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1	Introduction
This contribution concludes the study item on specification impact and other aspects of AI based CSI compression and CSI prediction.

2 Conclusion of the Study Item on CSI use cases from RAN1 perspective
2.1 CSI compression
Spatial-frequency domain CSI compression has been studied in Rel-18 AI PHY SI as one representative two-sided AI/ML model used case. Below we summarize our view of the status of the study outcome for this use case:
Potential performance benefits
There has been considerable work to produce evaluation results for CSI compression. However, as discussed in detail in our evaluation paper [2] for agenda item 9.2.2.1, the baseline performance of intermediate KPI for CSI-compression use case was not well calibrated among companies. Hence, some caution should be taken when comparing reported performance benefits across different companies.
The reported gains have been observed in two different dimensions:
· CSI reporting overhead reduction
· CSI report accuracy enhancement
Some companies have reported large gains (e.g., 50%) in terms of CSI report overhead reduction (compared to legacy scheme for the same system level performance). At a first glance, this appear as an enormous benefit to NR, however, when further investigating the overall system level benefit of such large overhead reduction gains, there is no net benefit since the legacy CSI reporting framework is not coverage limited. Hence, it is still unclear how much system level benefit the AI/ML based CSI compression use case can bring.
Although the focus of the feature is CSI compression (i.e., overhead reduction), there is also a potential to improvement of the accuracy of the CSI report, which could improve the MU-MIMO precoding performance by e.g. reduction of interference to co-scheduled UEs. However, as shown in our evaluation paper [2], the user perceived throughput gain varies a lot among the results provided by different companies. For example, small sized (less than 1M FLOPs) and medium sized (around 20M FLOPs) encoder or decoder models, the user perceived mean throughput gain and cell-edge throughput gain have been reported to lie in the range of 5%-13 % and 12%-37%, respectively. 
Model training
The pros and cons of three AI/ML model training collaboration types were studied for two-sided CSI-compression use case and summarized into tables. 
Moreover, different methods were discussed to mitigate vendor-specific offline interoperation and customization issues during model training. For example, training data set sharing via standardized API for Type 2 sequential training [6], or training data set sharing over the air interface for training Type 3 [7]. 
The only conclusion made in the SI for two-sided CSI-compression model training is to deprioritize gradient-exchange based sequential training over the air interfaces for Type 2 Simultaneous training. The preferred way forward for training the two-sided CSI-compression model has not been concluded, and the potential standard impact was not well studied.
Model monitoring
Different performance monitoring metrics were discussed, including intermediate KPIs (e.g., SGCS), eventual KPIs (e.g., throughput, BLER), legacy CSI reporting, and input/output data distribution. The evaluation on model monitoring performance for two-sided CSI compression use case focused on intermediate KPI based monitoring, considering different model monitoring methods.
For intermediate KPI based model monitoring methods at the NW-side using ground-truth target CSI report from UE, the results in [2],[3],[5] show that legacy eType-II CSI format cannot provide good enough monitoring accuracy, however, high-resolution target CSI formats (e.g., enhanced eType-II with new parameter values) can enable NW-sided monitoring with high accuracy. 
For intermediate KPI based model monitoring methods at the UE-sided using a proxy model, there is lack of study on the aspects of the feasibility of developing such a proxy model, the generalization performance of the proxy model, as well as the additional complexity and signalling overhead introduced by proxy model LCM.
Data collection
For CSI compression using two-sided model use case, the necessity/feasibility/potential specification impact for data collection to enable model training/inference/monitoring was studied in RAN1. For UE side data collection, the agreed study scope includes CSI-RS configuration enhancements, assistance information for categorizing the data for specific configuration/scenarios/site, signalling for triggering data collection. For NW-side data collection, the agreed study scope includes enhancement of CSI-RS/SRS measurement, CSI reporting, ground-truth CSI content (data sample type, data sample format, assistance information), latency requirement for data collection, and signalling for triggering data collection. 
Regarding ground-truth CSI for NW-sided data collection for model training and model monitoring, several companies [2][3] proposed new CSI formats based on enhanced eType-II with new parameter values and showed the performance gains in terms of SCGS when using new CSI format for model training and model monitoring of two-sided CSI compression model. Regarding assistance information for data collection for model training/monitoring, the SI has not concluded what information/data needs to be collected for two-sided CSI-compression use case.
The data collection for training and monitoring of two-sided CSI compression model will to a large extent be discussed in detail in RAN2. The task of RAN1 is to identify the latency requirements, the periodicity/frequency of the updates and the volume of data that needs to be transferred for model training/monitoring although RAN1 has not yet been able to discuss these within the SI due to lack of time. 
Since RAN2 needs such information, an LS was sent from RAN2 to RAN1 for collecting the data collection requirements and assumptions for use cases considered in the SI. Hence, it is expected that the data collection aspects for two-sided CSI-compression model use case will be continue studied in RAN2.
Model inference and CSI reporting
For CSI compression using two-sided model use case, the main spec impact is to introduce a new CSI reporting format to support the AI-CSI report generated based on the output of the UE encoder (CSI generation model at the UE-side), and it has been agreed that such design would start from a reporting principle with CSI Part 1 and Part 2. The issue of quantization of encoder output and whether it needs to be standardized has been discussed but the study didn’t reach any conclusion. In addition, whether part of the pre-processing needs to be standardized or not has been discussed without any conclusion and it was concluded that codebook subset restriction may be possible to use, at least when Target CSI is in the form of an eType-II codebook. How to report rank and the definition of CQI was briefly discussed but no conclusion of a single preferred solution.

Functionality/model ID based LCM
Different from one-sided AI/ML model use cases, where functionality-based LCM will likely be sufficient to support the one-sided AI/ML model LCM, it is still unclear in RAN1 how model LCM can work without an ID based solution for the CSI-compression use case using a two-sided model. This is mainly because two-sided AI/ML model operations require mechanisms to pair a UE-part model with a compatible NW-part model. 
For CSI-compression use case, different options were discussed for defining the information that enables the UE to select a CSI generation model(s) compatible with the CSI reconstruction model(s) used by the gNB. Examples of model pairing options include indicate the information through UE-part model ID, NW-part model ID, paired model ID, dataset ID during type 3 offline training, a reference to a prior training session, and blind decoding of UE-part models at NW-side, etc. However, so far, no conclusion has been made on the way forward for the model paring aspect for the CSI compression use case.

