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Introduction
A new study item on Artificial Intelligence (AI) / Machine Learning (ML) for NR air interface had been approved in [1]. One of the study objectives includes the analysis of solutions for CSI feedback enhancements:
	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.
Use cases to focus on:
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels
Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project


In this contribution, we present a set of evaluation results for spatial-frequency domain CSI compression using a two-sided AI/ML model sub use case including performance comparison with Enhanced Type II PMI codebook, generalization performance study for different scenarios, layer-common/layer-specific models, different ground truth CSI quantization assumptions for data collection and model performance monitoring, evaluations of separate CSI generation part and CSI reconstruction part training.
Evaluation for spatial-frequency domain CSI compression using two-sided AI/ML model
For evaluation of AI/ML applications spatial-frequency domain CSI compression with two-sided AI/ML model is used and the performance of this AI/ML model is compared with that of Rel-16 Enhanced Type II PMI codebook (eType II) with respect to the Square Generalized Cosine Similarity (SGCS) and UE throughput. The same testing dataset is used to test the performance of the AI/ML model as well as the eType II codebook. 
AI/ML model description
In this paper the AI/ML model implementation is based on the transformer architecture [2]. The AI/ML model uses channels generated from the SLS as input for a pre-processing step which is discussed in more details in the following sections.
Data Pre- and Post-processing
The  channel matrixes Hi for i = {0, 1,.., NF - 1} are generated by using SLS for a set of UEs, where NF is the number of PRBs for a given bandwidth and subcarrier spacing,  is the number of receive antenna ports at the UE and  is the number of transmit antenna ports (CSI-RS ports) at the gNB. Then it is converted to an input matrix  of size  as follows. First, the covariance of the channel Rk over kth sub-band (4 PRBs) is calculated and then, for layer l, the lth strongest eigen-vector is taken via eig(∙) function. 

The size of the complex row-vector  is . The input matrix  of the AI/ML model is constructed by concatenating the real and imaginary values of vector  in the column dimension and  matrixes for k = {0, 1,.., NS - 1} in the row dimension making  of size , where  denotes the number of sub-bands. The output from the AI/ML model is an estimate of the input matrix, , hence, it is an estimate of the eigenvectors of channel covariances Rk for all the sub-bands.
CSI Autoencoder Architecture
The autoencoder (AE) AI/ML model used in this paper is based on a transformer architecture which uses the multi-head attention module from [2]. At the encoder (CSI generation part), the input matrix is passed through a dense embedding layer which expands the column dimension from 2 to . Then, the data is passed through cascaded multi-head attention blocks and finally through a dense layer into a uniform quantizer. At the decoder (CSI reconstruction part), a dequantizer is first used followed by a dense layer and embedding. This is followed by a series of cascaded multi-head attention modules and a dense output layer with no activation. 


[bookmark: _Ref111212112]Figure 1: Transformer-based CSI Autoencoder 

Quantization
A uniform B-Bit quantizer is used in the AE as shown in Figure 2. The quantizer is non-trainable i.e., the gradients of the backpropagation during training are passed through the quantizer without any change. A fully connected (FC) layer preceding the quantizer reduces the total number of inputs for the quantizer to K channels by compressing it by a factor of . The total number of inputs to the FC layer is given by  where  where  are the number of antenna ports in horizontal and vertical planes and is the number of polarizations. The FC layer outputs K coefficients where . The quantizer uniformly quantizes each of the  inputs to produce  feedback bits. 



[bookmark: _Ref111212942]Figure 2: Uniform Quantization in CSI Autoencoder

The dequantizer and FC layer in the decoder reverses the operations of the encoder quantizer and FC layer respectively. In this paper, a noiseless wireless channel is assumed i.e., during training or testing there is no corruption of the feedback bits.
Evaluation results for intermediate KPI 
The AI/ML model is trained on 540,000 samples with 15000 validation samples and tested on 45000 samples. The output of the AI/ML model  is then compared to the original channel eigenvector  to evaluate SGCS. 
In the following sections, the performance of AI/ML CSI for different scenarios are shown for the case of layer 1 and layer 2 transmission for different number of CSI feedback bits. 
Indoor Hotspot (InH)
In Indoor Hotspot scenario, the AI/ML CSI outperforms the eType II CSI for both high and low CSI overhead values as seen in Table 1 and Figure 3. Layer 1 performs significantly better than Layer 2 for the low CSI overhead and is comparable for higher CSI overhead. 
Table 1: AI/ML Performance for Indoor Hotspot
	TX Ports
(NT)
	CSI Bits
(K∙B)
	Cosine Similarity
() : Layer 1
	Cosine Similarity
() : Layer 2

	



32
	48
	0.8336
	0.7190

	
	62
	0.8643
	0.7624

	
	96
	0.9154
	0.8337

	
	128
	0.9402
	0.8800

	
	168
	0.9555
	0.9198

	
	224
	0.9676
	0.9471

	
	278
	0.9977
	0.9594
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Figure 3: SGCS of InH for AI/ML CSI and Rel-16 eType II for layer 1 and layer 2

Dense Urban Micro
For Dense Urban Micro As shown in Table 2 and Figure 4, the AI-ML model outperforms the eType II CSI for both Layer 1 and Layer 2. As seen with InH and Dense Urban Macro scenarios, Layer 1 performs better than Layer 2.  
Table 2: AI/ML Performance for Dense Urban Micro with 80% Indoor and 20% Outdoor UEs
	TX Ports
(NT)
	CSI Bits
(K∙B)
	Cosine Similarity
() : Layer 1
	Cosine Similarity
() : Layer 2

