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Introduction
[bookmark: OLE_LINK13][bookmark: OLE_LINK14] In RAN1 #113, initial observations on performance evaluations for CSI compression and CSI prediction are made based on inputs from companies. In addition, some agreements on EVM were also made to facilitate further evaluations. Part of the conclusions, agreements, and observations in RAN1 #113 are listed below:
	Observation 
For the AI/ML based CSI prediction, till the RAN1#113 meeting, compared to the Benchmark#1 of the nearest historical CSI, in terms of SGCS, from UE speed perspective, in general the gain of AI/ML based solution is related with the UE speed:
· For 10km/h UE speed, 4 sources [Fujitsu, Samsung, Xiaomi, InterDigital] observe 1.03%~6% gain, 1 source [CMCC] observes 21.93% gain.
· For 30km/h UE speed, 2 sources [OPPO, ETRI] observes 6%~10.43% gain, 5 sources [ZTE, Fujitsu, Apple, Xiaomi, Spreadtrum] observe 18.72%~31.3% gain, and 3 sources [InterDigital, MediaTek, CMCC] observe 35%~ 41.75% gain, which are in general larger than 10km/h UE speed.
· For 60km/h UE speed, 2 sources [Fujitsu, InterDigital] observe -3%~5% gain, 4 sources [Huawei, Samsung, vivo, CMCC] observe 11.2%~19.98% gain, which are in general smaller than 30km/h UE speed.
· Note: the above results are based on the following assumptions
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is SGCS in linear value for layer 1.
· No post processing is considered.
· No spatial consistency is considered by 11 sources [Fujitsu, Samsung, Xiaomi, InterDigital, CMCC, OPPO, ETRI, ZTE, Apple, Huawei, Spreadtrum]. 1 source [vivo] provides both results with spatial consistency and results w/o spatial consistency.
· Note: Results refer to Table 5.1-1 of R1-2306059


Observation 
For the evaluation of AI/ML based CSI compression, till the RAN1#113 meeting, compared to the benchmark, in terms of SGCS,
· For Max rank 1, Layer 1,
· 11 sources [Huawei, Nokia, ZTE, vivo, OPPO, ETRI, Fujitsu, CMCC, China Telecom, MediaTek, Apple] observe the performance gain of 2.6%~ 8.8% at CSI payload X (small payload);
· 14 sources [Huawei, Nokia, Futurewei, ZTE, vivo, OPPO, ETRI, Fujitsu, NTT DOCOMO, Xiaomi, China Telecom, MediaTek, BJTU, Apple] observe the performance gain of 0.9%~ 8.1% at CSI payload Y (medium payload);
· 11 sources [Huawei, Nokia, Futurewei, Lenovo, ZTE, vivo, OPPO, ETRI, Fujitsu, BJTU, Apple] observe the performance gain of 0.9%~ 7% at CSI payload Z (large payload);
· Note: 1 source [Futurewei] observes the performance gain of 11.6% at CSI payload X (small payload) which biases from the majority range.
· For Max rank 2, Layer 1,
· 12 sources [Huawei, Nokia, Futurewei, ZTE, vivo, OPPO, Fujitsu, Ericsson, Xiaomi, Qualcomm, Intel, Apple] observe the performance gain of 3.9%~ 11% at CSI payload X (small payload);
· 11 sources [Huawei, Nokia, Futurewei, ZTE, vivo, OPPO, Fujitsu, NTT DOCOMO, Ericsson, Qualcomm, Apple] observe the performance gain of 0.7%~ 4.5% at CSI payload Y (medium payload);
· 9 sources [Huawei, Nokia, Futurewei, ZTE, vivo, OPPO, Fujitsu, Ericsson, Apple] observe the performance gain of -0.2%~ 6.5% at CSI payload Z (large payload);
· For Max rank 2, Layer 2, more gains are observed in general compared with Layer 1 of Max rank 2:
· 12 sources [Huawei, Nokia, ZTE, vivo, OPPO, Fujitsu, NTT DOCOMO, Ericsson, Xiaomi, Qualcomm, Intel, Apple] observe the performance gain of 5.92%~ 30.2% at CSI payload X (small payload);
· 12 sources [Huawei, Nokia, ZTE, vivo, OPPO, Fujitsu, NTT DOCOMO, Ericsson, Xiaomi, Qualcomm, Intel, Apple] observe the performance gain of 1.5%~ 23.08% at CSI payload Y (medium payload);
· 10 sources [Huawei, Nokia, ZTE, vivo, OPPO, Fujitsu, NTT DOCOMO, Ericsson, Intel, Apple] observe the performance gain of 4.4%~ 12.99% at CSI payload Z (large payload);
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS for Layer 1 of Max rank 1 or Layer 1/2 of Max rank 2.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.1-2 of R1-2306059


Observation 
For the evaluation of AI/ML based CSI compression, till the RAN1#113 meeting, compared to the benchmark, in terms of mean UPT under FTP traffic, more gains are achieved by Max rank 2 compared with Max rank 1 in general:
· For Max rank 1, in general the performance gain increases with the increase of RU:
· For RU<=39%, 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.2%~2%
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.29%~2% at CSI overhead A (small overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.2%~1% at CSI overhead B (medium overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.33%~1% at CSI overhead C (large overhead);
· For RU 40%-69%, 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.1%~4%
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 1.09%~3% at CSI overhead A (small overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.80%~2% at CSI overhead B (medium overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.1%~4% at CSI overhead C (large overhead);
· For RU>=70%, 6 sources [Huawei, Nokia, ZTE, vivo, OPPO, Spreadtrum] observe the performance gain of 0.23%~9%
· 6 sources [Huawei, Nokia, ZTE, vivo, OPPO, Spreadtrum] observe the performance gain of 0.38%~9% at CSI overhead A (small overhead);
· 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 0.62%~5% at CSI overhead B (medium overhead);
· 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 0.23%~6% at CSI overhead C (large overhead);
· Note: 2 sources [Spreadtrum, Futurewei] observe gain of 12.77%~21.21% at RU 40%-69%, 11.23%~21.5% at RU>=70%, which bias from the majority ranges.
· For Max rank 2, in general the performance gain increases with the increase of RU:
· For RU<=39%, 6 sources [Huawei, Nokia, Ericsson, Intel, Qualcomm, Fujitsu] observe the performance gain of -0.3%~6%
· 5 sources [Huawei, Nokia, Ericsson, Intel, Qualcomm] observe the performance gain of 1%~6% at CSI overhead A (small overhead);
· 4 sources [Huawei, Nokia, Ericsson, Qualcomm] observe the performance gain of 0.5%~6% at CSI overhead B (medium overhead);
· 6 sources [Huawei, Nokia, Ericsson, Intel, Fujitsu, Qualcomm] observe the performance gain of -0.3%~6% at CSI overhead C (large overhead);
· For RU 40%-69%, 7 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Qualcomm, InterDigital] observe the performance gain of -0.5%~10%
· 6 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Qualcomm] observe the performance gain of 3%~10% at CSI overhead A (small overhead);
· 6 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Qualcomm] observe the performance gain of 1.2%~9% at CSI overhead B (medium overhead);
· 7 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Qualcomm, InterDigital] observe the performance gain of -0.5%~9% at CSI overhead C (large overhead);
· For RU>=70%, 9 sources [Huawei, Nokia, ZTE, OPPO, Ericsson, Intel, InterDigital, Qualcomm, Futurewei] observe the performance gain of -0.2%~15%
· 9 sources [Huawei, Nokia, ZTE, OPPO, Ericsson, Intel, InterDigital, Qualcomm, Futurewei] observe the performance gain of 5%~15% at CSI overhead A (small overhead);
· 9 sources [Huawei, Nokia, ZTE, OPPO, Ericsson, Intel, InterDigital, Qualcomm, Futurewei] observe the performance gain of 3%~9% at CSI overhead B (medium overhead);
· 9 sources [Huawei, Nokia, ZTE, OPPO, Ericsson, Intel, InterDigital, Fujitsu, Qualcomm] observe the performance gain of -0.2%~12% at CSI overhead C (large overhead);
· Note: 4 sources [Futurewei, NTT DOCOMO, InterDigital, Fujitsu] observe gain of 7%~30% at RU<=39%, 10%~23% at RU 40%-69%, 12.71%~26.8% at RU>=70%, which bias from the majority ranges.
· For Max rank 4:
· For RU<=39%, 3 sources [CATT, Apple, Qualcomm] observe the performance gain of -4%~7.4%
· 3 sources [CATT, Apple, Qualcomm] observe the performance gain of 2.5%~7.4% at CSI overhead A (small overhead);
· 1 source [Qualcomm] observes the performance gain of 6% at CSI overhead B (medium overhead);
· 2 sources [Apple, Qualcomm] observe the performance gain of -4%~0% at CSI overhead C (large overhead);
· For RU 40%-69%, 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1.8%~12.22%
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 3%~12.22% at CSI overhead A (small overhead);
· 2 sources [ZTE, Qualcomm] observe the performance gain of 7.04%~11% at CSI overhead B (medium overhead);
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1.8%~8.19% at CSI overhead C (large overhead);
· For RU>=70%, 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1%~17%
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 3%~17% at CSI overhead A (small overhead);
· 2 sources [ZTE, Qualcomm] observe the performance gain of 6.64%~17% at CSI overhead B (medium overhead);
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1%~8.40% at CSI overhead C (large overhead);
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is mean UPT for Max rank 1, Max rank 2, or Max rank 4.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.1-3 of R1-2306059

Observation 
For the evaluation of AI/ML based CSI compression, till the RAN1#113 meeting, compared to the benchmark, in terms of 5% UPT under FTP, more gains are achieved by Max rank 2 compared with Max rank 1 in general:
· For Max rank 1, in general the performance gain increases with the increase of RU:
· For RU<=39%, 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.8%~3%
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 1.72%~3% at CSI overhead A (small overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.80%~1.2% at CSI overhead B (medium overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 1.68%~3% at CSI overhead C (large overhead);
· For RU 40%-69%, 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.1%~7%
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 2.8%~7% at CSI overhead A (small overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 1.22%~2.7% at CSI overhead B (medium overhead);
· 3 sources [Huawei, Nokia, vivo] observe the performance gain of 0.1%~3.25% at CSI overhead C (large overhead);
· For RU>=70%, 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 0.85%~20.43%
· 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 4%~20.43% at CSI overhead A (small overhead);
· 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 1%~10.13% at CSI overhead B (medium overhead);
· 5 sources [Huawei, Nokia, ZTE, vivo, OPPO] observe the performance gain of 0.85%~8% at CSI overhead C (large overhead);
· Note: 2 sources [Spreadtrum, Futurewei] observe gain of 15.87%~21.04% at RU 40%-69%, 20.2%~50% at RU>=70%, which bias from the majority ranges.
· For Max rank 2, in general the performance gain increases with the increase of RU:
· For RU<=39%, 6 sources [Huawei, Nokia, Ericsson, Qualcomm, Fujitsu, InterDigital] observe the performance gain of -2%~5%
· 4 sources [Huawei, Nokia, Ericsson, Qualcomm] observe the performance gain of 1.1%~5% at CSI overhead A (small overhead);
· 4 sources [Huawei, Nokia, Ericsson, Qualcomm] observe the performance gain of -2%~3% at CSI overhead B (medium overhead);
· 6 sources [Huawei, Nokia, Ericsson, Qualcomm, Fujitsu, InterDigital] observe the performance gain of -0.5%~5% at CSI overhead C (large overhead);
· For RU 40%-69%, 7 sources [Huawei, Nokia, ZTE, Ericsson, Qualcomm, Intel, Fujitsu] observe the performance gain of -4%~13%
· 6 sources [Huawei, Nokia, ZTE, Ericsson, Qualcomm, Intel] observe the performance gain of 7%~13% at CSI overhead A (small overhead);
· 4 sources [Huawei, Nokia, Ericsson, Qualcomm] observe the performance gain of 0.3%~8% at CSI overhead B (medium overhead);
· 5 sources [Huawei, Nokia, Ericsson, Qualcomm, Fujitsu] observe the performance gain of -4%~8% at CSI overhead C (large overhead);
· For RU>=70%, 9 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Fujitsu, NTT DOCOMO, Qualcomm, Futurewei] observe the performance gain of -1.3%~24%
· 7 sources [Huawei, Nokia, ZTE, Ericsson, Intel, Fujitsu, NTT DOCOMO] observe the performance gain of 10.26%~24% at CSI overhead A (small overhead);
· 6 sources [Huawei, Nokia, ZTE, Ericsson, Qualcomm, Intel] observe the performance gain of 9%~15.02% at CSI overhead B (medium overhead);
· 6 sources [Huawei, Nokia, ZTE, Ericsson, Futurewei, Intel] observe the performance gain of -1.3%~13.67% at CSI overhead C (large overhead);
· Note: 5 sources [Intel, NTT DOCOMO, InterDigital, Fujitsu, ZTE] observe gain of 7%~24% at RU<=39%, -8%~-2%, 13.4%~29.7% at RU 40%-69%, -5%~-10%, 18.1%~35.4% at RU>=70%, which bias from the majority ranges.
· For Max rank 4:
· For RU<=39%, 2 sources [Apple, Qualcomm] observe the performance gain of -1.6%~10%
· 2 sources [Apple, Qualcomm] observe the performance gain of 8%~10% at CSI overhead A (small overhead);
· 1 source [Qualcomm] observes the performance gain of 5% at CSI overhead B (medium overhead);
· 2 sources [Apple, Qualcomm] observe the performance gain of -1.6%~1% at CSI overhead C (large overhead);
· For RU 40%-69%, 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1.7%~23%
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 5%~17% at CSI overhead A (small overhead);
· 2 sources [ZTE, Qualcomm] observe the performance gain of 6.17%~23% at CSI overhead B (medium overhead);
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of -1.7%~9.47% at CSI overhead C (large overhead);
· For RU>=70%, 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 2%~31%
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 5.8%~31% at CSI overhead A (small overhead);
· 2 sources [ZTE, Qualcomm] observe the performance gain of 10.2%~30% at CSI overhead B (medium overhead);
· 3 sources [Apple, ZTE, Qualcomm] observe the performance gain of 2%~15% at CSI overhead C (large overhead);
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is 5% UPT for Max rank 1, Max rank 2, or Max rank 4.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.1-4 of R1-2306059


Observation
For the AI/ML based CSI prediction, till the RAN1#113 meeting, in terms of mean UPT, gains are observed compared to both Benchmark#1 of the nearest historical CSI and Benchmark#2 of a non-AI/ML based CSI prediction approach:
· Compared to the benchmark of the nearest historical CSI:
· For FTP traffic:
· 1 source [Huawei] observes 1.2%~4.2% gain;
· 1 source [Apple] observes 7.6%~8.5% gain;
· 1 source [vivo] observes 9.7%~17.2% gain.
· 1 source [MediaTek] observes 22.6%~ 48.6% gain.
· For full buffer traffic:
· 1 source [Nokia] observes 2%~3% gain;
· 1 source [vivo] observes 8.7% gain.
· 1 source [MediaTek] observes 1.01% gain.
· Compared to the benchmark of an auto-regression based CSI prediction:
· For FTP traffic:
· 1 source [Huawei] observes 0.7%~3.1% gain;
· 1 source [vivo] observes 3.4%~7.0% gain.
· For full buffer traffic:
· 1 source [vivo] observes 8.1% gain.
· Note: the above results are based on the following assumptions
· The UE speed is 30km/h or 60km/h.
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is mean UPT for Max rank 1.
· No post processing is considered.
· No spatial consistency is considered
· Note: Results refer to Table 5.1-8 of R1-2306059

Observation
For the AI/ML based CSI prediction, till the RAN1#113 meeting, in terms of 5% UPT, gains are observed compared to both Benchmark#1 of the nearest historical CSI and Benchmark#2 of a non-AI/ML based CSI prediction approach:
· Compared to the benchmark of the nearest historical CSI:
· For FTP traffic:
· 2 sources [Huawei, vivo] observes 4.5%~9.3% gain;
· 3 sources [Huawei, Apple, vivo] observes 11.3%~20.1% gain;
· For full buffer traffic:
· 2 sources [Nokia, vivo] observe 6%~17.5% gain;
· Compared to the benchmark of an auto-regression based CSI prediction:
· For FTP traffic:
· 2 sources [Huawei, vivo] observes 0.5%~16% gain;
· For full buffer traffic:
· 1 source [vivo] observes 11% gain.
· Note: the above results are based on the following assumptions
· The UE speed is 30km/h or 60km/h.
· The observation window considers to start as early as 15ms~50ms.
· A future 4ms or 5ms instance from the prediction output is considered for calculating the metric.
· Raw channel matrix is considered as model input
· The performance metric is mean UPT for Max rank 1.
· No post processing is considered.
· No spatial consistency is considered
· Note: Results refer to Table 5.1-9 of R1-2306059

Observation 
For the generalization verification of AI/ML based CSI prediction over various UE speeds, till the RAN1#113 meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain UE speed#B and applied for inference with a same UE speed#B,
· For generalization Case 2, generalized performance may be achieved for some certain combinations of UE speed#A and UE speed#B but not for others:
· If UE speed#B is 10 km/h & UE speed#A is 30 km/h, 4 sources [Xiaomi, CATT, Interdigital, Spreadtrum] observe a generalized performance of less than -2% degradation.
· If UE speed#B is either 30 km/h or 60 km/h or 120 km/h, or if UE speed#B is 10km/h and UE speed#A is either 60km/h or 120km/h, 8 sources [Xiaomi, Samsung, Interdigital, Fujitsu, ZTE, ETRI, vivo, Huawei] observe that moderate/significant performance degradations are suffered:
· For UE speed#B is 10 km/h & UE speed#A is either 60 km/h or 120 km/h, 1 source [Xiaomi] observes moderate degradation (-2.7% loss), 1 source [Samsung] observes significant degradation (-53%~-61% loss).
· For UE speed#B is 30 km/h & UE speed#A is either 10 km/h, 60 km/h or 120 km/h, 1 source [Xiaomi] observes moderate degradation (-3% loss), 8 sources [Xiaomi, Interdigital, Fujitsu, vivo, ZTE, Huawei, ETRI, Spreadtrum] observe significant degradation (-6%~-45.6% loss).
· For UE speed#B is 60 km/h & UE speed#A is either 10 km/h, 30 km/h or 120 km/h, 1 source [ZTE] observes moderate degradation (-3% loss), 7 sources [Samsung, Xiaomi, Fujitsu, ETRI, ZTE, vivo, Spreadtrum] observe significant degradation (-7.8%~-52% loss).
· For UE speed#B is 120 km/h & UE speed#A is either 30 km/h or 60 km/h, 1 source [ZTE] observes moderate degradation (-3.4% loss), 4 sources [ZTE, ETRI, vivo, Samsung] observe significant degradation (-7.55%~-32.3% loss).
· For generalization Case 3, generalized performance of the AI/ML model can be achieved in general (0%~-4.45% loss) for UE speed#B subject to any of 10 km/h, 30 km/h, 60 km/h and 120 km/h, if the training dataset is constructed with data samples subject to multiple UE speeds including UE speed#B, as observed by 9 sources [Xiaomi, Interdigital, Apple, Huawei, ZTE, Samsung, ETRI, vivo, Spreadtrum].
· For UE speed#B is 10 km/h, minor loss (-0.6%~-1%) are observed by 3 sources [CATT, Xiaomi, Spreadtrum].
· For UE speed#B is 30 km/h, minor loss (-0.08%~-1.34%) are observed by 3 sources [Xiaomi, Apple, Huawei], moderate loss (-2.2%~-4.07%) are observed by 3 sources [Interdigital, vivo, Spreadtrum].
· For UE speed#B is 60 km/h, minor loss (-0.05%~-2%) are observed by 4 sources [ZTE, Apple, Xiaomi, Huawei], moderate loss (-2%~-3.76%) are observed by 2 sources [vivo, Spreadtrum].
· For UE speed#B is 120 km/h, moderate loss (-2%~-4.45%) are observed by 4 sources [vivo, Samsung, ETRI, ZTE].
· Note: For generalization Case 3, 5 sources [ETRI, ZTE, Samsung, Interdigital, Fujitsu] observe significant performance degradations (-5%~-26.5% loss) for UE speed#B subject to 10 km/h, 30 km/h, 60 km/h, but compared with generalization Case 2, in general the performance are still improved.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Raw channel matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS in linear value for layer 1/2/3/4.
· No spatial consistency is considered
· Note: Results refer to Table 5.1-10 of R1-2306059