RAN4/5 testing
How to test two-sided CSI-compression model has recently started to be discussed in RAN4. Currently, it is not clear if two-sided AI/ML models are testable from RAN4 perspective.
[bookmark: _Toc142675952]At the end of the RAN1 part of the study item, it is observed that the feasibility, specification impact and performance gains for the two-sided CSI compression use case are not well understood in RAN1.

2.2 CSI prediction
It is well known that aging CSI is a real problem in today’s networks when massive MIMO is deployed, and MU-MIMO scheduling is used. It led to the introduction of Rel.18 MIMO enhancements for CSI. The SI investigates how much additional gain can be achieved by using AI/ML to address this problem. 
In this SI, AI/ML based CSI prediction has been evaluated with observed performance gains compared to Benchmark#1 (the nearest historical CSI) and Benchmark#2 (non-AI/ML based CSI prediction approach). 
Compared to Benchmark#1, AI-based CSI shows up to 49% gain for FTP traffic in terms of mean UPT when the UE speed is 30km/h or 60km/h, and shows up to 20% gain for FTP traffic at cell edge when the UE speed is 30km/h or 60km/h [10]. 
Compared to Benchmark#2, AI-based CSI prediction shows up to 7% gain for FTP traffic in terms of mean UPT, and shows up to 16% gain for FTP traffic at cell edge [10]. 
Based on these results and our investigations into the specification impact parts which reveal that these parts are reasonably well understood and doesn’t have the eco-system challenges as the two-sided models have, we conclude that AI-based CSI prediction can be one viable candidate for a Rel-19 WI.
The potential enhancements include CSI-RS configuration to support data collection for performance monitoring of aperiodic CSI prediction, and associated performance metric and the fallback mechanism to legacy operations.
2.3 Views on Rel-19 SI/WI on CSI use cases
The exact scope of Rel-19 normative work, if any, should be based on the SI’s conclusions in the TR. We are supportive of normative work for selected Rel-18 (sub) use cases that demonstrate sufficient performance versus complexity gains and for which the study is completed.
We believe that the primary purpose of the AI/ML for NR air interface work in 5G advanced is to pave the way for AI/ML features in 6G. Therefore, 3GPP does not need to rush into Rel-19 normative work for features that currently are poorly understood in terms of specification impacts and/or performance gains. 
Moreover, we believe that higher “performance gain vs complexity” thresholds are needed for normative work on (sub) use cases requiring significant departures from current practices. We believe that it is in 3GPP’s best interest to continue the study of Rel-18 sub use cases for which the specification impact and/or potential performance gains are not well understood and agreed. 
In our view, these parts of the CSI use case in the SI have potential to be ready for a Rel-19 WI under the assumption that RAN4 study has completed a study of the testing methodology for single sided models. 
· CSI prediction based on UE-sided AI/ML model. 

On the other hand, these components most likely will not have progressed sufficiently during the Rel-18 SI and need to be continued to be studied in a Rel-19 SI due to either lack of proper RAN4 study and/or lack of RAN1 study. 
· CSI compression based on two-sided AI/ML models.

Hence, we observe the following:
[bookmark: _Toc142675953]For the CSI use case, CSI compression needs more studies and is not mature for a Rel.19 WI. The CSI prediction is a candidate for Rel.19 WI. 
In addition, we believe that it is useful to evaluate more use cases to better understand potential performance gains, protocol aspects, implications for interoperability and testability, and 3GPP evaluation methodologies and requirements. Here the further exploration of two-sided models needs to be pursued, especially in RAN4. Therefore, we are supportive of a new Rel-19 SI that further explores the potential of AI/ML for PHY and in particular CSI-related use case.
3 CSI Compression	
[bookmark: _Toc126745668][bookmark: _Toc126745669]3.1 On the table summarizing the training collaboration types
In the previous meeting, the tables that summarize the training collaboration types were split into two tables, one for Type 1 and another for Types 2 and 3. We start with discussing the table for collaboration Type 1, and then discuss the table for collaboration Types 2 and 3.
3.1.1 Collaboration types 1 
Based on input in previous meetings and offline discussions, the feature lead suggested the following structure [9] although there was no time to discuss and agree.
			  Training types



Characteristics
	NW side Type 1
	
	UE side Type 1

	
	Unknown model structure at UE
	Known model structure at UE
	[bookmark: _Hlk137565567]Unknown model structure at UE followed by retraining at UE side
	Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively
	Unknown model structure at NW
	Known model structure at NW



[bookmark: _Hlk142030798]Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively: UE side report its CSI generation model structure to the training entity (UE/NW/neutral site), NW side report its CSI reconstruction model structure to the training entity (UE/NW/neutral site). The training entity is responsible to train the end-to-end model, and delivery the respective part to the UE side and NW side using 3GPP transparent method.

Unknown model structure at UE followed by retraining at UE side: For example, after deploying model 1 on the UE side, a new UE model can be obtained by using model 1 as the teacher model and using knowledge distillation method. Model 1 can also refer to a nominal model while the real deployed model can be developed based on the nominal model.



We believe that the “Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively” is a subcase of training collaboration Type 2 (simultaneous), with some explicit assumptions, where all except the first seem to already be assumed by most companies for Type 2 (simultaneous) training. The assumptions are:
· Only one UE- and NW-vendor per training. (different). While simultaneous Type 2 does not specify it, it seems generally assumed that multiple vendors are involved given the answers to, e.g., single/unified model and gNB/UE and matching UE data distribution.
· Training is at a neutral site. (same). Simultaneous Type 2 does not specify this, although it could be assumed since none of the part-taking vendors may be more suitable for hosting the training than the other.
· 3GPP transparent model delivery (same). Simultaneous Type 2 does not specify this, but it seems generally assumed given the positive answer to “Whether gNB/device specific optimization is allowed”.
It is also unclear to us how the responsibility can be divided. For example, what hyper parameters and aspects of the training are allowed to be tuned by the neutral site? What of learning rate, optimizer related parameters (epochs, gradient momentum terms, etc.), regularization techniques, data augmentation, loss function, model-to-configuration/-functionality mapping, etc., can the neutral site change in training? Who decides what is an acceptable result, how much effort should be spent to trying to achieve it, and if that is not achieved whom of the UE/NW vendor needs to change? We do not believe the table will capture these complications, nor that this is a viable method in general, and thus it seems unnecessary to add to the table. Hence, we propose the following.
[bookmark: _Hlk137566865][bookmark: _Toc142675923]Do not capture the column “Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively” in the table that summarize training collaboration Types 1.
As there was no time in the previous meeting to discuss and agree on a baseline table, we do not mark anything as changed in the below table. Moreover, although we do not believe some of the newly proposed training collaboration types should be captured in the table, we acknowledge that some companies do. Hence, we do present our view on them, albeit we think those columns (crossed out) should not be included in the final table.
[bookmark: _Toc142675924]Accept the below table that summarize the training collaboration Types 1. Crossed-out elements should not be captured in the TR.
		  Training types