	



32
	48
	0.7044
	0.5080

	
	62
	0.7208
	0.5610

	
	96
	0.7944
	0.6384

	
	128
	0.8603
	0.7273

	
	168
	0.8897
	0.7928

	
	224
	0.9150
	0.8482

	
	278
	0.9320
	0.8600
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Figure 4: SGCS of Dense Urban Macro for AI/ML CSI and Rel-16 eType II for layer 1 and layer 2
Dense Urban Macro
For Dense Urban Macro, the AI-ML transformer model outperforms eType II codebook for low and high CSI overhead and both layers (Layer 1 and Layer 2). With AI-ML model, Layer 1 performs better than Layer 2 with higher SGCS values for same number of CSI bits. 
Table 3: AI/ML Performance for Dense Urban Macro with 80% Indoor and 20% Outdoor UEs
	TX Ports
(NT)
	CSI Bits
(K∙B)
	Cosine Similarity
() : Layer 1
	Cosine Similarity
() : Layer 2

	



32
	48
	0.676
	0.5017

	
	62
	0.7103
	0.529

	
	96
	0.7862
	0.6124

	
	128
	0.8431
	0.7143

	
	168
	0.8786
	0.7438

	
	224
	0.8992
	0.8156

	
	278
	0.9166
	0.8415



[image: A graph of different colored lines

Description automatically generated][image: A graph of different colored lines

Description automatically generated]
  
Figure 5: SGCS of Dense Urban Macro for AI/ML CSI and Rel-16 eType II for layer 1 and layer 2 
Based on the evaluation results presented above for Indoor Hotspot, Dense Urban Micro and Dense Urban Macro deployment scenarios, it can be observed that AI/ML-based CSI compression can outperform Rel-16 eType II PMI codebook for Layer 1 and Layer 2 case in all overhead regimes.
Observation 1: 
· AI/ML-based CSI compression can outperform Rel-16 eType II PMI codebook for Layer 1 and Layer 2 case in all overhead regimes for InH, Dense Urban Micro and Dense Urban Macro scenarios
SLS performance
CSI accuracy is a critical factor for the performance of MU-MIMO system since it has significant impact on the inter-layer interference suppression capability as well as UE pairing and link adaptation for MU-MIMO transmission. Thus, higher accuracy of AI/ML CSI comparing to the eType II PMI codebook observed based on intermediate KPI (SGCS) results should translate to significant system performance gains. 
System level simulations (SLS) allows to assess the system performance for CSI feedback enhancements considering different factors like different UE radio link conditions, realistic traffic, MU-MIMO transmission, UE pairing, scheduling, link adaptation, etc. Also, considering that rank adaptation is used, impact of CSI accuracy for multiple layers will be considered for the performance results in realistic proportion. 
To assess the performance of spatial-frequency domain CSI compression using two-sided AI model, SLS evaluations were done for Dense Urban Macro scenario with FTP1 traffic model. AI/ML models pre-trained separately per layer for each overhead point were used for AI-ML CSI with training dataset aligned with the channel model and deployment scenario used for the SLS evaluations. The detailed evaluation assumptions are captured in the Appendix A of the tdoc.
SLS evaluation results for average UE throughput and cell-edge UE throughput are presented in Figure 6 and Figure 7 respectively for different overhead (corresponding to the maximum PMI payload size) for AI-ML CSI with AI-ML model presented in Section 2.1 of this contribution. Results for different parameter combinations supported for eType II PMI codebook are presented for reference. Performance gain relative to the first parameter combination of eType II PMI codebook is represented above each performance/overhead point.

Figure 6: Average UE throughput for AI/ML CSI and Rel-16 eType II PMI codebook 


Figure 7: Cell-edge UE throughput for AI/ML CSI and Rel-16 eType II PMI codebook 

As it can be observed from the above evaluation results, AI/ML CSI provides significant performance gains comparing to the eType II PMI codebook. Depending on the overhead, 5% - 13% gain in average UE throughput and 9% - 17% gain in cell-edge UE throughput is observed for AI/ML CSI comparing to the eType II PMI codebook configuration with similar overhead. Also, up to ~100 bits overhead reduction can be achieved using the AI-ML CSI with the same performance as for eType II PMI codebook. 
Observation 2:
· Up to 13% gain for average UE throughput and up to 17% gain for cell-edge UE throughput can be achieved for AI-ML CSI comparing to eType II PMI codebook
· Up to ~100 bits overhead reduction can be achieved using the AI-ML CSI with the same performance as for eType II PMI codebook
Impact of AI/ML Model Complexity
Performance of the AI/ML-based CSI compression depends on many factors including complexity of encoder and decoder models. For AI/ML models with transformer architecture (Figure 1) there are several parameters determining the complexity of the model including embedding dimension size, number of layers (blocks with multi-head attention and feed-forward network), size of inner dimension of feed-forward network. 
To see the impact of the model complexity on the CSI compression performance, SGCS results were obtained for transformer-based autoencoder with different model complexity measured in MFLOPs. For the simulations it is assumed that encoder (CSI generation part) and decoder (CSI reconstruction part) have the same model structure and complexity.
Evaluation results (SGCS) for UMa deployment scenario with 32 transmit antennas at the BS, 10 MHz bandwidth with 15 kHz subcarrier spacing are presented in Figure 8 for Layer 1 (L1) and Layer 2 (L2). SGCS values for eType II CSI with the same CSI overhead (~104 bits per layer) are presented at the graph as lines for reference. Complexity of a single part (encoder or decoder) corresponds to the X-axis. Complexity of pre-processing step is not included in the FLOPs calculation.