Observation 
For the evaluation of AI/ML based CSI compression, till the RAN1#113 meeting, compared to the benchmark, in terms of mean UPT under full buffer, more gains are achieved by Max rank 2 compared with Max rank 1 in general:
· For Max rank 1, 5 sources [Huawei, Nokia, vivo, OPPO, Fujitsu] observe the performance gain of 1.1%~11%
· 5 sources [Huawei, Nokia, vivo, OPPO, Fujitsu] observe the performance gain of 6%~11% at CSI overhead A (small overhead);
· 5 sources [Huawei, Nokia, vivo, OPPO, Fujitsu] observe the performance gain of 3%~7% at CSI overhead B (medium overhead);
· 5 sources [Huawei, Nokia, vivo, OPPO, Fujitsu] observe the performance gain of 1.1%~11% at CSI overhead C (large overhead);
· For Max rank 2, 7 sources [Huawei, Nokia, vivo, Fujitsu, Qualcomm, Intel, InterDigital] observe the performance gain of 0.2%~15%
· 7 sources [Huawei, Nokia, vivo, Fujitsu, Qualcomm, Intel, InterDigital] observe the performance gain of 4%~15% at CSI overhead A (small overhead);
· 7 sources [Huawei, Nokia, vivo, Fujitsu, Qualcomm, Intel, InterDigital] observe the performance gain of 4%~10% at CSI overhead B (medium overhead);
· 7 sources [Huawei, Nokia, vivo, Fujitsu, Qualcomm, Intel, InterDigital] observe the performance gain of -0.2%~14% at CSI overhead C (large overhead);
· Note: 1 source [Xiaomi] observe gain of 24.47%~28.24%, over CSI overhead A/B/C, which bias from the majority ranges.
· Note: For Max rank 4, 1 source [ZTE] observes gain of 7.44%~9.95% over CSI overhead A/B/C.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.5-1 of R1-2306061

Observation 
For the evaluation of AI/ML based CSI compression, till the RAN1#113 meeting, compared to the benchmark, in terms of 5% UPT under full buffer,
· For Max rank 1, 3 sources [Nokia, vivo, Fujitsu] observe the performance gain of 0%~20.9%
· 3 sources [Nokia, vivo, Fujitsu] observe the performance gain of 2.5%~20.9% at CSI overhead A (small overhead);
· 3 sources [Nokia, vivo, Fujitsu] observe the performance gain of 2.3%~17.4% at CSI overhead B (medium overhead);
· 3 sources [Nokia, vivo, Fujitsu] observe the performance gain of 0%~6.62% at CSI overhead C (large overhead);
· For Max rank 2, 5 sources [Nokia, vivo, Fujitsu, Qualcomm, Intel] observe the performance gain of -7%~14.9%
· 5 sources [Nokia, vivo, Fujitsu, Qualcomm, Intel] observe the performance gain of 4.1%~14.9% at CSI overhead A (small overhead);
· 5 sources [Nokia, vivo, Fujitsu, Qualcomm, Intel] observe the performance gain of 0.3%~4% at CSI overhead B (medium overhead);
· 5 sources [Nokia, vivo, Fujitsu, Qualcomm, Intel] observe the performance gain of -7%~6.03% at CSI overhead C (large overhead);
· Note: 1 source [Xiaomi] observe gain of 8.76%~30.17%, over CSI overhead A/B/C, which bias from the majority ranges.
· Note: For Max rank 4, 1 source [ZTE] observes gain of 3.59%~6.15% over CSI overhead A/B/C.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix of the current CSI is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· Benchmark is Rel-16 Type II codebook.
· Note: Results refer to Table 5.5-2 of R1-2306061


Working Assumption
For the template of Table 1. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, update the entry of CQI determination method(s) to include also the RI determination:
	Common description
	Input type

	
	Output type

	
	Quantization /dequantization method

	
	Rank/layer adaptation settings for rank>1

	
	CQI/RI determination method(s) for AI/ML (Option 1a/1b/1c/2a/2b, etc.)







CSI compression
In this section, we express our views on the per-area model evaluation and the generalization of CSI compression in input, output scalability and rank number respectively. On top of that, we discuss the performance of CSI compression with different training method and field data.
1.1. Evaluation on per-area model
1.1.1. Principle of per-area model
AI/ML is data driven, which makes it natural to use a per-area model for CSI compression: training models based on data collected from a specific area, and models will then be used within the corresponding area. By “specific area”, we refer to the case that data collection happens in a relatively smaller region, such as one cell, one sector, or one zone. One of the most promising advantages of per-area model compared with conventional general model is potentially higher performance gain, since the samples within one specific region are expected to be more correlated and more compressible. As presented in 2.1.2 and 2.1.3, our initial evaluation results offered by per-area models in the following subsections also support such observations. 
Observation 1:  [bookmark: _Ref115456088][bookmark: _Hlk142679607]Based on initial field test results, per-cell (region) models can provide more than 20%~30% improvement on SCGS of AI models.
Per-area models could be naturally deployed within each cell, i.e., each cell trains its own model based on data collected within the cell. However, one problem is that as a UE moves from one cell to another, CSI generation part at UE side should also be updated to adapt to the new cell. For training collaboration type 1, such procedure could be done via transferring the updated model to the target UE. For training collaboration type 2, another over-the-air training procedure is needed to update the model. For training collaboration type 3, new model input/output data will be shared from network to UE or vice versa to finish the updating of models. If the model structure of CSI generation part is simple (e.g., simple MLP), overhead of the model updating procedure will be very small (probably less than 100kB).
Observation 2:  [bookmark: _Ref115456152]Further study the model update for per-cell (region) models
Training per-area models requires to enhance the data collection mechanism by some assistance information. Cell ID/sector ID/Zone ID or some other information that could represent the collecting area should be assigned to the corresponding data during dataset delivery. However, there could be some concerns on user privacy, UE storage, power consumption or overhead. More studies on data collection for per-area models should be considered in the future meetings.
Observation 3:  [bookmark: _Ref115456178][bookmark: _Hlk142679641]Further study the data collection for per-cell (region) models.

1.1.2. Initial results for spatial consistency data
In this part, we consider to use data with spatial consistency to reflect the correlation between samples within certain cell. Each UE generates random variables with spatial consistency based on its own geographic location at the T=0 so that UEs dropping on the same location have the same channel. Both the cluster specific random variables and the correlation distance for spatial consistency procedure follow the configurations in 38.901. Other detailed parameters are provided as follows.
Table 1 Parameters of spatial consistency data of CSI compression.
	Parameters
	Value

	Scenario
	UMa

	Channel model
	Uma 38.901 with spatial consistency

	Carrier frequency
	4GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	32 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 8 8, 2 8]
= (0.8, 0.5) λ, +45°/-45° polarization

	UE antenna
	2 antenna ports
[Mg Ng P M N, Mp Np] = [1 1 2 1 1, 1 1]
= (0.8, 0.5) λ, 0°/+90° polarization

	BS receiver noise figure
	10

	UE receiver noise figure
	7

	UE distribution
	100% outdoor

	UE speed 
	30km/h

	Mechanic tilt
	180° in GCS (pointing to the ground)

	Beam set at TRxP
	Azimuth angle φi = [0], Zenith angle θj = [102].

	UE beam set
	Azimuth angle φi = [0], Zenith angle θj = [90]



Based on data with spatial consistency, we can evaluate the performance of region-specific models. To be more specific, we collect data from a square area with side length 5m, 25m, and 165m, based on which two models with MLP and Transformer structure encoder are trained. The parameter scales for MLP encoder and Transformer encoder are 768KB and 16MB, respectively. Detailed results are provided in the following table: 
Table 2 Performance comparison of region-specific models
	Collecting region of training data
	SGCS of model with MLP encoder
	SGCS of model with Transformer encoder
	SGCS of legacy codebook

	Square region with 5m side length
	>0.99
	>0.99
	0.6911*

	Square region with 25m side length
	0.9705
	0.9855
	

	Square region with 165m side length
	0.8707
	0.9094
	


*The performance of legacy codebook is tested on the entire region with side length 165m.

From the results, we can find that the performance gain over legacy codebook provided by region-specific models (e.g., more than 17% SGCS gain for trivial MLP encoder and more than 19% SGCS gain for Transformer encoder) is much higher than that of generic models (e.g., a typical SGCS gain of 8%~10% reported by companies). In addition, when the region is small enough (around or smaller than 25m*25m), the SGCS approaches 100%, which suggests that the model could remember all CSI possibilities. Such additional gain is achieved by harvesting the spatial correlation between samples. It is also worth pointing out that trivial encoder can also benefit from region-specific data. Our results show that the SGCS performance gap between trivial MLP encoder and complex Transformer encoder is at most 3%.  To sum up, spatial consistency data could verify the potential gain of region-specific models.
Observation 4:  [bookmark: _Hlk142679663]The additional performance gain of region-specific models over generic models could be verified by data with spatial consistency. Our initial results show that more than 25% SGCS gain for trivial MLP encoder and more than 27.5% SGCS gain for Transformer encoder could be achieved over legacy codebook.
Proposal 1:  [bookmark: _Hlk142679678]Study the performance of region-specific models based on data with spatial consistency.

1.1.3. Initial results for field test
We provide some initial results for field test of CSI compression. The data is collected from realistic 5G network and the collecting area is about 400m * 350m. About outdoor 50000~100000 samples per area or cell are collected. The detailed parameters are provided in below table.
Table 3 Parameters of field test of CSI compression.
	Parameters
	Value

	Scenario
	Actual 5G network, about 400m * 350m collecting area.
About outdoor 50000~100000 samples per area or cell.

	Carrier frequency
	3.45GHz

	Subcarrier spacing
	30KHz

	Frequency resources
	52 RBs, 13 subbands for 4RBs per subband

	Rank
	Max rank 1

	gNB antenna
	8 antenna ports

	UE antenna
	4 antenna ports

	CSI payload
	167/58 bits payload



Field test result of different areas
There are 3 data collecting areas. Area B is the main road of the industrial park, with many tall trees and cars along the road. Area C is the road behind several buildings. Area D is the indoor scenario in a building. UE in the left part of the industrial park usually accesses to a different cell, compared with the right part of the industrial park. So, we focus on the right part of the industrial park and current areas are chosen.
[image: ]
Figure 1 [bookmark: _Ref142662908]The map of data collecting areas.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In Table 5 and 6, the AI/ML models are trained by the data in each area separately, and multiple AI/ML models are used. 167 bits overhead is used in Table 5 and 58 bits overhead is used in Table 6. In Table 7 and 8 only one hidden layer full-connected encoder is used and it is trained by the data of all 4 areas, with 167 bits overhead and 58 bits overhead separately.
It is seen that the performance gaps between different AI/ML models are small. Even one-layer MLP encoder can provide good performance, which is very simple and small. With much higher complexity, Transformer encoder has better performance than one-layer MLP encoder, but the performance gain is small Area B. Considering the performance and complexity, simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical per single cell or multiple cell operations.
Table 4  The SGCS results of multiple AI/ML models trained by the data in each area separately, with 167 bits overhead.
	167 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~67kB
	AI with an area specific model (small CNN encoder) ~250kB
	AI with an area specific model (Transformer encoder) ~3.6MB

	Area B
	0.8429
	0.9217
	0.929
	0.9406

	Area C
	0.7871
	0.898
	0.9037
	0.9116

	Area D
	0.8489
	0.9315
	0.9323
	0.9423



Table 5 The SGCS results of multiple AI/ML models trained by the data in each area separately, with 58 bits overhead.
	58 bits overhead
	eTypeII
	AI with an area specific model (One layer MLP encoder) ~30kB
	AI with an area specific model (small CNN encoder) ~213kB
	AI with an area specific model (Transformer encoder) ~3.3MB

	Area B
	0.7290
	0.8573
	0.8725
	0.8868

	Area C
	0.6438
	0.8015
	0.8162
	0.8389

	Area D
	0.6853
	0.8701
	0.8814
	0.8873



Table 6  The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 167 bits overhead.
	167 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~67kB
	0.9055
	0.905
	0.8799
	0.8959



Table 7  The SGCS results of one hidden layer full-connected encoder trained by the data of all 4 areas, with 58 bits overhead.
	58 bits overhead
	Training SGCS on data from all areas
	Testing SGCS in area B
	Testing SGCS in area C
	Testing SGCS in area D

	One hidden layer full-connected encoder~30kB
	0.8184
	0.8201
	0.7592
	0.7958


Observation 5:  [bookmark: _Hlk131499002]From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.

Field test result of different physical cells
The performance of different physical cells is analyzed in the following. We have tested the coverage of different cells in the industrial park, according to the measured RSRP, RSRQ and SINR. The coverage areas of two typical cells in the industrial park are shown in the below figure.
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Figure 2  The map of data collecting cells.
For cell 1, data samples are collected by different days. The data collection routes in different days have some differences, which results in the different wireless channel features in different days.
The SGCS results of eType II codebook and multiple AI/ML models are provide in the following. In below tables, the AI/ML models are trained by the data in each cell separately, and multiple AI/ML models are used. For cell 1, A large combination of data collected on different days has been used. 167 bits overhead is used. One layer MLP encoder is used in Table 9, small CNN encoder is used in Table 10 and Transformer encoder is used Table 11.
It is seen that using the data collected on various days or routes, the generalization problem of different days or routes could be solved. For example, using Cell 1 data collected on 2.28 as the test data set, the AI model trained using Cell 1 data collected on various day except 2.28 and 2.16, has the nearly the same performance as the AI model trained using Cell 1 data collected on 2.28.
In addition, the AI model trained by Cell 1 data has poor performance on Cell 2 data, which is even worse than eType II.
Table 8 The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and one -layer MLP encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8546
	0.8680
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8746
	\
	0.8952
	\

	Cell 2 data
	0.8145
	0.7832
	\
	\
	0.8974



Table 9 The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and small CNN encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.870
	0.876
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.888
	\
	0.907
	\

	Cell 2 data
	0.8145
	0.8099
	\
	\
	0.9044



Table 10 The SGCS results of multiple AI/ML models trained by the data in each cell separately, with 167 bits overhead and Transformer encoder.
	
	eType II
	AI model using Cell 1 data, collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9
	AI model using Cell 1 data, collected on 2.28
	AI model using Cell 1 data, collected on 2.16
	AI model using Cell 2 data

	Cell 1 data, collected on 2.28
	0.8137
	0.8847
	0.8934
	\
	\

	Cell 1 data, collected on 2.16
	0.8425
	0.8998
	\
	0.9160
	\

	Cell 2 data
	0.8145
	0.8404
	\
	\
	0.9172



Observation 6:  [bookmark: _Ref131792265][bookmark: _Hlk142679708]From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
Observation 7:  [bookmark: _Ref131792267]Field test shows that model developed for Cell 1 does not perform well for Cell 2. 
Observation 8:  [bookmark: _Ref131792270]Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.
Proposal 2:  [bookmark: _Ref118742515][bookmark: _Ref115456650][bookmark: _Hlk142679720]Consider to capture observations from field data test into TR. 
Proposal 3:  [bookmark: _Ref118742519]Study the performance and overhead of per-cell (region) model transfer in CSI compression.

Field test result of different receiver
The performance of different receiver is analyzed in the following. The above data are all collected by one receiver, which is noted as Receiver 1. Then to investigate the impact of different receiver, a new receiver noted as Receiver 2 is used to collect new data of Cell 1. Two receivers have different communication hardwares so that the channel characteristics would be different. Then the generalization performance of different UE equipments could be evaluated by this field test. 
The encoders for Receiver 1 are trained using the data collected on 2.3, 2.10, 2.14, 2.27, 3.2, 3.9, which have been generated in the above fielt test of different physical cells. The encoders for Receiver 2 are trained using the new Cell 1 data collected by Receiver 2 on 7.31.
There are so many differences between the new data and the old data besides different receivers. It is seen that the time gap between the new data and the old data is more than 4 months. The test enrivonment, temperature and clutters would be different. Also, the data collection routes have some differences.
The SGCS results of eType II codebook and multiple AI/ML models for different receivers are provide in the following. 167 bits overhead is used. It is seen that the AI/ML models for Receiver 1 has cetain performance degradation compared with the AI/ML models for Receiver 2. Since there would be so many differences between the new data and the old data, the performance degradation is smaller than expect.
In addition, the performance of CNN encoder is smaller than MLP encoder. This result is expected since CNN usually has better generalization performance than MLP.

Table 11 The SGCS results of multiple AI/ML models trained by the data from different receivers separately, with 167 bits overhead.
	
	eType II
	MLP encoder for Receiver 2
	MLP encoder for Receiver 1
	CNN encoder for Receiver 2
	CNN encoder for Receiver 1

	New Cell 1 data collected by Receiver 2 on 7.31
	0.8812
	0.9342
	0.9110
	0.9365
	0.9213


Observation 9:  [bookmark: _Hlk142679732]Field test shows that models for Receiver 1 has small performance degradation compared with models for Receiver 2. 

1.2. Generalization of output scalability 
1.2.1. Updating payload sizes via adaptation layers
The discussions on model scalability over different payload configurations concentrated on the case that the payload sizes to be supported are known during the training stage. However, there are cases that new payload sizes not supported by the undergoing model are configured by the NW, where we believe that model update is inevitable. Within the agreed training collaboration types, model updating usually requires additional online and/or offline efforts, e.g., re-transferring the updated model to NW/UE in type1, setting a new training session in type2, re-transmitting the training data to NW/UE in type3, etc.  The overhead of such procedures is usually high, especially when the model to be transferred is complicated or the dataset is large. To this end, we propose a mode updating framework based on adaptation layers, which can be flexibly adjusted towards new payload configurations with low overhead.
[image: ]
Figure 3 An illustration of changing payload size via updating adaptation layer.
In Figure 3, we illustrate the procedure of changing payload size via updating adaptation layer. Specifically, the adaptation layer refers to several layers placed on the tail of encoder, and the rest part is named as fixed layer for convenience. During training stage, the CSI compression model is assumed to be trained for arbitrary payload size (e.g., 64bits in Figure 3). When a new payload size is configured by NW (e.g., 116bits in Figure 3), an updated adaptation layer for that payload size will be transferred to UE side for the following inference. Note that for both payload size configuration (i.e., 64bit and 116bit), the fixed layer part at UE side is frozen, and UE only needs to update the adaptation layers. To further reduce the updating overhead, we can consider to use very simple structures for adaptation part (e.g., a few MLP layers). In addition, if the structure of adaptation layers is aligned between UE and NW, parameter-only updating is enough for changing payload size. Through the above approach, we can flexibly configure the payload of CSI compression models according to the status of NW with low overhead.
It is worth pointing out that the fixed layer part at UE side may not be known by NW when NW is responsible for finetuning the adaptation layers. For example, UE could train its own encoder model based on dataset from other entity in training collaboration type3. However, if NW side does not know the exact fixed layers, the finetuned adaptation layers will not match the fixed parts, leading to a significant performance degradation. To solve the problem, NW can configure UE to report a dataset containing paired inputs for adaptation layers and outputs for decoder, based on which adaptation layers and decoder are finetuned. Note that such dataset is only required to be transmitted once for a particular fixed layer.
We have done experiments to show that finetuning adaptation layers and decoder is able to achieve good performance approaching that of complete model trained for certain payload size. We consider UE-first type3 training where UE trains local model first and then sends the dataset of input for adaptation layer and output for decoder to NW. NW trains the adaptation layer and decoder for 64bit payload first and then finetune them for 116bit (the adaptation layer will be transferred to UE side). Another model trained for 116bit payload serves as the benchmark. Note that we collect the data from a specific small region, which makes the performance of models relatively high.
	
	Complete model trained for 64bit payload (benchmark0)
	Training adaptation layer and decoder for 64bit to work with frozen fixed layer at UE
	Complete model trained for 116bit payload (benchmark1)
	Finetuning adaptation layer   and decoder for 116bit to work with frozen fixed layer at UE

	Test SGCS performance
	0.9557
	0.9561
	0.9651
	0.9619


Observation 10:  [bookmark: _Hlk142679744][bookmark: _Hlk142679757]It is feasible to flexibly adjust the payload size with negligible performance loss by updating adaptation layer and CSI reconstruction part.  
Proposal 4:  Study the approaches to support flexible model update for changing payload size, where updating adaptation layers could be a starting point. 