Characteristics
	NW side Type 1
	
	UE side Type 1

	
	Unknown model structure at UE
	Known model structure at UE
	Unknown model structure at UE followed by retraining at UE side
	Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively
	Unknown model structure at NW
	Known model structure at NW

	Whether model can be kept proprietary 
	No
	No
	No.
	Yes
	No
	No

	Whether require privacy-sensitive dataset sharing
	No (Note 1)
	No (Note 1)
	No (Note 1)
	No (Note 1)
	No (Note 1)
	No (Note 1)

	Flexibility to support cell/site/scenario/configuration specific model
	Yes
	Yes
	Unclear
(Note 4)
(Note 9)
	No
(Note 4)
(Note 9)
	Limited, requiring assisted information signaling
(Note 9)
	Limited, requiring assisted information signaling
(Note 9)

	Whether gNB/device specific optimization is allowed
	No
	Yes
(Note 2)
	Yes
	Yes
	No
	Yes
(Note 2)

	Model update flexibility after deployment (Note 3)
	Flexible
	Flexible
	Not flexible
	Not flexible
	Flexible
	Flexible

	Feasibility of allowing UE side and NW side to develop/update models separately
	NW side yes
UE side no
	NW side yes
UE side no
	NW side limited
UE side limited
(Note 7)
	Infeasible
	NW side no
UE side yes
	NW side no
UE side yes

	Whether gNB can maintain/store a single/unified model over different UE vendors for a CSI report configuration
	Yes
	No
(Note 2)
	Yes
	No
	No
	No

	Whether UE device can maintain/store a single/unified model over different NW vendors for a CSI report configuration
	No
	No
	No
(Note 5)
	No
	Yes
	No
(Note 2)

	Extendibility: to train new UE-side model compatible with NW-side model in use; 
	No
	No
	Limited
(Note 7)
	Limited
(Note 7)
	Limited
(Note 7)
	Limited
(Note 7)

	Extendibility: To train new NW-side model compatible with UE-side model in use
	Partial
(Note 7)
(Note 8)
	Partial
(Note 7) (Note 8)
	Limited
(Note 7) (Note 8)
	Limited
(Note 7) (Note 8)
	No
	No

	Whether training data distribution can match the inference device
	To the extent needed
(Note 6)
	To the extent needed
(Note 6)
	To the extent needed
(Note 6)
(Note 7)
(Note 10)
	To the extent needed
(Note 6)
	Yes
	Yes

	Software/hardware compatibility (Whether device capability can be considered for model development)
	No
	Yes
	Unclear, depends on NW side
	Yes
	Yes
	Yes

	Model performance based on evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1



Note 1: Assume precoding matrix is not privacy sensitive data. FFS: other information such as channel matrix and assisted information. 
Note 2: We make the interpretation that the known model structure allows for gNB/Device specific optimization, and hence it should be different per gNB/Device. Thus, it is questionable whether Type 1 training with a known structure at the UE/gNB can achieve a global unified model at the gNB/UE, given the many different models needed to support. The training vendor can mimic sequential Type 2, internally, with an externally-given-and-fixed model structure (to allow engineering isolation), hence it is unclear if performance can be guaranteed.
Note 3: Flexibility after deployment is evaluated by the amount of offline cross-vendor co-engineering effort. Flexible indicates minimum additional co-engineering between vendors, semi-flexible indicates additional co-engineering effort between vendors.
Note 4: The NW has the possibility to collect data and organize training for it. However, coordination with training/re-training unit and where the data for that stage comes from is unclear.
Note 5: Additional assistance signaling may be needed. Once the NW side has done training, a model defines a mapping between latent space codeword and CSI, i.e., implicitly defining a codebook. To achieve a single/unified model, the re-training needs to consider such multiple models that may represent multiple codebooks. The re-trained model would require assistance information to ensure that a it compresses/decompresses according to the correct codebook. If possible, the complexity increase for maintaining a single unified model compared to a model handling a single vendor is not known.
Note 6: The need for matching the inference device in training can be limited, when the training data consists of a mix of datasets from different device types.
Note 7: The vendor can try to train a model that mimics the behavior of its current model. For example, after deploying model 1, a new model can be obtained by using model 1 as the teacher model and using knowledge distillation method. Model 1 can also refer to a nominal model while the real deployed model can be developed based on the nominal model. However, the effect on the whole two-sided model cannot be directly assessed and thus not guaranteed.
Note 8: With a model monitoring scheme directly measuring the end-to-end performance of a two-sided model, the issues in Note 7 can be circumvented.
Note 9: It has been shown in this SI, e.g., [R1-2303475, R1-2302477, R1-2302358], that gNB properties such as, e.g., antenna layout and virtualization may affect the performance of the models. Since these properties can be proprietary and subject to change the UE does not know them. Hence, the UE can neither guarantee that datasets are appropriately mixed at training, nor decide what specialized model is suitable for a cell/site/scenario.
Note 10: It is unclear what data the re-training should use. It could in principle use device-specific data, but the impact on the overall end-to-end performance and generalization properties are unclear, possibly needing further study.

