3GPP TSG RAN WG1 #114		R1-2306961
Toulouse, France, August 21st – August 25th, 2023

Agenda Item:	9.2.4.1
Source:	Google
Title:	On Enhancement of AI/ML based Positioning
Document for:	Discussion/Decision
Introduction
In RAN1 #113, the following agreements on evaluation of AI/ML based positioning have been achieved.
	Agreement
For the evaluation of AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0 such that the (NTRP  N’TRP) TRPs do not affect model output.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. 
· Approach 2-A. The set of active TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2-A: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· Approach 2-B. The set of active TRPs (N’TRP) that provide measurements can change dynamically.
· For Approach 2-B, one model is developed to handle various patterns of active TRPs. 
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity is the summation of the Nmodel models.
Note:  The agreement is updated from agreement made in RAN1#112bis.

Observation
For AI/ML based positioning, the positioning accuracy is affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2), when the UE is distributed uniformly in training data collection. 
· There exists a tradeoff between the training dataset size and the achievable positioning accuracy. The larger the training dataset size (i.e., higher sample density), the smaller the positioning error (in meters), until a saturation point is reached where additional training data does not bring further improvement to the positioning accuracy.
· Note: here a sample refers to the training data collected of one UE at one location. Sample density is equivalent to the density of UEs with data collected in the training dataset.


Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, evaluation of the following generalization aspects show that: 
· the positioning accuracy deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· the positioning accuracy may or may not deteriorate when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario.
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error

Observation
For AI/ML assisted positioning, evaluation results demonstrate that for the generalization aspects of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch 
· Channel estimation error
if the positioning accuracy would deteriorate when the AI/ML model is trained with dataset of one deployment scenario and tested with dataset of a different deployment scenario, the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.

Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of network synchronization error in the range of 0-50 ns, when the model is trained by a dataset with network synchronization error t1 (ns) and tested in a deployment scenario with network synchronization error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.85 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.80 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 10ns) is 1.16~2.81 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 2.19~10.11 times that of (0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (0ns, 50ns) is 9.68~31.95 times that of (0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.


Observation
For AI/ML assisted positioning with timing information (e.g., ToA) as model output, based on evaluation results of timing error in the range of 0-50 ns, when the model is trained by a dataset with UE/gNB RX and TX timing error t1 (ns) and tested in a deployment scenario with UE/gNB RX and TX timing error t2 (ns), for a given t1,
· For a case evaluated by a given source, the positioning accuracy of cases with t2 smaller than t1 is better than the cases with t2 equal to t1. For example,
· For the case of (t1, t2)=(50ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 20~25ns) is 0.75~0.96 times that of (t1, t2)=(50ns, 50ns).
· For the case of (t1, t2)=(50ns, 0ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(50ns, 0ns) is 0.76~0.95 times that of (t1, t2)=(50ns, 50ns).
· For a case evaluated by a given source, the positioning accuracy of cases with t2 greater than t1 is worse than the cases with t2 equal to t1. The larger the difference between t1 and t2, the more the degradation. For example,
· For the case of (t1, t2)=(0ns, 10ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 10ns) is 1.34~2.30 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 20~25ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 20~25ns) is 5.66~13.0 times that of (t1, t2)=(0ns, 0ns).
· For the case of (t1, t2)=(0ns, 50ns), evaluation results submitted to RAN1#113 show the positioning error of (t1, t2)=(0ns, 50ns) is 10.62~51.52 times that of (t1, t2)=(0ns, 0ns).
Note: here the positioning error is the horizonal positioning error (meters) at CDF=90%.

Observation
In evaluation of AI/ML assisted positioning with timing information (e.g., TOA) as model output, for L in the range of 0.25m to 5m, the timing (e.g., TOA) estimation error and positioning error increases approximately in proportion to L, where L (in meters) is the standard deviation of truncated Gaussian distribution of the ground truth label error.  

