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1 [bookmark: _Ref513464071]Introduction
In RAN1#113 meeting, the following agreements were made for evaluation on AI/ML for positioning accuracy enhancement [1].
	Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.
Note:  The agreement is updated from agreement made in RAN1#112bis.



In RAN1#112b meeting, the following agreements were made[2]:
	
Agreement
For evaluation of both the direct AI/ML positioning and AI/ML assisted positioning, company optionally adopt delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· [bookmark: _Hlk134633109]Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.

Agreement
In the evaluation of AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
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Agreement
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.
· Other models of labelling error are not precluded
· Other timing information, e.g., RSTD, as model output is not precluded.

Agreement
[bookmark: _Hlk132894047]For AI/ML assisted positioning with LOS/NLOS indicator as model output, study the impact of labelling error to LOS/NLOS indicator accuracy and/or positioning accuracy.
· The ground truth label error of LOS/NLOS indicator can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.
· Companies consider at least hard-value LOS/NLOS indicator as model output.

Agreement
For the evaluation of AI/ML based positioning method, the measurement size and signalling overhead for the model input is reported. 
Observation
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases, for a given company’s model design, a lower complexity (model complexity and computational complexity) model can still achieve acceptable positioning accuracy (e.g., <1m), albeit degraded, when compared to a higher complexity model. 
Note: For easy reference, sources include CMCC (R1-2303228), InterDigital (R1-2303450), Ericsson (R1-2302335), Huawei/HiSilicon (R1-2302362), CATT (R1-2302699), Nokia (R1-2302632).



2 [bookmark: _Hlk101726869]Evaluation methodology
[bookmark: _Hlk142555012]In this contribution, we evaluate accuracy results for direct AI/ML positioning and AI/ML assisted positioning under different dataset assumptions, model inputs and model outputs. Dataset has been generated by carrying out System Level Simulations for IIoT scenario. The InF-DH channel model is configured to simulate NLOS heavy environment. Furthermore, UEs are dropped in the entire deployment area including corners, which makes positioning even more challenging. It is expected that accuracy performance for the UEs located close to the corner of the factory floor using conventional methods(e.g., DL-TDOA) degrades considerably. Details of the IIoT scenario parameters are listed in A1. Furthermore, all the details related to model input/output and model structure are described in Table A2.
For direct AI/ML positioning, we evaluate the impact of following parameters on accuracy of the direct AI/ML positioning: 
1. Different model inputs
2. Input size reduction
3. Labelling error
4. Channel estimation error

For AI/ML assisted positioning, we analyse the impact of following different model output(s) on horizontal accuracy: 
1. Direct path(unobserved) TOA
2. Direct path(unobserved) RSTD

A summary of the evaluation assumption is described below: 
· channel model: InF-DH of TR 38.901
· clutter parameters {density, height, size}: {60%, 6m, 2m}
· Spatial consistency modelling: enabled
· the large-scale parameters are modelled according to Section 7.5 of TR 38.901 and correlation distance = dclutter/2 for InF (Section 7.6.3.1 of TR 38.901)
· the small-scale parameters are modelled according to Section 7.6.3.1 of TR 38.901
· Types of AI/ML positioning 
· Direct AI/ML positioning: Use AI/ML model to estimate UE location based on the measurements.
· Motivation: Locating UEs on the factory floor 
· Model inputs:
1) [bookmark: _Hlk142469329]RSRP measurements
2) RSRP+RSTD measurements
3) CIR measurements
4) PDP measurements: Power per path and delay profile are known
· Model output: UE position
· Model type: ResNet
· Model deployed on: UE side
· AI/ML assisted positioning: Use AI/ML model to predict measurements that are not observable by the UE. 
· Motivation: Use AI/ML model to estimate unobserved timing measurements. 
· Model inputs: RSRP measurements and CIR measurements
· Model outputs: RSTD and TOA
· Model type: ResNet
· Model deployed on: UE side
3 Evaluation results for direct AI/ML positioning
3.1 [bookmark: _Hlk142040355]Evaluation of different model inputs
In this subsection, we present evaluation results for direct AI/ML positioning where UE positions are estimated directly for RSRP, RSRP+RSTD, PDP and CIR measurements as model inputs. For a fair comparison between different model inputs, scenario parameters and size of the dataset is kept same. 

In Table 1, accuracy and complexity comparison are presented for the analysis of different model inputs.   