3.1.2 Collaboration types 2 and 3
In RAN1#113 the following agreement was made.
	Agreement
· Type 2 Joint training of the two-sided model at network side and UE side, respectively.
· Note: Joint training includes both simultaneous training and sequential training, in which the pros and cons could be discussed separately
· Note: Sequential training includes starting with UE side training, or starting with NW side training


By adding the note on sequential training, to the agreement of “Type 2 joint training”, what we have argued for before, and called “Type 4 training”, e.g., in [6] and [8], was explicitly included and given an explicit name, “Type 2 Sequential”, which separates it from “Type 2 Simultaneous”. In general, we think this is good, as Type 2 Sequential has many advantages and as a solution for the industry it is vastly different from Type 2 Simultaneous, as can be seen from the table below.
However, we do not see why the note includes that the sequential training can start with the UE side. Clearly, UE first Type 2 Sequential may in all aspects be equivalent to UE first Type 3 training; there are no gradients passing through the encoder when training the decoder, only decoder input and target CSI is needed. For a practical implementation not to be identical to UE first Type 3 (sending a dataset with latent space variables and targets), the UE side encoder would have to have a specified input so that the UE/Chipset-vendor can open an API to the NW-vendor and allow the latter to do its training. Yet, the latter description is, as we pointed out earlier, from a training point of view, more or less identical type UE first Type 3. However, the implementation comes with the extra condition that the UE encoder needs a specified input, something that UE/Chipset vendors have already stated they are not willing to accept.
[bookmark: _Toc142675954]Type 2 Sequential training naturally starts with the NW vendor, as starting with the UE vendor is equivalent to UE first Type 3 training.
Moreover, there is a risk that Type 2 Sequential may still not be accurately captured in the TR. From RAN1#110-bis the following conclusion was made for Type 2 training.
	Conclusion 
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), following procedure is considered as an example:
· For each FP/BP loop,
· Step 1: UE side generates the FP results (i.e., CSI feedback) based on the data sample(s), and sends the FP results to NW side
· Step 2: NW side reconstructs the CSI based on FP results, trains the CSI reconstruction part, and generates the BP information (e.g., gradients), which are then sent to UE side
· Step 3: UE side trains the CSI generation part based on the BP information from NW side
· Note: the dataset between UE side and NW side is aligned.
· Other Type 2 training approaches are not precluded and reported by companies



Clearly, the conclusion is only applicable to Type 2 Simultaneous, and not to Type 2 Sequential. The lack of clear and applicable definitions will only increase the confusion, especially as time passes and other RAN groups gets involved.
[bookmark: _Toc142675925]In the TR, capture the following as an example of training collaboration type 2 sequential, with a frozen decoder and gradient transfer using API, according to the following description.
	For the evaluation of an example of Type 2 Sequential training NW first (frozen decoder and gradient transfer using API), the following procedure is considered as an example:
· Step1: NW side trains the NW side (nominal) CSI generation part and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, the NW side opens an API, accepting input consisting of, e.g., a tuple (Target CSI, CSI Configuration, CSI Report), and returns, e.g., an indication of training convergence and gradients of the CSI reconstruction part and a loss function value indicating the discrepancy of the Decoder output and Target CSI with respect to the latent space variables (the Encoder Output part of the CSI report). The API is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on using the API. For each FP/BP loop the UE-side training entity:
· Acquires data with corresponding side-information, e.g., configuration, from which is derives a tuple consisting of, e.g., (Target CSI, CSI Configuration, pre-processing information, Encoder Input)
· Passes the Encoder Input to the Encoder, and generates the Encoder Output
· Uses the Encoder Output, pre-processing information, and CSI Configuration to generate a CSI report according to the standard, e.g., segmentation of information into Part 1 and Part 2.
· The UE sided passes the tuple (Target CSI, CSI Configuration, CSI Report) to the API and uses the returned gradients and convergence indication to update its CSI generation part.
· Note: Target CSI needs to be standardized. Details are FFS, discussions are ongoing.
· Note: The CSI Configuration is needed in the API to allow the NW side entity behind the API to understand the segmentation of the CSI Report. This should be according to the standard. Details are FFS.
· Note: The training should cover relevant configurations and scenarios for which the UE should function.
· Note: If the UE trains a single (unified) AI/ML model or multiple AI/ML models with switching depending on, e.g., configuration, is transparent to the NW. The UE trains an encoder logical model.
· Note: The API will be for a high-level representation of the NW side CSI reconstruction, specifically it is not compiled for, and thus not run on, gNB hardware.




In the previous meeting, the table below for Type 2 and Type 3 training was discussed and the overall structure was agreed [9]. We suggest the following changes and addition of notes (in red).
[bookmark: _Toc142675926]Modify the discussed table that summarize the training collaboration Types 2 and 3 as below.
		  Training types

Characteristics
	Type 2
	Type 3

	
	Simultaneous
	Sequential NW first
(Note 0)
	NW first
	UE first

	Whether model can be kept proprietary 
	Yes
	Yes
	Yes
	Yes

	Whether require privacy-sensitive dataset sharing
	No (Note 1)
	No (Note1)
	No (Note 1)
	No (Note 1)

	Flexibility to support cell/site/scenario/configuration specific model
	More difficult than type 3
	Yes
	Semi-flexible
	Limited, requiring assisted information signaling
(Note 9)

	[bookmark: _Hlk137565109]Whether gNB/device specific optimization is allowed
	Yes
	Yes
	Yes
	Yes

	Model update flexibility after deployment (Note 3)
	Not flexible
	Flexible
	Semi-flexible
	Not flexible

	Feasibility of allowing UE side and NW side to develop/update models separately
	Infeasible
	Feasible
	Feasible
	Feasible

	Whether gNB can maintain/store a single/unified model over different UE vendors for a CSI report configuration
	Pending evaluation in 9.2.2.1
	Yes
(Note 4)
	Yes
(Note 4)
	Pending evaluation in 9.2.2.1
(Note 5)

	Whether UE device can maintain/store a single/unified model over different NW vendors for a CSI report configuration
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
(Note 5)
	Yes, per camped cell. 
Generalization over multiple NW pending 9.2.2.1
(Note 5)
	Yes
(Note 4)

	Extendibility: to train new UE-side model compatible with NW-side model in use; 
	Limited
(Note 7)
	Support
	Support
	Limited
(Note 7)

	Extendibility: To train new NW-side model compatible with UE-side model in use
	Limited
(Note 7) (Note 8)
	Support
(Note 7) (Note 8)
	Support
(Note 7) (Note 8)
	Support

	Whether training data distribution can match the inference device
	Restricted
	Yes
	To the extend needed.
(Note 6)
	Yes

	Software/hardware compatibility (Whether device capability can be considered for model development)
	Compatible 
	Compatible
	Compatible
	Compatible

	Model performance based on evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1
	Pending evaluation in 9.2.2.1