1.3. Generalization of rank
	Issue#3-11a (High priority) Rank>1 solutions-down selection
Moderator note[Rd4]: Number of companies added.
Proposed Conclusion 3.3.4: For further study the evaluation of CSI compression, for the rank>1 solutions, prioritize Option 2-1 (layer specific and rank common), Option 3-1 (layer common and rank common), and Option 3-2 (layer common and rank specific).
· Note: For the evaluations of CSI compression with 1-on-1 joint training, 
· Option 1-2 is not adopted;
· Option 2-2 is not adopted;
· Over the 11 sources [Huawei, Ericsson, Nokia, ZTE, OPPO, Intel, Fujitsu, NTT DOCOMO, InterDigital, Qualcomm, Futurewei] for FTP/fullbuffer, Max Rank 2,
· Option 1-1 is adopted by 1 source [ZTE]
· Option 2-1 is adopted by 3 sources [Ericsson, Intel, Qualcomm]
· Option 3-1 is adopted by 9 sources [Huawei, Nokia, ZTE, OPPO, Fujitsu, Futurewei, Xiaomi, vivo, NTT DOCOMO]
· Option 3-2 is adopted by 2 sources [NTT DOCOMO, InterDigital]
· Over the 4 sources [Qualcomm, ZTE, CATT, Apple] for FTP/fullbuffer, Max Rank 4,
· Option 2-1 is adopted by 1 source [Qualcomm]
· Option 3-1 is adopted by 2 sources [Qualcomm, ZTE]
· Option 3-2 is adopted by 1 source [Apple]




In RAN1 #113, down selection for Rank>1 solution was still under discussion. Towards this issue, we still prefer option 3-1 as presented in previous several meetings. Our analysis and observations are provided below. 
The input of AI model can be raw channel matrix or eigenvector and the output of AI model can be fixed to eigenvector. If the input is raw channel matrix and the output is eigenvector, the SVD procedure is also completed by AI model. In our opinion, this is much difficult for AI model training. So, we consider the input and the output of AI model are both eigenvectors.
In case that rank number is larger than 1, we evaluate the per-rank model and per-layer model. The per-rank model means, for each rank, an independent AI model is trained. UE can use the corresponding AI model to infer the precoder of a given rank number. The per-layer AI model means an independent AI model is trained for each layer, especially, the AI model for each layer is the same. For each rank, UE can infer each layer with the single AI model, i.e., the generalization of rank number.
[image: ]
Figure 4 Two scheme of high rank AI model, per-ranks and per-layer AI models.
In the simulation, we use the same per-layer model for each layer and train the model with the dataset including all layers and only rank 2 is evaluated. For the per-rank models, one model is trained with rank 1 dataset and the other model is trained with rank 2 dataset. The former is for rank 1 CSI compression and the latter is for rank 2 CSI compression. For the per-layer model, the single model is trained with dataset from all layers. This single model can be applied for different layers and ranks.
The model sizes of the single per-layer model and each of the per-rank models are almost the same, while two models are trained for per-rank models and only one model is trained for per-layer model with the same dataset. So, the per-rank models are double size of the per-layer model.
Table 12 The SGCS of per-rank models and per-layer model for rank 2.
	
	Layer 0
	Layer 1
	Average number

	Per-rank model
	0.91
	0.874
	0.892

	Common model across different layers Per-layer model
	0.924
	0.863
	0.893



According to the evaluation result, per-rank model and per-layer model can achieve similar SGCS, while the total size of per-rank AI model is double as opposed to per-layer model. Also considering the flexibility of layer selection, the per-layer model is better.
Observation 11:  [bookmark: _Ref115456412][bookmark: _Hlk142679795]Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
To compare the performance between layer common and layer specific models, we use the same model structure for different datasets. We collect 300K samples for each layer and group them into three datasets.
Case 1: Train one common model based on total 600K samples with 300K samples from layer 0 and 300K samples from layer 1.
Case 2: Train one common model based on total 300K samples with 150K samples from layer 0 and 150K samples from layer 1.
Case 3: Train one specific model for layer 0 based on 300K samples from layer 0 and another specific model for layer 1 based on 300K samples from layer 1.
Table 13 The SGCS of two layers for layer common and layer specific models
	
	Layer 0 
	Layer 1
	Average number

	Case 1 (common model with 600K samples)
	0.8698
	0.7834
	0.8266

	Case 2 (common model with 300K samples)
	0.8569
	0.764
	0.8105

	Case 3 (specific model with 300K * 2 samples)
	0.8532
	0.7534
	0.8033



Compared the evaluation results of case 2 and case 3, layer common model performs better than layer specific model with the same training data number for each layer. Compared the evaluation results of case 1 and case 3, the performance gain increases if all the training data for the two layers are used for layer common model training. It means, with the same dataset, layer common model can achieve better performance and the dataset for layer common model is easier to collect. Therefore, not considering other generalizations, layer common model is better than layer specific model from multi layers.
Observation 12:  [bookmark: _Hlk142679812]Layer common model can achieve better SGCS with the same dataset.
Proposal 5:  [bookmark: _Hlk142679829]For rank > 1 cases, study 	Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference)
· FFS how to choose the layers for training data set
· FFS how to deal with specific payload for each layerAs a consequence, the generalization can be summarized in the table as follows.

1.4. Generalization of other scenarios
1.4.1. Indoor/outdoor
	Observation 
For the generalization verification of AI/ML based CSI compression over various UE distributions, till the RAN1#113 meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain UE distribution#B and applied for inference with a same UE distribution#B,
· For generalization Case 2, generalized performance may be achieved for some certain combinations of UE distribution#A and UE distribution#B but not for others
· If UE distribution#A is Outdoor & UE distribution#B is Indoor, 3 sources [Nokia, Qualcomm, Huawei] observe that moderate/significant degradations of -2.9%~-11.5% degradation are suffered, 
· Note: 1 source [NTT DOCOMO] observes 0% degradation
· If UE distribution#A is Indoor & UE distribution#B is Outdoor, 4 sources [NTT DOCOMO, Nokia, Qualcomm, Huawei] observe minor loss of less than -0.7% degradation or positive gain
· For generalization Case 3, generalized performance of the AI/ML model can be achieved (0%~-1% loss or positive gain) for UE distribution#B subject to any of Outdoor and Indoor, if the training dataset is constructed with data samples subject to multiple UE distributions including UE distribution#B, as observed by 4 sources [NTT DOCOMO, Nokia, Qualcomm, Huawei].
· Minor loss (0%~-1%) are observed by 3 sources [NTT DOCOMO, Nokia, Huawei].
· Positive gains are observed by 4 sources [NTT DOCOMO, Nokia, Qualcomm, Huawei].
· Note: Moderate degradations of up to -3.9% are still observed by 1 source [Nokia] for deployment scenario#B subject to Indoor.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1/2.
· Note: Results refer to Table 5.1-6 of R1-2306059




In RAN1 #113, observation towards the generalization of CSI compression models over various carrier frequencies has been made based on inputs from companies. We can accept the structure of the observation, but we find that our results have not been captured in it. In the following, we re-submit our evaluations and analysis for the observation.
For generalization between indoor users and outdoor users, we use data from different indoor/outdoor ratio to train two AI models. One is for 0.8 indoor and 0.2 outdoor and the other one is 0.2 indoor and 0.8 outdoor. Then we settle them in scenarios with different indoor/outdoor ratio, including 0.8/0.2, 0.5/0.5, and 0.2/0.8. The evaluation results are shown below. For each case, there are two ratios where the former is the indoor ratio of training data and the latter is the indoor ratio of deployment environment.

Figure 5 The SGCS of different indoor/outdoor scenarios
According to the evaluation results, no matter which training data set is used, the SGCS increases with the indoor ratio decreasing from 0.8 to 0.2. Since the floor of indoor user is random, it is more difficult to train the model for indoor user than that for outdoor user. So, the learning results of AI model descend when there are more indoor users. For the same deployment scenario, the AI model trained with 0.8 indoor ratio data performs better than the one trained with 0.2 indoor ratio data. It is because the AI model trained with more indoor users has learnt more complicated channel information, offering a better result. 
The gap between the two AI models in case of 0.2 indoor user ratio is about 0.02-0.03 and in case of 0.8 indoor user ratio is about 0.01-0.02. The gap decreases when the deployment scenario becomes more severe i.e., there are more indoor users. It can be seen that, the SGCS calculated in more complicated deployment scenario decreases if the AI model is trained with the data collected in a simpler scenario.
Then, we set the AI model in the SLS system and the evaluation results are shown below. The tendency of each SGCS curve is similar but the gaps among all the curves are different.

Figure 6 The SE gain of different indoor/outdoor scenarios
According to the evaluation results of SE, it can be seen that AI model trained in complicated channel environment (more indoor users) performs better in the simple channel environment (more outdoor users) and vice versa. Nevertheless, even in the simple channel environment, the performance is slightly worse than that of AI model trained in complicated environment.
Observation 13:  [bookmark: _Ref115456304][bookmark: _Hlk142679846]For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
Observation 14:  [bookmark: _Ref115456307]The performance of AI model depends on the deployment environment

1.4.2. Antenna spacing
Since different antenna configurations mean different channel state with different beam width, the training data with different antenna configurations can lead to various spatial characters. And, since the encoder and decoder focus on learning the channel state, different antenna configuration can lead to different inference results. We consider the antenna spacing first.
In the simulation above, we use the antenna spacing [0.8 0.5] at gNB side, which means the space between two antenna elements in vertical is 0.8 wave length and in horizontal is 0.5. To verify the generalization of antenna size, two cases are compared with different antenna spaces. We use the training dataset with channel fading matrices based on 0.8 wave length antenna as baseline and compare the training dataset with channel fading matrices based on 0.5 wave length. Both cases are simulated in the environment with [0.8 0.5] antenna spacing. The evaluation results of entire AI model are shown below.

Figure 7 The SGCS of entire AI models based on different training dataset.

Figure 8 The gain of average SE of entire AI models based on different training dataset.
From the evaluation results, we can find that, in case that antenna space is 0.8 wave length, there is almost 4% average SE loss if training dataset is constructed with channel fading matrices based on 0.5 wave length antenna. 
Observation 15:  [bookmark: _Ref111217191][bookmark: _Ref115456313][bookmark: _Hlk142679859]For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.

Also, we evaluate the influence of the antenna spacing to the AI models with pre-processing, i.e., the small AI models with spatial domain and frequency domain compression as discussed in 2.2.1 and the evaluation results are shown below.

Figure 9 The SGCS of small AI models based on different training dataset.

Figure 10 The gain of average SE of small AI models based on different training dataset.
According to the evaluation results, there are tiny performance loss between two cases. For the small AI model with pre-processing, since the beam and delay are restricted in pre-processing, the performance loss caused by mismatching dataset can be omitted. Therefore, the small AI may have a better generalization performance.
Observation 16:  [bookmark: _Hlk102160699][bookmark: _Ref115456320][bookmark: _Hlk142679871]For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.

1.4.3. Antenna virtualization
Next, we consider the influence of antenna virtualization. In the simulation above, we use antenna configuration [8 8 2] with 4 successive vertical antenna elements mapping to one TXRU with a fixed 105 degrees DFT beam. We draw other two cases of antenna configuration [2 8 2] without antenna virtualization as contrast. 
Case 1: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [8 8 2].
Case 2: AI model is trained with dataset constructed by antenna configuration [8 8 2] and used in the case of antenna configuration [2 8 2]
Case 3: AI model is trained with dataset constructed by antenna configuration [2 8 2] and used in the case of antenna configuration [2 8 2]
The SGCS’s of the three cases and Rel-16 Type II codebook with antenna configuration [8 8 2] and [2 8 2] are shown below.

Figure 11 The SGCS of three cases and Rel-16 Type II codebook
According to the evaluation results, firstly, the SGCSs of the three AI cases are at least 0.07 higher than that of Rel-16 Type II codebook. From the comparison between the Rel-16 Type II codebook with these two antenna configurations, the channel state is easier to learn for antenna configuration [2 8 2], while more difficult to learn for antenna configuration [8 8 2].
The AI model trained with antenna configuration [8 8 2] has similar SGCS performance in both antenna configurations [8 8 2] and [2 8 2]. It seems that, when antenna configuration changes from [8 8 2] to [2 8 2], the original AI model trained with antenna configuration [8 8 2] can still work properly. However, considering the transmission ability, antenna configuration [8 8 2] can provide more spatial information than antenna configuration [2 8 2]. The SE may decrease if the same AI model is directed used in the case of antenna configuration [2 8 2].
The AI model trained with antenna configuration [2 8 2] performance better in antenna configurations [2 8 2]. So, in the case of antenna configuration [2 8 2], the AI model trained with antenna configuration [2 8 2] may achieve similar SE performance as the AI model trained with antenna configuration [8 8 2] in the case of antenna configuration [8 8 2].
Observation 17:  [bookmark: _Ref115456327][bookmark: _Hlk142679884]For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
Observation 18:  [bookmark: _Ref115456332] For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.

1.5. Evaluations on ground-truth quantization
	Agreement
For the evaluation of the R16 eType II-like codebook based high resolution quantization of the ground-truth CSI in the CSI compression for AI/ML training, regarding the evaluation of new values of eType II parameters, consider the legacy values of PC6&PC8 as the baseline/lower-bound of performance comparison.
· Note: it has been agreed that Float32 is adopted as the baseline/upper-bound of performance comparison.




In RAN1 #113, evaluation results on ground-truth quantization were discussed. However, due to the diverse evaluation configurations of legacy codebook from companies, a very clear observation was not made. According to the suggestions from FL, we add the result of legacy values for PC6&PC8, and the newly-added results show a similar trend. 
Ground-truth CSI reporting is an essential procedure in data collection for CSI compression. In previous meetings, FL proposed to study high resolution scalar or codebook quantization methods for ground-truth CSI, and several schemes have been mentioned in the agreement. To this end, we consider CSI quantized via Float32 as our baseline scheme, and train different models based on Float16, high resolution R16 Type-II codebook, and regular resolution R16 Type-II codebook quantized CSI data. All models trained on quantized CSI are tested on Float32 format data to see the performance, and our results towards different methods in table below.
Table 14 Results of different methods for ground-truth CSI quantization.
	
	Model trained on float32 format quantized data (baseline)
	Model trained on float16 format quantized data 
	Model trained on Legacy codebook quantized data (L=12,  , beta=1.0)
	Model trained on Legacy codebook quantized data (L=4, , beta=0.75, PC5)
	Model trained on Legacy codebook quantized data (L=4, , beta=0.5, PC6)
	Model trained on Legacy codebook quantized data (L=6, , beta=0.75, PC8)

	SGCS results tested on float32 format data
	0.8710
	0.8661
	0.8549
	0.8192
	0.8280
	0.8250


From the table, we could observe that there is only a slight performance loss between ground-truth quantized in float32 and float16, and high-resolution legacy codebook also provide a satisfying performance in quantizing ground-truth CSI. However, when the parameters reduce to a conventional setting (i.e., from L=12, =0.5, beta=1.0 to L=4, =0.25, beta=0.75 (i.e., PC5), L=4, =0.5, beta=0.5 (i.e., PC6), and L=6, =0.25, beta=0.75 (i.e., PC8),), the performance loss is obvious. Considering that the overhead of quantizing ground-truth via high resolution codebook is much lower than that of quantization via float16 (hundreds of bits versus thousands of bits), we believe that high resolution codebook is a promising solution to ground-truth CSI quantization and reporting in CSI compression.
Observation 19:  [bookmark: _Ref118741596][bookmark: _Hlk142679899]High resolution R16-eType II codebook with large L, , beta (for example, L=12, , beta = 1.0) performs well for ground-truth CSI quantization compared with scalar quantization such as Float16 or Float32.

1.6. Evaluations on multiple-vendor joint training
In RAN1 #113, the results on multiple-vendor joint training were not discussed due to limited time. Therefore, we re-submit our analysis and observations at this time.
In this section, we will study the performance of multi-vendor joint training based on the agreement made in the previous meetings. According to the evaluation template, the study of multi-vendor joint training includes three case: 1) one-to-one joint training as baseline; 2) 1 NW part to M>1 UE parts; 3) N>1 NW parts to 1 UE part. In our simulation, 3 NWs (i.e., NW#1, NW#2, and NW#3) and 3 UEs (i.e., UE#1, UE#2, and UE#3) are involved. Each NW and each UE has its own model design when participating joint training, which is introduced below:
UE#1 uses Transformer with configuration#1 for its CSI generation part;
UE#2: uses Transformer with configuration#2 for its CSI generation part;
UE#3: uses CNN with configuration#1 for its CSI generation part;
NW#1 uses Transformer with configuration#3 for its CSI reconstruction part;
NW#2 uses Transformer with configuration#4 for its CSI reconstruction part;
NW#3 uses CNN with configuration#2 for its CSI reconstruction part.
For case 1, we jointly train CSI generation part at different UEs and CSI reconstruction part at different NWs. The total combination is 9 cases, i.e., NW#1-UE#1, NW#1-UE#2, …, NW#3-UE#3. The training dataset for all cases consists of 300,000 samples and the same hyperparameters are considered. Other detailed simulation settings can be referred to our columns in the excel templates. The overall results for 64-bit payload is provided below, and the results for 116-bit payload and 244-bit payload can be found in the excel. The result of case 1 will serve as performance bound for case 2 and case 3.
Table 15 Performance for case 1 with 64-bit payload considered, i.e., one-to-one joint training for different model pairs
	SGCS for different model pairs
	NW#1
	NW#2
	NW#3

	UE#1
	0.750
	0.755
	0.746

	UE#2
	0.742
	0.737
	0.736

	UE#3
	0.726
	0.722
	0.724



For case 2, we consider the following training method:
[image: ]
Figure 12 Training method for case 2 in multi-vendor joint training
where separate input data streams flow over different CSI generation parts and the same CSI reconstruction part to get the output, whereby the loss can be computed and back-propagated through all trainable weights. Based on such framework, the pairing of NW#1 with UE#1, UE#2, UE#3, NW#2 with UE#1, UE#2, UE#3, and NW#3 with UE#1, UE#2, UE#3 is considered in our simulation. The amount of data for the input of each CSI generation part is 300,000, which is the same as that in case 1, and samples for each encoder are collected independently from the same distribution. After jointly training, each CSI generation model is tested with the corresponding CSI reconstruction model. The results are provided below:
Table 16 Performance for case 2 with 64-bit payload considered, i.e., 1 NW part to M>1 UE parts in joint training.
	
	SGCS (and the gain over benchmark in absolute value) for different model pairs

	NW#1
	NW#1-UE#1 0.748 (-0.8%), NW#1-UE#2 0.744 (+0.2%), NW#1-UE#3 0.726 (+0.0%)

	NW#2
	NW#2-UE#1 0.744 (-1.1%), NW#2-UE#2 0.740 (+0.3%), NW#2-UE#3 0.723 (+0.1%)

	NW#3
	NW#3-UE#1 0.746 (-0.0%), NW#3-UE#2 0.740 (+0.3%), NW#3-UE#3 0.726 (+0.2%)


In the above table, we can find that the performance of joint training 1 NW part to multiple UE parts is fairly good, where little performance degradation is shown, and even some minor improvement can be observed in some cases. Such minor performance improvements may be attributed to the overfitting effects during training, which seems reasonable to us. 
Observation 20:  [bookmark: _Hlk142679909]It is feasible to jointly train 1 NW part corresponding to M>1 UE parts with negligible performance loss (e.g., -1.1%~0.3% SGCS gain when considering 1 NW part to 3 UE parts) compared with one-to-one joint training. 

For case 3, we consider the following training method:
[image: ]
Figure 13 Training method for case 3 in multi-vendor joint training
where the output of CSI generation part is broadcast to multiple CSI reconstruction parts to compute the loss function for back-propagation. Similar to case 2, we also simulate the pairing of UE#1 with NW#1, NW #2, NW #3, UE#2 with NW #1, NW #2, NW #3, and UE#3 with NW #1, NW #2, NW #3 in case 3. The amount of input is 300,000. After jointly training, each CSI reconstruction part is tested with the corresponding CSI generation part. Our results are demonstrated below:
Table 17 Performance for case 3 with 64-bit payload considered, i.e., N>1 NW parts to 1 UE part in joint training.
	
	SGCS (and the gain over benchmark in absolute value) for different model pairs

	UE#1
	NW#1-UE#1 0.746 (-0.4%), NW#2-UE#1 0.749 (-0.6%), NW#3-UE#1 0.744 (-0.2%)

	UE#2
	NW#1-UE#2 0.744 (+0.2%), NW#2-UE#2 0.746 (+0.9%), NW#3-UE#2 0.740 (+0.4%)

	UE#3
	NW#1-UE#3 0.727 (+0.1%), NW#2-UE#3 0.730 (+0.8%), NW#3-UE#3 0.722 (-0.2%)


From the table, we can observe that it is also feasible to jointly train N>1 NW parts to 1 UE part with negligible performance loss compared with one-to-one joint training. Possibly due to overfitting effects, some cases in the table demonstrate a litter higher SGCS than the benchmark, but the gap is marginal. 
Observation 21:  [bookmark: _Hlk142679922]It is feasible to jointly train N>1 NW parts corresponding to 1 UE part with negligible performance loss (e.g., -0.6%~0.9% SGCS gain when considering 3 NW parts to 1 UE part) compared with one-to-one joint training. 

1.7. Evaluations on Type 3: Separate training
	Agreement
For the evaluation of training Type 3 under CSI compression, for the benchmark case (1-on-1 joint training) for performance comparison, the structures for the pair of NW part model/UE part model for the new case are the same with the Type 3 case to be compared.
E.g., if the Type 3 is Transformer#1 for NW part model and CNN#1 for UE part model, then the benchmark case for performance comparison is also Transformer#1 for NW part model and CNN#1 for UE part model with joint training. 