Table 1. Evaluation results for AI/ML model deployed on UE-side, different model inputs, without model generalization, UE distribution area = [120x60 m]
	Model input 
Note : for CIR or PDP, complexity is indicated by (N’TRP * Nt *C) where C indicates the complex number factor
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256* 2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M
	0.98

	PDP (18*256*1)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	839 M
	1.59

	RSRP +RSTD
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	334k
	11.41 M
	1.69

	RSRP 
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M 
	3.35


The following observations are made based on the results. 
Observation 1: Direct AI/ML positioning technique based on CIR measurements as model input, achieves ~0.98 m horizontal positioning accuracy for 90% UEs. 
[bookmark: _Hlk134788872]Observation 2: Direct AI/ML positioning technique based on PDP measurements as model input, achieves ~1.59 m horizontal positioning accuracy for 90% UEs. 
[bookmark: _Hlk134434030]Observation 3: Direct AI/ML positioning technique based on PDP measurements as model input results ~0.61 m worse horizontal accuracy than CIR measurements as model input for 90%ile UEs with similar model complexity and computational model complexity.  
Observation 4: Direct AI/ML positioning technique based on RSRP+RSTD measurements as model input achieves ~0.71 m worse horizontal accuracy than CIR measurements with significantly lower model complexity (~112 times) and computational complexity (~76 times).
3.2 Evaluation of input size reduction
[bookmark: _Hlk134610070]In the RAN1 #112b meeting, companies agreed to study measurement size and signalling overhead for AI/ML based positioning [2].  To evaluate the impact of different measurement(input) size on positioning accuracy, we sweep different number of TRPs (N’TRP) and CIR tap size (Nt). A unique model is trained for each input size configuration. The number of TRPs (N’TRP) that provides input to model varies and the remaining (NTRP  N’TRP) TRPs that do not provide measurements to model input is set to 0 (Approach 1). We evaluate following methodologies for TRP selection. 
· Approach 1-A: The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B: The set of TRPs (N’TRP) that provide measurements can change dynamically based on the highest N’TRP RSRP values.
For approach 1-A, we used measurements from the following TRPs. It should be noted in the the number of TRPs (N’TRP), number of taps (Nt) and complex number factor (2) is denoted as (N’TRP * Nt *2) in Table 3 and 4.
Table 2. Mapping between N’TRP and TRP Ids(for Approach 1)
	N’TRP
	Measurements collected from TRP Ids

	4
	3,5,12,14

	6
	1,3,5,12,14,16

	9
	0,2,4,6,8,10,12,14,16

	12
	0,1,2,4,6,8,9,11,13,15,16,17





Table 3. Evaluation results for AI/ML model deployed on UE-side, different number of TRPs (N’TRP<18) with fixed TRP selection (Approach 1-A), without model generalization, UE distribution area = [120x60 m]
	[bookmark: _Hlk134604665]Model input
(N’TRP * Nt *2) where 2 indicates the complex number factor
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	0.98

	CIR 
(12*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.52

	CIR 
(9*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	3.21

	CIR 
(6*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	10.87

	CIR 
(4*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	30.58

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.41

	CIR 
(12*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	3.93

	CIR 
(9*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	7.11

	CIR 
(6*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	18.75

	CIR 
(4*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	31.80



Table 4. Evaluation results for AI/ML model deployed on UE-side, different number of TRPs (N’TRP<18) with dynamic TRP selection (Approach 1-B), without model generalization, UE distribution area = [120x60 m]
	Model input
(N’TRP * Nt *2) where 2 indicates the complex number factor
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	0.98

	CIR 
(12*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.11

	CIR 
(9*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.23

	CIR 
(6*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.70

	CIR 
(4*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	2.90

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.41

	CIR 
(12*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.67

	CIR 
(9*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.87

	CIR 
(6*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	2.47

	CIR 
(4*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	3.98



Table 5. Evaluation results for AI/ML model deployed on UE-side, truncated CIR input, without model generalization, number of taps less than 256, UE distribution area = [120x60 m]
	Model input
(N’TRP * Nt *2) where 2 indicates the complex number factor
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M 
	843 M
	0.9801

	CIR 
(18*128*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M 
	843 M
	0.9554

	CIR 
(18*64*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M 
	843 M
	0.9797

	CIR 
(18*32*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M 
	843 M
	1.8520

	CIR 
(18*16*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	37 M 
	843 M
	9.2681


Based on the results presented in Table 3-5, we make the following observations:  
Observation 5: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (Approach 1-A), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 3)
[bookmark: _Hlk134621745]Observation 6: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 4)
Observation 7: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B) results better 90% horizontal positioning accuracy compared to fixed TRP selection approach (Approach 1-A). 
Observation 8: For direct AI/ML positioning, for different number of CIR taps when model input is CIR measurements: 
· For Nt= 128 and 64, we observe similar (~ < 1m) horizontal positioning accuracy as Nt=256.
· For Nt =32 and 16, 90% horizontal accuracy degrades compared to Nt=256.  