Note 0: As noted above, Type 2 Sequential training assumes NW-first training, since Type 2 Sequential UE-first training would either be identical to Type 3 UE-first or require the UE-side encoder to have a specified input.
Note 1: Assume precoding matrix is not privacy sensitive data. FFS: other information such as channel matrix and assisted information. 
Note 2: Assume information on model structure disclosed in training collaboration does not reveal proprietary information 
Note 3: Flexibility after deployment is evaluated by the amount of offline cross-vendor co-engineering effort. Flexible indicates minimum additional co-engineering between vendors, semi-flexible indicates additional co-engineering effort between vendors.
Note 4: Under the assumption that the vendor training first has engineering freedom to design its own model, the condition follows naturally. To understand the effects of long-term evolution of the AI/ML model in the eco-system, further studies are needed.
Note 5: Additional assistance signaling may be needed. Once the first side has done training, a model defines a mapping between latent space codeword and CSI, i.e., implicitly defining a codebook. If multiple vendors are part in the first-side training, those multiple models may represent multiple codebooks. For the second side to train a unified model, it would require assistance information to ensure that a unified model compresses/decompresses according to the correct codebook. The complexity increase for maintaining a single unified model compared to a model handling a single vendor is not known.
Note 6: The need for matching the inference device in training can be limited, when the training data consists of a mix of datasets from different device types.
Note 7: The vendor can try to train a model that mimics the behavior of its current model. For example, after deploying model 1, a new model can be obtained by using model 1 as the teacher model and using knowledge distillation method. Model 1 can also refer to a nominal model while the real deployed model can be developed based on the nominal model. However, the effect on the whole two-sided model cannot be directly assessed and thus not guaranteed.
Note 8: With a model monitoring scheme directly measuring the end-to-end performance of a two-sided model, the issues in Note 7 can be circumvented.
[bookmark: _Toc142470259]Note 9: It has been shown in this SI, e.g., [R1-2303475, R1-2302477, R1-2302358], that gNB properties such as, e.g., antenna layout and virtualization may affect the performance of the models. Since these properties can be proprietary and subject to change the UE does not know them. Hence, the UE can neither guarantee that datasets are appropriately mixed at training, nor decide what specialized model is suitable for a cell/site/scenario. 
3.2 Definition of ground truth for CSI compression
3.2.1 General aspects of Target CSI
The current NR specification is written such that it ensures a common understanding of the PMI between the UE and gNB. Specifically, while the PMI determination algorithm and the input to said algorithm is left for implementation, the result of that algorithm is, in the end, a well-defined PMI that is mutually understood by the UE and gNB. 
Hence, for the current specification, it is impossible to determine whether it is a Target CSI (i.e. target PMI) at the UE that is determined or the output of a gNB decoder that is specified. These two quantities are the same in the NR specification for Type I and Type II. However, we argue that viewing it as a specification of Target CSI allows us to resolve a lot of open questions pertaining to two-sided AI/ML models. Specifically, one main difference to the current NR specification stemming from black-box two-sided AI/ML models is that UE and gNB does no longer have a common point of understanding of the PMI. The Autoencoder structure introduces a compression loss, so that the PMI that the UE “wants to send” is not the same as the PMI the gNB decodes. The compression loss is visible in the simulation results from all companies, where the eigenvectors are used as input to their AE but the SGCS<1. The lack of common understanding causes multiple problems:
· If the feature is not working, then it is not possible to understand if it is the PMI determination that is not working, or if it is a problem with the alignment between the encoder and decoder. This separation in testability need not exist in legacy since there is no pairing problem.
· CQI does not get a well-defined meaning. In the current specification there are clear and specific rules for what CQI means, and as a result CQI has a more uniform behavior over UE/Chipset vendors and UE models. Moreover, CQI implementation cannot be tested separately, and will be intertwined with the rest of the complexity.
· Codebook subset restriction (CBSR) is difficult to apply since there is no common understanding of the PMI. This also relates to testing, since it will be difficult to separate a poor PMI determination algorithm from a poor encoder-decoder pairing, in terms of CBSR.
The introduction of a specified Target CSI at the UE serves as a logical split between the by-the-UE-wanted PMI and the by-the-gNB-decoded CSI. The split fixes the above-mentioned issues.
· PMI determination algorithm can be verified independently, at a first stage, leaving the paring problem as an independent subproblem to solve. With a specified Target CSI at the UE, it is possible to resort to classical ways of testing. Moreover, while it holds for testing it could in fact also be used for model pairing at inference (as we mention below).
· CQI can be conditioned on Target CSI, or on a Hypothetical CSI which is derived from Target CSI, in a standardized fashion (see more below).
· CBSR can be configured by the NW, with respect to the Target CSI. Implementation is up to UE, but it can be independently tested.
We emphasize that this does not limit the implementation freedom, and that independent testing does not mean independent implementation. We also stress that the Encoder Input is up to UE implementation. It could be the target CSI, that is what we believe companies are using for their evaluations in this SI. However, as long as the UE can guarantee the correspondence between the Encoder Input and the Target CSI, the implementation is valid. An overall picture of the proposed architecture is found in Figure . In the figure, square boxes are depicting algorithms and ovals are depicting computed quantities. In the figure, red is used for proprietary algorithms and quantities, green is for specified quantities, and yellow for quantities which require a trained model to understand. Note that this is a logical example, and that chains of red boxes and ovals can be merged into a single implementation, thus illustrating the existing implementation freedom in this suggestion.
Last, the introduction of Target CSI allows for different modes of model monitoring (see details below).

[image: ]
[bookmark: _Ref138255903]Figure : Square boxes are algorithms and ovals are computed/determined quantities. Red means proprietary, yellow means requiring trained models to understand, green means specified.

[bookmark: _Toc142675955]Defining a Target CSI on the UE is in line with how the classical standard is defined. Moreover, a defined Target CSI facilitates testing and pairing, gives a meaning to CQI, and allows CBSR to be defined, all without impairing the implementation freedom. A Target CSI also allows model monitoring.
3.2.2 Suggested formats for Target CSI
As described in our companion paper [2] the is great potential to modify the eType-II format with new parameters to enhance the quality of the eigenvector approximation at a reasonable overhead. We summarize some of the findings below.
For channel representation we see that extended formats are superior and come at a reasonable UL overhead for data collection.
Table 1: Quality of eigenvector approximation for different eType-II formats.
	Algorithm
	Representation (bits/layer)
	SGCS

	
	
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel-16 eType-II ParComb 8
	328
	0.880
	0.810
	0.581
	0.471

	Rel-16 eType-II ParComb 6
	279
	0.872
	0.790
	0.537
	0.401

	eType II with new parameters ,
, .
	750
	0.922
	0.896
	0.821
	0.743

	eType II with new parameters ,
, , ref-amplitude 6 bits, differential amplitude 4 bits, phase 6 bits.
	1 014
	0.937
	0.917
	0.852
	0.774



