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Background: WUR architecture with I/Q vs without I/Q

• Figs. 2&3 show the agreed architecture for homodyne receivers with and without I/Q paths, 
respectively.

• In general, I/Q paths are required in homodyne/ZIF receivers. 
» With only one single LO, a LO phase offset with respect to the signal can lead to signal energy 

loss during down-conversion. In the worst case scenario (90° offset), the signal can be completely 
lost. (Example next page)

• Receiver with I/Q paths consume more power given the additional circuit components. 
» LO + LO buffers are usually the most power hungry blocks in an ultra-low power receiver. 

As opposed to generating LO I/Q phases shown in Fig. 2, an alternative approach is signal 
quadrature, as proposed in the BLE homodyne WUR from [1]. The LO and LO buffers in [1] 
together consume 170uW. 

Fig. 3: Homodyne receiver without I/Q paths. Fig. 2: Homodyne receiver with I/Q paths. 
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Introduction

• Simulation assumptions
» OOK-4 WUS with 4 bits per OFDM symbol.

» FR1 with carrier frequency fc = 2.6GHz and SCS = 30kHz.

» 5MHz RF bandwidth:12 RBs (i.e. 144 SCs, 4.32MHz) used for OOK-4 WUS transmission 
with 2 RBs (i.e. 24 SCs, 0.72MHz) used for guard bands (either symmetrically or 
asymmetrically placed around LP-WUS).

Fig. 1: DFT-based OOK-4 waveform generation. 
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• Fig. 4 shows the baseband IFFT output samples after CP insertion, and the transmitted signal 
upconverted to fc = 2.6GHz.

• As shown in Fig. 5(c), using an in-phase LO would down-convert the signal to baseband as desired. 
Fig. 5(d) shows the worst case scenario, where a LO with 90° offset would lose the signal completely 
after low pass filtering. Fig. 6 plots baseband signal energy as a function of LO phase offset.

Example of Signal Loss in Homodyne Receiver due to LO Phase Offset

Fig. 5: (a)(b) Time-domain samples after down-conversion with an in-
phase or quadrature LO, respectively.  (c)(d) FFT spectra of (a)(b).

(a) (b)

(c) (d)

Fig. 4: (a) Time-domain IFFT output samples (one OFDM symbol), (b) transmitted 
signal over carrier frequency fc, and (c) power spectrum of transmitted signal.

(a)

(b)

(c)

fc-fc
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• Observation 1: A homodyne WUR receiver architecture with single-phase LO can lead to 
signal energy loss if the WUR LO frequency is centered on the WUS spectrum and there is 
phase offset between LO and signal. A 90° offset is the worst case.

Fig. 6: Baseband signal power with different LO phase offsets. fLO = fc = 2.6GHz.
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Remedy: Offset LO Frequency

• To overcome homodyne receiver’s susceptibility to phase offset, one solution is to down-convert to a 
low-IF frequency instead. This is done by offsetting the LO frequency a small amount from fc.

• In our simulation, we offset LO 30kHz (one SCS) from fc and use it to down-convert the same RF signal 
shown in Fig. 4(b). The results are shown in Fig. 7.

Fig. 7: (a)(b) Time-domain samples after down-conversion with an in-
phase or quadrature LO, respectively.  (c)(d) FFT spectra of (a)(b).

(a) (b)

(c) (d)
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• Observation 2: Offsetting WUR LO frequency by, for example, one SCS (30kHz) makes the 
WUR with single-phase LO less susceptible to LO phase offset.

Fig. 8: Baseband signal power with different LO phase offsets. LO frequency is 
offset from carrier frequency: fLO = 2.6GHz-30kHz.
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Low-Pass Filter Order
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WUS Assumptions

• Assume OOK-4, M=4

• Manchester encoding on OOK data (data 0 = 01, data 1 = 10)
» Therefore 2 data bits per OFDM symbol

• SCS = 30kHz
» Therefore raw datarate = 56kb/s

Fig. 9: DFT-based OOK-4 waveform generation. 
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Example WUS signal
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LPF Design assuming 28-subcarrier guard bands

• Assume down-conversion with single LO phase
» Phase randomization divides WUS power between I/Q

• WUS = 144 subcarriers, Guard = 24 subcarriers on left 
and 24 subcarriers on right

• LPF is Nth-order Butterworth
» Power of active LPF increases linearly with N

• Observation 3 – for 144 SC WUS with 28 SC Guard 
bands, LPF filter order should be >2
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LPF Design assuming no guard bands

• Remove guard bands around WUS, and measure 
the impact on received signal

• WUS = 144 subcarriers, Guard = 0 subcarriers 
on left and 0 subcarriers on right

• Observation 4 – removing guard bands at least 
doubles the required LPF filter order, doubling 
baseband power consumption
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Impact of In-Band Interference with ED Receivers
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Block Diagram of a Charge Domain ED-First Receiver

• 2.2µW ED-First Receiver [2]

• Assumption: Manchester-encoded OOK data
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Charge-Domain Receiver Schematic
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• Comparison to other work
• Observation 5 – Manchester-

encoding is critical for OOK 
signaling. Better than 
-15dB in-band SIR has been 
demonstrated for Manchester-
encoded OOK signals with an 
ED-first receiver. 
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RF LO Considerations
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Phase Noise

• RF LO phase noise (PN) and power consumption trade off, therefore a 
relaxed PN spec is desirable for ULP receivers

• PN is related to frequency variation by [3]:

» 𝜎! is the standard deviation of frequency variation of the RF LO

» 𝑓" is the center frequency

• Assuming 𝑓" = 2.6𝐺𝐻𝑧, and 3𝜎# = 28 , 30𝑘𝐻𝑧 (28 guard subcarriers on each 
side of WUS, 30kHz SCS)
» 𝐿 1𝑀𝐻𝑧 = −105𝑑𝐵𝑐/𝐻𝑧 (LO in [1] is 170µW with PN of -110dBc/Hz @ 1MHz)

• Observation 6 – Guard bands relax the phase noise (PN) requirement of the LO, 
significantly reducing power. Guard bands of 28 subcarriers on each side of the 
WUS result in a -110dBc/Hz @ 1MHz PN requirement, achievable with a 170µW LO

𝐿 𝑓 =
𝜎#𝑓"$

𝑓%
≈

𝜎!%

𝑓"𝑓%
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CFO

• CFO requirement is impacted by WUS guard bands / WUS bandwidth

• Assuming 2.6GHz channel, and 28 subcarrier guard bands on each side of WUS

• Oscillator PPM requirement = %&'$"()*
%.,-)*

= 323	𝑝𝑝𝑚

• Power of XTAL oscillators is inversely proportional to ppm accuracy and frequency

• Example XTAL oscillators
» 16MHz, +/-14 ppm, 170µW [4]
» 32kHz, +/-100ppm, <100nW [5]

» 32kHz, +/-187ppm, 90nW [6]

• CFO correction requires coherent demodulation and is not amenable to WUR architectures 
with ED in the receive path

• Observation 7 – Guard bands should be included to account for 100ppm XTAL accuracy, 
assuming no CFO correction
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