To evaluate the impact of different measurement(input) size on positioning accuracy as per approach 2-A, we sweep different number of TRPs (N’TRP). The number of TRPs (N’TRP) that provides input to model varies and the remaining (NTRP  N’TRP) TRPs that do not provide measurements are ignored. The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. We use one model to cover the entire evaluation area. A unique model is trained for each input size configuration. As we reduce N’TRP , model complexity and computational complexity reduces. 
In Table 6, accuracy and complexity comparison are presented when measurements are collected from different number of TRPs (N’TRP) as per approach 2-A. 




Table 6. Evaluation results for AI/ML model deployed on UE-side, different number of TRPs (N’TRP<18) with fixed TRP selection (model ignores input from NTRP  N’TRP, Approach 2-A), without model generalization, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	TRP ID indicated in Table A1
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	
	AI/ML

	CIR 
(18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	23.15 M
	550.99 M
	All
	1.59

	CIR 
(12*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	20.00 M
	367.35 M
	0,1,4,5,6,8,9,11,12,13,16,17
	2.08

	CIR 
(9*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	18.43 M
	275.53 M
	0,2,5,7,9,10,12,14,17  
	2.29

	CIR 
(6*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	12.92 M
	136.52 M
	0,5,8,9,12,17                  
	14.01

	
	
	
	
	
	
	
	
	0,2,5,12,15,17                 
	10.75

	CIR 
(4*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	11.87 M
	91.03 M
	1,4,13,16
	33.39

	
	
	
	
	
	
	
	
	0,5,12,17
	31.57



Observation 9: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), horizontal positioning accuracy degrades as we reduce number of TRPs (N’TRP) for 90% UEs.
Observation 10: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), model complexity is decreasing as we reduce number of TRPs (N’TRP).
To evaluate the trade-off among horizontal positioning accuracy and measurement size, accuracy for different model inputs and model input sizes are provided in Table 7. Signalling overhead is calculated by normalizing measurement size of each model input configuration by measurement size of UE position.  
Table 7. Comparison between horizontal accuracy, measurement size and signaling overhead (direct AI/ML positioning)
	Model input
	Measurement Size
	90% horizontal positioning accuracy

	UE position (2D horizontal)
	2
	NA

	RSRP (Per beam RSRP from multiple TRPs, 18 TRPs, 6 beams per TRP)
	108
	3.35

	Per beam RSRP from multiple TRPs (18 TRPs, 6 beams per TRP) and per TRP RSTD value (18 RSTD values)
	126
	1.69

	CIR (18 TRPs, 256 taps per TRP, Complex Number=2)
	9216
	0.98

	PDP (18 TRPs, 256 taps per TRP)
	4608
	1.59

	CIR (6 TRPs, 256 taps per TRP, Complex Number=2, as per approach 1-A)

	3072
	1.70

	CIR (18 TRPs, 32 taps per TRP, Complex Number=2, as per approach 1-A)

	1152
	1.85



Observation 11: For direct AI/ML positioning, signalling overhead when the model input is CIR measurements (NTRP=18, Nt= 256) is significantly higher (~ 73 times) compared to RSRP+RSTD measurements as model input.
Observation 12: For direct AI/ML positioning, signalling overhead when the model input is PDP measurement (NTRP=18, Nt= 256) is significantly higher (~ 36 times) compared to RSRP+RSTD measurements (NTRP=18) as model input.
Based on the observations, we make following proposal: 
Proposal 1: For direct AI/ML based positioning, adopt RSRP+RSTD measurement input as one of the options for AIML input due to lower signalling overhead.
3.3 Evaluation of impact of labelling error 
In the RAN #112 meeting, companies agreed to study the impact of labelling error during training on positioning accuracy [3]. In the RAN #112b-e we presented simulation results analysing the impact of different labelling errors on AI/ML model with RSRP input. In this contribution we extend our study for different model inputs and different model complexity 
Labelling error is added to ideal labels/UE position dataset and a unique model is trained for each labelling error configuration. Testing dataset and training dataset are generated with same labelling error configuration (L). 
To evaluate the impact of labelling error, noise is modelled in each dimension of x-axis and y-axis following the truncated Gaussian distribution with zero mean and standard deviation of L meters. We generated labelling error for following values of L:
· L= {0 m, 0.05m, 0.1m, 0.25m, 0.5m, 1m, 2m}
· Model inputs = RSRP, RSRP+RSTD, CIR

In table 8-11, evaluation results for noisy labelling errors are presented. 
Table 8. Evaluation results for AI/ML model deployed on UE-side, RSRP input, without model generalization, with noisy label data, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error (std. = L m) 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP fingerprint
	UE position
	0% (default)
	 0
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.35

	RSRP fingerprint
	UE position
	0% (default)
	0.05
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.31

	RSRP fingerprint
	UE position
	0% (default)
	0.1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.30

	RSRP fingerprint
	UE position
	0% (default)
	0.25
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.33