Observation
For AI/ML assisted positioning, the positioning accuracy at model inference is affected by the type of model input.  Evaluation results submitted to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· The positioning error of PDP as model input is 1.17 ~ 1.63 times the positioning error of CIR as model input.
· The positioning error of DP as model input is 1.33 ~ 2.01 times the positioning error of CIR as model input.

Observation
For AI/ML assisted positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that when CIR or PDP are used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 1.00 ~ 1.42 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 1.09 ~ 3.02 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 2.43 ~ 5.10 times the positioning error of Nt=256;

Observation
For AI/ML assisted positioning, when N't time domain samples with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that for model input of CIR or PDP and Nt=256, using different N't while holding other parameters the same,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.00 ~ 1.33 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 0.98 ~ 1.23 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.15 ~ 1.69 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.04 ~ 2.67 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9 is 1.66 ~ 4.40 times the positioning error of Nt=N't=256;

Observation
Evaluation shows that AI/ML assisted positioning with timing information (e.g., ToA) as model output is robust to certain label error based on evaluation results of L in the range of (0, 5) meter. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.

Observation
Evaluation shows that direct AI/ML positioning is robust to certain label error based on evaluation results of L in the range of (0, 5) meter. The exact range of label error that can be tolerated depends on the positioning accuracy requirement, where tighter positioning accuracy requirement demands smaller label error.

Observation
For AI/ML based positioning, evaluation results show that semi-supervised learning is helpful for improving the positioning accuracy when the same amount of ideal labelled data is used for supervised learning, and the number of ideal labelled data is limited.



Observation
For data collection of training dataset for AI/ML based positioning, for a given deployment scenario (e.g., InF-scenario, clutter parameter, drop) and with uniform UE distribution, the required sample density (e.g., #samples/m2) for achieving a given positioning accuracy target varies with AI/ML design choices including:
· different positioning approach (direct AI/ML, AI/ML-assisted), 
· different type of model input, 
· the size of model input,
· AI/ML complexity (model complexity and computational complexity).

Observation 
Evaluation results demonstrate that the performance of AI/ML positioning with the evaluation area as the convex hull of the horizontal BS deployment shows better performance than that with the whole hall area as evaluation area. This is due to: (a) convex hull case has higher sample density if using the same training dataset size, since convex hull has smaller UE distribution area; (b) for whole hall area, the UEs located outside the convex hull have diminished access to TRPs.
· For convex hull: UE distribution area = 100x40 m;
· For whole hall area: UE distribution area = 120x60 m

Observation
For the evaluation of direct AI/ML positioning, with Nt consecutive time domain samples used as model input, evaluation results submitted to RAN1#113 show that when CIR, PDP, or DP is used as model input, using different Nt while holding other parameters the same,  
· Reducing Nt from 256 to 128 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/2 that of Nt=256.
· Positioning error of Nt=128 is 0.81 ~ 1.19 times the positioning error of Nt=256;
· Reducing Nt from 256 to 64~32 may degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4 ~1/8 that of Nt=256, respectively. 
· Positioning error of Nt=64 is 0.88 ~ 3.00 times the positioning error of Nt=256;
· Positioning error of Nt=32 is 1.05 ~ 4.29 times the positioning error of Nt=256;
· Note: the variation in the positioning accuracy depends on each company's simulation assumption (e.g., AI/ML complexity).