Figure 8. SGCS for different encoder/decoder model complexity
As it can be observed from the above evaluation results, the impact of AI/ML model complexity on the CSI accuracy is significant, especially for the models with lower complexity < 50 MFLOPs for encoder/decoder. SGCS of eType II PMI codebook exceeds the SGCS of lower-complexity models, while the complexity of PMI search is comparable, or even lower than the complexity of pre-processing step for AI/ML-based CSI compression. 
Observation 3: 
· Complexity of encoder and decoder AI/ML models has significant impact on the CSI compression performance
· Depending on the model complexity, SGCS of AI/ML-based CSI compression may be lower or higher than SGCS of eType II PMI codebook
Generalization performance  
The performance of an AI-ML model depends not only on the model implementation (e.g. pre-/post-processing, model structure, complexity) but also on the datasets used for training and testing (inference) of the model. Some level of performance degradation is expected if there is a mismatch in the statistical properties between the datasets used for training and inference. The ability to apply a single model for different channel statistics (e.g. different deployment scenarios) can be measured by generalisation performance. At the last RAN1 meeting it was agreed to consider the following 3 cases for generalisation performance evaluation. 
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B,Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
The 3 cases for AI/ML model generalization performance were evaluated for UMa (Dense Urban Macro) and UMi (Dense Urban Micro) scenarios with the autoencoder AI/ML model described in Section 2.1. For the evaluation the AI/ML model was trained on 3 datasets: UMa, UMi and UMa+UMi. Mixed dataset (UMa+UMi) has equal distribution of channel matrixes from different deployment scenarios (50% of the dataset corresponds to UMa and 50% of the dataset corresponds to UMi).
SGCS values for different CSI overhead (62 bits, 128 bits and 278 bits) are presented in figure 9 for inference on UMa dataset for Layer 1 and figure 10 for inference on UMa dataset for Layer 2. 

Figure 9: SGCS values for the AI/ML model trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMa channel matrixes for Layer 1


Figure 10: SGCS values for the AI/ML model trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMa channel matrixes for Layer 2

The SGCS results for different CSI overhead (62 bits, 128 bits and 278 bits) are presented in figure 11 for inference on UMi dataset for Layer 1 and figure 12 for inference on UMi dataset for Layer 2. 

Figure 11: SGCS values for the AI/ML model trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMi channel matrixes for Layer 1


Figure 12: SGCS values for the AI/ML model trained on different datasets with UMa/UMi channel matrixes and tested on dataset with UMi channel matrixes for Layer 2
As it can be seen from the above evaluation results, there is a very small performance loss for autoencoder with misaligned datasets for training and inference (Case 2) comparing to autoencoder with aligned datasets (Case 1). If dataset with both UMa and UMi channels (UMa+UMi) is used for training (Case 3) then performance loss to Case 1 is negligible.
Observation 4: 
· For model generalization performance for different scenarios, if dataset with both UMa and UMi channels (UMa+UMi) is used for training (Case 3) then performance loss is negligible compared to training and testing on aligned dataset (Case 1)
Layer-common and layer-specific models
At a previous RAN1 meeting it was agreed to evaluate different cases of model training for multi-layer and multi-rank models including layer specific and layer common cases as described below. 
· Layer specific: A separate AI/ML model is trained per layer and applied for the corresponding layer to perform individual inference
· Layer common: A unified AI/ML model is trained and applied for each and every layer to perform individual inference
The SGCS results for different CSI overhead values (48 bits, 62 bits, 96bits,128 bits, 168 bits, 224 bits and 278 bits) are presented in figure 13 for training and inference on UMa dataset for layer common and layer specific models. Since models applied on layers are not changed across different ranks, the AI-ML models are considered as rank-common.  
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Figure 13: SGCS values for the autoencoder trained on UMa dataset for Layer common and Layer specific models
Based on the above figure, the SGCS performance is very close for layer specific and layer common models for layer 1/2.  
Observation 5: 
· SGCS performance is comparable for layer common model and layer specific models for inference on both layer 1 and layer 2
Separate Training (Training Collaboration Type 3)
Joint training of the two-sided model allows to perfectly match CSI generation part and CSI reconstruction part by adjusting model weights for both model parts during the training procedure. However, joint training at a server does not always allow to optimize UE and gNB implementation for CSI generation and CSI reconstruction models respectively and complicates deployment of vendor-specific models. 
In order to enable deployment of optimized implementation of the models at the UE side and at the gNB side for different UE and gNB vendors separate training of CSI generation part and CSI reconstruction part can be used. The following RAN1 conclusions describe training procedure for separate training (training collaboration type 3). 
	Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies
Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with UE side training (UE-first training):
· Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
· Step2: After UE side training is finished, UE side shares NW side with a set of information (e.g., dataset) that is used by the NW side to be able to train the CSI reconstruction part
· Step3: NW side trains the NW side CSI reconstruction part based on the received set of information
· Other Type 3 UE-first training approaches are not precluded and reported by companies


To test the performance of separate training, SGCS evaluations were done with training procedures described above considering training of multiple different CSI reconstruction models for one CSI generation model and vice-versa. For NW-first training, dataset labels which are used by the UE side to be able to train the CSI generation part corresponds to outputs of the CSI generation part before quantization trained jointly at step 1. For UE-first training, dataset inputs which are used by the NW side to be able to train the CSI reconstruction part corresponds to outputs of the CSI generation part after quantization/dequantization trained jointly at step 1.
Transformer-based AI/ML models were assumed for both encoder and decoder with the following complexity: 
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· CSI generation part 1 (UE#1): ~125 MFLOPs,
· CSI generation part 2 (UE#2): ~15 MFLOPs,
· CSI reconstruction part 1 (NW#1): ~125 MFLOPs,
· CSI reconstruction part 2 (NW#2): ~55 MFLOPs.

