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Introduction
In RAN1 #113, the following agreements on evaluation of AI/ML based BM have been achieved.
	Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· Companies report the specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams

Observation
For BMCase-1 and for a fixed Set B pattern option, Set B pattern will affect the beam prediction accuracy with AI/ML for both DL Tx beam prediction and beam pair prediction.

Agreement
· The performance impact of the relative L1-RSRP measurement error can be optionally evaluated for both DL Tx beam and beam pair prediction, where the relative L1-RSRP measurement error can be modelled as noise among beams as a starting point
·  Additive Gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise for the error due to baseband and/or RF impairment.
· Other modelling methods are not precluded and can be reported by companies.   
· Companies’ report includes how to model the measurement error and the measurement accuracy range in training and test data and labels.
· Companies’ report includes the baseline performance with the relative L1-RSRP measurement error.  


Observation
At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) causes [a minor loss] in beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B:
· Evaluation results from [11 sources: Interdigital, vivo, Huawei/HiSi, CATT, Fujitsu, Lenovo, Apple, Qualcomm, Samsung, DoCoMo, Ericsson] show [less than 5%] loss in terms of Top-1 beam prediction accuracy. 
· Note: [One source: Apple] uses the data without quantization for training and data with quantization for inference. Other sources use the same quantization scheme for data for training and inference.

Observation
The following generalization aspects were evaluated for BMCase-1 and/or BMCase-2,
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi 
· e.g., 200m ISD or 500m ISD 
· [e.g., same deployment, different cells with different configuration/assumption]
· [FFS e.g., Carrier frequencies]
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., [3km/h], 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, 
· e.g., UE Rx beam codebook /panels, 
· e.g., UE antenna array dimensions
· Various gNB settings, 
· e.g., DL Tx beam codebook
· e.g. various Set A of beam(pairs) 
· e.g., gNB antenna array dimensions
· Various Set B of beam (pairs)

Observation
Companies have provided evaluation results which show that Case 3 and/or Case 2A can provide better performance than Case 2. In most of the cases/evaluations, Case 3 has performance degradation than Case 1. From the evaluation results [from 2 sources: Samsung, Nokia] for [scenario with various UE distribution], Case 3 may have similar or slightly higher performance than Case 1.

· [[For some cases], Case 2 have some performance degradation than Case 1 in most of the cases/ evaluations. In Case 2, AI/ML still can provide better performance (e.g. [>30%] of Top-1 beam prediction unless otherwise stated) than non-AI baseline option 2 (based on the measurements from Set B of beams):
· [For some cases], Case 2 have significant performance degradation than Case 1 in most of the cases/ evaluations. In Case 2, AI/ML still can provide comparable or worse performance (e.g., [<30%] of Top-1 beam prediction unless otherwise stated) than non-AI baseline option 2 (based on the measurements from Set B of beams)]
· Note: the following are assumed in the simulation unless otherwise stated
· For DL Tx beam prediction, the measurements from best Rx beam are used.
· Fixed Set B pattern.
· Without UE Rotation.
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 
· Observations are applicable for both Tx beam and beam pair.
· The evaluation results are from BM-Case 1 and similar observation are expected for BM-Case 1 when Set B is different from Set A. 