	RSRP fingerprint
	UE position
	0% (default)
	0.5
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.38

	RSRP fingerprint
	UE position
	0% (default)
	1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.52

	RSRP fingerprint
	UE position
	0% (default)
	2
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.98


Based on the results presented in tables, following observations are made: 
Observation 13: For direct AI/ML positioning with RSRP measurements as model input, when different labelling errors(L) are evaluated, 
· For labelling error values less than or equal to 0.5 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.03 m) for 90% of the UEs. 
· For labelling error values greater equal to 1 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  
[bookmark: _Hlk134113543]
Table 9. Evaluation results for AI/ML model deployed on UE-side, RSRP+RSTD input, without model generalization, with noisy label data, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error L 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	RSRP +RSTD 
	UE position
	0% (default)
	 0 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	1.6913	

	RSRP +RSTD
	UE position
	0% (default)
	0.05 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	1.7248

	RSRP +RSTD 
	UE position
	0% (default)
	0.1 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	1.7197

	RSRP +RSTD 
	UE position
	0% (default)
	0.25 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	1.7383

	RSRP +RSTD 
	UE position
	0% (default)
	0.5 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	1.8130

	RSRP +RSTD 
	UE position
	0% (default)
	1 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	2.1630

	RSRP +RSTD 
	UE position
	0% (default)
	2 m
	60%, 6m, 2m
	16000

	4000
	334 k
	11.41 M FLOPs
	2.6748


[bookmark: _Hlk134525596]Observation 14: For direct AI/ML positioning with RSRP+ RSTD measurements as model input, when different labelling errors(L) are evaluated, 
· For labelling error values less than or equal to 0.25 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.05 m) for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  

[bookmark: _Hlk134113947]Table 10. Evaluation results for AI/ML model deployed on UE-side, CIR input, without model generalization, with noisy label data, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error (std. = L m) 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR 
	UE position
	0% (default)
	 0 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	0.9801

	CIR 
	UE position
	0% (default)
	0.05 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.1059

	CIR 
	UE position
	0% (default)
	0.1 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.2609

	CIR 
	UE position
	0% (default)
	0.25 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.1268

	CIR 
	UE position
	0% (default)
	0.5 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	1.4484

	CIR 
	UE position
	0% (default)
	1 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	2.0004

	CIR 
	UE position
	0% (default)
	2 m
	60%, 6m, 2m
	16000

	4000
	37 M
	843 M
	3.3732


[bookmark: _Hlk134525857]Observation 15: For direct AI/ML positioning with CIR measurements as model input (larger model in table 10), when different labelling errors(L) are evaluated, 
· For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades slightly (~ 0.12 m) for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  

Table 11. Evaluation results for AI/ML model deployed on UE-side, CIR input (less complex model), without model generalization, with noisy label data, UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error (std. = L m) 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR 
	UE position
	0% (default)
	 0 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.41

	CIR 
	UE position
	0% (default)
	0.05 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.72

	CIR 
	UE position
	0% (default)
	0.1 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.49

	CIR 
	UE position
	0% (default)
	0.25 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.53

	CIR 
	UE position
	0% (default)
	0.5 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	1.80

	CIR 
	UE position
	0% (default)
	1 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	2.46

	CIR 
	UE position
	0% (default)
	2 m
	60%, 6m, 2m
	16000

	4000
	1.4 M
	38 M
	3.81



Observation 16: For direct AI/ML positioning with CIR measurements as model input (less complex model in table 5), when different labelling errors(L) are evaluated, 
· For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades ~ 0.31 m for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades significantly (greater than ~0.39 m) which is in proportion to labelling error(L) for 90% of the UEs.  