In RAN1 #113, observations on type3 training case1 have been made based on inputs from companies. In addition, some revisions and clarifications of evaluation methodology for type3 training were also agreed. We are in general supportive of the observations made in RAN1 #113 and we also update our results according to the new agreements. 
In previous several meetings, the evaluation framework for type3 training has been made to facilitate simulations. Specifically, three cases are identified, which include the one-to-one baseline, one-NW-to-multi-UE configuration for UE first training, and one-UE-to-multi-NW configuration for NW first training. Therefore, we would like to update our results according to the agreed framework. During the evaluation, we consider the conventional separate training via exchanging datasets between NW and UE side, which is illustrated in Figure 14. As the separate training method has already been mentioned in agreements and working assumptions, we will not introduce them again in the following content. 
[image: ]
Figure 14 An illustration of separate training procedure.

1.7.1. General simulation configuration 
Firstly, we would like to introduce our simulation settings. We consider totally 3 gNBs (i.e., NW#1, NW#2, and NW#3) and 3 UEs (i.e., UE#1, UE#2, and UE#3) in our simulation, each of which has its own CSI generation/reconstruction part design. For simplicity, we also assume NW and UE that have the same index also share the same model design. Namely, the involved gNBs and UEs use the following model structure to train their local models and generate the dataset to be exchanged:
NW#1 and UE#1: use Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part;
NW#2 and UE#2: use Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part;
NW#3 and UE#3: use CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part.
The local model is trained with 300K samples and tested with 15K samples. Quantization-aware training with trainable vector quantization codebook is considered. Other detailed simulation parameters can be found in the out columns in the excel template. The performance for local joint training benchmark is presented below.
Table 18 Benchmark performance for separate training (64-bit payload).
	Model design
	SGCS for 64-bit payload

	Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part
	0.750

	Transformer with configuration#2 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part;
	0.742

	CNN with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part
	0.726

	Transformer with configuration#1 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part
	0.755

	Transformer with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part
	0.746



1.7.2. Evaluations for case 1
	Observation 
For the evaluation of UE first separate training with dataset sharing manner for CSI compression, till the RAN1#113 meeting, for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
· For the UE first separate training case where the same backbone is adopted for both the UE part model and the NW part model, minor degradation is observed in general for both the cases where the shared input of the UE side CSI reconstruction part is before or after quantization:
· For the case where the shared input of the UE side CSI reconstruction part is after quantization, 5 sources [Nokia, Fujitsu, CATT, vivo, Qualcomm] observe -0%~-0.5% degradation, and 1 source [ZTE] observes -1.05%~-1.75% degradation.
· For the case where the shared output of the UE side CSI reconstruction part is before quantization, 1 source [Huawei] observes -0%~-1% degradation, and 1 source [Apple] observe -1%~-2.9% degradation.
· Note: For the UE first separate training case where different backbones are adopted for the NW part model and the UE part model, and 
· If the backbone of the NW part model is less capable than the UE part model, 1 source [Qualcomm] observes 0%~-0.5% degradation, 2 sources [CATT, ZTE] observes -0.5%~-1% degradation, and 2 sources [ZTE, vivo] observe -1%~-1.88% degradation.
· If the backbone of the NW part model is more capable than the UE part model, 1 source [ZTE] observes -0.73%~-1.74% degradation.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1/2.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and UE first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· Note: Results refer to Table 5.6-3 of R1-2306062




For case 1, we study the performance of ideal alignment between involved entities and the impact of model structure mismatch. As guided by the agreement, we study NW-first training and UE-first training separately. 
For UE-first training, we assume UE#1 firstly trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part. Then, the paired input and output data for CSI reconstruction model with Transformer configuration#3 is generated and sent to multiple gNBs. Note that we consider the output data for CSI reconstruction part to be the target CSI instead of the output of CSI reconstruction model at UE side, since we find that using target CSI as the label helps to achieve better performance. After receiving dataset, each gNB uses its local model structure to learn the actual CSI reconstruction part, i.e., using Transformer with configuration#3 in NW#1, using Transformer with configuration#4 in NW#1, and using CNN with configuration#2 in NW#3. Finally, the paired CSI generation part at UE side and CSI reconstruction part at NW side are tested together. The computed intermediate KPI will be compared with joint training benchmark, i.e., SGCS for joint training Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part.
Table 19 Performance for one-to-one UE first separate training (64-bit payload).
	Test model pair in UE-first training
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 50,000 samples are exchanged

	NW#1-UE#1
	0.746 (-0.4%)
	0.730 (-2.0%)

	NW#2-UE#1
	0.748 (-0.7%)
	0.735 (-2.0%)

	NW#3-UE#1
	0.738 (-0.8%)
	0.719 (-2.7%)


According to the above table, if the actual model structure at NW strictly aligns with the assumed structure at UE, performance of UE-first separate training approaches that of joint training benchmark. If the model structure backbone aligns, the performance of UE-first separate training is still good. However, if NW uses a model with different backbone compared with the UE-side CSI reconstruction part, the performance degradation enlarges. In addition, the amount of exchanged data between NW and UE is also an important factor for separate training performance. If the amount of exchanged data is fewer than that of joint training, performance degradation could also be observed.
Observation 22:  [bookmark: _Hlk142679941]For UE-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at UE side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at UE side with minor loss (e.g., within -0.4% SGCS gain).
Observation 23:  For UE-first type 3 training, if the size of datasets to be exchanged is comparable to that in joint training at UE side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain to -0.7% SGCS gain).
Observation 24:  For UE-first type 3 training, if the size of datasets to be exchanged is smaller than to that in joint training at UE side, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain for 300,000 samples to -2.0% SGCS gain for 50,000 samples).


	Observation
For the evaluation of NW first separate training with dataset sharing manner for CSI compression, till the RAN1#113 meeting, for the pairing of 1 NW to 1 UE (Case 1), as compared to 1-on-1 joint training between the NW part model and the UE part model,
· For the NW first separate training case where the same backbone is adopted for both the NW part model and the UE part model, minor degradation is observed for both the cases where the shared output of the Network side CSI generation part is before or after quantization:
· For the case where the shared output of the Network side CSI generation part is after quantization, 5 sources [Ericsson, Nokia, ZTE，Fujitsu, Samsung] observe -0%~-0.5% degradation, 6 sources [Nokia, Qualcomm, ZTE, CATT, vivo, Samsung] observe -0.5%~-1% degradation, and 2 sources [Nokia, ZTE] observe -1%~-1.3% degradation.
· For the case where the shared output of the Network side CSI generation part is before quantization, 3 sources [Huawei, Apple, CMCC] observe -0%~-0.8% degradation.
· Note: For the NW first separate training case where different backbones are adopted for the NW part model and the UE part model, and 
· If the backbone of the UE part model is less capable than the NW part model, 1 source [ZTE] observes -0%~-0.5% degradation, 2 sources [ZTE, CATT] observe -0.5%~-1% degradation, and 2 sources [Qualcomm, vivo] observe -2.1%~-5.2% degradation.
· If the backbone of the UE part model is more capable than the NW part model, 1 source [ZTE] observes -0.08%~-0.64% degradation.
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1/2.
· Same size of training dataset for benchmark, NW part training and the UE part training
· Same pair of NW part model and UE part model between 1-on-1 joint training and NW first separate training.
· Quantization/dequantization method/parameters between NW side and UE side are aligned.
· Note: Results refer to Table 5.6-1 of R1-2306062

Observation
For the evaluation of NW first separate training with dataset sharing manner for CSI compression, till the RAN1#113 meeting, for the pairing of 1 NW to 1 UE (Case 1), as compared to the case where the same set of dataset is applied for training the NW part model and training the UE part model, if the dataset#2 applied for training the UE part model is a subset of the dataset#1 applied for training the NW part model,
· If the dataset#2 is appropriately selected, minor additional performance degradation can be achieved, as -0%~-0.55% gap is observed from 2 sources [Huawei, CMCC].
· If the dataset#2 has a significantly reduced size compared to dataset#1, moderate/significant additional performance degradation may occur, as -0.55%~-8.41% gap is observed from 2 sources [CMCC, vivo].
· Note: the dataset sharing behavior from above sources follows the example of the agreement in the RAN1#111 meeting, where “the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only”.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· The performance metric is SGCS for Layer 1/2.
· Note: Results refer to Table 5.6-2 of R1-2306062




For NW-first training, we also we assume UE#1 firstly trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part. After that, the paired input and output data for CSI generation model with Transformer configuration#1 is generated and sent to multiple UEs. Based on the received data, each UE uses its local model structure to learn the actual CSI generation model, i.e., using Transformer with configuration#1 in UE#1, using Transformer with configuration#2 in UE#2, and using CNN with configuration#1 in UE#3. Finally, the paired CSI generation part at UE side and CSI reconstruction part at NW side are tested together. The computed intermediate KPI will be compared with the same benchmark as what is done in UE-first training.
Table 20 Performance for one-to-one NW first separate training (64-bit payload).
	Test model pair in NW-first training
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 50,000 samples are exchanged

	NW#1-UE#1
	0.744 (-0.6%)
	0.724 (-2.6%)

	NW#1-UE#2
	0.741 (-0.1%)
	0.724 (-1.8%)

	NW#1-UE#3
	0.698 (-2.8%)
	0.656 (-7.0%)


As presented in the table, we can find that the requirement of aligning model structure (at least model backbone) and exchanging sufficient amount of data still holds for NW-first training. Furthermore, compared with UE-first training, NW-first training seems to suffer more obvious performance degradation when considering various non-ideal factors. We believe the reason for such phenomenon is that the output label in NW-first training is the latent space, which heavily depends on the learned pattern in CSI generation model. Therefore, for UEs using different model structures, it will be more difficult to learn the relationship between input and output of another model.
Observation 25:  [bookmark: _Hlk142679961]For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at NW side with minor loss (e.g., within -0.6% SGCS gain).
Observation 26:  For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain to -2.8% SGCS gain).
Observation 27:  For NW-first type 3 training, if the size of datasets to be exchanged is smaller than that in joint training at NW side, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain for 300,000 samples to -2.6% SGCS gain for 50,000 samples).

1.7.3. Evaluations for case 2
For case 2, we study the performance of training between one NW part model and M>1 separate UE part models in UE-first type3 training. Specifically, we assume one NW and three UEs are involved, where 1) UE#1 trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part; 2) UE#2 trains its local model using Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part; 3) UE#3 trains its local model using CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part. After local training, UE#1 generates the dataset to be exchanged based on CSI reconstruction part with Transformer configuration#3, UE#2 generates the dataset to be exchanged based on CSI reconstruction part with Transformer configuration#4, and UE#3 generates the dataset to be exchanged based on CSI reconstruction part with CNN configuration#2. Each dataset consists of 100,000 samples, so NW#1 could totally receive 300,000 samples from all UEs. Note that different UE generates its dataset based on its local data, which results non-overlapping samples at NW side. Finally, NW#1 collects datasets from all three UEs and trains one model accordingly. The final CSI reconstruction model will be paired with CSI generation model at different UEs during the test phase.
Table 21 Performance for case 2 separate training (64-bit payload).
	Test model pair in case 2 for type3 training 
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), 300,000 samples are exchanged

	NW#1-UE#1
	0.735 (-1.5%)

	NW#1-UE#2
	0.730 (-0.7%)

	NW#1-UE#3
	0.710 (-1.4%)



From the table, it can be observed that training one NW part model that corresponds to multiple UE part models would incur some performance loss compared with the case of one NW part to one UE part. However, we find the performance loss is not significant, which means it is feasible to use such configuration for training.
Observation 28:  [bookmark: _Hlk142679978]For UE-first type 3 training, the performance loss of training 1 NW part model to M>1 UE part models with different model structures is observable/non-negligible compared with one-to-one joint training benchmark (e.g., within -1.5% SGCS gain for 1 NW part model to 3 UE part models).

1.7.4. Evaluations for case 3
For case 3, we study the training between one UE part model and N>1 separate NW part models in NW-first type 3 training. We consider UE#1 trains a unified CSI generation model corresponding to the CSI reconstruction model at NW#1, NW#2, and NW#3 simultaneously. For the local model at NW side, NW#1 trains its local model using Transformer with configuration#1 for CSI generation part and Transformer with configuration#3 for CSI reconstruction part, NW#2 trains its local model using Transformer with configuration#2 for CSI generation part and Transformer with configuration#4 for CSI reconstruction part, and NW#3 trains its local model using CNN with configuration#1 for CSI generation part and CNN with configuration#2 for CSI reconstruction part. Then the dataset from NW#1 is based on CSI generation model with Transformer configuration#1, dataset from NW#2 is based on CSI generation model with Transformer configuration#3, and dataset from NW#3 is based on CSI generation model with CNN configuration#1. Similar to case, each dataset from one NW consists of 100,000 samples, so UE#1 receives 300,000 samples in all. It is worth noting that the quantization methods for CSI generation output from different NWs are different, as we believe aligning quantization methods at multiple NWs in advance is difficult, especially when these NWs are from different vendors. After receiving data, UE#1 trains a unified CSI generation model using Transformer configuration#1, which will be tested with CSI reconstruction model at each NW. 
Table 22 Performance for case 3 separate training (64-bit payload).
	Test model pair in case 3 for type3 training 
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), all three NWs are involved
	SGCS for 64-bit payload (and the gain over benchmark in absolute value), only NW#1 and NW#2 are involved

	NW#1-UE#1
	0.204 (no longer workable) 
	0.304 (no longer workable)

	NW#2-UE#1
	<0.1 (no longer workable)
	<0.1 (no longer workable)

	NW#3-UE#1
	<0.1 (no longer workable)
	



From the results above, we find the performance of case 3 in our simulation setting is surprisingly low such that models are no longer workable, even for the pair with the best performance (corresponding to aligned model structure on CSI generation part between NW and UE). We also tried the case that only two NWs are involved, where the performance is slightly better than that in case where three NWs are involved. To our understanding, we attribute such failure to the difficulty in simultaneously learning the input-output relationship of multiple patterns. Note that we do not consider designing individual information flows for data from different NWs (e.g., using adaption layers near output for different NWs). Namely, our model directly generates the latent representation using all weights. We believe that designs such as adaption layer at CSI generation model could resolve the problem, as introducing adaption layers could be seen as making a trade-off between case 3 and case 1, and we have found that NW-first training is workable in case 1. Since we have also found in results from other companies that large performance degradation is also observed in case 3, we believe it is better to reflect such phenomenon in the observation for case3 in type3 training, e.g., good performance in case 3 relies on particular model design such as adaption layers. 
Observation 29:  [bookmark: _Hlk142679991]For NW-first type 3 training, training 1 UE part model to M>1 NW part models with different model structures may lead to serious performance degradation which makes the model non-workable (e.g., <0.2 SGCS for 1 UE part model to 3 NW part models).
Proposal 6:  [bookmark: _Hlk142680004]If good performance in case 3 for type 3 training is reported by companies, it is better to clarify whether such (good) performance relies on special model structure, such as adaption layers.

1.8. Evaluation for Performance Monitoring methods
	Agreement
For the intermediate KPI monitoring of CSI compression, for the FFS issue on the value of threshold of  KPIth_1 in Option 1, the candidate threshold values are set as 0.02, 0.05 and 0.1

Agreement
For the intermediate KPI monitoring of CSI compression, for the FFS issue on the value of threshold of KPIth_2 and KPIth_3 in Option 2, consider KPIth_2   = KPIth_3.

Agreement
For the intermediate KPI monitoring of CSI compression, between the two options to calculate KPIdiff achieved in the RAN1#112bis-e meeting, as baseline for calibration purpose, consider Option 1 (Gap between KPIActual and KPIGenie). 
· Option 2 (Binary state of KPIActual and KPIGenie relationship) as optional and up to companies to report.
· Results subject to Option 2, may be captured as a note in observation

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1



In previous meetings, three agreements have been drawn towards the evaluation methodology for performance monitoring methods in CSI compression, whereby NW and UE side monitoring of intermediate KPIs can be evaluated and compared. In this section, we will present our initial results for UE side monitoring via proxy model according to such a framework.

1.8.1. NW side monitoring of intermediate KPI
In CSI compression, NW could monitor the performance of undergoing model via CSI ground-truth reporting from UE side. If the accurate downlink CSI ground-truth measurements are reported to NW, NW is able to obtain the exact model performance, i.e., achieving 100% monitoring accuracy. However, the overhead of reporting accurate downlink CSI to NW can be prohibitively high, which is usually unaffordable for CSI compression. To this end, overhead reduction approaches are essential for NW side monitoring.
The agreed ground-truth reporting overhead reduction methods include scalar quantization and legacy codebook. These methods are all lossy compression, so it is necessary to evaluate the corresponding trade-off between monitoring accuracy and reporting overhead. Our results are presented as follows, where a test dataset containing 20k samples is considered for all cases:
Table 23 Monitoring accuracy results for ground-truth reporting with L=4,  , beta=0.5, 250bits overhead per sample
	
	 Monitoring accuracy with <0.02
	Monitoring accuracy with <0.05
	Monitoring accuracy with <0.10

	Test on each sample
	0.6258
	0.9371
	0.9951

	Averaged over 5 samples
	0.6818
	0.9938
	1.0

	Averaged over 10 samples
	0.7160
	1.0
	1.0



Table 24 Monitoring accuracy results for ground-truth reporting with L=10,  , beta=0.31, 1014bits overhead per sample
	
	 Monitoring accuracy with <0.02
	Monitoring accuracy with <0.05
	Monitoring accuracy with <0.10

	Test on each sample
	0.6725
	0.9959
	1.0

	Averaged over 5 samples
	0.7878
	1.0
	1.0

	Averaged over 10 samples
	0.8670
	1.0
	1.0



Table 25 Monitoring accuracy results for ground-truth reporting with float16, ~13Kbits overhead per sample
	
	 Monitoring accuracy with <0.02
	Monitoring accuracy with <0.05
	Monitoring accuracy with <0.10

	Test on each sample
	1.0
	1.0
	1.0

	Averaged over 5 samples
	1.0
	1.0
	1.0

	Averaged over 10 samples
	1.0
	1.0
	1.0



Based on the above results, we find that ground-truth reporting with float16 format is enough to achieve 100% monitoring accuracy in our cases with pretty high overhead. Monitoring accuracy for ground-truth reporting with conventional codebook configuration (e.g., PC6) degrades when the criteria is stringent (e.g., <0.02), but the overhead is significantly reduced. Ground-truth reporting via new type-II like parameter combinations could improve the monitoring accuracy with slightly increased overhead compared with scalar quantization. In addition, our results demonstrate that averaging over a monitoring window can obviously improve the accuracy in all cases. 
Observation 30:  [bookmark: _Hlk142680022] In our simulation, accuracy of NW side monitoring case 1 using legacy codebook with L=4,  , beta=0.5 is: 0.625 (averaged over each sample), 0.681 (averaged over 5 samples), and 0.716 (averaged over 10 samples) for , 0.937 (averaged over each sample), 0.993 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , and 0.995 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , when option 1 is considered for .
Observation 31:   In our simulation, accuracy of NW side monitoring case 1 using legacy codebook with L=10,  , beta=0.31 is: 0.672 (averaged over each sample), 0.787 (averaged over 5 samples), and 0.867 (averaged over 10 samples) for , 0.995 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , and 1.0 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , when option 1 is considered for .
Observation 32:   In our simulation, accuracy of NW side monitoring case 1 using scalar quantization float16 is 1.0 in all cases for  .

1.8.2. UE side monitoring of intermediate KPI
In this part, we update our results for UE side monitoring based on the newly-agreed evaluation methodology. Our results focus on Case2-1, and the involved proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI. To facilitate low latency monitoring at UE side, the proxy model is designed to have very simple structure and small-scale parameters, and the comparison between proxy model and NW-side model is presented in Table 26. The proxy CSI reconstruction part is trained by minimizing the variance of KPI gap between proxy model output and NW-side model output. As the training objective is to minimize the variance of KPI gap,  is computed by shifting the intermediate KPI between inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI, where the shifting bias is obtained at training stage, which is illustrated in Figure 15.
Table 26 Comparison of actual CSI reconstruction model at NW and proxy CSI reconstruction model at UE.
	