· For BM-Case1 DL Tx beam prediction, when Set B is a subset of Set A, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· (A)With measurements of fixed Set B of beams that of 1/4 of Set A of beams
· Top-1 DL Tx beam prediction accuracy: 
(20 evaluation results from [7 sources: Huawei/HiSi, Futurewei, NVIDIA, MediaTek, vivo, CEWiT, Interdigital] indicate that, AI/ML can achieve [about 70%~80%] beam prediction accuracy
(21 evaluation results from [5 sources: Xiaomi, Apple, Intel, Lenovo, Fujitsu] indicate that, AI/ML can achieve [about 80%~90%] beam prediction accuracy
(22 evaluation results from [7 sources: CATT, OPPO, Samsung, Ericsson, Nokia, ZTE, vivo] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy
(23 Note: [One source: vivo] reported that, AI/ML can achieve [97.3%] beam prediction accuracy with the measurements from the best Rx beam based on the best Tx beam in Set A, and AI/ML can achieve [76.4%] beam prediction accuracy with the measurements from the best Rx beam of on the best Tx beam in Set B.
(24 Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beams) can achieve [about 25%] beam prediction accuracy.
· Top-1 DL Tx beam with 1dB margin:
(20 evaluation results from [12 sources: Xiaomi, ZTE, Apple, Nokia, Samsung, Ericsson, Intel, InterDigital, Fujitsu, Lenovo, OPPO, CATT] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy.
(21 evaluation results from [2 sources: vivo, Huawei/HiSi] indicate that, AI/ML can achieve [80%] beam prediction accuracy, wherein [1 source: vivo] assumed the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B.
· Top-K(=2) DL Tx beam prediction accuracy
(20 evaluation results from [6 sources: Futurewei, NVIIDA, MediaTek, CATT, vivo, CEWiT] indicate that, AI/ML can achieve [80%- 90%] beam prediction accuracy.
(21 evaluation results from [8 sources: Xiaomi, OPPO, NVIIDA, Nokia, Ericsson, Samsung, CATT, Fujitsu] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy. 
(22 The beam prediction accuracy increases with K.  
· evaluation results from [3 sources: Samsung, CATT, Fujitsu] indicate that Top-2 DL beam prediction accuracy can be [more than 95%] 
· evaluation results from [source: Lenovo] indicate that Top-3 DL beam prediction accuracy can be [more than 95%]
· evaluation results from [4 sources: HW/HiSi, CEWiT, Lenovo, ZTE] indicate that Top-5 DL beam prediction accuracy can be [more than 95%] 
· Average L1-RSRP difference of Top-1 predicted beam 
(20 evaluation results from [14 sources: Huawei/HiSi, Futurewei CATT, xiaomi, OPPO, ZTE, NVIDIA, Nokia, Samsung, MediaTek, Fujitsu, Lenovo, CEWiT, vivo] indicate that it can be [below or about 1dB]
(21 evaluation results from [1 source: vivo] indicates that it can be [2.6dB] with the assumption that the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B
· Average predicted L1-RSRP difference of Top-1 beam 
(20 evaluation results from [5 sources: vivo, Lenovo, ZTE, xiaomi, Ericsson] indicates that it can be [below or about 1dB]
(21 evaluation results from [1 source: MediaTek] indicates that it is [about 2dB]
(22 Note that this is assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase [(e.g., regression AI/ML model)]
· UE average throughput
(20 evaluation results from [3 sources: Nokia, MediaTek, Interdigital] indicate that AI/ML achieves [96%~99%] of the UE average throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
(21 evaluation results from [1 source: Interdigital] indicate that non-AI baseline option 2 (exhaustive search over Set B beams) achieves [89%] of the UE average throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
· UE 5%ile throughput
(20 evaluation results from [2 sources: Nokia, MediaTek] indicate that, AI/ML achieves [95~97%] of the UE 5%ile throughput of the BM-Case1 baseline option 1 (exhaustive search over Set A beams).
 
