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Background: WUR architecture with 1/Q vs without I/Q

Figs. 2&3 show the agreed architecture for homodyne receivers with and without I/Q paths,
respectively.
In general, I/Q paths are required in homodyne/ZIF receivers.

» With only one single LO, a LO phase offset with respect to the signal can lead to signal energy
loss during down-conversion. In the worst case scenario (90° offset), the signal can be completely

lost. (Example next page)
Receiver with 1/Q paths consume more power given the additional circuit components.

» LO + LO buffers are usually the most power hungry blocks in an ultra-low power receiver.
As opposed to generating LO 1/Q phases shown in Fig. 2, an alternative approach is signal
quadrature, as proposed in the BLE homodyne WUR from [1]. The LO and LO buffers in [1]

together consume 170uW.
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Fig. 2: Homodyne receiver with 1I/Q paths. Fig. 3: Homodyne receiver without 1/Q paths.
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Introduction

Simulation assumptions
» OOK-4 WUS with 4 bits per OFDM symbol.
» FR1 with carrier frequency f. = 2.6 GHz and SCS = 30kHz.

» 5MHz RF bandwidth:12 RBs (i.e. 144 SCs, 4.32MHz) used for OOK-4 WUS transmission
with 2 RBs (i.e. 24 SCs, 0.72MHz) used for guard bands (either symmetrically or
asymmetrically placed around LP-WUS).

Guard bands (GBs) )

SC-00K: [1,1...1,1,0,0,...,0,0]
\ N —
M/2 M/2

Guard bands (GBs) )

Fig. 1: DFT-based OOK-4 waveform generation.
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Example of Signal Loss in Homodyne Receiver due to LO Phase Offset

* Fig. 4 shows the baseband IFFT output samples after CP insertion, and the transmitted signal

upconverted to f. = 2.6GHz.

» As shown in Fig. 5(c), using an in-phase LO would down-convert the signal to baseband as desired.
Fig. 5(d) shows the worst case scenario, where a LO with 90° offset would lose the signal completely
after low pass filtering. Fig. 6 plots baseband signal energy as a function of LO phase offset.
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Fig. 4: (a) Time-donfain IFFT output samples (one OFDM symbol), (b) transmitted

. signal over carrier frequency f., and (c¢) power spectrum of transmitted signal.
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Fig. 5: (a)(b) Time-domain samples after down-conversion with an in-
phase or quadrature LO, respectively. (c)(d) FFT spectra of (a)(b).



Observation 1: A homodyne WUR receiver architecture with single-phase LO can lead to
signal energy loss if the WUR LO frequency is centered on the WUS spectrum and there is
phase offset between LO and signal. A 90° offset is the worst case.
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Fig. 6: Baseband signal power with different LO phase offsets. f; o = f. = 2.6 GHz.
everactive



Remedy: Offset LO Frequency

« To overcome homodyne receiver’s susceptibility to phase offset, one solution is to down-convert to a
low-IF frequency instead. This is done by offsetting the LO frequency a small amount from f_.

* In our simulation, we offset LO 30kHz (one SCS) from f. and use it to down-convert the same RF signal
shown in Fig. 4(b). The results are shown in Fig. 7.
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Fig. 7: (a)(b) Time-domain samples after down-conversion with an in-

everactive phase or quadrature LO, respectively. (c)(d) FFT spectra of (a)(b).



Observation 2: Offsetting WUR LO frequency by, for example, one SCS (30kHz) makes the

WUR with single-phase LO less susceptible to LO phase offset.
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Low-Pass Filter Order
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WUS Assumptions

Assume OOK-4, M=4
Manchester encoding on OOK data (data 0 = 01, data 1 = 10)
» Therefore 2 data bits per OFDM symbol

SCS = 30kHz
» Therefore raw datarate = 56kb/s

64 QAM, random data (928 SC) ‘
Data=[010 1] Guard band (24 SC) |:>

144 complex

144 samples samples 144 boint
4 bits OOK Data: [0,0...0,1,1...1,0,0...0,1,1...1] @ FIET
36 36

Samp  Samp Samp Samp Guard band (24 SC) :>

el 9n 64 QAM, random data (928 SC)

2048 points,
1 symbol

2048 point :D
IFFT Insertlon

0, is random phase between 0.. 27

Fig. 9: DFT-based OOK-4 waveform generation.
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Example WUS signal

IFFT of only WUS signal

fft Guard=28

14 T T 0.1
|
0.08 |- ‘ i
12 - \‘ ﬁ‘ ﬂ
0.06 \A‘\ ‘\ (e M r H |
Il I \M “ | \ I \"1 f
| |
or “‘I”‘" i 7 0.04 “h “ “‘\ | ‘H\‘H “ H \ ‘h\ “‘ \‘\\\}\\ -
\
O I 11
= G » I @ AT D O DGR ) B ‘ ‘ ‘ ‘ 1] M \ [ “ \ I |
B M it 11 I [ o AT o AN T
g it | g ”M“M \“ﬂ‘ ““/‘"‘/‘ﬂ A AL M“” I R ‘\ \‘ i
2 s 0 | ‘ I THIRL | OMROMMGGG MMM I “ ‘
E | I PRI TN L
S 6 - £ ‘ ‘H‘ \ M ‘ ‘ Wil ‘ \ |V
3 P < W | ‘ I
= ‘ L \ l | m‘lHlHHWH ‘ ‘ I “ 002 M (a ‘ “\ || \“ L ‘U‘ | ‘ | \ ‘ \ i
Hm H Il Humu il DRt 1NN A R AT
4+ ‘ . -0.04 - l Wty ‘ Il ‘ | | ]
HHHH HHHHH [ | (1Nl (IR WY
‘ ol N Y
' -0.06 |- | ! “ -
2L - H
-0.08 ! -
0
-40 -30 -20 -10 0 10 20 30 40 0.1 ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35