	Model structure
	Parameter scale
	FLOPs

	NW-side CSI reconstruction model
	Transformer
	8.4M
	102.9M

	Proxy CSI reconstruction model at UE
	MLP
	0.33M
	0.45M



[image: ] [image: ]
Figure 15 SGCS comparison (left) and SGCS gap distribution (right) 

We consider both option1 and option2 to compute KPIdiff. For option2, it is assumed that KPIth_2   = KPIth_3=0.925. The results are presented in the following table.
Table 27 Performance gap between  and 
	
	Option1 monitoring accuracy for 
	Option1 monitoring accuracy for 
	Option1 monitoring accuracy for 
	Option2 monitoring accuracy with KPIth_2   = KPIth_3=0.925

	Test on each sample
	0.7132
	0.7275
	0.7760
	0.864

	Averaged over 5 samples
	0.9518
	0.9955
	0.998
	0.928

	Averaged over 10 samples
	0.9956
	0.9998
	1.0
	0.9615



In our results, proxy model in case2-1 offers comparable accuracy compared with case1 with conventional codebook configuration. However, we could find that loosening KPIdiff threshold does not dramatically increase the monitoring accuracy case2-1, which suggests that the variance of KPIdiff is larger than that of case1. Besides, accuracy evaluated in option2 is usually higher than that in option1 when the criterion is stringent, but it is also more difficult to achieve high accuracy (e.g., approaching 100%) when using option2. To reduce the variation of KPIdiff , we introduce an averaging window and confirm its influence. It could be observed that UE side monitoring in case2-1 is likely to benefit from averaging over samples more than NW side monitoring. 
Observation 33:  [bookmark: _Hlk142680039]In our simulation, accuracy of UE side monitoring case2-1 is 0.713 (averaged over each sample), 0.727 (averaged over 5 samples), and 0.776 (averaged over 10 samples) for , 0.951 (averaged over each sample), 0.995 (averaged over 5 samples), and 0.998 (averaged over 10 samples) for , and  0.995 (averaged over each sample), 0.999 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for  when option 1 is considered for . 
Observation 34:  In our simulation, accuracy of UE side monitoring case2-1 is 0.864 (averaged over each sample), 0.928 (averaged over 5 samples), and 0.961 (averaged over 10 samples) for KPIth_2   = KPIth_3=0.925 when option 2 is considered for . 
Observation 35:   Averaging over multiple samples can significantly improve the accuracy of UE side monitoring case 2-1.


CSI prediction
Basic assumptions for CSI prediction
In the AI-based CSI prediction design, the AI model is designed to derive the prediction of CSIs as the output of model when using the historical CSIs as the input. The block diagram of AI-based CSI prediction is illustrated in Figure 16.

[bookmark: _Ref111237779]The block diagram of AI-based CSI prediction.
For CSI prediction, the data for training is derived from the SLS platform.
Results for CSI prediction
In this subsection, the gain over non-AI scheme, the generalization aspects, the impact of observation window, and the monitoring results of AI-based CSI prediction are discussed.
The gain of AI-based CSI prediction
In this subsection, the eventual KPI and intermediate KPI of scheme with AI-based CSI prediction, nearest historical CSI without prediction (benchmark1) and AR-based non-AI CSI prediction (benchmark 2) are evaluated.
A. The gain of AI-based CSI prediction in channel with spatial consistency
First of all, the performance in the channel with spatial consistency is provided in the following Table 28. Simulation parameters are given below:
Umi 38.901; 7 cells, 3 sectors for each cell, 10 user for each sector; carrier frequency 2GHz, subcarrier spacing 15KHz, 13 subbands (10MHz, 4RBs/subband), 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. AI-based CSI compression models: Transformer model with 64 bits payload (CSI feedback payload Z).
It is shown that, for intermediate KPI, the AI-based CSI prediction achieves a SGCS gain of 
· 12.65% and 4.2% over the benchmark 1 and benchmark2, respectively, when UE speed is 30km/h
· 13.8% and 6.2% over the benchmark 1 and benchmark2, respectively, when UE speed is 60km/h
It is shown that, for eventual KPI:
· With FTP traffic, AI-based CSI prediction achieves a mean UPT gain of 
· 5.3%~10.58% over the benchmark 1 and 0.57%~2.32% over the benchmark 2 when UE speed is 30km/h, 
· 9.7%~17.2% over the benchmark 1, 3.4%~7.0% over the benchmark 2 when UE speed is 60km/h.
· With FTP traffic, AI-based CSI prediction achieves a 5% UPT gain of 
· 8.6%~14.75% over the benchmark 1 and 0.9%~2.94% over the benchmark 2 when UE speed is 30km/h, 
· 6.9%~20% over the benchmark 1 and 0.5%~16% over the benchmark 2 when UE speed is 60km/h.
· With full buffer traffic, AI-based CSI prediction achieves a mean UPT gain of 
· 15.6% over the benchmark 1, 2.3% over the benchmark 2 when UE speed is 30km/h,
· 10.9% over the benchmark 1, 8.1% over the benchmark 2 when UE speed is 60km/h.
· With full buffer traffic, AI-based CSI prediction achieves a 5% UPT gain of
· 35.3% over the benchmark 1, 6.7% over the benchmark 2 when UE speed is 30km/h,
· 33% over the benchmark 1, 11% over the benchmark 2 when UE speed is 60km/h,
In conclusion, the AI-based CSI prediction can achieve higher prediction accuracy and UPT over both benchmark 1 and benchmark 2. In general, the gain is more obvious when UE speed is 60km/h.
[bookmark: _Ref135065574]The gain of AI-based CSI prediction over benchmarks
	UE speed
	30km/h
	60km/h

	Benchmark 1
	nearest historical CSI w/o prediction 
	nearest historical CSI w/o prediction 

	SGCS of benchmark 1 (1,…N, N is number of prediction instances)
	0.87
(rank=1)
	0.71
(rank=1)

	Gain% for SGCS over Benchmark 1 (1,…N, N is number of prediction instances)
	12.65%
(rank=1)
	13.8%
(rank=1)

	Gain for eventual KPI (Benchmark 1)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	5.3%(64 bits)
	9.7%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	9.93%(64 bits)
	15.1%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	10.58%(64 bits)
	17.2%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	8.6%(64 bits)
	6.9%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	11.39%(64 bits)
	13.0%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	14.75%(64 bits)
	20.0%(64 bits)

	Gain for eventual KPI (Benchmark 1)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	15.6%(64 bit)
	10.9%(64 bit)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	35.3%(64 bit)
	33.0%(64 bit)

	Benchmark 2
	auto-regression
	auto-regression 

	SGCS of Benchmark 2 (1,…N, N is number of prediction instances)
	0.94
	0.78

	Gain% SGCS over Benchmark 2 (1,…N, N is number of prediction instances)
	4.2%
(rank=1)
	6.2%
(rank=1)

	Gain for eventual KPI (Benchmark 2)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	0.57%(64 bits)
	3.4%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	0.68%(64 bits)
	5.1%( 64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	2.32%(64 bits)
	7.0%( 64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	0.9%(64 bits)
	0.5%( 64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	1.44%(64 bits)
	3.1%( 64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	2.94%(64 bits)
	16%( 64 bits)

	Gain for eventual KPI (Benchmark 2)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	2.3%(64 bit)
	8.1%(64 bit)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	6.7%(64 bit)
	11%(64 bit)



B. The gain of AI-based CSI prediction in channel without spatial consistency
We also evaluated the performance of CSI prediction in channel without spatial consistency. Besides the setting of spatial consistency, other simulation parameters are identical to those in 3.2.1.A. 
It is shown that, for intermediate KPI, the AI-based CSI prediction achieves a SGCS gain of:
· 73.7% and 8.79% over the benchmark 1 and benchmark2, respectively, when UE speed is 30km/h, 
· 29.03% and 48.14% over the benchmark 1 and benchmark2, respectively, when UE speed is 60km/h
It is shown that, for eventual KPI:
· With FTP traffic, AI-based CSI prediction achieves a mean UPT gain of 
· 6.02%~19.72% over the benchmark 1 and 0.61%~1.86% over the benchmark 2 when UE speed is 30km/h,
· 2.02%~7.61% over the benchmark 1, 8.01%~24.71% over the benchmark 2 when UE speed is 60km/h.
· With FTP traffic, AI-based CSI prediction achieves a 5% UPT gain of 
· 10.87%~77.47% over the benchmark 1 and 0.18%~5.58% over the benchmark 2 when UE speed is 30km/h, 
· 3.33%~23.37% over the benchmark 1 and 17.58%~79.25% over the benchmark 2 when UE speed is 60km/h.
· With full buffer traffic, AI-based CSI prediction achieves a mean UPT gain of 
· 18.43% over the benchmark 1, 2.78% over the benchmark 2 when UE speed is 30km/h,
· 7.6% over the benchmark 1, 11.5% over the benchmark 2 when UE speed is 60km/h.
· With full buffer traffic, AI-based CSI prediction achieves a 5% UPT gain of
· 18.21% over the benchmark 1, 4.55% over the benchmark 2 when UE speed is 30km/h,
· 3.5% over the benchmark 1,15.4% over the benchmark 2 when UE speed is 60km/h,
In conclusion, similar to those results in 3.2.1.A, the AI-based CSI prediction can achieve higher prediction accuracy and UPT over both benchmark 1 and benchmark 2, especially when UE speed is 60km/h.

The gain of AI-based CSI prediction over benchmarks
	UE speed
	30km/h
	60km/h

	Benchmark 1
	nearest historical CSI w/o prediction 
	nearest historical CSI w/o prediction

	SGCS of benchmark 1 (1,…N, N is number of prediction instances)
	0.57
(rank=1)
	0.31
(rank=1)

	Gain% for SGCS over Benchmark 1 (1,…N, N is number of prediction instances)
	73.7%
(rank=1)
	29.03%
(rank=1)

	Gain for eventual KPI (Benchmark 1)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	6.02%(64 bits)
	2.02%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	11.61%(64 bits)
	4.64%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	19.72%(64 bits)
	7.61%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	10.87%(64 bits)
	3.33%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	27.19%(64 bits)
	9.19%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	77.47%(64 bits)
	23.37%(64 bits)

	Gain for eventual KPI (Benchmark 1)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	18.43%(64 bit)
	7.6%(64 bit)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	18.21%(64 bit)
	3.5%(64 bit)

	Benchmark 2
	auto-regression
	auto-regression 

	SGCS of Benchmark 2 (1,…N, N is number of prediction instances)
	0.91
	0.27

	Gain% SGCS over Benchmark 2 (1,…N, N is number of prediction instances)
	8.79%
(rank=1)
	48.14%
(rank=1)

	Gain for eventual KPI (Benchmark 2)-FTP
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	0.61%(64 bits)
	8.01%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	1.01%(64 bits)
	16.64%(64 bits)

	
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	1.86%(64 bits)
	24.71%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	0.18%(64 bits)
	17.58%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU 40%-69%]
	2.44%(64 bits)
	53.35%(64 bits)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU >=70%]
	5.58%(64 bits)
	79.25%(64 bits)

	Gain for eventual KPI (Benchmark 2)-full buffer
	Mean UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	2.78%(64 bit)
	11.5%(64 bit)

	
	5% UPT 
[(CSI feedback payload X/Y/Z), RU<=39%]
	4.55%(64 bit)
	15.4%(64 bit)



C. The gain of AI-based CSI prediction in field data
Furthermore, we also have done some filed test to evaluate the advantages of AI-based CSI prediction. The data is collected from the Area C depicted in Figure 1. The configuration of the UE and BS in this filed test is provided as follows: UE speed is about 5km/h, carrier frequency is 3.45GHz, subcarrier spacing is 30kHz, CSI-RS periodicity is 20ms, the number of antenna ports at BS is 8, the number of antenna ports at UE is 4, the number of historical CSIs in the observation window is 15, predicted future time is +20ms. We collected 4 data in Area C to train the AI model. whose details are described in the following table.
The description of the field test data
	Data ID
	Collected date
	Dataset size

	1
	2023.03.28
	60000

	2
	2023.03.28
	120000

	3
	2023.03.10
	60000

	4
	2023.03.10
	90000



In the following Figure 17, the SGCS gain of AI-based CSI prediction corresponding to the filed data is illustrated. It is shown that the AI-based CSI prediction can achieve about 20% SGCS gain over benchmark1 and more than 140% SGCS gain over benchmark2. The prediction performance of benchmark2 is very poor. This is because there exists phase discontinuity in the filed data channel.
[image: ]
[bookmark: _Ref141981300]The SGCS gain of AI-based CSI prediction at filed data
To further verify the phase discontinuity in the field test channel, we fixed the antennas at UE and collected a set of measured channel data, which was used to observe the phase information of consecutive multiple CSIs. The phases of consecutive multiple CSIs for a pair of transceiver antennas on a single RB are given in the following Figure 18. It is shown that the phases of consecutive multiple CSIs are unstable or have no obvious pattern of change even when the terminals are fixed, i.e., the existence of a phase discontinuity problem in the field test channel is confirmed. This problem may mainly come from the phase shift of hardware such as amplifier. Based on the large amount of CSI data, the AI model is able to extract the law of phase shift, and somehow achieves compensation to the CSIs. Therefore, it seems that the traditional AR algorithm may not be able to solve the CSI prediction under phase discontinuity conditions, while the AI-based scheme can still work well under phase discontinuity conditions.
[image: ]
[bookmark: _Ref141981723]The phase discontinuity of CSIs in field data


[bookmark: _Hlk142680063]The AI-based CSI prediction achieves higher prediction accuracy and UPT over both benchmark 1 and benchmark 2.
On the field test data, the AI-based CSI prediction is more robust to the phase discontinuity problem than benchmark 2 and achieves significant SGCS gain over both benchmark 1 and benchmark 2.

The generalization of AI-based CSI prediction
The generalization describes the adaptability of an AI model to fresh data, which is one of the key capabilities for evaluating the performance of an AI model. 
In this subsubsection, the generalization of AI-based CSI prediction over speeds, deployment scenarios (LOS/NLOS, Uma/Umi) and carrier frequencies are evaluated.
A. The generalization of AI-based prediction over speeds
In this subsubsection, the generalization of AI-based CSI prediction over different speeds is evaluated. The corresponding simulation parameters are given below:
Simulation parameters: Uma 38.901 ,carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific UE speed (30, 60, or 120 km/h) or mixed speeds. Then, the trained model is tested on the data with the UE speed of 30 and 60 km/h and 120km/h, respectively, to evaluate the generalization performance. 
The generalization performance of AI-based CSI prediction over speeds
	Generalization Case 1
	Train (setting#B, size/k)
	30km/h,90
	60km/h,90
	120km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS 
	0.9896
	0.8102
	0.6156

	
	NMSE 
	-17.317dB
	-4.817dB
	-1.716dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	60km/h,90
120km/h,90
	30km/h,90
120km/h,90
	30km/h,90
60km/h,90

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS/Loss
	0.9228/-6.75%
0.8834/-10.73%
	0.5605/-30.82%
0.7469/-7.81%
	0.5048/-17.99%
0.5691/-7.55%

	
	NMSE/Loss
	-9.215 dB/8.102dB
-6.897dB/10.42dB
	6.85 dB/11.667 dB
-2.56 dB/2.257 dB
	8.828 dB/10.544 dB
4.039 dB/5.755 dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30
	30km/h+60km/h+120km/h,30+30+30

	
	Test (setting#B, size/k)
	30km/h,10
	60km/h,10
	120km/h,10

	
	SGCS/Loss
	0.9493/-4.07%
	0.7797/-3.76%
	0.5882/-4.45%

	
	NMSE/Loss
	-11.18dB /6.137dB
	-3.26 dB/1.577dB
	1.592 dB/3.308dB



It is shown that the model trained at each speed can only cope with its corresponding speed but performs poor at other speed. Especially when the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant. For CSI prediction, as a consequence, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed scenarios. Furthermore, the model trained from the mixed-speed data set can improve the generalization performance while there still exist performance gap with speed-specific model. Besides the model switching, finetuning is also a good approach to improve the generalization performance where the model trained by mixed dataset can be a good starting point for finetuning.
[bookmark: _Hlk142680083]The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.






Beside the model switching with a level y/z collaboration, we also notice that a preprocessing based model scaling can be utilized to handle the situation of speed changing. For the preprocessing based model scaling, we train a base model using the data with speed  where the CSI-RS periodicity in historical CSI is  and the predicted future CSI is at . Then, for the scenario with the speed of , we compute the corresponding CSI periodicity in historical CSI () and the predicted Future CSI () using the following rule:




For example, the base model is trained with the UE speed of 30km/h where CSI-RS periodicity in historical CSI is 4ms and the predicted Future CSI is at +4ms. If we want to inference at 15km/h, then the CSI-RS periodicity in historical CSI should turn to 8ms and the predicted future CSI should be at +8ms; If we want to inference at 60km/h, then the CSI-RS periodicity in historical CSI should turn to 2ms and the predicted Future CSI should be at +2ms (as illustrated in Figure 19 as follows). 
[image: ]
[bookmark: _Ref131696824]The illustration of preprocessing based model scaling for AI-based CSI prediction: from 30km/h to 60km/h

The key issue for preprocessing based model scaling is to derive the input CSI of model with the periodicity of . We consider two options: 

1) Reconfigure the CSI-RS periodicity to ; 




2) Construct the input CSIs with the periodicity of  from the CSIs with the periodicity of . If , we just need to extract corresponding CSIs; If , CSI interpolation is needed to derive denser CSIs.
The performance of preprocessing based model scaling is provided in the following Table 32. It can be seen that, the prediction accuracy at 60 km/h with 2 ms historical CSI spacing to predict +2 ms and +4 ms are almost the same as that at 30 km/h with 4 ms historical CSI spacing to predict +4 ms and +8 ms. This means that using the preprocessing, the model trained at one speed can scales to other speeds.
[bookmark: _Ref131696846]The performance of preprocessing based model scaling
	The NMSE (dB) at 30 km/h with 4ms historical CSI spacing
	Predict the CSI at +4ms
	Predict the CSI at +8ms

	
	-19.84
	-10.65

	The NMSE (dB) at 60 km/h with 2ms historical CSI spacing
	Predict the CSI at +2ms
	Predict the CSI at +4ms

	
	-19.51
	-10.67


[bookmark: _Hlk142680099]Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.
[bookmark: _Hlk142680113]For AI-based CSI prediction, the generalization over speeds (e.g., 30km/h, 60km/h, and 120km/h), the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback), and the preprocessing-based scaling mechanism (e.g., the stretching/shrinking of historical CSI and prediction CS) should be studied.

B. The generalization of AI-based prediction over deployment scenarios
The generalization over LOS and NLOS channel types:
The LOS and NLOS channel type will lead to different time varying regularity. To this end, we discuss the generalization performance of AI-based CSI prediction over LOS and NLOS channel types. In details, the models are trained by using data set from LOS, NLOS and mixed types respectively and then test these models in LOS and NLOS channel. In this simulation, the period of CSI is 5 ms, and the prediction is with 10 historical CSIs as the input and the future CSI at +5ms as output. The UE is travelling at the speed of 60km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The channel scenario is Uma. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided below. 
The generalization performance of AI-based CSI prediction over LOS and NLOS channel types
	Generalization Case 1
	Train (setting#B, size/k)
	LOS,90
	NLOS,90

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.9972
	0.8102

	
	NMSE 
	-24.95dB
	-4.817dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	NLOS,90
	LOS,90

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.8507/-14.69%
	0.7436/-8.22%

	
	NMSE 
	-7.263dB/17.687dB
	-3.245dB/1.572dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	LOS+NLOS,45+45
	LOS+NLOS,45+45

	
	Test (setting#B, size/k)
	LOS,10
	NLOS,10

	
	SGCS 
	0.9122/-8.52%
	0.7745/-4.41%

	
	NMSE 
	-9.81dB/15.14dB
	-3.67dB/1.147dB



It is shown that the prediction accuracy decreases significantly when the model mismatch is happened. To overcome this problem, assistance information-based model switching/selection is a solution. Here, the assistance information is the estimation of LOS and NLOS type of current channel. Once the estimated assistance information changes, the procedure of model monitoring and model switching is triggered and the CSI prediction is switched to the corresponding model by using a level y/z collaboration. Furthermore, as seen from the evaluation result, using the mixed data set of LOS and NLOS can also improve the generalization performance, whose prediction accuracy is still worse than that of scenario-specific models. For the scheme using mixed training set, the data collection principle and procedure should be carefully designed to acquire a good training set.
The generalization over Uma and Umi scenarios:
Similarly, the scenarios of channel such as Uma and Umi also impact the time varying regularity of wireless channel. In details, the models are trained by using data set from Uma, Umi and mixed scenarios, respectively and then test these models in Uma and Umi channel accordingly. In this simulation, the period of CSI is 5 ms, and the prediction is with 10 historical CSIs as the input and the future CSI at +5ms as output. The UE is travelling at the speed of 60km/h. The carrier frequency is 2GHz and the subcarrier spacing is 15kHz. The channel type is NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The corresponding performance is provided in the following Table 34.
[bookmark: _Ref131696868]The generalization performance of AI-based CSI prediction over Uma and Umi scenarios
	Generalization Case 1
	Train (setting#B, size/k)
	Uma,90
	Umi,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.8102
	0.9095

	
	NMSE 
	-4.817dB
	-7.55dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	Umi,90
	Uma,90

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7387/-8.82%
	0.8712/-4.11%

	
	NMSE 
	-2.418dB/2.399dB
	-6.02dB/1.53dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	Uma+Umi,45+45
	Uma+Umi,45+45

	
	Test (setting#B, size/k)
	Uma,10
	Umi,10

	
	SGCS 
	0.7614/-6.02%
	0.8821/-3.01%

	
	NMSE 
	-3.039dB/1.778dB
	-6.63dB/ 0.92dB



It can be seen that the prediction performance decreases significantly when the model trained by Uma is tested on the Umi data and the model trained by Umi is tested on the Uma data. This problem can also be solved by a level y/z collaboration based model switching. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while its data collection is needed to be carefully designed. 
[bookmark: _Hlk142680136]The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
[bookmark: _Hlk142680148]The generalization over scenarios (e.g., LOS/NLOS, Uma/Umi) and the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback) of AI-based CSI prediction should be studied.