To further analyse the impact of labelling error on positioning accuracy, we calculate degradation in positioning accuracy due to labelling error by calculating difference of positioning accuracy for corresponding labelling error(L) and positioning accuracy without labelling error. We calculate positioning accuracy degradation for each input configuration (RSRP, RSRP+RSTD and CIR) and model size (larger and smaller). In Figure 1, 90% horizontal positioning accuracy degradation values are plotted for different values of labelling error and model inputs. In the figure, we refer an AI/ML model with CIR input configuration as CIR(large) when the computational complexity is 843 M FLOPs and CIR(small) when the computational complexity is 38 M FLOPs. 
Based on the results presented in figure 1, we make following observations: 
Observation 17: For direct AI/ML positioning, for L in the range of 0.25 m to 2 m, degradation in positioning accuracy (due to labelling error) increases in proportion to L.  
[image: ]
Figure 1. Relationship between labelling error(L) during training and accuracy degradation
[bookmark: _Hlk134539747]Observation 18: For direct AI/ML positioning, for different model inputs (RSRP, RSRP+RSTD and CIR) while keeping the same amount of labelling error, we observe different values of positioning accuracy degradation.    
Observation 19: For direct AI/ML positioning, for same model input(CIR) while changing model complexity(CIR large vs CIR small), we observe different values of positioning accuracy degradation.     
[bookmark: _Hlk134627029]As illustrated in Figure 1, it is noticeable that up to a threshold of labelling error or uncertainties in UE locations, degradation in positioning accuracy error can be contained. This observation infers that there is a tolerable level of uncertainties in the ground truth in training dataset. Based on the observations, we make the following proposal: 
Proposal 2: For AI/ML positioning, support data collection of training dataset with uncertainties for different types model inputs (e.g., measurements such as RSRP, RSTD, CIR), ground truth with labelling error, and different model complexity. 
3.4 Evaluation of channel estimation error
[image: ]
Figure 2. Direct AIML positioning with channel estimation error.
For the evaluation of channel estimation error, we add AWGN to the CIR measurement in time domain. Two different datasets are generated with SNR= 0 dB and SNR=10 dB values and compared with dataset without noise. 
In Table 12, we present evaluation results for different SNR values without generalization. For each evaluation result, we predict UE positions where SNR values in training dataset and testing dataset are same. 
Table 12. Evaluation results for AI/ML model deployed on UE-side, CIR input under different SNR conditions, without model generalization, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	0.98

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	1.20

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.07

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	1.41

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	2.00

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	3.55



[bookmark: _Hlk131684451]Observation 20: After performing training and testing with dataset of 10 dB SNR more complex AI/ML model achieves ~ 1.2 m horizontal accuracy for 90% UEs, which is ~0.22 m worse than noiseless dataset.
Observation 21: After performing training and testing with dataset of 0 dB SNR more complex AI/ML model achieves ~ 2.07 m horizontal accuracy for 90% UEs, which is ~1.09 m worse than noiseless dataset.
Observation 22: After performing training and testing with dataset of 10 dB SNR less complex AI/ML model achieves ~ 2.00 m horizontal accuracy for 90% UEs, which is ~0.59 m worse than noiseless dataset.
[bookmark: _Hlk131685529]Observation 23: After performing training and testing with dataset of 0 dB SNR less complex AI/ML model achieves ~ 3.55 m horizontal accuracy for 90% UEs, which is ~2.14 m worse than noiseless dataset.
Observation 24: AI/ML model with a larger complexity is less susceptible to channel estimation error compared to less complex AI/ML model (~1.09 m accuracy degradation for more complex AI/ML model vs ~2.14 m accuracy degradation for less complex AI/ML model).
To evaluate generalization performance under different channel estimation error values without mixed training or model fine-tuning, we use different SNR values among test dataset and training dataset where the SNR indicates quality of CIR estimate. In Table 13, generalization evaluation results are presented.   
Table 13. Evaluation results for AI/ML model deployed on UE-side, CIR input, trained and tested under different SNR conditions, with model generalization without mixed dataset or model finetuning, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	>15 

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	1.40

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	2.28

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	37 M
	843 M FLOPs
	2.77

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	1.4 M
	38 M FLOPs
	4.85

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.93

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	5.05


Based on the results presented above, we make following observations: 
[bookmark: _Hlk131700557][bookmark: _Hlk131685642]Observation 25: After performing training with noiseless dataset and testing with dataset with lower SNR (10 dB and 0 dB), both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 26: After performing training with dataset consisting of 10 dB SNR and testing with dataset consisting of 0 dB SNR, both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 27: After performing training with dataset consisting of 10 dB SNR and testing with noiseless dataset, larger and smaller AI/ML models yields ~1.4 m and ~2.28 m positioning accuracy for 90% UEs respectively. 
Observation 28: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.77 m and ~4.85 m positioning accuracy for 90% UEs respectively. 
Observation 29: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.93 m and ~5.05 m positioning accuracy for 90% UEs, respectively. 
Observation 30: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.
Based on the above observations, it is clear that uncertainty in CIR affects the positioning accuracy of direct AIML positioning if the CIR is used as inputs to AIML model. Thus, it is recommended that uncertainty metrics are accompanied with the CIR if the CIR is used as inputs to the AIML model so the UE or network can have an expectation on the outcome of the training or inference.
Proposal 3: Uncertainty metric should be associated with CIR if CIR is used as inputs to AIML models. 
4 Evaluation results for AI/ML assisted positioning
In this section, the performance results of the AIML assisted positioning is evaluated. In NLOS heavy environment, there is a high likelihood that timing measurements obtained by the UE are inaccurate. To overcome this limitation of inaccurate timing measurements in NLOS environment, we are proposing to estimate unobserved/ideal timing measurements using an AIML model. Furthermore, UEs dropped outside the convex hull of the deployment area makes positioning even more challenging. To analyze the performance of AI/ML assisted positioning on both challenging situations separately, we present positioning accuracy results of the UEs dropped within the convex hull separately.  
During training phase, the UE can obtain its location using GPS/GNSS. Based on its location information, the UE can derive its ideal/unobservable timing measurements. 
[image: ]
Figure 3. AIML assisted positioning with unobserved timing measurements
During training phase, the UE inputs RSRP/CIR measurements and unobserved/ideal timing measurements (calculated based on known position information of the UE and position information of the TRP) as the target output of the AIML model. During testing phase, the UE inputs RSRP/CIR measurements as an input to the AIML model and estimates ideal/unobserved timing measurements using the trained AIML model. We evaluate positioning accuracy using following timing measurements as AI/ML model output: 
1. Direct path TOA measurements
2. Direct path RSTD measurements