[bookmark: _Toc142675956]Existing eType II formats are inferior at representing the optimal precoders of the channel, compared to new extended formats. The discrepancy is worse for higher layers.
For model monitoring, we see that legacy formats may  within  in 70%-80% of the cases, for MIMO layer 1. Note that this is in some cases more than the entire SGCS gain. In other words, using monitoring with a legacy format may, in 20% of the cases, not be able to detect if the AI/ML model is performing worse than legacy methods. The situation is even more severe for higher layers. However, there are extended formats that are sufficiently accurate and come at a reasonable UL overhead for data collection.
Table 2: Accuracy of model monitoring for different eType-II formats.
	Target CSI format
	Threshold 0.1

	
	Layer 1
	Layer 2
	Layer 3
	Layer 4

	Rel-16 eType-II ParComb 8, high-res 3/4
	0.798
	0.667
	0.583
	0.554

	Rel-16 eType-II ParComb 6
	0.684
	0.411
	0.141
	0.112

	eType II with new parameters ,
, .
	0.995
	0.985
	0.930
	0.903

	eType II with new parameters ,
, , ref-amplitude 6 bits, differential amplitude 4 bits, phase 6 bits.
	0.999
	0.996
	0.973
	0.950



[bookmark: _Toc142675957]Existing eType II formats cannot be trusted for model monitoring. Extended formats can be trusted for model monitoring and come with an acceptable payload size.

For model training our study shows that, while legacy formats could possibly be used for model training (as noted in our companion paper [2], there is some idealizations in the training method with an initial training). However, using an enhanced eType-II format can give better results, close to what is achieved using an ideal Float32 format for training.
Table 3 : Effects of target CSI formats when used for model training.
	Ground truth format for training target
	SGCS Layer 1

	Ideal Float 32
	0.762 (4.8%)

	Rel-16 eType-II ParComb 8
	0.755 (3.8%)

	Rel-16 eType-II ParComb 6
	0.754 (3.7%)

	eType II with new parameters ,
, . As suggested in [10], and evaluated above.
	0.759 (4.4%)

	eType II with new parameters , , , ref-amplitude 6 bits, differential amplitude 4 bits, phase 6 bits. As suggested in [11].
	0.760 (4.5%)



[bookmark: _Toc142675958]Data collected in a modified eType-II format with new parameters can achieve training result close to the ideal. However, using legacy eType-II format for training data collection can come at a noticeable performance degradation.

[bookmark: _Toc142675927]In the TR, capture at least one of the following modified eType-II formats as a suggested standardized format for target CSI.
a. [bookmark: _Toc142675928][bookmark: _Hlk142033866]New parameters , , , 4 bits for reference amplitude, 3 bits for differential amplitude, and 4 bits for phase quantization.
b. [bookmark: _Toc142675929]New parameters , , , 6 bits for reference amplitude, 4 bits for differential amplitude, and 6 bits for phase quantization.
3.3 Inference related spec impact
3.3.1 Quantization
The necessity of the quantization alignment
In two-sided CSI compression, the encoder on the UE side will transmit the encoder output to the decoder on the NW side. Specifically, the decoder side will receive S = KQ bits of information from the UE, where K is the output size (i.e., the number of nodes in the output layer) of the encoder and Q is the number of quantization bits (if scalar quantization is used) per node. During the inference, this quantization is important to minimize the number of bits used in the CSI report (and thus, save the UL resources).
Although the total number of bits S exchanged between the encoder and the decoder is known and specified as it impacts the UCI, but the total number of bits S may come from different combinations of the number of encoder outputs and the number of quantization bits (i.e., as different vendors may have their own preferences). 
Hence, knowing only the total number of exchanged bits S over the air interface may not be sufficient to derive the number of encoder output K and the number of quantization bits Q. In Type-2 and Type-3 training, in particular, the encoder part and the decoder part may have different architectures since the encoder and the decoder originated from different vendors. Therefore, it is possible that the encoder has K1 encoder outputs with Q1 quantization bits while the decoder assumes K2 encoder outputs with Q2 quantization bits and S = K1Q1 = K2Q2.
Without the alignment of K and Q, a vendor must train considering the input/output as a string of non-structured bits. While this in theory could yield encoders and decoders of decent performance, it may be a difficult training task since it effectively imposes a 2KQ-sized classification problem in the middle of the AE. In some sense, this classification problem reflects the complexity of the task but may not be a fruitful formulation for training. In particular, the gradients may not behave nicely, and it may effectively make it impossible to use some of the common techniques for quantization-aware training. In addition, although the value of K and Q is already aligned between the encoder and the decoder, there is still also room for different interpretations of the UCI bitstream, e.g., when the encoder and the decoder implement different codebooks or different distributions on the quantization points.
Considering the above, we believe that the encoder side and the decoder side need to align on how the quantization bits are used (either or both during training and inference). Mechanisms to align the quantization, therefore, are needed for two-sided CSI compression.
[bookmark: _Toc142675959]Quantization alignment between the encoder and the decoder is needed in two-sided CSI compression.

In achieving the quantization alignment
The simplest and most straightforward approach to achieving the quantization alignment is by having the quantization (K or Q) to be standardized. Having the quantization be standardized, the NW and the UE will train based on this standardized quantization and thus, it will be easier to achieve the quantization alignment.
Another approach to having the quantization alignment is by sharing the quantization methods used by the encoder and/or by the decoder. In Type-1 training, the quantization alignment can be achieved by sharing the quantization method e.g., during the model transfer. In Type-2 or Type-3 training the quantization method can be shared, e.g., during the initial information exchanges between the UE and the NW. In Type-3 training, the entity that first conducts the training may determine the quantization method that should be applied by the AE.
[bookmark: _Toc142675960]Quantization alignment can be obtained via standardized quantization or via information exchanges, e.g., during the training phase.
Having a non-standardized quantization may give an extra degree of freedom to the autoencoder design and may potentially give a performance gain compared to the standardized quantization (e.g., as it opens the possibility to use learnable quantization). It should be noted, however, this may result in many quantization granularities, uniformity, codebooks, etc., that should be handled by the AE. Therefore, the benefit of the performance using the learnable (non-standardized) quantization should clearly outweigh the potential complexity that may occur due to non-standardized quantization. For example, [1] shows a relatively small performance gain of using learnable VQ compared to the fixed VQ.  
Depending on the training method, this may be a real burden for the NW side that needs to process CSI reports from multiple UEs in parallel.  In particular, if each UE vendor determines the quantization methods, it will result in such handling of multiple quantization methods in the NW side.  This may incur additional storage, process and delay for switching. One way to avoid this is to let the NW determines the quantization methods, and in Type-1, Type-3 and Type-4 training, NW needs to train first to avoid such situation.
If quantization method is shared via bilateral agreements, there can be too many quantization methods that should be handled by the NW if the quantization is determined by the UE.