The evaluation results for layer 1 and layer 2 with CSI overhead {58, 104, 234} bits and different assumptions on training are presented in the Appendix B. Average values of gain comparing to joint training for different cases of separate training are presented in Table 4 for different combinations of CSI reconstruction part and CSI generation part models. For aligned training it is assumed that the same CSI generation/reconstruction part is used for step 1 of the separate training process and for the separate training at step 3 (e.g., NW#1-UE#1). For non-aligned training CSI generation part (for NW-first) or CSI reconstruction part (for UE-first) used at step 1 is different comparing to step 3.
Table 4 Average values of gain comparing to joint training for different cases of separate training
	 
	Aligned Training
	Non-Aligned Training

	
	NW-first
	UE-first
	NW-first
	UE-first

	UE#1 - NW#1
	-0.6%
	-0.2%
	-0.7%
	-0.9%

	UE#1 - NW#2
	-1.8%
	-0.6%
	-0.7%
	0.6%

	UE#2 - NW#1
	-1.6%
	-0.2%
	-2.1%
	-1.0%

	UE#2 - NW#2
	-1.2%
	0.1%
	-1.5%
	0.7%


As it can be seen based on evaluation results, slightly larger loss is observed for NW-first training comparing to UE-first training. Average SGCS difference for separate training can achieve -2% while in most of the cases it is in between of 0% and -1%.
Observation 6: 
· Average SGCS loss for separate training comparing to joint training can achieve 2% while in most of the cases it is in between of 0% and 1%
Ground truth CSI quantization for data collection
Ground truth CSI quantization corresponds to the CSI feedback with higher accuracy. This feature can be used for data collection (for model training) and model performance monitoring at the network side. At least two options are considered for ground truth CSI quantization.
· Option 1: Scalar quantization with X bits per scalar value (e.g. floating point or fixed point formats)
· Option 2: eType II-like PMI codebook with new parameter values and quantization
In order to evaluate the impact of ground truth CSI quantization for data collection, AI-ML models were trained with dataset quantized by using option 1 and option 2 presented above. The following cases were considered.
· Float32 floating point value representation (baseline), 26624 bits
· Fixed-point scalar quantization with 8 bits per scalar value, 6656 bits
· eType II PMI with L = 16, pv = 1, beta = 1, 4 bits amplitude and phase, 3329 bits
· eType II PMI with L = 16, pv = 1/2, beta = 1, 4 bits amplitude and phase, 1803 bits
· eType II PMI with L = 16, pv = 1/2, beta = 1/2, 4 bits amplitude and phase, 1131 bits
· eType II PMI with L = 8, pv = 1/2, beta = 1/2, 4 bits amplitude and phase, 588 bits
SGCS results for AI-ML-based CSI feedback with 128 bits CSI report labelled as CSI compression loss are presented below for AI-ML models trained with different quantization of training dataset. SGCS values corresponding to the accuracy of dataset quantization (accuracy of ground truth CSI quantization) are also presented in the figure below. 


Figure 14: SGCS values for different ground truth quantization options
As it can be seen from the above results, smaller SGCS values for CSI compression are correlated with the SGCS loss due to dataset quantization (ground truth CSI quantization) for the model training. Based on the presented results it can be observed that 8 times reduction of the number of bits required for ground truth channel reporting for data collection can be done without performance loss (comparing to Float32 quantization). 


Observation 7:
· At least 8 times reduction for the number of bits required for ground truth CSI quantization for data collection comparing to Float32 scalar quantization format can be done without performance loss

Model performance monitoring
At the RAN1#112b-e meeting methodology for KPI-based model performance monitoring efficiency evaluations was agreed.
	Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, the model monitoring methodology is considered as:
· Step1: Generate test dataset including K test samples
· FFS how to obtain the K test samples
· Step2: For each of K test samples, a bias factor of monitored intermediate KPI () is calculated as a function of , where  is the actual intermediate KPI, and  is the genie-aided intermediate KPI.
· Step3: Calculate the statistical result of the  over K test samples which represents the monitoring accuracy performance.
· Note:  is introduced for the evaluation and comparison purpose; it may not be available in the real network.
· Note: the complexity, overhead and latency of the monitoring scheme are reported by companies. FFS how to evaluate latency.

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression, for Step2 of the model monitoring methodology, the per sample  is considered for
· Case 1: NW side monitoring of intermediate KPI, where the monitoring accuracy is evaluated for a given ground-truth CSI format (e.g., quantized ground-truth CSI with 8 bits scalar, R16 eType II-like method, etc.) or SRS measurements, where
·  is calculated with the output CSI at the NW side and the given ground-truth CSI format or SRS measurements.
·  is calculated with output CSI (as for ) and the ground-truth CSI of Float32.
· Note: if Float32 is used for , the monitoring accuracy is 100% if  and  are based on the same CSI sample. 
· Case 2: UE side monitoring of intermediate KPI with a proxy model, where the monitoring accuracy is evaluated for the output of the proxy model at UE:
· Case 2-1: the proxy model is a proxy CSI reconstruction part, and  is calculated based on the inference output of the proxy CSI reconstruction part at UE and the ground-truth CSI.
· Note: if the proxy CSI reconstruction model is the same as the actual CSI reconstruction model at the NW, the monitoring accuracy is 100%
· Case 2-2: the proxy model directly outputs intermediate KPI ()
·  is calculated with the output CSI at the NW side and the same ground-truth CSI.
· FFS how to train the proxy model and the resulting monitoring performance, to be reported by companies.
· FFS whether/how to evaluate the generalization performance of the proxy model.
· Case 3: others are not precluded