By providing predicted direct path timing measurements as an input to the DL-TDOA positioning method, the UE obtains its location.

4.1 [bookmark: _Hlk142041980]Evaluation of direct path TOA prediction
In this subsection, we analyse the scenarios where AIML model predicts direct path TOA with CIR measurements. The ToA in this evaluation refers to time of flight, i.e., time it takes for the signal to travel from the TRP to the UE. It should be worth noting that AIML model is trained with direct TOA measurements (e.g., ToA corresponding to the LoS) as target metric. After predicting TOA measurements, the UE calculates RSTD measurements and obtains UE position using conventional DL-TDOA positioning method.  
[image: ]
Figure 4. AIML assisted positioning with TOA prediction
In table 14, accuracy results for AIML assisted positioning using TOA prediction are presented. 
Table 14. Evaluation results for AI/ML model deployed on UE-side, CIR input, TOA prediction, with model generalization without mixed dataset or model finetuning, UE distribution area = 120x60 m, 100x40 m
	Model input(NTRP *Nt *2)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR (UEs dropped uniformly in entire factory floor)
	Direct path TOA
	0% (default)
	60%, 6m, 2m
	16000

	4000
	23.15 M
	551 M FLOPS
	11.39 m


	CIR (UEs dropped within convex hull)
	Direct path TOA
	0% (default)
	60%, 6m, 2m
	16000

	2205
	23.15 M
	551 M FLOPS
	1.27 m



Based on the results presented in Table 14, we make following observations: 
Observation 31: When the UEs are dropped uniformly in entire factory floor, AI/ML assisted positioning based on direct path TOA prediction results ~11.39 m horizontal accuracy for 90% of the UEs.
Observation 32: When the UEs are dropped within convex hull, AI/ML assisted positioning based on direct path TOA prediction results ~1.27 m horizontal accuracy for 90% of the UEs.
Observation 33: For AI/ML assisted positioning based on CIR measurements as input and direct path TOA as output: 
· achieves reasonable positioning accuracy for the UEs located within convex hull by overcoming NLOS condition. 
· positioning accuracy remains challenging for the UEs located in entire deployment area due to the UEs located in the corner.  

Proposal 4 : Adopt time of flight as one of the inference metric for AIML assisted positioning.
4.2 Evaluation of direct path RSTD prediction
In this subsection, horizontal accuracy results for AIML assisted positioning are presented by predicting RSTD measurements directly by inputting RSRP measurements to the AIML model. It should be noted that the AIML model presented in is trained based on measured RSTD as the target metric. The results presented in Table 15 shows that AIML model trained using unobserved/direct path RSTD yield better positioning accuracy that AIML positioning model trained using measured RSTD samples.  

[bookmark: _Ref111193753]
[image: ]
Figure 5 AIML assisted positioning with unobserved RSTD measurements

Table 15. Evaluation results for AI/ML model deployed on UE-side, RSRP input, RSTD prediction, with model generalization without mixed dataset or model finetuning, UE distribution area = 120x60 m
	Model Input

	Model output
	(Percentage of training data set without) Label
	Settings (drops, clutter param, network synchronization error)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSRP
	(estimated)
RSTD
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	332 k
	11.42 M FLOPs
	15.68

	RSRP
	(direct path)
RSTD
	0% (default)
	{60%, 6m, 2m} , drop A, T1= 0 ns
	{60%, 6m, 2m} , drop A’ (unseen), T1= 0 ns
	16000
	4000
	332 k
	11.42 M FLOPs
	10.60