[bookmark: _Toc142675930]Conclude that the number of quantization methods that should be handled by the NW should be limited to a single or a small set, using either standardized quantization or NW-determined quantization (NW-first training).

Aspects on the scalar quantization
In typical scalar quantization, each encoder output will be quantized with a certain granularity of quantization, e.g., 2-bit, 4-bit, etc. The distance between the quantization point may be set in a uniform manner or can be set according to a certain distance (non-uniform distribution). In a sense, non-uniform quantization may better accommodate different encoder output distributions that may occur in the encoder output. Note, however, the actual distribution may very much depend on the AI/ML models. In addition, when quantization-aware training is used, the initial distribution of the encoder output may be dissolved.
One advantage that may be obtained from the non-uniform quantization is when the quantization non-aware training is used, i.e., as the encoder output distribution may remain the same as the initial distribution (without quantization). This may give a better generalization toward different encoder output sizes during the inference. Note, however, the generalization may also be obtained by training the encoder and the decoder to accommodate different quantization sizes.
In the below table, simulation results are given for the case of quantization-specific training and quantization-common training. For the quantization-specific training, the quantization bit used in the inference is the same as the quantization bit during the training. Note that using this approach, the UE and the NW need to store multiple models to handle different quantization sizes during the inference. For quantization-common training, the model is trained using all 4, 6, and 8 quantization bits, i.e., one model is trained to handle multiple quantization sizes. During the inference, the UE applies one out of 3 trained quantization sizes. The alignment during the inference may be achieved by configuration/indication from the NW (e.g., in the CSI report configuration) or indication from the UE (in the CSI report).

Table 4 Mean SGCS of different training approaches to handle different quantization sizes
	Training approach
	Quantization size Q during inference

	
	4 bits
	6 bits
	8 bits

	Quantization specific
	0.7528
	0.7768
	0.7902

	Quantization common
	0.7530
	0.7758
	0.7809



From the above table, we can observe non-substantial performance degradation of having quantization common training. In other words, generalization can also be achieved by using quantization-aware training. Considering this, uniform quantization should at least be a starting point if scalar quantization is adopted.
[bookmark: _Toc142675961]If the distribution of the quantization point of the scalar quantization is to be standardized, uniform quantization should be used as the starting point.
In general, scalar quantization quantizes each encoder output with the same number of bits. Another approach that may be taken is by setting different numbers of bits assigned for each encoder output, e.g., set 2 bits for the first group of encoder outputs, 4 bits for the second group of encoder outputs, and so on. Intuitively, it may give a potential performance improvement as there might be different level of importance from each encoder output. This, however, may bring another question on how to efficiently assign the number of bits for each encoder output (or each group of encoder outputs). Moreover, the effectiveness of this method needs to be to be compared to other solutions that enable different payload sizes, e.g., puncturing. For example, take an AI/ML model with an encoder output size of 10 as an example. Here, a payload size of 32 bits may be obtained from having the first 6 encoder outputs quantized with 4 bits while the second 4 encoder outputs quantized with 2 bits. The performance of such a scheme should be compared to the performance of having 8 encoder outputs (the last two encoder outputs are being punctured) quantized with 4 bits. The advantage of having different quantization sizes for each encoder output (or each group of encoder outputs) should be clearly shown compared to these more straightforward approaches.
[bookmark: _Toc142675931]Conclude that in scalar quantization, the different encoder outputs in the output layer should be quantized with the same granularity.