Agreement
To evaluate the performance of the intermediate KPI based monitoring mechanism for CSI compression,  is in forms of
· Option 1: Gap between  and , i.e. ; 
· Monitoring accuracy is the percentage of the samples for which , where  is a threshold of the intermediate KPI gap.
· Option 2: Binary state where  and  have different relationships to their threshold(s), i.e., , where  can be same or different from 
· Monitoring accuracy is the percentage of the samples for which .
· FFS other metrics: Misdetection, False alarm, etc.
· FFS the values of , , .
· FFS whether/how to evaluate the monitoring metrics for Rank>1



For the methodology described in the above agreements, the evaluation of model performance monitoring is based on actual KPI (KPIActual) and genie aided KPI (KPIGenie). Calculation of KPIActual and KPIGenie is described in one of the above agreements. Model performance monitoring based on CSI feedback is schematically represented in the below figure. The same output CSI can be used for the actual KPI, and the genie aided KPI. Also, it is clarified in the agreement that if Float32 is used for KPIActual, the monitoring accuracy is 100% if KPIActual and KPIGenie are based on the same CSI sample. 


Figure 15: Actual KPI and genie aided KPI calculation for model performance monitoring based on CSI report
If model performance monitoring is based on SRS measurements at the network side, evaluation of its efficiency should be based on different output CSI for KPIActual and KPIGenie. As it is schematically represented in the below figure, output CSI 2 used for genie aided KPI is based on CSI-RS while output CSI 1 used for actual KPI is based on SRS. 


Figure 16: Actual KPI and genie aided KPI calculation for model performance monitoring based on SRS
SRS-based model performance monitoring requires generation of both DL and UL channels (please see Figure 16). For FDD systems, DL and UL channel generation shall consider not only the difference in SINR values but also other aspects due to lack of full UL/DL channel reciprocity. Evaluations with DL and UL channels for FDD were done for Rel-17 Further Enhanced Type II PMI codebook design, the same methodology for the channel generation can be reused for AI-ML CSI evaluations for SRS-based model performance monitoring. Thus, for SRS-based model performance monitoring, methodology for UL/DL channel generation in FDD systems can be based on Section 5.3 of TR 36.897 with XPR independently generated for DL and UL.
Monitoring accuracy results were obtained for UMa scenario with AI/ML-based CSI feedback (104 bits). The evaluation results for Option 1 and Option 2 evaluation methodologies are presented in Table 5 and Table 6 respectively, different threshold values (th_1, th_2 = th_3) were considered.  NW side monitoring of intermediate KPI (Case 1) was considered with different methods of actual KPI calculation including SRS-based actual KPI and actual KPI based on eType II or eType II-like PMI codebooks.
Table 5 Model performance monitoring accuracy for Option 1
	 
	Layer 1
	Layer 2

	th_1
	0.02
	0.05
	0.1
	0.02
	0.05
	0.1

	SRS
	24.9%
	47.5%
	70.7%
	19.2%
	37.8%
	61.7%

	eType II PC6 (270 bits)
	38.8%
	66.8%
	89.3%
	23.6%
	44.6%
	72.7%

	eType II PC8 (318 bits)
	43.1%
	70.4%
	91.0%
	26.1%
	47.5%
	73.2%

	eType II-like (588 bits) 
	62.7%
	91.5%
	99.3%
	42.9%
	75.3%
	95.6%

	eType II-like (3329 bits)
	73.8%
	99.2%
	99.9%
	76.1%
	97.7%
	99.7%


Model performance monitoring accuracy with evaluation methodology Option 1 represents different points on the CDF of the KPIGap corresponding to actual KPI and genie KPI difference. So, if the monitoring accuracy is close to 100% the SRS or ground truth CSI quantization method can be reliably used for any KPI-based model performance monitoring algorithm/procedure. For Option 1, model performance monitoring accuracy >85% for both layer 1 and layer 2 can not be achieved for SRS and eType II PC6/PC8. 
Observation 8:
· For model performance monitoring evaluation methodology Option 1, model performance monitoring accuracy >85% can not be achieved for SRS and eType II PC6/PC8 for both layer 1 and layer 2
Table 6 Model performance monitoring accuracy for Option 2
	 