C. The generalization of AI-based prediction over carrier frequencies
Carrier frequency will also impact the time varying regularity of wireless channel since at least the doppler shift is related to the carrier frequency. In this subsubsection, the generalization of AI-based CSI prediction over different carrier frequencies is evaluated. The corresponding simulation parameters are given below:
Simulation parameters: Uma 38.901, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: Uma, NLOS, speed: 30km/h. Period of CSI-RS: 5ms; Input of AI model for CSI prediction: 10 raw historic channels in PRB, the spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms.
The AI model is trained using the data with one specific carrier frequency (2GHz or 3GHz) or mixed carrier frequencies. Then, the trained model is tested on the data with the carrier frequency of 2GHz and 3GHz, respectively, to evaluate the generalization performance. 
The generalization performance of AI-based CSI prediction over carrier frequencies

	Generalization Case 1
	Train (setting#B, size/k)
	2GHz,90
	3GHz,90

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9896
	0.9262

	
	NMSE 
	-17.317dB
	-9.09dB

	Generalization Case 2-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A, size/k)
	3GHz,10
	2GHz,10

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9595/-3.3%
	0.7313/-21.04%

	
	NMSE 
	-13.11dB/4.207dB
	5.57dB/14.66dB

	Generalization Case 3-Absolute value/gain(SGCS in %; NMSE in dB) over Case 1
	Train (setting#A+#B, size/k)
	2GHz+3GHz,45+45
	2GHz+3GHz,45+45

	
	Test (setting#B, size/k)
	2GHz,10
	3GHz,10

	
	SGCS 
	0.9702/-1.96%
	0.8502/-8.21%

	
	NMSE 
	-15.26dB/2.057dB
	-5.02dB/4.07dB



It is shown that the prediction performance decreases significantly when the model trained by data with carrier frequency of 2GHz is tested on the data with carrier frequency of 3GHz. This problem can also be solved by a level y/z collaboration based model switching. Furthermore, the model trained by the mixed scenarios can improve the generalization performance while there still exist performance gap with generalization Case 1. 
[bookmark: _Hlk142680167]When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around.
[bookmark: _Hlk142680184]The generalization over carrier frequencies of AI-based CSI prediction should be studied.

D. The generalization of AI-based prediction at filed test
We also have evaluated the generalization of AI-based CSI prediction on the field test data. the SGCS gain of AI-based CSI prediction over benchmark1 is provided in the following Table 36. 
[bookmark: _Ref141982767]The generalization performance of AI-based CSI prediction on the field test data
	                    test

train
	data1
	data2
	data3
	data4
	data1+ data2
	data3+ data4
	data1+data2+data3+ data4

	data1, 60000 samples
	11.33%
	-1.92%
	-13.03%
	7.07%
	2.24%
	-6.54%
	-0.39%

	data2, 120000 samples
	13.80%
	9.13%
	4.40%
	8.99%
	9.81%
	4.09%
	8.40%

	data3, 60000 samples
	3.89%
	0.44%
	11.84%
	1.60%
	0.75%
	5.39%
	2.32%

	data4, 90000 samples
	-10.20%
	-20.86%
	-29.93%
	25.51%
	-17.98%
	-5.65%
	-13.40%

	data1+data2, 60000 samples
	9.86%
	4.97%
	0.26%
	6.95%
	7.12%
	-0.41%
	4.46%

	data3+data4, 60000 samples
	-3.97%
	-10.56%
	-2.11%
	17.02%
	-7.02%
	5.24%
	-2.82%

	data1+data2+data3+data4, 60000 samples
	9.60%
	4.60%
	2.23%
	13.22%
	5.67%
	3.99%
	5.56%

	data1+data2, 180000 samples
	19.80%
	10.27%
	1.77%
	11.53%
	13.04%
	5.81%
	8.26%

	data3+data4, 150000 samples
	-1.15%
	-0.99%
	8.11%
	30.85%
	-1.82%
	17.33%
	6.22%

	data1+data2+data3+data4, 330000 samples
	26.44%
	14.32%
	19.19%
	34.68%
	18.18%
	27.92%
	22.05%



It is shown that, when considering generalization case2, the generalization is not good for most cases but the loss varies from one data to another. This might be caused by the different similarity between different datasets. Furthermore, the size of dataset also impacts the performance, the increases of training samples may compensate the loss caused by the mismatch of model and data. When considering the generalization case3, the generalization can be improved by the mixed dataset while there still exist loss compared to the generalization case1. Furthermore, increasing the size of mixed dataset can also significantly improve the prediction accuracy, which can even surpass the generalization case1.
[bookmark: _Hlk142680202]On filed test data, when considering generalization case2, the generalization is not good for most cases but the loss varies from one data to another. This may be caused by different similarity between different datasets and size of datasets.
On filed test data, when considering generalization case3, the generalization can be improved by the mixed dataset while there still exist loss compared to the generalization case1.

Here, we summarize the generalization of models with the various of parameters and/or scenarios, as listed in the table below:
The generalization performance of AI-based CSI prediction on the field test data
	Generalization Types
	Summaries
	Potential Solutions

	Generalization of AI-based prediction over speeds
	· For generalization case2, the generalization is not good.
· When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
	· Model switching can achieve best performance.
· Using a model trained from mixed dataset can mitigate the performance degradation.
· Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds

	Generalization over deployment scenarios, e.g., LOS/NLOS, Uma/Umi 
	For generalization case2, the generalization is not good.
	· Model switching can achieve best performance.
· Using a model trained from mixed dataset can mitigate the performance degradation.

	Generalization of AI-based prediction over carrier frequencies
	· For generalization case2, the generalization is not good.
· When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around.
	· Model switching can achieve best performance.
· Using a model trained from mixed dataset can mitigate the performance degradation.

	Generalization of AI-based prediction at filed test
	· For generalization case2, the generalization is not good for most cases but the loss varies from one data to another.
	· Model switching can achieve best performance.
· Using a model trained from mixed dataset can mitigate the performance degradation.
· Increase the size of training dataset.




The impact of prediction window on the AI-based CSI prediction
The performance of CSI prediction differs from one predicted time to another. Furthermore, the speed of UE also impacts the trend with respect to the prediction window. In this subsection, the impact of prediction window on the performance of CSI prediction is evaluated. The corresponding simulation parameters are given below and the SGCS gain of AI-based CSI prediction over benchmark1 for different prediction time is provided in Table 38.
Simulation parameters: Uma 38.901, carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The input and output type of AI model is raw channel. The dataset size of training set and testing set is 90k and 10k, respectively.
[bookmark: _Ref141965693]The SGCS gain of AI-based CSI prediction over benchmark1 for different prediction time.
	UE speed
	30km/h
	60km/h

	CSI feedback periodicity
	5ms

	Observation window (number/distance)
	10/5ms

	Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	10/1ms/1ms

	SGCS of benchmark 1 (1,…N, N is number of prediction instances)
	0.9702, 0.9551, 0.9330, 0.9067, 0.8779, 0.8483, 0.8193, 0.7916, 0.7658, 0.7423
	0.9340, 0.8850, 0.8333, 0.7765, 0.7272, 0.6873, 0.6553, 0.6294, 0.6082, 0.5907

	SGCS- Absolute value/gain% over benchmark 1 (1,…N, N is number of prediction instances)
	absolute value:
0.9992, 0.9987, 0.9973, 0.9946, 0.9897, 0.9823, 0.9721, 0.9587, 0.9424, 0.9234
gain: 
2.99%, 4.57%, 6.89%, 9.70%, 12.74%, 15.79%, 18.64%, 21.11%, 23.05%, 24.39%
(rank=1)
	absolute value:
0.9783, 0.9400, 0.8980, 0.8622, 0.8279, 0.7836, 0.7410, 0.7057, 0.6786, 0.6593
gain:
4.74%, 6.20%, 7.76%, 11.03%, 13.85%, 14.00%, 13.08%, 12.12%, 11.56%, 11.60%
(rank=1)



It is shown that, for 30km/h, the SGCS gain of AI-based CSI prediction over benchmark1 increases with the future prediction time; for 60km/h, the SGCS gain of AI-based CSI prediction over benchmark1 first increases and then decreases with the future prediction time. 
[bookmark: _Hlk142680229]The SGCS gain of AI-based CSI prediction over benchmark1 differs from one predicted time to another.
The changing trend of SGCS gain of AI-based CSI prediction over benchmark1 with respect to the prediction window is related to the speed of UE.
The impact of observation window on the AI-based CSI prediction
For the AI-based CSI prediction, time varying characteristic of the CSI required to be extracted from historical CSIs in observation window and utilized to make prediction. Therefore, the construction of the observation window impacts the performance. The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs. The choice of observation window has significant influence on the performance of the CSI prediction. The larger the number and the smaller the spacing of historical CSIs, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model. Furthermore, for different scenario and different prediction target, the observation window should also be different.
The corresponding simulation parameters are given below and the SGCS gain of AI-based CSI prediction over benchmark1 for different observation window is provided in Table 39.
Simulation parameters: Uma 38.901, carrier frequency 2GHz, subcarrier spacing 15KHz, 32 gNB antenna ( [Mg Ng M N P; Mp Np] = [1 1 2 8 2; 2 8]), 2 UE antenna ([Mg Ng M N P; Mp Np] = [1 1 1 1 2; 1 1]), 100% outdoor UE, Channel type: NLOS. The spatial consistency procedure A with 50m decorrelation distance is used where the channel updating periodicity is assumed to be 1 ms. The future time for prediction is +5ms. The input and output type of AI model is raw channel. The dataset size of training set and testing set is 90k and 10k, respectively.

[bookmark: _Ref141965615]The SGCS gain of AI-based CSI prediction over benchmark1 for different observation window
	UE speed
	30km/h
	60km/h

	CSI feedback periodicity
	5ms

	Observation window (number/distance)
	[2,3,4,5,8,10,15]/5ms

	Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	1/5ms

	SGCS of benchmark 1 (1,…N, N is number of prediction instances)
	0.8719
	0.7127

	SGCS-Absolute value/gain% over benchmark 1 (1,…N, N is number of prediction instances)
	absolute value:
0.9376, 0.9682, 0.9811, 0.9866, 0.9898, 0.9897, 0.9901
gain: 
6.80%, 10.29%, 11.76%, 12.38%, 12.72%, 12.76%, 12.78%
(rank=1)
	absolute value:
0.7621, 0.7952, 0.8114, 0.8201, 0.8247, 0.8273, 0.8290
gain:
4.76%, 9.35%, 11.59%, 12.78%, 13.41%, 13.77%, 14.00% 
(rank=1)


It is shown that, the prediction performance can be improved by increasing the number of historical CSIs. However, this improvement is marginal when the number of historical CSIs within the observation window is large enough, e.g., larger than 5 for 30km/h and larger than10 for 60km/h in the simulation. But the complexity and the storage (buffer) overhead will relevantly increase. Therefore, the choice of the number of historical CSIs is important and its tradeoff should be studied.
Furthermore, the spacing of neighboring historical CSIs also impact the performance of AI-based CSI prediction. This is due to the coherence time of channel which is inversely proportional to the speed of UE. In the following Figure 20 and Figure 21, we have evaluated the performance of AI-based CSI prediction with respect to different carrier frequency and CSI-RS periodicity. It is noted that spatial consistency is not considered in this simulation. 

[image: ]
[bookmark: _Ref115189228]The NMSE performance of AI-based CSI prediction where carrier frequency is 4GHz and UE speed is 30km/h

[image: ]
[bookmark: _Ref115189233]The NMSE performance of AI-based CSI prediction where carrier frequency is 3GHz and UE speed is 30km/h






It is shown that the performance of AI-based CSI prediction is highly related with the CSI-RS periodicity. When the CSI-RS periodicity is too large, the prediction accuracy will be unacceptable. From our viewpoint, if the coherence time of channel is smaller than the spacing of neighboring historical CSIs, the performance of CSI prediction will be degraded significantly. It is well known that the maximum Doppler shift is given by , where  is the speed of UE,  is the speed of light,  is the carrier frequency. By considering the coherence time of channel, we believe the CSI-RS periodicity  should satisfy  to derive a good CSI prediction performance. We calculated some typical value of maximum CSI-RS periodicity, which is provided in the following table. 
[bookmark: _Ref115187862]The maximum CSI period to ensure CSI prediction performance
	Carrier frequency (GHz)
	Speed (km/h)
	Maximum CSI-RS periodicity (ms)

	4

	120
	1.125

	
	60
	2.25

	
	30
	4.5

	
	10
	13.5

	3

	120
	1.5

	
	60
	3

	
	30
	6

	
	10
	18

	2

	120
	2.25

	
	60
	4.5

	
	30
	9

	
	10
	27



[bookmark: _Hlk142680253]Therefore, in the various of speeds, the observation window should be changed, that perhaps impact the model switching /selection for AI-based CSI prediction as well.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
[bookmark: _Hlk142680286]The performance impact of observation window on the AI-based CSI prediction should be studied.

The monitoring results
As shown in the previous subsubsections, the performance of CSI prediction will change with the change of speed, transmission scenario, channel type and also impacted by the observation window. Therefore, the monitoring is needed to be aware of the real time performance of AI-based CSI prediction.
The monitoring is a continuous evaluation of AI model. For the construction of dataset for monitoring, we randomly select N scenarios or configurations (each containing K samples) and concatenate samples of these N scenarios or configurations in the selected order to form a test set. Then, the prediction accuracy is continuously calculated based on this test set to observe the effectiveness of the one scheme in real time and then calculate the average prediction accuracy of one scheme from multiple randomly generated test sets.
Just for an example, we provide the monitoring results when considering multiple speeds including 30, 60, and 120 km/h. For comparison of schemes, we evaluated the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2) and the scheme with model selection. It should be noted that the delay of monitoring has not been considered in the scheme with model selection. As shown in the following Figure 22, during the monitoring process, the scheme with model selection achieves better prediction accuracy. Meanwhile, the fluctuation of the scheme with model selection is also smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). Furthermore, in the following Table 41, the average prediction accuracy calculated from multiple randomly generated test sets for monitoring is provided. The average prediction accuracy of scheme with model selection is still higher than that without model selection.
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[bookmark: _Ref131696937]The monitoring results of AI-based CSI prediction
[bookmark: _Ref131696926]The average prediction accuracy calculated from multiple randomly generated test sets for monitoring
	scheme
	Average prediction accuracy described by NMSE (dB)

	with model selection
	-4.68

	using one randomly chosen speed-specific model
	2.74

	Using model trained with mixed {30, 60, 120 km/h} dataset
	-1.78


[bookmark: _Hlk142680312]During the monitoring process, the scheme with model selection achieves better prediction accuracy than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). 
During the monitoring process, the fluctuation of the scheme with model selection is smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2).
[bookmark: _Hlk142680325]The monitoring of the AI-based CSI prediction should be studied.
The monitoring dataset is formed by randomly selecting N scenarios or configurations (each containing K samples) and concatenating samples of these N scenarios or configurations in the selected order.

Conclusions
We have the following observations for this meeting:
1. Based on initial field test results, per-cell (region) models can provide more than 20%~30% improvement on SCGS of AI models.
Observation 37:  Further study the model update for per-cell (region) models
Observation 38:  Further study the data collection for per-cell (region) models.
Observation 39:  The additional performance gain of region-specific models over generic models could be verified by data with spatial consistency. Our initial results show that more than 25% SGCS gain for trivial MLP encoder and more than 27.5% SGCS gain for Transformer encoder could be achieved over legacy codebook.
Observation 40:  From initial results for field test, performance of simple model structure, e.g., one hidden layer full-connected encoder, is good enough for typical zone/site specific optimization.
Observation 41:  From initial results for field test, the model developed for Cell 1 shows robust performance for different moving routes.
Observation 42:  Field test shows that model developed for Cell 1 does not perform well for Cell 2. 
Observation 43:  Field test shows that simple and small models work well for all different cases, at least for typical cell coverage.
Observation 44:  Field test shows that models for Receiver 1 has small performance degradation compared with models for Receiver 2. 
Observation 45:  It is feasible to flexibly adjust the payload size with negligible performance loss by updating adaptation layer and CSI reconstruction part.  
Observation 46:  Rank generalization with per-layer model can achieve similar SGCS with half model size compared with per-rank model.
Observation 47:  Layer common model can achieve better SGCS with the same dataset.
Observation 48:  For a generic model (non-optimized for a specific area/cell), AI model trained in complicated channel environment (more indoor users) has good generalization ability.
Observation 49:  The performance of AI model depends on the deployment environment
Observation 50:  For a generic model (non-optimized for a specific area/cell), there is obvious performance loss for antenna spacing mismatch of training data.
Observation 51:  For a generic model (non-optimized for a specific area/cell), the influence of mismatch of training data may be reduced by pre-processing.
Observation 52:  For a generic model (non-optimized for a specific area/cell), SGCS performance of AI model may degrade slightly from 128 antennas with virtualization to 32 antennas without virtualization. While the SE performance may degrade heavily due to the less antennas.
Observation 53:   For a generic model (non-optimized for a specific area/cell), in the case of 32 antennas, AI model trained with 32 antennas may have similar SE performance compared with AI model trained with 128 antennas and settled in the case of 128 antennas, which is needed to be further studied.
Observation 54:  High resolution R16-eType II codebook with large L, , beta (for example, L=12, , beta = 1.0) performs well for ground-truth CSI quantization compared with scalar quantization such as Float16 or Float32.
Observation 55:  It is feasible to jointly train 1 NW part corresponding to M>1 UE parts with negligible performance loss (e.g., -1.1%~0.3% SGCS gain when considering 1 NW part to 3 UE parts) compared with one-to-one joint training. 
Observation 56:  It is feasible to jointly train N>1 NW parts corresponding to 1 UE part with negligible performance loss (e.g., -0.6%~0.9% SGCS gain when considering 3 NW parts to 1 UE part) compared with one-to-one joint training. 
Observation 57:  For UE-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at UE side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at UE side with minor loss (e.g., within -0.4% SGCS gain).
Observation 58:  For UE-first type 3 training, if the size of datasets to be exchanged is comparable to that in joint training at UE side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain to -0.7% SGCS gain).
Observation 59:  For UE-first type 3 training, if the size of datasets to be exchanged is smaller than to that in joint training at UE side, the performance gap between separate training and joint training benchmark at UE side increases (e.g., increasing from -0.4% SGCS gain for 300,000 samples to -2.0% SGCS gain for 50,000 samples).
Observation 60:  For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side and the model structure (or at least model backbone) is aligned between NW and UE, the performance of separate training approaches that of joint training benchmark at NW side with minor loss (e.g., within -0.6% SGCS gain).
Observation 61:  For NW-first type 3 training, if the size of dataset to be exchanged is comparable to that in joint training at NW side but the model structure (or at least model backbone) is not aligned between NW and UE, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain to -2.8% SGCS gain).
Observation 62:  For NW-first type 3 training, if the size of datasets to be exchanged is smaller than that in joint training at NW side, the performance gap between separate training and joint training benchmark at NW side increases (e.g., increasing from -0.6% SGCS gain for 300,000 samples to -2.6% SGCS gain for 50,000 samples).
Observation 63:  For UE-first type 3 training, the performance loss of training 1 NW part model to M>1 UE part models with different model structures is observable/non-negligible compared with one-to-one joint training benchmark (e.g., within -1.5% SGCS gain for 1 NW part model to 3 UE part models).
Observation 64:  For NW-first type 3 training, training 1 UE part model to M>1 NW part models with different model structures may lead to serious performance degradation which makes the model non-workable (e.g., <0.2 SGCS for 1 UE part model to 3 NW part models).
Observation 65:  In our simulation, accuracy of NW side monitoring case 1 using legacy codebook with L=4,  , beta=0.5 is: 0.625 (averaged over each sample), 0.681 (averaged over 5 samples), and 0.716 (averaged over 10 samples) for , 0.937 (averaged over each sample), 0.993 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , and 0.995 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , when option 1 is considered for .
Observation 66:   In our simulation, accuracy of NW side monitoring case 1 using legacy codebook with L=10,  , beta=0.31 is: 0.672 (averaged over each sample), 0.787 (averaged over 5 samples), and 0.867 (averaged over 10 samples) for , 0.995 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , and 1.0 (averaged over each sample), 1.0 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for , when option 1 is considered for .
Observation 67:   In our simulation, accuracy of NW side monitoring case 1 using scalar quantization float16 is 1.0 in all cases for  .
Observation 68:  In our simulation, accuracy of UE side monitoring case2-1 is 0.713 (averaged over each sample), 0.727 (averaged over 5 samples), and 0.776 (averaged over 10 samples) for , 0.951 (averaged over each sample), 0.995 (averaged over 5 samples), and 0.998 (averaged over 10 samples) for , and  0.995 (averaged over each sample), 0.999 (averaged over 5 samples), and 1.0 (averaged over 10 samples) for  when option 1 is considered for . 
Observation 69:  In our simulation, accuracy of UE side monitoring case2-1 is 0.864 (averaged over each sample), 0.928 (averaged over 5 samples), and 0.961 (averaged over 10 samples) for KPIth_2   = KPIth_3=0.925 when option 2 is considered for . 
Observation 70:   Averaging over multiple samples can significantly improve the accuracy of UE side monitoring case 2-1.
The AI-based CSI prediction achieves higher prediction accuracy and UPT over both benchmark 1 and benchmark 2.
On the field test data, the AI-based CSI prediction is more robust to the phase discontinuity problem than benchmark 2 and achieves significant SGCS gain over both benchmark 1 and benchmark 2.
The generalization of AI-based CSI prediction over speed is not good if the training set contains only one speed. 
When the testing speed is higher than the training speed, the degradation of prediction accuracy is more significant than the other way around.
The generalization of AI-based CSI prediction over speed can be improved using training set with mixed speed, whose prediction accuracy is still worse than that of speed-specific models.
For AI-based CSI prediction, with a level y/z collaboration, the speed-specific model can be switched according to the information associated with the UE speed so as to guarantee the prediction performance for different speed. However, using a level x AI/ML model, it is hard to generalize well across different speeds.
Using the preprocessing-based model scaling mechanism, the model trained at one speed can scales to other speeds.
The generalization over the deployment scenarios, e.g., LOS/NLOS, Uma/Umi, is not good if the training set contains only one scenario.
When the testing carrier frequency is higher than the training carrier frequency, the degradation of prediction accuracy is more significant than the other way around.
On filed test data, when considering generalization case2, the generalization is not good for most cases but the loss varies from one data to another. This may be caused by different similarity between different datasets and size of datasets.
On filed test data, when considering generalization case3, the generalization can be improved by the mixed dataset while there still exist loss compared to the generalization case1.
The SGCS gain of AI-based CSI prediction over benchmark1 differs from one predicted time to another.
The changing trend of SGCS gain of AI-based CSI prediction over benchmark1 with respect to the prediction window is related to the speed of UE.
The observation window can be described by the number of historical CSIs and the spacing of the historical CSIs.
The larger the number and the smaller the spacing of historical CSIs within the observation window, the better the prediction performance that can be achieved. However, this will in return increase the complexity and the storage (buffer) overhead of the model.
For different speeds, the requirement for the observation window is different.
During the monitoring process, the scheme with model selection achieves better prediction accuracy than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2). 
During the monitoring process, the fluctuation of the scheme with model selection is smaller than the scheme using one randomly chosen speed-specific model (i.e., the generalization Case 2).