· (B) With measurements of fixed Set B of beams that of 1/8 of Set A of beams
· Top-1 DL Tx beam prediction accuracy:
· evaluation results from [4 sources: Futurewei, MediaTek, CEWiT, DoCoMo] indicate that, AI/ML can achieve [about 50%] beam prediction accuracy
· evaluation results from [4 sources: Apple, Qualcomm, Intel, vivo] indicate that, AI/ML can achieve [about 60%~70%] beam prediction accuracy 
· evaluation results from [5 sources: CMCC, Lenovo, ZTE, Fujitsu, OPPO] indicate that, AI/ML can achieve [about 70%~80%] beam prediction accuracy.
· evaluation results from [2 sources: Nokia, Samsung, vivo] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy 
· Note: [One source: vivo] reported that, AI/ML can achieve [89%] beam prediction accuracy with the measurements from the best Rx beam based on the best Tx beam in Set A, and AI/ML can achieve [67.6%] beam prediction accuracy with the measurements from the best Rx beam of on the best Tx beam in Set B.
· Non-AI baseline Option 2 (exhaustive beam sweeping in Set B of beams) can achieve [about 12.5%] beam prediction accuracy  
· Top-1 DL Tx beam prediction with 1dB margin
· evaluation results from [5 sources: Apple, Intel, vivo, Lenovo, Fujitsu] indicate that, AI/ML can achieve [70%-80%] beam prediction accuracy
· wherein [1 source: vivo] assumed the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B.
· evaluation results from [1 source: OPPO] indicate that, AI/ML can achieve [80%-90%] beam prediction accuracy
· evaluation results from [4 sources: Nokia, Qualcomm, Samsung, ZTE] indicate that, AI/ML can achieve [more than 90%] beam prediction accuracy 
· Top-K(=2) DL Tx beam prediction accuracy
· evaluation results from [3 sources: Futurewei, MediaTek, CEWiT] indicate that, AI/ML can achieve [about 70%~ 80%] beam prediction accuracy
· evaluation results from [5 sources: CMCC, Intel, Qualcomm, vivo, Fujitsu] indicate that, AI/ML can achieve [80%~90%] beam prediction accuracy 
· evaluation results from [3 sources: Nokia, OPPO, Samsung] indicate that, AI/ML can achieve [90%] beam prediction accuracy for Top-2 DL Tx beam. 
· The beam prediction accuracy increases with K.  
· evaluation results from [1 source: CATT] indicate that Top-2 DL beam prediction accuracy can be [more than 95%] 
· evaluation results from [1 source: Samsung, Lenovo] indicate that Top-3 DL beam prediction accuracy can be [>95%] 
· evaluation results from [4 sources: Qualcomm, CEWiT, Lenovo, ZTE] indicate that Top-5 DL beam prediction accuracy can be [>90%] 
· Average L1-RSRP difference of Top-1 predicted beam 
· evaluation results from [7 sources: Nokia, Qualcomm, OPPO, Samsung, CEWiT, ZTE, vivo] indicate that it can be [below or about 1dB]
· evaluation results from [3 sources: Fujitsu, DoCoMo, Lenovo] indicate that it can be [1dB~2dB]
· evaluation results from [1 source: vivo] indicates that it can be [3.4dB] with the assumption that the L1-RSRP of the Top-1 predicted beam is measured with the best Rx beam searched from the best Tx beam in set B
· Average predicted L1-RSRP difference of Top-1 beam 
· evaluation results from [5 sources: vivo, Lenovo, OPPO, ZTE, Ericsson] indicates that it can be [0.8~1.5dB] 
· Note that [4 sources: vivo, Lenovo, ZTE, Ericsson] assumed that all the L1-RSRPs of Set A of beams are used as the label in AI/ML training phase (e.g., regression AI/ML model) and [1 source: OPPO] assumed that only the L1-RSRP of the Top-1 beam in Set A is used as the label in training phase and the result is [0.82 dB]. 
· UE average throughput
· evaluation results from [1 source: Nokia] indicates that AI/ML achieves [98%] of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams).
· evaluation results from [1 source: MediaTek] indicates that AI/ML achieves [85%] of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams).
· UE 5%ile throughput
· evaluation results from [1 source: Nokia] indicates that, AI/ML achieves 84% of the UE 5%ile throughput of the BMCase1 baseline option (exhaustive search over Set A beams).
· evaluation results from [1 source: MediaTek] indicates that, AI/ML achieves 70% of the UE 5%ile throughput of the BMCase1 baseline option (exhaustive search over Set A beams).
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
· For BM-Case1 DL Tx beam prediction, when Set B is different to Set A, with measurements of Set B of wide beams that are 1/4 or 1/6 or 1/8 of Set A beams, AI/ML can provide good beam prediction performance with less measurement/RS overhead without considering generalization aspects with the measurements from the best Rx beam without UE rotation.
· Top-1 DL Tx beam
· evaluation results [from 3 sources: Nokia, Ericsson, Intel] indicate that, AI/ML can achieve [more than 80%] beam prediction accuracy [from 5 sources: Samsung, Huawei, MediaTek, Qualcomm, Intel] indicate that, AI/ML can achieve [more than 55%] beam prediction accuracy
· [One source: Intel] reported [more than 80%] beam prediction accuracy with 100% outdoor UEs, and [more than 60%] beam prediction accuracy with 20% outdoor UEs. 
· Evaluation results from [1 source: Samsung] shows that, with limited measurements (e..g, [1 or 4]) of narrow beams in Set A[=32], AI/ML can increase [15% or 30%] beam prediction accuracy [respectively] compared with [55%] beam prediction accuracy with measurement of wide beams only. 
· Top-1 DL Tx beam with 1dB margin. 
· evaluation results [from 4 sources: Nokia, Ericsson, Qualcomm, Intel] indicate that, AI/ML can achieve [more than 85%] beam prediction accuracy
· evaluation results [from 3 sources: Huawei, Samsung, Intel] indicate that, AI/ML can achieve [57%~77%] beam prediction accuracy
· [One source: Intel] reported [more than 86%] beam prediction accuracy with 100% outdoor UEs, and [more than 70%] beam prediction accuracy with 20% outdoor UEs.
· Top-K(=3) DL Tx beam
· evaluation results [from 3 sources: Nokia, Ericsson, Intel] indicate that, AI/ML can achieve [more than 95%] beam prediction accuracy 
· evaluation results [from 3 sources: Huawei, Samsung, MediaTek] indicate that, AI/ML can achieve [85~94%] beam prediction accuracy 
· evaluation results from [1 source: Qualcomm] indicate that Top-5 DL beam prediction accuracy can be [more than 90%].
· Average L1-RSRP difference of Top-1 predicted beam
· evaluation results [from 3 sources: Nokia, Samsung, Qualcomm] indicate that, the average L1-RSRP difference can be [less or about 1dB]
· UE average throughput
· evaluation results [from 1 source: Nokia] indicate that, AI/ML achieves [99%] of the UE average throughput of the BMCase1 baseline option 1 (exhaustive search over Set A beams)
· UE 5%ile throughput
· evaluation results [from 1 source: Nokia] indicate that, AI/ML achieves [94%] of the of the BMCase1 baseline option 1(exhaustive search over Set A beams)
· Note that ideal measurements are assumed
· Beams could be measured regardless of their SNR.
· No measurement error.
· Measured in a single-time instance (within a channel-coherence time interval).
· No quantization for the L1-RSRP measurements.
· No constraint on UCI payload overhead for full report of the L1-RSRP measurements of Set B for NW-side models are assumed. 