Observation
For direct AI/ML positioning, the evaluation of positioning accuracy at model inference is affected by the type of model input and AI/ML complexity. For a given AI/ML model design, there is a tradeoff between model input, AI/ML complexity (model complexity and computational complexity), and positioning accuracy. Evaluation results submitted up to RAN1#113 show that if changing model input type while holding other parameters (e.g., Nt, N't, Nport, N'TRP) the same, 
· When comparing PDP and CIR as model input, 
· Six sources (MediaTek R1-2305659, vivo R1-2304475, ZTE R1-2302538, Ericsson R1-2304339, Apple R1-2306112, InterDigital R1-2305123) showed evaluation results where the positioning error of PDP as model input is 1.10 ~ 1.62 times the positioning error of CIR as model input.
· Four sources (MediaTek R1-2305659, Apple R1-2306112, Huawei R1-2305332, Nokia R1-2300608) showed evaluation results where the positioning error of PDP as model input is 0.61 ~ 0.96 times the positioning error of CIR as model input.
· When comparing DP and CIR as model input, 
· Three sources (vivo R1-2304475, Ericsson R1-2304339, Apple R1-2306112) showed evaluation results where the positioning error of DP as model input is 1.18 ~ 1.96 times the positioning error of CIR as model input.
· Two sources (Apple R1-2306112, Qualcomm R1-2305332) showed evaluation results where the positioning error of DP as model input is 0.79~0.92 times the positioning error of CIR as model input.
· Note: For Apple R1-2306112, the difference in relative performance is due to the complexity of the AI/ML model. 
· Note: the variation in the positioning accuracy depends on each company's simulation assumption (e.g., AI/ML complexity).


Observation
For the evalution of direct AI/ML positioning, when N't time domain samples with the strongest power are selected as model input, evaluation results submitted to RAN1#113 show that: 
· For model input of CIR or PDP and Nt=256, using different N't while holding other parameters constant,
· Reducing N't from 256 to 64 does not appreciably degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/4  that of Nt=N't=256.
· Positioning error of N't=128 is 1.02 ~ 1.07 times the positioning error of Nt=N't=256;
· Positioning error of N't=64 is 1.02 ~ 1.21 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 32~16 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/8 ~ 1/16 that of Nt=N't=256. 
· Positioning error of N't=32 is 1.14 ~ 2.03 times the positioning error of Nt=N't=256;
· Positioning error of N't=16 is 1.12 ~ 2.54 times the positioning error of Nt=N't=256;
· Reducing N't from 256 to 9~8 degrade the positioning accuracy, while the measurement size and signaling overhead shrink to (approximately) 1/32 that of Nt=N't=256. 
· Positioning error of N't=9~8 is 1.42 ~ 3.29 times the positioning error of Nt=N't=256;
· For model input of DP and Nt=256, using different N't while holding other parameters constant, 
· One source (Ericsson R1-2304339) showed that reducing N't from 64 to 32 does not degrade the positioning accuracy while the measurement size and signaling overhead shrink by (approximately) 1/2.
· Positioning error of N't=32 is 1.03 times the positioning error of N't=64.
· Note: the evaluation results based on the other model input (e.g., multiple path) can be added in next meeting





In this contribution, we provide some discussion on evaluation of AI/ML based positioning.
Discussion
In RAN1 #110b, the following agreement on the input of ML based positioning was achieved.
	Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.




In RAN1 #111, the following agreement on the input of ML based positioning was achieved.
	Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.




It is clarified that the CIR/PDP should be derived based on the Nt consecutive time-domain samples from Nport Tx/Rx antenna port pairs from NTRP TRPs. Usually, the number of Rx ports should be transparent. Thus, the UE should not be required to disclose the number of Rx parts. In addition, the UEs may have different orientation, which could create different “best Rx direction” even for the UEs with the same location. Such information would potentially increase the prediction error. Therefore, the further study on CIR/PDP as input should be based on the number of Tx ports, and the performance for the following Rx schemes can be further studied:
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
In addition, another aspect is impact from different quantization schemes for the CIR/PDP. The CIR/PDP may be quantized based on several DFT bases or DCT bases. Usually, DCT based approach could provide a better performance with regard to the quantization error and report overhead. It is necessary to study the quantization impact on the CIR/PDP based on DFT bases and DCT bases.
In addition, with regard to possible channel estimation errors for the CIRs/PDPs, the L1-SINR for each CIR/PDP can be considered as part of the input. Then the CIR/PDP with a better L1-SINR may be prioritized in the AI/ML, so that the CIR/PDP with more channel estimation error can be deprioritized, and the impact from channel estimation error can be reduced.

Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.
Conclusion
In this contribution, we provided discussion on evaluation of AI/ML based positioning. Based on the discussion, the following proposals have been achieved.
Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.