And following proposals are made:
1. Study the performance of region-specific models based on data with spatial consistency.
Proposal 8:  Consider to capture observations from field data test into TR. 
Proposal 9:  Study the performance and overhead of per-cell (region) model transfer in CSI compression.
Observation 71:  updating adaptation layer and CSI reconstruction part.  
Proposal 10:  Study the approaches to support flexible model update for changing payload size, where updating adaptation layers could be a starting point. 
Proposal 11:  For rank > 1 cases, study 	Option 3-1: layer common and rank common (A unified AI/ML model is applied for each layer under any rank value to perform individual inference)
· FFS how to choose the layers for training data set
· FFS how to deal with specific payload for each layerAs a consequence, the generalization can be summarized in the table as follows.
Proposal 12:  If good performance in case 3 for type 3 training is reported by companies, it is better to clarify whether such (good) performance relies on special model structure, such as adaption layers.
For AI-based CSI prediction, the generalization over speeds (e.g., 30km/h, 60km/h, and 120km/h), the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback), and the preprocessing-based scaling mechanism (e.g., the stretching/shrinking of historical CSI and prediction CS) should be studied.
The generalization over scenarios (e.g., LOS/NLOS, Uma/Umi) and the model adjustment (e.g., model switching/selection, finetuning, deactivation, and fallback) of AI-based CSI prediction should be studied.
The generalization over carrier frequencies of AI-based CSI prediction should be studied.
The performance impact of observation window on the AI-based CSI prediction should be studied.
The monitoring of the AI-based CSI prediction should be studied.
The monitoring dataset is formed by randomly selecting N scenarios or configurations (each containing K samples) and concatenating samples of these N scenarios or configurations in the selected order.
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Appendix A: Results for observations in CSI compression
1.9. Generalization of input scalability
	Observation 
For the scalability verification of AI/ML based CSI compression over various Tx port numbers, till the RAN1#113 meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain Tx port number#B and applied for inference with a same Tx port number#B,
· For generalization Case 2, significant performance degradations are observed in general, if Tx port number#A is 32 & Tx port number#B is 16, as -3.37%~-21.8% degradations are observed by 4 sources [OPPO, Fujitsu, ZTE, vivo]
· For generalization Case 3, generalized performance of the AI/ML model can be achieved (0%~-4% loss or positive gains) for Tx port number#B subject to any of 16 and 32, if the training dataset is constructed with data samples subject to multiple Tx port numbers including Tx port number#B, and an appropriate scalability solution is performed to scale the dimension of the AI/ML model, as observed by 7 sources [Huawei, OPPO, NTT DOCOMO, CATT, ZTE, Fujistu, Nokia].
· Minor loss (0%~-1.75%) are observed by 6 sources [Huawei, OPPO, Fujistu, CATT, ZTE, NTT DOCOMO].
· Moderate loss (-1.84%~-4%) are observed by 3 sources [Nokia, CATT, NTT DOCOMO].
· Positive gains are observed by 3 sources [OPPO, ZTE, Fujistu].
· Note: Significant degradations of up to -6.08% are still observed by 1 source [CATT] for deployment scenario#B subject to 32 ports, and for deployment scenario#B subject to 16 ports
· Note: Pre/post-processing of truncation/padding is adopted by 6 sources [Huawei, OPPO, NTT DOCOMO, ZTE, Fujistu, Nokia], and adaptation layer in the AL/ML model is adopted by 1 source [CATT].
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1/2/3/4.
· Note: Results refer to Table 5.1-7 of R1-2306059




The input dimension of AI model is corresponding to the input precoder matrices, i.e., the subband number and port number for each single layer. Different frequency granularity or different ports number can cause different input dimension of AI model. The AI models for different input dimensions need to be trained independently, which may lead to difficulty in generalizing AI models.
In case that the training input dimension of AI model is larger than the inferring input dimension of AI model, the inferring input can expand to the same dimension with zero-padding. On the other side, when inferring input dimension is larger, it can be truncated to the training input dimension.
Also, the input dimension of AI model can be fixed to a given level with pre-processing like angle-delay compression in eType II codebook. With the fixed number of beam and path selected, the dimension of input is certain for different frequency granularity and different ports number. Also, the size of AI model can be reduced because the information to study is decreasing. For AI model, since the compression and quantification are managed together, the restriction of NZC is not needed. So, compared with the eType II codebook, the beta is 1 for AI model and the payload of UCI is influenced by the length of encoder output.
In the simulation, we evaluate the lower boundary with generalization case 2. The AI/ML model is trained based on training dataset from configuration A (13 subbands and 32 ports) only. Then the AI/ML model is tested on a dataset from configuration B with different subband number of port number as below.
Case 1: (baseline) a different drop with 13 subbands and 32 ports
Case 2: (smaller subbands number and the same ports number) a drop with 10 subbands and 32 ports
Case 3: (the same subbands number and smaller ports number) a drop with 13 subbands and 16 ports
Case 4: (smaller subbands number and smaller ports number) a drop with 10 subbands and 16 ports
For each case, we test the normal AI/ML model and the preprocessing AI/ML model. For the normal AI model, the input is 13 subbands and 32 ports and zero-padding is used for less input dimension. For the preprocessing AI/ML model, angle-delay compression is used for preprocessing and 4 top strong beams on each polarization and 4 top strong paths are selected, which means the input dimension is 8 * 4 complex coefficients.
The payload of the normal AI/ML model is fixed to 180 bits and the pre-processing AI/ML model is fixed to 154 bits. With the different payload to report the angle and delay information, the final payload for pre-processing AI/ML model of the four cases are different but all about 180 bits.
Table 28 The SGCS of AI/ML model with different subband number and port number
	
	Normal AI/ML model
	Pre-processing AI/ML model

	Case 1 (13 subbands and 32 ports)
	0.879
	0.83

	Case 2 (10 subbands and 32 ports)
	0.839
	0.847

	Case 3 (13 subbands and 16 ports)
	0.727
	0.872

	Case 4 (10 subbands and 16 ports)
	0.707
	0.89



According to the evaluation results, for normal AI/ML models, the performance declines with the increasing difference between training data set and testing data set. For case 2 (the ports number is the same and the subbands number is different), the SGCS is still in a feasible level while for the case 3 and 4 (the ports number is different) the SGCS is severely influenced. It means that the zero-padding is kind of useful for subband number generalization but useless for port number generalization.
On contrast, the pre-processing AI/ML model performs even better when the inferring data sets are different. It is because that the dataset in case 2-4 is less complex than case 1. For the pre-processing AI/ML model, even the new data in case 2-4 is unaware, the coefficients projected on some angle-delay pairs are familiar and well trained. Therefore, from case 1 to case 4, the channel matrices are simpler and the subband number is less, which disadvantages in normal AI/ML model due to the unknown of the new data but advantages to pre-processing AI/ML model due to the simplification of channel environment.
Also, we evaluate the SE of the four cases and the results are shown below. For the baseline case, there are 2.63% gain loss between pre-processing AI/ML model and normal AI/ML model, which is also seen in SGCS. It is because that some information is lost in the angle-delay compression. So, without zero-padding, the normal AI/ML model performs better when the training data and the inferring data have the same dimensions.
Table 29 The gain of pre-processing AI/ML model compared with the normal AI/ML model (180bits)
	
	Payload
	SE gain (%)

	Case 1 (13 subbands and 32 ports)
	175
	-2.63%

	Case 2 (10 subbands and 32 ports)
	173
	~0%

	Case 3 (13 subbands and 16 ports)
	171
	21.46%

	Case 4 (10 subbands and 16 ports)
	169
	49.45%



When subband number is different between training and inferring, the SE gains of these two methods are almost the same. The loss from the zero-padding in subband is equal to the loss from angle-delay compression. However, when port number is different between training and inferring, the SE gains is obvious.
In the simulation above, the training data set and inferring data set are independent, which means no information about the inferring data set can be observed in the training stage. It may cause the pre-processing AI/ML model superior because the normal AI/ML model can improve the zero-padding performance with fine-tuning based on data set from case 2-4 or even training with mixed data set. However, for each subband number, or even for each combination of subband number and port number, the corresponding data set is needed in training stage. It is neither effective nor feasible. Instead, the pre-processing AI/ML has no such problem and the performance can be improved further with more angle-delay bases selected.
Besides, some other methods can also be considered like grouping. Zero-padding focuses on the cases where the dimension of training data is larger than the inferring data. In turn, grouping can be used to deal with the cases where the dimension of training data is smaller than the inferring data. For example, an AI/ML model is trained with the data set from 16 ports and in the case of 32 ports, the 32 ports are divided into 2 groups with 16 ports in each group. The data in each group can be compressed independently by a 16-port AI/ML model and report together. In such a case, the performance of the AI/ML model is guaranteed while the overhead may increase. The further study is necessary.


1.10. Output scalability via payload truncation
	Observation
For the scalability verification of AI/ML based CSI compression over various CSI payload sizes, till the RAN1#112bis-e meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain CSI payload size#B and applied for inference with a same CSI payload size#B, 
· Generalized performance of the AI/ML model can be achieved (0%~5.9% loss) under generalization Case 3 for the inference on either CSI payload size#A or CSI payload size#B, if the training dataset is constructed with data samples subject to multiple CSI payload sizes including CSI payload size#A and CSI payload size#B, and an appropriate scalability solution is performed to scale the dimension of the AI/ML model, shown by 7 sources (Note *) (6 sources (Note **) showing 0%~2.2% loss, 3 sources (Note ***) showing 2.35%~5.9% loss). The scalability solution is adopted as follows:
· Pre/post-processing of truncation/padding, adopted by 3 sources (Note ****), showing 0.2%~5.9% loss.
· Various quantization granularities, adopted by 1 source (Note *****), showing 1.8%~4.7% loss.
· Adaptation layer in the AL/ML model, adopted by 3 sources (Note ******), showing 0%~4.05% loss.
· Note: the above results are based on the following assumptions
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· Input/output scalability dimension Case 3 is adopted: A pair of CSI generation part with scalable input/output dimensions and CSI reconstruction part with scalable output and/or input dimensions.
· The performance metric is SGCS in linear value for layer 1/2.
· Note *: Huawei, HiSilicon (R1-2302358), Ericsson (R1-2302918), OPPO (R1-2302540), Fujitsu (R1-2302904), CMCC (R1-2303224), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).
· Note **: Huawei, HiSilicon (R1-2302358), Ericsson (R1-2302918), Fujitsu (R1-2302904), CMCC (R1-2303224), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).
· Note ***: Ericsson (R1-2302918), OPPO (R1-2302540), MediaTek (R1-2303336).
· Note ****: OPPO (R1-2302540), Fujitsu (R1-2302904), CMCC (R1-2303224).
· Note *****: Ericsson (R1-2302918).
· Note ******: Huawei, HiSilicon (R1-2302358), MediaTek (R1-2303336), NTT DOCOMO (R1-2303705).




In previous meetings, it was agreed that the scalability over output dimensions should be studied according to the above guidelines. In this part, we present our evaluation results on output scalability via truncation. 
The idea of truncation is illustrated in Figure 23, where one shared encoder outputs a sequence with maximum length, and multiple decoders are trained to reconstruct the CSI based on a sub-sequence of the encoder output. For example, in Figure 23, the encoder outputs totally 223bits, while decoder1 uses the first 177bits as its input; decoder2 uses the first 199bits as its input; decoder3 uses all 233bits as input. Note that all involved encoder and decoders should be jointly trained to maximize the reconstruction accuracy of all decoder outputs. Otherwise the performance cannot be guaranteed, which will be demonstrated in our results. The truncation can be either done on encoder output before or after quantization. If it is done after quantization, it should guarantee the truncated sequence can still be mapped to a complete floating sequence. We study the performance of payload truncation under various configurations, and the results are presented in Table 14.
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Figure 16 The schematic of payload truncation.

Table 30 The SGCS of different payload truncation methods.
	
	223bits payload
	199 bits payload
	176 bits payload
	132 bits payload

	Dedicated model for each payload
	0.902
	0.893
	0.877
	0.853

	Model trained for 233 but test on 199, 176, 132
	/
	<0.1
	<0.1
	<0.1

	Shared encoder and two decoders for 223 and 176 respectively 
	0.894
	/
	0.878
	/

	Shared encoder and two decoders for 223, 199 and 176 respectively
	0.891
	0.885
	0.876
	/

	Shared encoder and two decoders for 223, 176 and 132 respectively
	0.872
	/
	0.862
	0.838



First of all, we can see from the results that the performance of Case2 is very poor, i.e., a model trained without considering supporting multiple output dimensions cannot be directly utilized for another payload. If jointly trained, the performance of shared encoder and two decoders for 223 and 176bits is slightly inferior to that of dedicated models (0.894 vs 0.902 and 0.876 vs 0.877). Meanwhile, if we extend to the case of one-to-three, the performance loss will enlarge. Furthermore, the truncation size will also affect the performance, as the performance of supporting 223, 199 and 176 is better than that of supporting 223, 176 and 132. To sum up, we find that schemes with good scalability on output dimensions will sacrifice some performance.


1.11. Generalization over carrier frequency 
	Observation 
For the generalization verification of AI/ML based CSI compression over various carrier frequencies, till the RAN1#113 meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain carrier frequency#B and applied for inference with a same carrier frequency#B,
· For generalization Case 2, generalized performance may be achieved in general
· If carrier frequency#A is 3.5/4GHz & carrier frequency#B is 2GHz, 3 sources [NTT DOCOMO, Nokia, MediaTek] observe generalized performance of less than -1.72% degradation.
· If carrier frequency#A is 2GHz & carrier frequency#B is 3.5/4GHz, 4 sources [NTT DOCOMO, Nokia, vivo, MediaTek] observe generalized performance of less than -1% degradation or positive gain.
· Note: 1 source [Nokia] observes significant degradations of -6.6%.
· For generalization Case 3, generalized performance of the AI/ML model may be achieved (0%~-0.8% loss or positive gain) for carrier frequency#B subject to any of 2GHz and 3.5/4GHz, if the training dataset is constructed with data samples subject to multiple carrier frequencies including carrier frequency#B, as observed by 4 sources [NTT DOCOMO, Nokia, vivo, MediaTek].
· Minor loss (0%~-0.8%) are observed by 3 sources [Nokia, vivo, MediaTek].
· Positive gains are observed by 4 sources [NTT DOCOMO, Nokia, vivo, MediaTek].
· Note: Significant degradations of up to -4.9% are still observed by 1 source [Nokia] for carrier frequency#B subject to 3.5/4GHz
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1.
· Antenna layouts are assumed as the same over the different frequency carriers.
· Note: Results refer to Table 5.5-3 of R1-2306061




In RAN1 #113, observation towards the generalization of CSI compression models over various carrier frequencies has been made based on inputs from companies. We have no comments on the observation. In the following, we keep the analysis presented in previous meetings and remove the observations already captured in the observation. 
Proposal 13:  We are supportive of the observation for the generalization of CSI compression models over various carrier frequencies made in RAN1 #113. 

For the carrier frequency, we evaluate 2.2GHz, 3.5GHz, 5.5GHz for rank 1 with entire AI model. In the simulation, the antenna configuration is [8 8 2 1 1] and for each polarization, four adjacent vertical antennas are mapped into one TXRU with fixed 105 degrees DFT beam, i.e., a fixed analogy precoder is used. The total TXRU number is 32 and only rank 1 is considered. The total subband number is 13 with 4 PRB’s per subband. The evaluation results are shown below.

Figure 17 The SGCS for different frequency carrier.

Figure 18 The gain of average SE for different frequency.
According to the evaluation result, the SGCS and spectral efficiency among cases with different carrier frequency are similar to each other. Since the carrier frequency is all below 6GHz and the UE speeds are all 3Km/h, the influence of carrier frequency to channel state is tiny. The AI model perform well in carrier frequency generalization.

1.12. Generalization over scenarios
	Observation 
For the generalization verification of AI/ML based CSI compression over various deployment scenarios, till the RAN1#113 meeting, compared to the generalization Case 1 where the AI/ML model is trained with dataset subject to a certain deployment scenario#B and applied for inference with a same deployment scenario#B,
· For generalization Case 2, generalized performance may be achieved for some certain combinations of deployment scenario#A and deployment scenario#B but not for others:
· If deployment scenario#A is UMi & deployment scenario#B is UMa, deployment scenario#A is UMa & deployment scenario#B is UMi, or deployment scenario#A is UMa & deployment scenario#B is InH:
· 9 sources [Xiaomi, InterDigital, MediaTek, vivo, Intel, ZTE, OPPO, Huawei, CATT] observe that generalized performance can be achieved:
· For deployment scenario#A is UMi & deployment scenario#B is UMa, 7 sources [Xiaomi, InterDigital, MediaTek, vivo, Intel, ZTE, CATT] observe less than -1.6% degradation or positive gain.
· For deployment scenario#A is UMa & deployment scenario#B is UMi, 5 sources [vivo, OPPO, MediaTek, Intel, Xiaomi] observe less than -1.4% degradation or positive gain.
· For deployment scenario#A is UMa & deployment scenario#B is InH, 2 sources [Huawei, CATT] observe less than -0.6% degradation or positive gain
· 10 sources [Intel, NTT DOCOMO, Xiaomi, Interdigital, OPPO, CATT, ZTE, Lenovo, MediaTek, Futurewei] observe that moderate/significant degradations are suffered under generalization Case 2:
· For deployment scenario#A is UMi & deployment scenario#B is UMa, 8 sources [Futurewei, MediaTek, Intel, NTT DOCOMO, Xiaomi, Interdigital, OPPO, CATT] observe -1.69%~-14.2% degradation.
· For deployment scenario#A is UMa & deployment scenario#B is UMi, 7 sources [Futurewei, NTT DOCOMO, ZTE, InterDigital, CATT, Xiaomi, Intel] observe -1.81%~-18.5% degradation.
· For deployment scenario#A is UMa & deployment scenario#B is InH, 2 sources [ZTE, Lenovo] observe -1.74%~-3.6% degradation.
· If deployment scenario#A is InH & deployment scenario#B is Uma/UMi, significant performance degradations are observed under generalization Case 2:
· For deployment scenario#A is InH & deployment scenario#B is UMa, 4 sources [Huawei, CATT, Lenovo, ZTE] observe -5.55%~-21.76% degradation.
· For deployment scenario#A is InH & deployment scenario#B is UMi, 2 sources [vivo, ZTE] observe -8.63%~-20% degradation.
· For generalization Case 3, generalized performance of the AI/ML model can be achieved (0%~-4% loss or positive gain) for deployment scenario#B subject to any of UMa, UMi, and InH, if the training dataset is constructed with data samples subject to multiple deployment scenarios including deployment scenario#B, as observed by 11 sources [CATT, Xiaomi, NTT DOCOMO, Interdigital, MediaTek, Futurewei, vivo, OPPO, Intel, Huawei, ZTE].
· Minor loss (0%~-1.48%) are observed by 11 sources [CATT, Xiaomi, NTT DOCOMO, Interdigital, MediaTek, Futurewei, vivo, OPPO, Intel, Huawei, ZTE].
· Moderate loss (-1.6%~-4%) are observed by 5 sources [Xiaomi, CATT, vivo, NTT DOCOMO, Intel].
· Positive gains are observed by 8 sources [ZTE, Interdigital, MediaTek, vivo, Intel, Xiaomi, Futurewei, CATT].
· Note: Significant degradations of up to -6.7% are still observed by 2 sources [Intel, Xiaomi] for deployment scenario#B subject to UMa, and by 2 sources [Intel, CATT] for deployment scenario#B subject to UMi.
· Note: For generalization Case 2, if deployment scenario#A is UMi & deployment scenario#B is InH, 2 sources [vivo, ZTE] observe different trends, where significant performance degradations of -27.8%~-29.9% are observed by [vivo], while moderate performance degradations of -1.44%~-2.41% are observed by [ZTE].
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS in linear value for layer 1/2.
· Note: Results refer to Table 5.1-5 of R1-2306059




For generalization across different scenarios, we focus on UMi, UMa and InH. We train AI model with UMi samples and use it in UMi and UMa scenario, respectively. Also, the SGCS of eType2 is calculated for different scenarios. The evaluation results are shown below.
Table 31 The SGCS in UMi and Uma scenario.
	