Observation 34: For AI/ML assisted positioning based on unobserved RSTD measurements prediction yields ~ 5.08 m better for 90% horizontal positioning accuracy than RSTD estimation. 
In addition, we applied DL-TDOA positioning directly on measured RSTD values and achieved 11.60 m  horizontal accuracy for 90%ile UEs. 
Observation 35: Positioning based on unobserved RSTD measurements prediction yields ~ 1.0 m better for 90% horizontal positioning accuracy than DL-TDOA positioning method. 
Based on the above observations, the following proposal is made.
Proposal 5 : Support AIML training based on unobserved timing measurements.
5 Conclusion.
In this contribution, the following proposals and observations are made.
Observation 1: Direct AI/ML positioning technique based on CIR measurements as model input, achieves ~0.98 m horizontal positioning accuracy for 90% UEs. 
Observation 2: Direct AI/ML positioning technique based on PDP measurements as model input, achieves ~1.59 m horizontal positioning accuracy for 90% UEs. 
Observation 3: Direct AI/ML positioning technique based on PDP measurements as model input results ~0.61 m worse horizontal accuracy than CIR measurements as model input for 90%ile UEs with similar model complexity and computational model complexity.  
Observation 4: Direct AI/ML positioning technique based on RSRP+RSTD measurements as model input achieves ~0.71 m worse horizontal accuracy than CIR measurements with significantly lower model complexity (~112 times) and computational complexity (~76 times).
Observation 5: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (Approach 1-A), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 3)
Observation 6: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B), horizontal positioning accuracy degrades as we reduce the number of TRPs (N’TRP) for 90% UEs.  (Table 4)
Observation 7: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from TRPs with top N’TRP RSRP values (Approach 1-B) results better 90% horizontal positioning accuracy compared to fixed TRP selection approach (Approach 1-A). 
Observation 8: For direct AI/ML positioning, for different number of CIR taps when model input is CIR measurements: 
· For Nt= 128 and 64, we observe similar (~ < 1m) horizontal positioning accuracy as Nt=256.
· For Nt =32 and 16, 90% horizontal accuracy degrades compared to Nt=256.  

Observation 9: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), horizontal positioning accuracy degrades as we reduce number of TRPs (N’TRP) for 90% UEs.
Observation 10: For direct AI/ML positioning, for different number of TRPs [N’TRP=12,9,6,4] when measurements are collected from fixed set of TRPs (as per Approach 2-A), model complexity is decreasing as we reduce number of TRPs (N’TRP).
Observation 11: For direct AI/ML positioning, signalling overhead when the model input is CIR measurements (NTRP=18, Nt= 256) is significantly higher (~ 73 times) compared to RSRP+RSTD measurements as model input.
Observation 12: For direct AI/ML positioning, signalling overhead when the model input is PDP measurement (NTRP=18, Nt= 256) is significantly higher (~ 36 times) compared to RSRP+RSTD measurements (NTRP=18) as model input.
Observation 13: For direct AI/ML positioning with RSRP measurements as model input, when different labelling errors(L) are evaluated, 
· For labelling error values less than or equal to 0.5 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.03 m) for 90% of the UEs. 
· For labelling error values greater equal to 1 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  

Observation 14: For direct AI/ML positioning with RSRP+ RSTD measurements as model input, when different labelling errors(L) are evaluated, 
· For labelling error values less than or equal to 0.25 m, the horizontal positioning accuracy degrades slightly (less than ~ 0.05 m) for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  

Observation 15: For direct AI/ML positioning with CIR measurements as model input (larger model in table 10), when different labelling errors(L) are evaluated, 
· For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades slightly (~ 0.12 m) for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades in proportion to labelling error (L) for 90% of the UEs.  

Observation 16: For direct AI/ML positioning with CIR measurements as model input (less complex model in table 5), when different labelling errors(L) are evaluated, 
· For labelling error values equal to 0.05 m, the horizontal positioning accuracy degrades ~ 0.31 m for 90% of the UEs. 
· For labelling error values greater than or equal to 0.5 m, the horizontal accuracy degrades significantly (greater than ~0.39 m) which is in proportion to labelling error(L) for 90% of the UEs.  