	Layer 1
	Layer 2

	th_2 = th_3
	0.7
	0.8
	0.9
	0.7
	0.8
	0.9

	SRS
	21.0%
	22.8%
	14.6%
	16.7%
	10.9%
	4.8%

	eType II PC6 (270 bits)
	11.8%
	12.5%
	7.6%
	12.3%
	6.7%
	2.4%

	eType II PC8 (318 bits)
	11.8%
	11.1%
	5.4%
	11.2%
	4.5%
	1.7%

	eType II-like (588 bits) 
	5.4%
	4.8%
	3.4%
	4.2%
	2.3%
	1.2%

	eType II-like (3329 bits)
	3.7%
	3.9%
	3.5%
	2.3%
	1.6%
	0.8%


For model performance monitoring accuracy evaluation methodology Option 2, the monitoring accuracy value represents rate of errors for model (re)selection or fallback assuming that model (re)selection and fallback is done based on fixed SGCS threshold.  For Option 2, model performance monitoring accuracy <15% for both layer 1 and layer 2 can not be always achieved for SRS and can be achieved for eType II PC6/PC8. 
Observation 9: 
· For model performance monitoring evaluation methodology Option 2, model performance monitoring accuracy <15% can not be always achieved for SRS and can be achieved for eType II PC6/PC8
There will be some delay between the decision for model (re)selection according to the model performance monitoring procedure and the actual operation of the selected model according to this decision. It is expected that this delay is significantly larger comparing to the CSI reporting periodicity. At the same time there is some channel variation due to Doppler effect, hence, both actual KPI and genie KPI are changing in time. Considering the above, model performance monitoring based on one channel sample in time may be not accurate and not robust. In order to test the robustness of model performance monitoring against channel variations, evaluation methodologies Option 1 and 2 were used with Float32 ground truth CSI quantization, where actual KPI corresponds to the time instance t1, and genie KPI corresponds to the time instance t1 + 100ms. 
 Table 7 Model performance monitoring accuracy for Float32 ground truth CSI quantization, where KPIActual and KPIGenie are measured in different time instances with 100 ms gap
	 
	Option 1
	Option 2

	Threshold
	0.02
	0.05
	0.1
	0.7
	0.8
	0.9

	Layer 1
	31.2%
	55.1%
	78.5%
	16.9%
	17.1%
	11.3%

	Layer 2
	22.0%
	42.5%
	68.7%
	13.4%
	8.6%
	3.7%


As it can be seen in the above evaluation results for Option 1, KPI measured in different time instances with 100 ms gap is significantly different. Average KPIGap is equal to 0.0625 and 0.0800 for layer 1 and layer 2 respectively. According to the results for Option 2, there is a significant chance that decision for model (re)selection and fallback will change in the next 100 ms. Considering the above results, model performance monitoring based on one channel sample is not robust against channel variations. In order to increase the robustness of model performance monitoring such solutions as time-filtering of the KPI can be applied. 
Observation 10: 
· Model performance monitoring based on one channel sample is not robust against channel variations
Conclusion
In this contribution, we provided our views on the aspects of EVM related to AI/ML-based CSI enhancement. In summary, we have following observations:
Observation 1: 
· AI/ML-based CSI compression can outperform Rel-16 eType II PMI codebook for Layer 1 and Layer 2 case in all overhead regimes for InH, Dense Urban Micro and Dense Urban Macro scenarios
Observation 2:
· Up to 13% gain for average UE throughput and up to 17% gain for cell-edge UE throughput can be achieved for AI-ML CSI comparing to eType II PMI codebook
· Up to ~100 bits overhead reduction can be achieved using the AI-ML CSI with the same performance as for eType II PMI codebook
Observation 3: 
· Complexity of encoder and decoder AI/ML models has significant impact on the CSI compression performance
· Depending on the model complexity, SGCS of AI/ML-based CSI compression may be lower or higher than SGCS of eType II PMI codebook
Observation 4: 
· For model generalization performance for different scenarios, if dataset with both UMa and UMi channels (UMa+UMi) is used for training (Case 3) then performance loss is negligible compared to training and testing on aligned dataset (Case 1)
Observation 5: 
· SGCS performance is comparable for layer common model and layer specific models for inference on both layer 1 and layer 2
Observation 6: 
· Average SGCS loss for separate training comparing to joint training can achieve 2% while in most of the cases it is in between of 0% and 1%
Observation 7:
· At least 8 times reduction for the number of bits required for ground truth CSI quantization for data collection comparing to Float32 scalar quantization format can be done without performance loss
Observation 8:
· For model performance monitoring evaluation methodology Option 1, model performance monitoring accuracy >85% can not be achieved for SRS and eType II PC6/PC8 for both layer 1 and layer 2 
Observation 9: 
· For model performance monitoring evaluation methodology Option 2, model performance monitoring accuracy <15% can not be always achieved for SRS and can be achieved for eType II PC6/PC8 
Observation 10: 
· Model performance monitoring based on one channel sample is not robust against channel variations
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Appendix A
System level simulation evaluation assumptions for Dense Urban Macro and Indoor Hotspot scenarios can be found in the tables below (used for dataset generation for training and intermediate metrics calculation as well). 
Table 4 System level simulation assumptions for Dense Urban Macro, Dense Urban Micro and Indoor Hotspot
	Parameter
	Value

	Frequency Range
	4GHz

	Inter-BS distance
	200m for Dense Urban Macro/Micro
20m, for Indoor Hotspot

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	For Dense Urban Macro/Micro:
32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ
For Indoor Hotspot:
32 ports: (8,8,2,1,1,4,4), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2 Rx: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ 

	BS Tx power
	44dBm for Dense Urban Macro/Micro
23dBm for Indoor Hotspot

	BS antenna height
	25m for Dense Urban Macro
10m for Dense Urban Micro
3m for Indoor Hotspot

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Bandwidth
	20 MHz (52 PRB)

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	30kHz

	CSI feedback
	CSI periodicity is 5 ms, CSI delay is 4 slots,
CSI subband size is 4 PRBs

	Traffic model
	FTP1 with 0.5 Mb packet size, ~70% resource utilization

	UE distribution for Dense Urban Micro/Macro
	80% indoor (3km/h), 20% outdoor (30km/h)


Appendix B
Table 5 SGCS for UE#1-NW#1 with different assumptions for model training 
	UE#1 - NW#1
	Joint
training
	NW-first training 
with UE#X - NW#1
	UE-first training 
with UE#1 - NW#Y

	
	