Observation
At least for BM-Case1 when Set B is a subset of Set A, and for DL Tx beam prediction, with the measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample, AI/ML provides the better performance than with measurements of random Rx beam(s). 
· Evaluation results from [8 sources: vivo, Nokia, Fujitsu, Samsung Lenovo, Huawei/HiSi, Ericsson, MediaTek] show [25%~50%] degradation with random Rx beam(s) comparing with the “best” Rx beam in terms of Top-1 prediction accuracy. 
· Evaluation results from [1 source: CATT] show about 6% degradation with measurement of random Rx compared with measurement of best Rx in term of Top-1 beam prediction accuracy. 
Comparing performance with non-AI baseline option 2 (based on the measurement from Set B of beams), with measurements of random Rx beam(s) as AI/ML inputs:
· Evaluation results from [5 sources: MediaTek, Fujitsu, vivo, Nokia Samsung] show that AI/ML can still provide [7%~44%] beam prediction accuracy gain in terms of Top-1 beam prediction accuracy. 
Note: In both training and inference, measurements of random Rx beams are used as AI/ML inputs. 


Observation
At least for BM-Case1 for inference of DL Tx beam with L1-RSRPs of all beams in Set B, 
· evaluation results from [3 sources: vivo, Qualcomm, DoCoMo] show that, with 1dB quantization step for the absolute L1-RSRP of the best beam and [4dB] quantization step differential L1-RSRP report with the existing quantization range, [less than 5%] loss in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B. 
· Same quantization scheme is used for the input data for training and inference. 
· Note: [One source: DoCoMo] used quantized L1-RSRPs with the same quantization scheme as labels in training.
· Note: [One source: vivo] used unquantized L1-RSRPs as labels in training.
· evaluation results from [1 source: Nokia] show that, with quantized L1-RSRPs of beams in Set B with [4dB] quantization step as the inputs, AI/ML has [32%] loss in terms of Top-1 beam prediction accuracy compared to unquantized L1-RSRPs of beams in Set B. 
· Quantized data is used in training for both inputs and labels.