	AI model trained based on UMi data
	eType II codebook

	UMi
	0.91
	0.831

	UMa
	0.913
	0.839



According to the evaluation result in the table above, the model trained by the UMi-based data set offers a fairly high channel SGCS in both UMi and UMa scenarios. 
Then, we construct a synthetic dataset with samples from UMi and InH with different ratio including entire UMi dataset and InH dataset. The total number of samples in each dataset is fixed to 300000. The SGCS of each dataset composition is shown in the table below.
Table 32 The SGCS of AI model with different training dataset composition in InH and UMi.
	Training dataset composition
	[300000, 0]
	[225000, 75000]
	[150000, 150000]
	[75000, 225000]
	[50000, 250000]
	[25000, 275000]
	[10000, 29000]
	[0, 300000]

	InH
	0.94780
	0.94907
	0.94953
	0.94520
	0.94660
	0.93090
	0.87230
	0.68597

	UMi
	0.74548
	0.84435
	0.87930
	0.90281
	0.90528
	0.90778
	0.90879
	0.90933



According to the evaluation results, the model trained by UMi dataset independently behaves worse in InH scenario and vice versa. The models trained by dataset constructed with mixed InH-based and UMi-based data behave well for both scenarios, even not as good as with the dataset from one entire scenario. It is shown that, the increasing number of correct samples in a mixed dataset can improve the performance and the wrong samples do not influence the performance. So, the AI model can deal with different scenarios by mixing the sample from different scenarios into one dataset.
Also, In comparison between the dataset composition [225000 75000] and [50000 250000], the SGCS for InH is similar. However, the SGCS performed by the former is worse than that by the latter. It is because that the channel state of InH is simple and 50000 samples are enough. The extra InH samples cannot provide more gains. However, the channel state of UMi is much more complicated, reducing the number of UMi samples can lead to severe performance degradation.

1.13. Evaluation on CSI feedback quantization
	Observation 
For the comparison of quantization methods for CSI compression, till the RAN1#113 meeting, training non-aware quantization (Case 1) is in general inferior to the training aware quantization (Case 2-1/2-2), and may lead to lower performance than the benchmark.
· For scalar quantization, compared with benchmark,
· -5.9%~-43.2% degradations are observed for training non-aware quantization (Case 1) from 4 sources [Source#1, Source#2, Source#3, Source#8].
· 3.9%~8.64% gains are observed for training aware quantization with fixed/pre-configured quantization method/parameters (Case 2-1) from 5 sources [Source#1, Source#2, Source#3, Source#4, Source#5], which are 17.3%~83.2% gains over training non-aware quantization (Case 1) from 4 sources [Source#1, Source#2, Source#3, Source#8] and 0.9%~5.4% gains over training non-aware quantization (Case 1) from 2 sources [Source#6, Source#8].
· Note: 0.72% gains are observed for Case 2-1 from 1 source [Source#1] due to SQ parameter chosen without matching latent distribution, which achieves 13.9% gains over Case 1.
· 7.55% gains are observed for training aware quantization with jointly updated quantization method/parameters (Case 2-2) from 1 source [Source#1], which are 21.6% gains over training non-aware quantization (Case 1) from 1 source [Source#1].
· For vector quantization, compared with benchmark,
· -2%~-10% degradations are observed for training non-aware quantization (Case 1) from 1 source [Source#7].
· 6.0%~8.91% gains are observed for training aware quantization with fixed/pre-configured quantization method/parameters (Case 2-1) from 2 sources [Source#1, Source#2], which are 16.3%~23.1% gains over training non-aware quantization (Case 1) from 2 sources [Source#1, Source#2].
· 4.67%~13.01% gains are observed for training aware quantization with jointly updated quantization method/parameters (Case 2-2) from 6 sources [Source#1, Source#2, Source#4, Source#5, Source#7, Source#8], which are 10.7%~27.8% gains over training non-aware quantization (Case 1) from 3 sources [Source#1, Source#2, Source#7] and 1.7%~7.5% gains over training non-aware quantization (Case 1) from 2 sources [Source#6, Source#8].
· In general, Case 2-2 outperforms Case 2-1 with 0.7%~3.8% gains, as observed by 6 sources [Source#1, Source#2, Source#4, Source#5, Source#6, Source#8].
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS for Layer 1.
· Benchmark is Rel-16 Type II codebook.
· Source#1: Qualcomm (R1-2305328); Source#2: vivo (R1-2304471); Source#3: Ericsson (R1-2304521); Source#4: ZTE (R1-2304534); Source#5: Xiaomi (R1-2304893); Source#6: Fujitsu (R1-2304764); Source#7: Huawei, HiSilicon (R1-2304653); Source#8: Apple (R1-2305234).
· Note: Results refer to Table 5.4-1 of R1-2306060


Observation  
For the comparison of quantization methods for CSI compression, till the RAN1#113 meeting, in general vector quantization (VQ) has comparable performance with scalar quantization (SQ):
· For SQ and VQ under the same training case, it is 
· observed by 1 source [Source#1] that VQ under Case 2-1 has -0.8% degradation over SQ under Case 2-1, 
· observed by 2 sources [Source#2, Source#3] that VQ under Case 2-1 has 0.3%~1.1% gain over SQ under Case 2-1, and 
· observed by 3 sources [Source#2, Source#3, Source#4] that VQ under Case 2-2 has 0.7%~5.1% gain over SQ under Case 2-2.
· Note: VQ under Case 2-1 has 8% gains over SQ under Case 2-1 as observed from 1 source [Source#2] due to non-optimized SQ parameter chosen.
· For SQ and VQ across training cases, it is 
· observed by 5 sources [Source#1, Source#2, Source#3, Source#5, Source#6] that VQ under Case 2-2 has 0.5%~4% gain over SQ under Case 2-1, and 
· observed by 1 source [Source#5] that VQ under Case 2-2 has -1.3% degradation over SQ under Case 2-1.
· Note: in general, more companies (Source#1, Source#2, Source#3, Source#4, Source#5, Source#6) observing gain of VQ over SQ than companies observing loss (Source#1, Source#5).
· Note: it is observed by 1 source [Source#5] that combined SQ and VQ under Case 2-2 has minor gain of 0.2% over VQ only under Case 2-2.
· Note: the above results are based on the following assumptions besides the assumptions of the agreed EVM table
· Precoding matrix is used as the model input.
· Training data samples are not quantized, i.e., Float32 is used/represented.
· 1-on-1 joint training is assumed.
· The performance metric is SGCS for Layer 1.
· Benchmark is Rel-16 Type II codebook.
· Source#1: vivo (R1-2304471); Source#2: Qualcomm (R1-2305328); Source#3: Apple (R1-2305234); Source#4: Lenovo (R1-2305202); Source#5: ZTE (R1-2304534); Source#6: Xiaomi (R1-2304893);.
· Note: Results refer to Table 5.4-2 of R1-2306060




In RAN1 #113, observations towards the quantization methods for CSI compression models have been made based on inputs from companies. We have no comments on the observation. In the following, we keep the analysis presented in previous meetings and remove the observations already captured in the observation. 
Proposal 14:  We are supportive of the observation for comparison of quantization methods for CSI compression models made in RAN1 #113. 

Quantization in CSI compression refers to the mapping from float-format CSI generation output to bit-format UCI payload, often placed on the tail of CSI generation part; Dequantization in CSI compression refers to the reverse procedure on the beginning of CSI reconstruction part, i.e., mapping from bit-format UCI payload to float-format decoder input.
There are usually two categories of quantization/dequantization methods, i.e., scalar quantization and vector quantization. In scalar quantization, each number in the float-format sequence will be mapped to several bits. In vector quantization, each sub-sequence of float-format sequence will be mapped to several bits. It could be seen that scalar quantization is a specific case of vector quantization. The averaged quantization bit can be used to describe the quantization effect of a specific quantization method, which is defined as the averaged bit to quantize a float number. For example, if 180bits are used to quantize a sequence of 80 float variables, the averaged quantization bit is 180bit/80float=2.25bits/float.
To define a specific scalar quantization rule, we can directly define the number of bits assigned to each float. For example, we can use a vector [2, 2, …, 2, 3, …, 3, …, 4] to express a scalar quantization method, which assigns 2 bits to the first several float number, 3 bits to the next several float number, and 4 bits to the last several float number. The most trivial scalar quantization method is to uniformly assign K bits for all float numbers in a sequence. The definition of a vector quantization method will be a little more complicated. The whole sequence to be quantized will usually be partitioned into several segments, as it is difficult to directly quantize the whole sequence. Otherwise, there will an extremely large quantization codebook of size. For example, 80 float variables can be partitioned into 16 sub-sequences, each of which is of size 5. Correspondingly, we can set 16 quantization codebooks, each of which will be used to quantize one segment. It is also quite common to assign a uniform codebook for all sub-sequences to save the storage space. Each column in the codebook, i.e., a codeword will be a quantization candidate for the input. The quantization procedure is to select one codeword in the codebook that most represents the input, and the most common criteria is to select the one with the least MSE distance to the input. 
For quantization non-aware training, quantization effect will not be considered during training stage, and the float-format variables will be directly passed from CSI generation part to CSI reconstruction part without any loss. After the model is trained, quantization module will be added to quantize and recover the intermediate result (CSI generation output). For quantization-aware training, CSI compression model will be trained under the awareness of the quantization loss for CSI generation output. In addition, the quantization codebook for scalar or vector quantization can be set fixed or optimized during training of CSI compression model. We will compare the performance of current quantization/dequantization methods as well as different training approaches in the following.


Figure 19 Inference performance of quantization non-aware training 
In figure above, inference performance of quantization non-aware training is presented, where the length of CSI generation output is set 80. After the model is firstly trained without considering quantization, various amounts of bits are considered to quantize the CSI generation output during inference stage. When the CSI generation output is quantized by 320 bits, the performance is quite close to ideal one, while when the quantization bits decrease to 240, the SGCS result reduces by 5% in absolute value. However, for the case of quantizing by 180bits and 80bits, the model is almost not workable due to the very low SGCS performance. 
In addition, it is also possible to achieve the scalability in different payload through quantization non-aware training and different quantization methods. For example, as presented in Figure 26, we can theoretically realize the payload of 320 bits, 240 bits, 180bits, and 80 bits based on the same model with quantization non-aware training. However, if we compare the performance of quantization non-aware training and quantization aware training, we could find such payload scalability could be inefficient for some cases. For example, performance of quantization non-aware training for payload of 80bits and 180bits is not enough, while performance of quantization non-aware training for payload of 320 bits quite approaches the upper bound, which makes further increasing payload almost meaningless. Only in a proper range can quantization non-aware training achieve good scalability over different payloads, e.g., from 240bits to 320 bits. 


Figure 20 Comparisons of different quantization methods (all models consider using 180bits to quantize 80 float-format variables).
In the figure above, we compare different quantization methods, where all models consider using 180bits to quantize 80 float-format variables. We can see that vector quantization with optimized codebook achieves the best SGCS performance among all candidates, while scalar quantization with fixed codebook ranks second with ~0.9% loss in SGCS. Interestingly, vector quantization with random initialized and fixed codebook is slightly inferior to scalar quantization. Last but not least, quantization non-aware training with the same setting demonstrates a much lower performance, which may suggest it is not a good choice.
To our understanding, quantization method at UE side and dequantization method at NW side should be aligned anyhow for training collaboration type2 and 3. For training collaboration type2, if quantization/dequantization methods are not aligned at training stage, we find it difficult for the model to learn anything from the data, i.e., the performance stays in a randomly initialized level. Furthermore, if the length for the floating output is not aligned, the gradients cannot properly back propagate to the CSI generation part. For training collaboration type3, we also find that the model cannot even converge to a reasonable performance (loss in SGCS >= 0.1 compared with the case of aligned quantization/dequantization) if quantization/dequantization methods are not aligned. 


SGCS	
Quantization non-aware training (80 floats)	Quantize by 320bits for inference	Quantize by 240bits for inference	Quantize by 180bits for inference	Quantize by 80bits for inference	0.90449999999999997	0.89161999999999997	0.85045000000000004	0.73597999999999997	0.51866000000000001	



SGCS (all models consider using 180bits to quantize 80 float-format variables)

SGCS	
Vector quantization with optimized codebook	Vector quantization with fixed codebook	Scalar quantization with fixed codebook	Quantization non-aware training	0.87168000000000001	0.85553000000000001	0.86258000000000001	0.73597999999999997	



The SGCS of different indoor/outdoor scenarios

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	0.78400000000000003	0.81399999999999995	0.83199999999999996	0.83699999999999997	0.85099999999999998	0.86299999999999999	0.879	0.89200000000000002	0.89800000000000002	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	0.82299999999999995	0.84699999999999998	0.86199999999999999	0.86599999999999999	0.878	0.88800000000000001	0.90100000000000002	0.91100000000000003	0.91700000000000004	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	0.86599999999999999	0.88300000000000001	0.89500000000000002	0.89900000000000002	0.90700000000000003	0.91500000000000004	0.92400000000000004	0.93100000000000005	0.93500000000000005	training_0.2_inferring_0.8	111	127	143	159	180	207	223	0.80500000000000005	0.81599999999999995	0.82399999999999995	0.84599999999999997	0.85299999999999998	0.86199999999999999	0.875	training_0.2_inferring_0.5	111	127	143	159	180	207	223	0.84199999999999997	0.85099999999999998	0.85799999999999998	0.875	0.88100000000000001	0.88800000000000001	0.89800000000000002	training_0.2_inferring_0.2	111	127	143	159	180	207	223	0.88200000000000001	0.88900000000000001	0.89400000000000002	0.90700000000000003	0.91100000000000003	0.91500000000000004	0.92300000000000004	payload (bits)


SGCS




The SE gain of different indoor/outdoor scenarios compared with eType II parameter combination 1

training_0.8_inferring_0.8	78	95	111	127	143	159	180	207	223	7.1965979718678454	8.7994766110566047	9.5191364082433836	9.7154072620215999	10.336931632319278	11.089303238469085	11.874386653581936	12.463199214916585	12.626758259731758	training_0.8_inferring_0.5	78	95	111	127	143	159	180	207	223	9.1920183186130231	10.238796205430162	10.762185148838739	10.925744193653912	11.514556754988533	11.743539417729806	12.266928361138369	12.528622832842657	12.757605495583917	training_0.8_inferring_0.2	78	95	111	127	143	159	180	207	223	10.893032384690883	11.187438665358201	11.383709519136403	11.579980372914633	11.90709846254498	11.90709846254498	12.168792934249268	12.23421655217534	12.365063788027484	training_0.2_inferring_0.8	111	127	143	159	180	207	223	7.9489695780176532	8.5050703303892732	9.224730127576052	10.107948969578032	10.500490677134451	10.893032384690883	11.579980372914633	training_0.2_inferring_0.5	111	127	143	159	180	207	223	9.8462544978737299	10.206084396467134	10.631337912986609	11.22015047432123	11.449133137062489	11.743539417729806	12.103369316323182	training_0.2_inferring_0.2	111	127	143	159	180	207	223	11.154726856395158	11.350997710173388	11.612692181877662	11.808963035655879	11.776251226692835	12.005233889434081	11.939810271508009	payload (bits)


SE gain (%)




The SGCS of different antenna sapces

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	0.80800000000000005	0.82399999999999995	0.83699999999999997	0.85199999999999998	0.873	0.88	0.88700000000000001	0.89500000000000002	0.89900000000000002	payload (bits)


SGCS




The gain of average  SE compared with 
85 bits baseline AI model 

0.8λ antenna space for training	85	95	111	127	159	175	191	207	223	0	1.104100946372	2276	2.3659305993690936	2.7602523659305831	4.0220820189274491	4.8107255520504708	6.1514195583596347	6.1514195583596347	7.1766561514195644	0.5λ antenna space for training	85	95	111	127	159	175	191	207	223	-2.9968454258675052	-1.5772870662460576	-0.47318611987381587	0.55205047318611378	2.3659305993690936	3.0757097791798174	3.5488958990536332	4.4164037854889528	4.8107255520504708	payload (bits)


The gain of average SE (%)




The SGCS of small AI models

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78300000000000003	0.81599999999999995	0.83499999999999996	0.84499999999999997	0.85099999999999998	0.85499999999999998	0.85699999999999998	0.85799999999999998	0.85799999999999998	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.78900000000000003	0.82099999999999995	0.83899999999999997	0.84799999999999998	0.85399999999999998	0.85699999999999998	0.85899999999999999	0.86	0.86	payload (bits)


SGCS




The gain of average  SE of small AI models compared with 
87 bits baseline AI model 

0.8λ antenna space for training	87	117	147	177	207	237	267	297	327	0	3.0176026823135089	4.6940486169320934	5.6160938809723291	6.4543168482816355	6.8734283319362959	7.1248952221290835	7.292539815590942	7.292539815590942	0.5λ antenna space for training	87	117	147	177	207	237	267	297	327	0.58675607711651878	3.5205364626990701	5.1131601005867537	6.2028499580888479	6.621961441743494	6.8734283319362959	7.2087175188600128	7.4601844090528004	7.5440067057837297	payload (bits)


The gain of average SE (%)




The SGCS of Rel-16 Type II codebook and AI model 

Rel-16 Type II with [2 8 2	]	64	96	116	180	244	302	0.69099999999999995	0.73899999999999999	0.77400000000000002	0.82699999999999996	0.84099999999999997	0.86599999999999999	AI Case 2	78	95	111	127	143	159	180	207	223	0.79	0.81799999999999995	0.83699999999999997	0.84499999999999997	0.86499999999999999	0.86899999999999999	0.88500000000000001	0.89800000000000002	0.90400000000000003	Rel-16 Type II with [8 8 2	]	64	96	116	180	244	302	0.68500000000000005	0.72799999999999998	0.76500000000000001	0.81200000000000006	0.82399999999999995	0.84499999999999997	AI Case 1	78	95	111	127	143	159	180	207	223	0.79500000000000004	0.82199999999999995	0.84	0.84499999999999997	0.85699999999999998	0.871	0.88600000000000001	0.89700000000000002	0.90300000000000002	AI Case 3	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	feedback bits


SGCS




The average cosine similarity

5.5GHz	85	95	111	127	159	175	191	207	223	0.82399999999999995	0.84399999999999997	0.85499999999999998	0.86399999999999999	0.873	0.88500000000000001	0.89500000000000002	0.89400000000000002	0.91200000000000003	3.5GHz	85	95	111	127	159	175	191	207	223	0.82299999999999995	0.84299999999999997	0.85699999999999998	0.86399999999999999	0.872	0.88300000000000001	0.89700000000000002	0.89700000000000002	0.91	2.2GHz	85	95	111	127	159	175	191	207	223	0.82199999999999995	0.843999999999999	97	0.85899999999999999	0.86099999999999999	0.874	0.88100000000000001	0.89800000000000002	0.89700000000000002	0.91100000000000003	payload (bits)


The average cosine similarity




The gain of average SE 
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