	X = 1
	X = 2
	Y = 1
	Y = 2

	Layer 1
	 58  bits
	0.676
	0.673 (-0.5%)
	0.692 (2.3%)
	0.673 (-0.4%)
	0.667 (-1.3%)

	
	104 bits
	0.768
	0.765 (-0.4%)
	0.757 (-1.4%)
	0.768 (0.1%)
	0.76 (-1.1%)

	
	234 bits
	0.872
	0.864 (-0.8%)
	0.857 (-1.7%)
	0.871 (-0.1%)
	0.861 (-1.2%)

	Layer 2
	 58  bits
	0.511
	0.51 (-0.3%)
	0.515 (0.9%)
	0.508 (-0.5%)
	0.514 (0.6%)

	
	104 bits
	0.596
	0.593 (-0.5%)
	0.594 (-0.3%)
	0.596 (0%)
	0.59 (-1%)

	
	234 bits
	0.765
	0.755 (-1.3%)
	0.734 (-4%)
	0.764 (-0.1%)
	0.754 (-1.5%)


Table 6 SGCS for UE#1-NW#2 with different assumptions for model training 
	UE#1 - NW#2
	Joint training
	NW-first training 
with UE#X - NW#1
	UE-first training 
with UE#1 - NW#Y

	
	
	X = 1
	X = 2
	Y = 1
	Y = 2

	Layer 1
	58  bits
	0.663
	0.658 (-0.8%)
	0.662 (-0.3%)
	0.669 (0.9%)
	0.663 (0%)

	
	104 bits
	0.750
	0.755 (0.7%)
	0.763 (1.8%)
	0.761 (1.4%)
	0.766 (2.1%)

	
	234 bits
	0.855
	0.835 (-2.4%)
	0.843 (-1.5%)
	0.861 (0.7%)
	0.843 (-1.4%)

	Layer 2
	58  bits
	0.512
	0.494 (-3.6%)
	0.498 (-2.8%)
	0.506 (-1.3%)
	0.499 (-2.7%)

	
	104 bits
	0.582
	0.583 (0.3%)
	0.594 (2.1%)
	0.59 (1.4%)
	0.596 (2.5%)

	
	234 bits
	0.746
	0.707 (-5.2%)
	0.718 (-3.8%)
	0.752 (0.7%)
	0.717 (-3.9%)


Table 7 SGCS for UE#2-NW#1 with different assumptions for model training 
	UE#2 - NW#1
	Joint training
	NW-first training 
with UE#X - NW#1
	UE-first training 
with UE#1 - NW#Y

	
	
	X = 1
	X = 2
	Y = 1
	Y = 2

	Layer 1
	 58  bits
	0.694
	0.667 (-3.9%)
	0.685 (-1.4%)
	0.693 (-0.2%)
	0.667 (-4%)

	
	104 bits
	0.760
	0.757 (-0.4%)
	0.749 (-1.5%)
	0.758 (-0.3%)
	0.773 (1.7%)

	
	234 bits
	0.859
	0.844 (-1.8%)
	0.851 (-1%)
	0.858 (-0.1%)
	0.855 (-0.5%)

	Layer 2
	 58  bits
	0.519
	0.503 (-3%)
	0.507 (-2.2%)
	0.518 (-0.1%)
	0.501 (-3.5%)

	
	104 bits
	0.597
	0.585 (-2%)
	0.584 (-2.3%)
	0.594 (-0.5%)
	0.603 (1%)

	
	234 bits
	0.736
	0.725 (-1.6%)
	0.725 (-1.5%)
	0.735 (-0.2%)
	0.731 (-0.7%)


Table 8 SGCS for UE#2-NW#2 with different assumptions for model training 
	UE#2 - NW#2
	Joint training
	NW-first training 
with UE#X - NW#1
	UE-first training 
with UE#1 - NW#Y

	
	
	X = 1
	X = 2
	Y = 1
	Y = 2

	Layer 1
	 58  bits
	0.663
	0.656 (-1%)
	0.658 (-0.7%)
	0.688 (3.9%)
	0.663 (0.1%)

	
	104 bits
	0.764
	0.742 (-3%)
	0.755 (-1.2%)
	0.75 (-1.9%)
	0.766 (0.2%)

	
	234 bits
	0.843
	0.831 (-1.4%)
	0.835 (-1%)
	0.845 (0.2%)
	0.843 (0%)

	Layer 2
	 58  bits
	0.498
	0.504 (1.1%)
	0.494 (-0.8%)
	0.514 (3.1%)
	0.499 (0.1%)

	
	104 bits
	0.595
	0.574 (-3.6%)
	0.583 (-2%)
	0.587 (-1.4%)
	0.596 (0.1%)

	
	234 bits
	0.718
	0.711 (-0.9%)
	0.707 (-1.5%)
	0.719 (0.2%)
	0.717 (-0.1%)



Average UE throughput
AI-ML CSI	[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
96	124	192	256	336	448	556	53.3639863017872	56.066613461041001	62.194784096011198	67.930095103269295	70.431110474491405	73.592623965423499	75.151399886693895	5%	10%	22%	33%	38%	44%	47%	eType II, L=2	[CELLRANGE]
[CELLRANGE]
113	169	51.025154733942699	54.632195935967701	0%	7%	eType II, L=4	[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
207	319	431	539	58.755610302244897	63.908198653481897	65.112471244344107	67.815649196483207	15%	25%	28%	33%	eType II, L=6	[CELLRANGE]
[CELLRANGE]
467	635	67.128779907224299	69.422479111457207	32%	36%	Overhead (bits)

Throughput (Mb/s)


Cell-edge UE throughput

AI-ML CSI	[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]