In this contribution, we provide some discussion on evaluation of AI/ML based BM.
Discussion
Clarification of KPI
The RS overhead reduction has been agreed as a KPI for evaluation. However, it is necessary to clarify the RS overhead reduction is only nominal, which does not actually reduce the DL RS for beam measurement. Regardless of whether ML is enabled or not, the NW still needs to transmit the DL RS for all the beams in set A, which can be used for further beam tracking, pathloss measurement, L3 measurement and so on. Thus, current RS overhead reduction is only from number of measured RSs perspective, which can help for UE power saving and reduce the latency for beam measurement and report, but cannot actually reduce the actual DL RS overhead.
Observation 1: Regardless of whether ML is enabled or not, the NW still needs to transmit the DL RS for all the beam sin set A for further beam tracking, pathloss measurement, L3 measurement and so on.
Proposal 1: Clarify that the KPI “RS overhead reduction” is only from the beam measurement perspective for a UE, which does not mean the overall RS overhead reduction from the network perspective.

Spatial domain beam index prediction
2.1.1 Results based on different input content
In RAN1 #109, the following alternatives on spatial domain beam prediction were agreed.
	Conclusion 
Regarding the sub use case BM-Case1, further study the following alternatives for AI/ML input:
· Alt.1: Only L1-RSRP measurement based on Set B
· Alt.2: L1-RSRP measurement based on Set B and assistance information
· FFS: Assistance information. The following were mentioned by companions in the discussion:  Tx and/or Rx beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam boresight direction (azimuth and elevation), 3dB beamwidth, etc.), expected Tx and/or Rx beam for the prediction (e.g., expected Tx and/or Rx angle, Tx and/or Rx beam ID for the prediction), UE position information, UE direction information, Tx beam usage information, UE orientation information, etc.
·  Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
· Alt.3: CIR based on Set B
· Alt.4: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
· Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
· Note2: All the inputs are “nominal” and only for discussion purpose.




In this contribution, we evaluation the following 3 options to investigate the performance from the alterantives above.
· Option 1: L1-RSRP measured from set B beams
· Option 2: L1-RSRP measured from set B beams + UE orientation
· Option 3: CIR measured from set B beams
For Set B beams, we studied 2, 4, and 8 beams in set B as shown in Figure 1, Figure 2 and Figure 3.
[image: ]
Figure 1: Selection of 2 beams in Set B as input for ML based spatial domain beam prediction

[image: ]
Figure 2: Selection of 4 beams in Set B as input for ML based spatial domain beam prediction
[image: ]
Figure 3: Selection of 8 beams in Set B as input for ML based spatial domain beam prediction
Table 1-6 illustrate the beam prediction accuracy for top-x beams, where the top-x beam is counted as correct if L1-RSRP from one of the predicted top-x beam is equal to or the same as the L1-RSRP from the best beam minus a margin (0dB or 1dB). It can be observed that the CIR based beam prediction could outperform the L1-RSRP based beam prediction. Moreover, the UE orientation cannot help to increase the beam prediction accuracy for L1-RSRP based beam prediction. The neural network is a DNN with 1 hidden layer. Detailed simulation assumptions are illustrated in Table A-1 in appendix.
Table 1: Beam prediction accuracy from 2 measured beams with 1 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	31.35%
	30.62%
	33.00%
	33.50%
	34.34%

	Top-2
	47.43%
	46.85%
	49.60%
	50.63%
	51.40%

	Top-4
	66.41%
	65.60%
	68.44%
	69.51%
	69.70%

	Top-8
	83.21%
	83.18%
	85.72%
	85.91%
	86.43%



Table 2: Beam prediction accuracy from 2 measured beams with 0 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	20.61%
	20.06%
	22.04%
	22.43%
	23.02%

	Top-2
	34.38%
	34.32%
	36.53%
	37.45%
	38.24%

	Top-4
	53.27%
	53.99%
	56.19%
	57.03%
	57.39%

	Top-8
	75.03%
	76.14%
	77.74%
	78.25%
	78.54%



Table 3: Beam prediction accuracy from 4 measured beams with 1 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	47.98%
	48.18%
	49.49%
	51.32%
	52.10%

	Top-2
	65.49%
	65.93%
	67.49%
	69.12%
	70.13%

	Top-4
	82.09%
	82.30%
	83.28%
	84.32%
	85.18%

	Top-8
	93.62%
	93.77%
	93.87%
	94.63%
	94.46%



Table 4: Beam prediction accuracy from 4 measured beams with 0 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	33.66%
	33.99%
	36.17%
	37.40%
	38.10%

	Top-2
	51.77%
	52.05%
	54.24%
	55.50%
	56.48%

	Top-4
	70.90%
	71.07%
	73.13%
	74.42%
	75.35%

	Top-8
	88.92%
	88.92%
	88.78%
	89.72%
	89.72%



Table 5: Beam prediction accuracy from 8 measured beams with 1 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	67.96%
	69.10%
	73.53%
	75.18%
	75.23%

