for the case that the training dataset and testing dataset are generated with different bandwidth configurations but with the same model input size.
Observation 17: The AI/ML model shows a good generalization capability across layers in the following cases:
 Trained with data from all layers and tested for different layers
 Trained with data from the first layer and tested for different layers
 Trained with data from the first two layers and tested for different layers
Observation 18: For both Type 3 training with NW-first and Type 3 training with UE-first, two cases have similar performance. Type 3 training with NW-first has nearly the same performance as Type 1 training, while Type 3 training with UE-first has a slightly lower performance than Type 1 training.
Observation 19: 2-bit scalar quantization with training awareness Case 2-1 has similar SGCS gain with vector quantization with training awareness Case 2-2, where the scalar quantization has a slightly higher SGCS gain over vector quantization under X/Y overhead, and has a slightly lower SGCS gain over vector quantization under Z overhead.
Observation 20: Both AI-based CSI prediction and Wiener filtering-based CSI prediction can completely outperform the nearest historical CSI. Moreover, Wiener filtering-based non-AI CSI prediction shows even better performance than the AI-based approach when enough historical CSIs are applied.
Observation 21: The prediction accuracy of AI-based approach and Wiener filtering-based approach drops seriously when the predicted time becomes longer due to the channel aging. However, AI-based CSI prediction can maintain the performance for a longer time than Wiener filtering-based CSI prediction.
Observation 22: After eTypeII quantization on the predicated CSI via post-processing, AI/ML based CSI prediction and Wiener filtering-based non-AI CSI prediction have similar SGCS performances, where both the methods completely outperform the CSI predication based on the nearest historical CSI.
Observation 23: The prediction accuracy of both AI-based approach and Wiener filtering-based approach improve with the increased number of historical CSIs as input and presents certain positive correlation with the number of input historical CSIs.
Observation 24: AI-based CSI prediction shows less or even no performance gain over Wiener filtering-based algorithm with the increased number of historical CSIs in model input.
Observation 25: The prediction accuracy of AI-based approach outperforms non-AI approaches when sub-band eigenvectors are adopted as model input.
Observation 26: The performance of eigenvector prediction for AI-based approach drops dramatically compared with the input of raw channel, and AI-based approach shows marginal performance gain over non-AI algorithms.
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9 [bookmark: _Toc22184]Appendix A
Table 9-1 SLS assumptions for AI/ML based CSI feedback
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)

	Frequency Range
	FR1 only,  2GHz 

	Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx power
	41 dBm for 10MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz for 2GHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU/MU-MIMO with rank adaptation.

	MIMO layers
	Maximum MU 4 layers for max rank=1
Maximum MU 8 layers for max rank=2

	CSI feedback
	Feedback assumption at least for baseline scheme
CSI feedback periodicity (full CSI feedback) :  5 ms,
Scheduling delay (from CSI feedback to time to apply in scheduling) :  4 ms

	Overhead
	2 OFDM symbols for PDCCH，type 2 for DMRS(24 REs/PRB/slot)
CSI-RS overhead(32 REs/PRB/5 slot)

	Traffic model
	FTP 3

	Traffic load (Resource utilization)
	RU 50% and 70%

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	UE receiver
	MMSE-IRC 

	Feedback assumption
	Realistic

	Channel estimation         
	Realistic 

	Evaluation Metric
	Throughput and CSI feedback overhead 

	Baseline for performance evaluation
	Rel-16 TypeII Codebook 



Table 9-2  Training parameters of AI/ML model for CSI compression
	Parameter
	Value

	Backbone
	Transformer

	Parameter type
	Real value

	Input CSI type
	Eigenvectors of the ideal channel matrix estimated by UE

	Output CSI type     
	Recovered eigenvectors by AI/ML model in gNB

	Data-processing
	Normalization

	Quantization
	Vector quantization

	CSI generation part: Number of parameters/M
	4-5

	CSI generation part: FLOPs/M
	25-26

	CSI reconstruction part: Number of parameters/M
	5-6

	CSI reconstruction part: FLOPs/M
	27-29

	Training dataset
	600K

	Validation dataset
	10K

	Testing dataset
	20K

	Batch size
	400

	Optimizer
	Adam

	Loss function
	MSE



Table 9-3  Training parameters of AI/ML model for CSI prediction based on raw channels
	Parameter
	Value

	Backbone
	ResNet

	Parameter type
	Real value

	Input CSI type
	Historical channel matrices measured by UE

	Output CSI type     
	Predicted channel matrix by AI/ML model in UE

	Model input size
	

()

	Model output size
	

()

	Training dataset
	80K

	Validation dataset
	2K

	Testing dataset
	2K

	Batch size
	200

	Optimizer
	Adam

	Loss function
	MSE



Table 9-4  Training parameters of AI/ML model for CSI prediction based on eigenvectors
	Parameter
	Value

	Backbone
	ResNet

	Parameter type
	Real value

	Input CSI type
	Sub-band eigenvectors 

	Output CSI type     
	Predicted eigenvectors by AI/ML model in UE

	Model input size
	

()

	Model output size
	

()

	Training dataset
	80K

	Validation dataset
	2K

	Testing dataset
	2K

	Batch size
	200

	Optimizer
	Adam

	Loss function
	MSE
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