96	124	192	256	336	448	556	12.324857456098901	13.357396747	0674	15.8716876614972	18.138337958677099	19.003993902435699	20.2005289598074	21.503308080805901	7%	16%	38%	57%	65%	75%	86%	eType II, L=2	[CELLRANGE]
[CELLRANGE]

113	169	11.541761517577701	12.819284070908401	0%	11%	eType II, L=4	[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]

207	319	431	539	14.599469290396501	16.737139839456098	17.3150300300283	18.646927615721498	26%	45%	50%	62%	eType II, L=6	[CELLRANGE]
[CELLRANGE]

467	635	17.8956569155729	19.1392603979825	55%	66%	Overhead (bits)


Throughput (Mb/s)




UMa, 10 MHz BW, 104 bits

AI/ML L1	0.99299199999999999	1.2068160000000001	1.6344639999999999	1.682304	2.1099519999999998	2.9652479999999999	3.0609280000000001	3.1720000000000002	3.9162240000000001	4.0256319999999999	5.6268159999999998	5.7328960000000002	5.8231679999999999	7.5304320000000002	10.94496	11.125503999999999	11.363872000000001	14.540032	14.775072	21.369088000000001	21.597472	21.772608000000002	28.595008	42.239807999999996	42.59008	56.234879999999997	83.524479999999997	279.16678400000001	0.65250700712203902	0.66489458084106401	0.67906183004379195	0.67315888404846103	0.68499445915222101	0.69216394424438399	0.68503350019454901	0.67943012714385898	0.69743859767913796	0.69073027372360196	0.70157533884048395	0.70137292146682695	0.70520824193954401	0.71499496698379505	0.72363007068634	0.74061530828475897	0.72668284177780096	0.75006836652755704	0.73557883501052801	0.75177252292633001	0.74116086959838801	0.74457997083663896	0.76289361715316695	0.77198612689971902	0.76071482896804798	0.77617412805557195	0.78432464599609297	0.78096240758895796	AI/ML L2	0.99299199999999999	1.2068160000000001	1.6344639999999999	1.682304	2.1099519999999998	2.9652479999999999	3.0609280000000001	3.1720000000000002	3.9162240000000001	4.0256319999999999	5.6268159999999998	5.7328960000000002	5.8231679999999999	7.5304320000000002	10.94496	11.125503999999999	11.363872000000001	14.540032	14.775072	21.369088000000001	21.597472	21.772608000000002	28.595008	42.239807999999996	42.59008	56.234879999999997	83.524479999999997	279.16678400000001	0.42443603277206399	0.44982856512069702	0.48731523752212502	0.478228420019149	0.48326504230499201	0.51012414693832397	0.51265406608581499	0.506000757217407	0.51525002717971802	0.51388055086135798	0.51660692691802901	0.54782629013061501	0.53754860162734897	0.548830807209014	0.55677890777587802	0.55063873529434204	0.541232109069824	0.55514854192733698	0.55277395248412997	0.56547880172729403	0.56890791654586703	0.60391068458557096	0.57287186000000001	0.58316946029662997	0.57280206680000001	0.62300038337707497	0.59953606128692605	0.63781023025512695	eTypeII L1	0	300	0.72779744863510099	0.72779744863510099	eType II L2	0	300	0.58406317234039296	0.58406317234039296	MFLOPs


SGCS




Inference: UMa (Layer 1)

Train: UMa	
62 bits	128 bits	278 bits	0.71030000000000004	0.84309999999999996	0.91659999999999997	Train: UMa+UMi	
62 bits	128 bits	278 bits	0.72570000000000001	0.84419999999999	995	0.9173	Train: UMi	
62 bits	128 bits	278 bits	0.68330000000000002	0.82969999999999999	0.91279999999999994	
 SGCS







Inference: UMa (Layer 2)

Train: UMa	
62 bits	128 bits	278 bits	0.52900000000000003	0.71430000000000005	0.84150000000000003	Train: UMa+UMi	
62 bits	128 bits	278 bits	0.50529999999999997	0.66669999999999996	0.82340000000000002	Train: UMi	
62 bits	128 bits	278 bits	0.50480000000000003	0.69730000000000003	0.81520000000000004	
SGCS







Inference: UMi (Layer 1)

Train: UMi	
62 bits	128 bits	278 bits	0.7208	0.86029999999999995	0.93200000000000005	Train: UMa+UMi	
62 bits	128 bits	278 bits	0.73609999999999998	0.85289999999999999	0.93010000000000004	Train: UMa	
62 bits	128 bits	278 bits	0.70269999999999999	0.83899999999999997	0.92100000000000004	
 SGCS




Inference: UMi (Layer 2)

Train: UMi	
62 bits	128 bits	278 bits	0.56100000000000005	0.72729999999999995	0.86	Train: UMa+UMi	
62 bits	128 bits	278 bits	0.52990000000000004	0.68069999999999997	0.85829999999999995	Train: UMi	
62 bits	128 bits	278 bits	0.51529999999999998	0.70120000000000005	0.84770000000000001	
 SGCS




Ground Truth CSI quantization

Training Dataset Quant. loss 	
26624	6656	3329	180	3	1131	588	1	0.99980000000000002	0.97219999999999995	0.94040000000000001	0.93610000000000004	0.91239999999999999	CSI compress. loss	
26624	6656	3329	1803	1131	588	0.84309999999999996	0.84089999999999998	0.81030000000000002	0.79779999999999995	0.80030000000000001	0.77959999999999996	# of bits for Ground-Truth CSI Quantization


SGCS
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