	Top-2
	81.59%
	82.23%
	86.39%
	87.99%
	87.92%

	Top-4
	91.25%
	92.20%
	93.87%
	94.34%
	94.38%

	Top-8
	96.76%
	96.96%
	97.75%
	97.78%
	97.76%



Table 6: Beam prediction accuracy from 8 measured beams with 0 dB margin
	Predicted beam
	Option 1 (L1-RSRP)
	Option 2 (L1-RSRP)
	Option 3 (CIR from 2 strongest taps)
	Option 3 (CIR from 4 strongest taps)
	Option 3 (CIR from 6 strongest taps)

	Top-1
	53.15%
	54.35%
	57.70%
	58.75%
	58.74%

	Top-2
	70.09%
	71.24%
	75.64%
	77.55%
	77.47%

	Top-4
	83.54%
	84.48%
	88.19%
	89.13%
	89.30%

	Top-8
	93.39%
	93.69%
	95.40%
	95.74%
	95.78%



Observation 2: CIR based spatial domain beam prediction outperforms the L1-RSRP based beam prediction.
Observation 3: UE orientation could not help to increase the accuracy for L1-RSRP based beam prediction.

2.1.2 Measurement accuracy impact
For spatial domain beam prediction, the input could be the beam quality for some beams. However, there could be some measurement error. The measurement error could be big for some beams with lower coverage. Table 7 illustrates some results for the beam prediction accuracy based on perfect L1-RSRP as input and L1-RSRP with measurement error as input. The simulation assumption is the same as section 2.2.1. It can be observed that the measurement error could cause significant performance degradation.
Table 7: Beam prediction accuracy from 4 measured beams with 1 dB margin
	Predicted beam
	Perfect L1-RSRP
	L1-RSRP with up to 5dB measurement error
	L1-RSRP with up to 10 dB measurement error

	Top-1
	47.98%
	30.28%
	19.82%

	Top-2
	65.49%
	46.92%
	32.12%

	Top-4
	82.09%
	65.58%
	49.01%

	Top-8
	93.62%
	84.82%
	70.76%



Table 8: Beam prediction accuracy from 4 measured beams with 0 dB margin
	Predicted beam
	Perfect L1-RSRP
	L1-RSRP with up to 5dB measurement error
	L1-RSRP with up to 10 dB measurement error

	Top-1
	33.66%
	20.04%
	12.35%

	Top-2
	51.77%
	33.63%
	21.41%

	Top-4
	70.90%
	51.63%
	36.17%

	Top-8
	88.92%
	74.68%
	58.35%



Observation 4: The ML input with measurement error could cause significant performance degradation.

2.1.2 Beam pattern mismatch impact
For spatial domain beam prediction, it is possible that the beam pattern in the ML is different from actual beam pattern in the gNB side. Table 9 and Table 10 illustrates the case for beam prediction with and without beam pattern mismatch, where the beam pattern in the NW side is based on 8 beams in horizontal with the direction of (-52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5)*7/6 degree and 4 beams in vertical with the direction of (107.5, 122.5, 137.5, 152.5)*7/6 degree. The simulation assumption is the same as section 2.2.1. It can be observed that small beam pattern mismatch could cause significant beam prediction accuracy degradation.
Table 9: Beam prediction accuracy from 4 measured beams with 1 dB margin
	Predicted beam
	Beam prediction without beam pattern mismatch
	Beam prediction with beam pattern mismatch

	Top-1
	47.98%
	11.53%

	Top-2
	65.49%
	20.32%

	Top-4
	82.09%
	40.64%

	Top-8
	93.62%
	63.38%



Table 10: Beam prediction accuracy from 4 measured beams with 0 dB margin
	Predicted beam
	Beam prediction without beam pattern mismatch
	Beam prediction with beam pattern mismatch