Frequency [MHz]
q y [l Time [us]

— .
everactive
< 11



LPF Design assuming 28-subcarrier guard bands

BB LPF or BPF

~H

1-bit or Digital BB
ulti-bit ADC; processing

* Assume down-conversion with single LO phase

» Phase randomization divides WUS power between 1/Q

* WUS = 144 subcarriers, Guard = 24 subcarriers on left
and 24 subcarriers on right

« LPF is Nth-order Butterworth

» Power of active LPF increases linearly with N

- Observation 3 - for 144 SC WUS with 28 SC Guard
bands, LPF filter order should be >2
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LPF Design assuming no guard bands

* Remove guard bands around WUS, and measure
the impact on received signal

« WUS = 144 subcarriers, Guard = 0 subcarriers
on left and 0 subcarriers on right

- Observation 4 - removing guard bands at least
doubles the required LPF filter order, doubling
baseband power consumption

Butterworth Filter order 4
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Impact of In-Band Interference with ED Receivers
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Block Diagram of a Charge Domain ED-First Receiver

2.2u\W ED-First Receiver [2]

Off-Chip : On-Chip WRX : On-Chip SoC

: Charge-Domain :
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Assumption: Manchester-encoded OOK data
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Charge-Domain Receiver Schematic

first two stages of the
parallel rectifier chain
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. This Work
[1] [2] (3] (4]
CO m p a rl S O n to Ot h e r WO r k ISSCC’20 ISSCC’12 VLSI'19 ISSCC’16 F
ast wakeup Secure wakeup
[ ]
Obse rvatl on 5 — M a n C h eSte r'_ RF Frequency 9600MHz 915MHz 2400MHz 2400MHz 915MHz
. . . . Sensitivity (Psen) -65dBm -56dBm -92.4dBm -56.5dBm -70.2dBm -67.5dBm
encoding is critical for OOK actve power(pde) | enw | oo | o | mew | 2nw |z
. . Bit Rate (Rb) 20Hz 10KHz 62.5KHz 8.2KHz 16.4KHz
S| g Nna | N g ) B ette r t h an RSSI Accuracy N/A N/A N/A N/A < +3dB (-67dBm to -43dBm Pin)
- N- -9dB -19dB/5.5dB 32.4dB 2.3dB -16.5dB -15.3dB
1 5 d B In b an d S | R h as b een In-Band SIR @ 3MHz @ +1MHz @ 25MHz @ +500KHz @ +500KHz @ +500KHz
demonstrated for Manchester- OynamicRange | A A v A 76 rode
Temperature Range 0°Cto70°C N/A N/A N/A -40°C to 85°C
enCOded OOK Slgnals Wlth an Integrated PHY Yes No Yes Yes Yes
. . 802154g +
E D -'I:| rst re Ce |Ve r. MAC & Security N/A N/A 802.11ba N/A N/A Crypto
Checksum
FoM* 124dB 108dB 145dB 132dB 138dB 135dB

* FoM (dB) = - Psen + 10log(Rb) — 10log(Pdc/1mW)
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RF LO Considerations
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RF LO phase noise (PN) and power consumption trade off, therefore a
relaxed PN spec is desirable for ULP receivers

PN is related to frequency variation by [3]:

2
o f 03 _ Y

L= ~pm

» of is the standard deviation of frequency variation of the RF LO

» fyis the center frequency

Assuming fy = 2.6GHz, and 30y = 28 - 30kHz (28 guard subcarriers on each
side of WUS, 30kHz SCS)
» L(1IMHz) = —105dBc/Hz (LO in[1]is 170uW with PN of -110dBc/Hz @ 1MHz)

Observation 6 - Guard bands relax the phase noise (PN) requirement of the LO,

significantly reducing power. Guard bands of 28 subcarriers on each side of the
WUS resultin a -110dBc/Hz @ 1TMHz PN requirement, achievable with a 170uW LO
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CFO

CFO requirement is impacted by WUS guard bands / WUS bandwidth

Assuming 2.6GHz channel, and 28 subcarrier guard bands on each side of WUS
28-30kHz
2.6GHz

Power of XTAL oscillators is inversely proportional to ppm accuracy and frequency

Oscillator PPM requirement = = 323 ppm

Example XTAL oscillators
» 16MHz, +/-14 ppm, 170uW [4]
» 32kHz, +/-100ppm, <100nW [5]
» 32kHz, +/-187ppm, 20nW [6]

CFO correction requires coherent demodulation and is not amenable to WUR architectures
with ED in the receive path

Observation 7 - Guard bands should be included to account for 100ppm XTAL accuracy,
assuming no CFO correction
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