Observation 17: For direct AI/ML positioning, for L in the range of 0.25 m to 2 m, degradation in positioning accuracy (due to labelling error) increases in proportion to L.  
Observation 18: For direct AI/ML positioning, for different model inputs (RSRP, RSRP+RSTD and CIR) while keeping the same amount of labelling error, we observe different values of positioning accuracy degradation.    
Observation 19: For direct AI/ML positioning, for same model input(CIR) while changing model complexity(CIR large vs CIR small), we observe different values of positioning accuracy degradation.     
Observation 20: After performing training and testing with dataset of 10 dB SNR more complex AI/ML model achieves ~ 1.2 m horizontal accuracy for 90% UEs, which is ~0.22 m worse than noiseless dataset.
Observation 21: After performing training and testing with dataset of 0 dB SNR more complex AI/ML model achieves ~ 2.07 m horizontal accuracy for 90% UEs, which is ~1.09 m worse than noiseless dataset.
Observation 22: After performing training and testing with dataset of 10 dB SNR less complex AI/ML model achieves ~ 2.00 m horizontal accuracy for 90% UEs, which is ~0.59 m worse than noiseless dataset.
Observation 23: After performing training and testing with dataset of 0 dB SNR less complex AI/ML model achieves ~ 3.55 m horizontal accuracy for 90% UEs, which is ~2.14 m worse than noiseless dataset.
Observation 24: AI/ML model with a larger complexity is less susceptible to channel estimation error compared to less complex AI/ML model (~1.09 m accuracy degradation for more complex AI/ML model vs ~2.14 m accuracy degradation for less complex AI/ML model).
Observation 25: After performing training with noiseless dataset and testing with dataset with lower SNR (10 dB and 0 dB), both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 26: After performing training with dataset consisting of 10 dB SNR and testing with dataset consisting of 0 dB SNR, both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 27: After performing training with dataset consisting of 10 dB SNR and testing with noiseless dataset, larger and smaller AI/ML models yields ~1.4 m and ~2.28 m positioning accuracy for 90% UEs respectively. 
Observation 28: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.77 m and ~4.85 m positioning accuracy for 90% UEs respectively. 
Observation 29: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.93 m and ~5.05 m positioning accuracy for 90% UEs, respectively. 
Observation 30: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.
Observation 31: When the UEs are dropped uniformly in entire factory floor, AI/ML assisted positioning based on direct path TOA prediction results ~11.39 m horizontal accuracy for 90% of the UEs.
Observation 32: When the UEs are dropped within convex hull, AI/ML assisted positioning based on direct path TOA prediction results ~1.27 m horizontal accuracy for 90% of the UEs.
Observation 33: For AI/ML assisted positioning based on CIR measurements as input and direct path TOA as output: 
· achieves reasonable positioning accuracy for the UEs located within convex hull by overcoming NLOS condition. 
· positioning accuracy remains challenging for the UEs located in entire deployment area due to the UEs located in the corner.  
Observation 34: For AI/ML assisted positioning based on unobserved RSTD measurements prediction yields ~ 5.08 m better for 90% horizontal positioning accuracy than RSTD estimation. 
Observation 35: Positioning based on unobserved RSTD measurements prediction yields ~ 1.0 m better for 90% horizontal positioning accuracy than DL-TDOA positioning method. 
Proposal 1: For direct AI/ML based positioning, adopt RSRP+RSTD measurement input as one of the options for AIML input due to lower signalling overhead.
Proposal 2: For AI/ML positioning, support data collection of training dataset with uncertainties for different types model inputs (e.g., measurements such as RSRP, RSTD, CIR), ground truth with labelling error, and different model complexity. 
Proposal 3: Uncertainty metric should be associated with CIR if CIR is used as inputs to AIML models.
Proposal 4: Adopt time of flight as one of the inference metric for AIML assisted positioning.
Proposal 5 : Support AIML training based on unobserved timing measurements.
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7 Appendix
Table A1: IIoT scenario system parameters
	Parameter
	 Values

	Carrier frequency, GHz 
	3.5GHz

	Bandwidth, MHz
	100MHz

	Subcarrier spacing, kHz
	30kHz 

	Channel model
	InF-DH

	Hall size
	120(L) x 60(W) m, D – 20 m

	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

[image: A picture containing electronics

Description automatically generated]

	Room height
	10 m

	Number of floors
	1

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	InF-DH - {60%, 6m, 2m} 

	UE model parameters 
	

	UE noise figure, dB
	9dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)

	UE antenna radiation pattern 
	Omni, 0dBi

	Network synchronization
	Fully synchronized

	UE/gNB RX and TX timing error
	T1= 0 ns

	UE horizontal drop procedure
	Uniformly distributed over entire factory floor

	UE antenna height
	1.5 m

	gNB model parameters 
	

	Total gNB TX power, dBm
	24 dBm

	gNB noise figure, dB
	5dB

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

	gNB antenna height
	8 m



Table A2: Model configuration for direct AI/ML positioning
	Parameter
	 Values

	Training input measurements
	1.) RSRP: Per beam RSRP from multiple TRPs (108 RSRP values, 6 beams per TRP)
2.) RSRP + RSTD: Per beam RSRP from multiple TRPs (108 RSRP values, 6 beams per TRP) and per TRP RSTD value (18 RSTD values) 
3.) CIR: CIR from multiple TRPs (4608 complex values, 256 complex values per TRP). 
4.) PDP: obtained by magnitude of each tap of complex CIR from multiple TRPs (4608 real values, 256 real values per TRP). 

	Output
	UE position

	Number of TRPs
	18

	BS locations
	As specified in Table A1

	ML model
	ResNet (‘j’ Convolutional layer, ‘k’ residual layers, 1 fully connected layer) 
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