	Top-1
	33.66%
	7.84%

	Top-2
	51.77%
	14.79%

	Top-4
	70.90%
	33.96%

	Top-8
	88.92%
	57.70%



Observation 5: Beam pattern mismatch could cause significant performance degradation.
Beam prediction output
In RAN1 #110, the following is agreed on the output of the spatial-domain beam prediction. 
	Agreement
Regarding the sub use case BM-Case1 and BM-Case2, study the following alternatives for AI/ML output:
· Alt.1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the N predicted DL Tx and/or Rx beams 
· E.g., N predicted beams can be the top-N predicted beams
· Alt.2: Tx and/or Rx Beam ID(s) of the N predicted DL Tx and/or Rx beams and  other information
· FFS: other information (e.g., probability for the beam to be the best beam, the associated confidence, beam application time/dwelling time, Predicted Beam failure) 
· E.g., N predicted beams can be the top-N predicted beams
· Alt.3: Tx and/or Rx Beam angle(s) and/or the predicted L1-RSRP of the N predicted DL Tx and/or Rx beams
· E.g., N predicted beams can be the top-N predicted beams
· FFS: details of Beam angle(s)
· FFS: how to select the N DL Tx and/or Rx beams (e.g., L1-RSRP higher than a threshold, a sum probability of being the best beams higher than a threshold, RSRP corresponding to the expected Tx and/or Rx beam direction(s))
· Note1: It is up to companies to provide other alternative(s) 
· Note2: Beam ID is only used for discussion purpose
· Note3: All the outputs are “nominal” and only for discussion purpose
· Note4: Values of N is up to each company. 
· Note5: All of the outputs in the above alternatives may vary based on whether the AI/ML model inference is at UE side or gNB side.
· Note 6: The Top-N beam IDs might have been derived via post-processing of the ML-model output




For the output of beam prediction, in general, there could be the following two options:
· Option 1 (codebook-based beamforming): Predict the beam from a beam codebook
· Option 2 (Channel-based beamforming): Predict the channel eigen vector, which is used as the beamforming weight
Figure 4 illustrates the simulation results for the RSRP distribution for the options above. It can be observed that the channel-based beamforming can provide at least 5 dB performance gain compared to the codebook-based beamforming. The simulation assumption is provided in Table A-1. Therefore, it is necessary to study the channel eigenvector (Alt3) as the output for beam prediction.
[image: ]
Figure 4: Simulation results for RSRP distribution for channel-based beamforming and codebook based beamforming

Observation 6: Channel-based beamforming could provide at least 5 dB RSRP gain compared to codebook-based beamforming.

Beam prediction for MU-MIMO
Based on current study, the beam prediction is to predict the “strong” beam. However, for MU-MIMO operation, the “weak” beam information is also important for the network to determine UE pairing. Without the “weak” beam information, the network cannot identify the potential mutual interference for the co-scheduled UEs, as shown in Figure 5.
[image: ]
Figure 5: A potential issue for beam selection for MU-MIMO
The MU-MIMO operation is an important feature to improve the spectrum efficiency. Figure 6 illustrates a simulation result to compare the performance between MU-MIMO and SU-MIMO based on full buffer traffic, where for MU-MIMO, two cases are studied – UE pairing without “weak” beam information and UE pairing with “weak” beam information. It can be observed that MU-MIMO with UE pairing without “weak” beam information could not provide performance gain, but MU-MIMO with UE pairing based on “weak” beam information can provide significant performance gain. Therefore, it should be studied to predict the weak beam information in addition to the strong beam. 

Figure 6: Average cell SE for MU-MIMO and SU-MIMO

Figure 7: Cell edge SE for MU-MIMO and SU-MIMO

Observation 7: MU-MIMO with weak beam information can provide significant performance gain compared to SU-MIMO, and MU-MIMO without weak beam information cannot provide performance gain. 
Proposal 2: For spatial-domain beam prediction, study to predict the “weak” beam to facilitate the MU-MIMO UE pairing.

UE-group based beam prediction
In the actual network, some UEs may locate closely and share the same velocity, e.g., the UEs are in a car, as shown in Figure 8. For such UEs, it is possible to perform UE-group based beam prediction. Thus, the input could be based on the beam report from one or a subset of UEs in a UE group, and the output could be the predicted beams for the group of UEs.
[image: ]
Figure 8: A potential scenario for UE-group based beam prediction
Proposal 3: Study the UE-group based beam prediction for the UEs with the similar location and trajectory.

Spatial domain L1-RSRP prediction
Similar to spatial domain beam index prediction, it is possible to use ML to predict the L1-RSRP for the predicted beam index. The input for the ML could be the L1-RSRP for a subset of network beams, similar to section 2.1. We compared two schemes for L1-RSRP prediction:
· ML-based L1-RSRP prediction: The L1-RSRPs from a subset of network beams are used as the input, and the L1-RSRPs of all the network beams are the output of the ML. The input and output are normalized. 
· Non-ML based L1-RSRP prediction: The highest L1-RSRP from the subset of network beams are used as the predicted L1-RSRP.

We calculated the error between the predicted L1-RSRP and actual L1-RSRP for the top-N predicted beams. Table 1 illustrates the average error for the L1-RSRP prediction schemes. Figure 9 illustrates the CDF of the L1-RSRP prediction error for each beam for both ML-based and non-ML based scheme. In the evaluation, the input is the L1-RSRPs form 8 network beams as Figure 3. It can be observed that ML-based L1-RSRP cannot provide performance gain compared to non-ML based scheme.
Table 1: Average error for L1-RSRP prediction
	
	Average error for ML based L1-RSRP prediction [dB]
	Average error for non-ML based L1-RSRP prediction [dB]

	Top-1 beam
	4.4642
	1.8889

	Top-2 beam
	4.3309
	1.7120

	Top-4 beam
	4.5043
	1.9163

	Top-8 beam
	4.5553
	3.3471



[image: ]
Figure 9: CDF of L1-RSRP prediction error

Observation 8: ML based L1-RSRP prediction cannot provide performance gain.

Conclusion
In this contribution, we provided discussion on evaluation of AI/ML based BM. Based on the discussion, the following proposals have been achieved.
Proposal 1: Clarify that the KPI “RS overhead reduction” is only from the beam measurement perspective for a UE, which does not mean the overall RS overhead reduction from the network perspective.
Proposal 2: For spatial-domain beam prediction, study to predict the “weak” beam to facilitate the MU-MIMO UE pairing.
Proposal 3: Study the UE-group based beam prediction for the UEs with the similar location and trajectory.

Observation 1: Regardless of whether ML is enabled or not, the NW still needs to transmit the DL RS for all the beam sin set A for further beam tracking, pathloss measurement, L3 measurement and so on.
Observation 2: CIR based spatial domain beam prediction outperforms the L1-RSRP based beam prediction.
Observation 3: UE orientation could not help to increase the accuracy for L1-RSRP based beam prediction.
Observation 4: The ML input with measurement error could cause significant performance degradation.
Observation 5: Beam pattern mismatch could cause significant performance degradation.
Observation 6: Channel-based beamforming could provide at least 5 dB RSRP gain compared to codebook-based beamforming.
Observation 7: MU-MIMO with weak beam information can provide significant performance gain compared to SU-MIMO, and MU-MIMO without weak beam information cannot provide performance gain. 
Observation 8: ML based L1-RSRP prediction cannot provide performance gain.


Appendix – Simulation Assumption
Table A-1: Simulation Assumption
	Parameter
	Value

	Scenario
	Dense Urban Macro

	Number of UEs
	100000 (80% for training and 20% for testing), 210 for throughput related simulation

	UE dropping
	Outdoor

	gNB antenna structure
	(M, N, P, Mp, Np, Mg, Ng) = (4, 8, 2, 4, 8, 1, 1)

	UE antenna structure
	(M, N, P, Mp, Np, Mg, Ng) = (1, 4, 2, 1, 4, 1, 2)

	Carrier frequency
	30 GHz

	SCS
	120 kHz

	Bandwidth
	80 MHz

	gNB beam structure for codebook-based beamforming
	8 beams in horizontal: (-52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5) degree
4 beams in vertical: (107.5, 122.5, 137.5, 152.5) degree

	UE beam structure for codebook-based beamforming
	4 beams in horizontal: (-33.75, -11.25, 11.25, 33.75) degree

	gNB Tx power
	40 dBm

	Minimal gNB-UE distance
	10 m

	gNB height
	25 m

	Scheduler
	PF

	Traffic model
	Full buffer




 Average cell SE [bit/s/Hz	]	SU-MIMO	MU-MIMO without weak beam information	MU-MIMO with weak beam information	4.0339999999999998	4.1349999999999998	5.63	



 Cell edge SE (5% CDF) [bit/s/Hz	]	SU-MIMO	MU-MIMO without weak beam information	MU-MIMO with weak beam information	9.4100000000000003E-2	7.1599999999999997E-2	0.1215	
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