Adjusting the UCI payload size via adapting the quantization
Regarding the number of quantization bits, a simple solution is to standardize the number of quantization bits Q for the encoder outputs. If, however, this solution is found to be too restrictive, then we may allow a different number of quantization bits per encoder output. Allowing for a variable number of quantization bits may give better flexibility in setting up the trade-off between the auto-encoder model size, possible UCI payload, the size of information exchanges during the training, and the expected performance. 
In this approach, quantization information needs to be shared between the encoder and the decoder to make sure that the encoder and the decoder are aligned. For example, an additional bitfield (contains a few bits of quantization-bit information) may be exchanged between the UE and the NW. This is also important to let the NW understand how the bits received in the UCI are segmented. Note that the size of this additional information will be non-substantial compared to the size of information exchanges required for datasets and target CSI delivery during training or the size of CSI payload during inference.
Note that, as presented in the above table, it is feasible to have an AI/ML model that could handle multiple quantization sizes, i.e., via quantization-common training. The performance degradation of the quantization-common model compared to the quantization-specific model is very minor. Given the additional complexity that arises in using the quantization-specific model (e.g., larger model storage), having a quantization-common model may be beneficial. In other words, having a common model that can handle different quantization bits may serve as one approach to enable a flexible payload size for CSI reports. Note that although a number of different quantization can be handled by the AE, the number should be limited.
[bookmark: _Toc127343037]As mentioned above, there will be S=KQ quantized encoder output that will be transmitted to the decoder side as UCI. Therefore, another possibility in obtaining flexible UCI payload size may come from a flexible number of encoder output sizes, K. Similar to the quantization-common above, if a flexible number of encoder output sizes is to be supported, it will be preferable to have a model that could handle different numbers of encoder output size, i.e., to minimize the model storage and avoid unnecessary latency in switching between two models that specifically trained for a certain encoder output size. 
[bookmark: _Toc142675962]The SI has not concluded on whether to support flexible UCI bits via flexible quantization bits, flexible encoder output size, or both, and whether number of quantization bits should be part of the CSI report configuration. 
3.3.2 CSI report configuration
In the current NR specification the gNB can configure the maximum CSI report payload size for a given configured maximum rank number, the codebook type, CSI report granularity and the codebook parameter combinations. For Type-II reporting, the UE determines the RI that fulfils the rank restriction and the number of non-zero coefficients which are reported to the gNB. This means that in legacy, the payload is adapted to the need, to not spend unnecessary resources in the uplink. Hence, in legacy, the UE ultimately determines the ultimate CSI report payload size. For AI/ML-based solutions, similar methods of configuring/determining the CSI report payload size by both gNB and UE has been discussed in previous meeting.
If the target CSI definition approach of eType-II based is used, then there may be a need for the UE to report details of the pre-processing to the gNB to enable the gNB to fully interpret the decoder output. For example, assuming Type-II based CSI target definition and if L=10 SD basis is configured, the channel may be LOS and the UE can decide not to use all 10 SD basis vectors in the CSI report. In this case, the UE needs to convey information to the gNB about discarded SD basis vectors. Hence, this will impact on the CSI report payload. 
[bookmark: _Toc118726095][bookmark: _Toc118726302][bookmark: _Toc126052294][bookmark: _Toc126058676][bookmark: _Toc126323385][bookmark: _Toc126745670][bookmark: _Toc127343032][bookmark: _Toc127343522][bookmark: _Toc127343651][bookmark: _Toc127343727][bookmark: _Toc127344468][bookmark: _Toc127520280][bookmark: _Toc130212273][bookmark: _Toc130213784][bookmark: _Toc131531799][bookmark: _Toc131534148][bookmark: _Toc131580307][bookmark: _Toc131589786][bookmark: _Toc131752960]The pre-processing by the UE may remove channel subspace (DFT vectors or eigenvectors), then information about the remaining subspace needs to be reported to the network side along with the encoder output bits which impacts the CSI report payload size.
For legacy CSI reporting, the CSI report is segmented into separately encoded and received Part 1 CSI and Part 2 CSI. The size of Part 2 is dynamic and is controlled by Part 1, where Part 1 has a fixed size known to UE and gNB. 
We propose to maintain and follow the legacy principle for AI-CSI. More specifically, the CSI-RS resource indicator (CRI) (if applicable), the rank indicator (RI), and the channel quality indicator (CQI) are reported in Part 1 CSI. In addition, Part 1 contains necessary information to determine the size of Part 2, as agreed in the previous meeting. 
For AI-CSI, pre-processing can be carried out to extract the features of vectors (e.g., eigenvectors) per transmission layer in the beam-delay domain with  SD basis and  FD basis. Such pre-processing impacts the definition of the target CSI (i.e., the gNB interpretation of the CSI output from the decoder), hence details of the pre-processing needs to be aligned between the transmitter and receiver. We denote such “side” information that defines the output CSI interpretation to be carried using  bits and the actual output of the encoder as  bits. In addition, there are bits in the UCI related to the auxiliary information common across all the transmission layers, such as CQI, RI and the number of selected SD and FD basis in case these numbers are up to the UE to determine, denoted by . These are carried by CSI Part 1. 
If an eType-II based Target CSI definition is used, then bits that indicate the selected SD and FD basis belong to the  bits and is carried on Part 2 CSI report of the UCI. These are necessary for the gNB to interpret the output CSI of the decoder. 
[bookmark: _Toc131752947][bookmark: _Toc142675932]The UCI for an AI-CSI report consists of  bits carried in CSI part 1 for the auxiliary information common across all the transmission layers,  bits carried in CSI part 2 used to complete the interpretation of the output CSI, and   bits carried in CSI part 2, representing the quantized latent space output of the encoder. 
Furthermore, since the bit sequence  can have large payload, the bit sequence  can be divided into multiple segments. It allows dropping of some part(s) of  when the allocated UCI resource (e.g., PUSCH allocation) for carrying such CSI report is not sufficient. Dropping some part(s) of  in this way mirrors the legacy CSI reporting framework, where the Part 2 CSI can be divided into multiple groups with pre-defined priority levels. For example,  can be segmented into multiple non-overlapping parts, where each segment corresponds to a transmission layer. If these basic principles as proposed are agreed, we can further discuss such details. 
In the previous meeting, there were ideas presented that the UE has multiple AI models and the UE switches the model which will impact the CSI report payload size. However, it is preferred to keep any model ID transparent and decoupled from the CSI report payload definition, and instead define as set of possible payload sizes for the model output, where one of these payload sizes is selected for a given report.
[bookmark: _Toc142675933]Model ID should not be used to select UCI payload. Instead, a given model can support multiple payloads of which one is selected. 
3.3.3 Rank and CQI reporting
In two-sided CSI compression use case, two main options have been proposed in the previous meeting for CQI calculation:
Option 1: CQI is NOT calculated based on the output of CSI reconstruction part from the realistic channel estimation, including​
· Option 1a: CQI is calculated based on target CSI with realistic channel measurement  ​
· Option 1b: CQI is calculated based on target CSI with realistic channel measurement and potential adjustment ​
· Option 1c: CQI is calculated based on legacy codebook​

Option 2: CQI is calculated based on the output of CSI reconstruction part from the realistic channel estimation, including​
· Option 2a: CQI is calculated based on CSI reconstruction output, if CSI reconstruction model is available at the UE and UE can perform reconstruction model inference with potential adjustment​
· Option 2b: CQI is calculated using two stage approach, UE derive CQI using precoded CSI-RS transmitted with a reconstructed precoder.​

We have concerns with Option 2, where the CQI is calculated based on “the output of CSI reconstruction part from the realistic channel estimation”, which is essentially the decoder output, while the decoder can either be the nominal decoder at the UE (Option 2a), or the actual decoder at the gNB (Option 2b). 
One problem with Option 2a is that the nominal decoder at the UE is different from the actual decoder that the gNB uses for decoding, this will always introduce an unnecessary mismatch the between the true CQI and the reported CQI. Also, the CQI obtained with Option 2a highly depends on the quality of the nominal decoder at the UE, and it’s hard for the gNB to get a meaningful interpretation of such CQI. For example, assuming two UEs experiencing more or less the same channel and interference (e.g., they are closely located), then the ground truth CQI should also be more or less the same if similar receive filters are used. However, the reported CQIs for the two UEs could still be very different if the qualities of the nominal decoders are different. In general, we believe that for CQI to be meaningful for the gNB, the conditions under which CQI is computed needs to be specified and predictable, neither of which a proprietary UE nominal decoder provides.
For Option 2b, a two-stage approach is required. In the first stage, the UE transmits a CSI report without CQI. The gNB receives the CSI report and produces a decoder output, based on which CSI-RS is precoded. In the second stage, the UE measures the precoded CSI-RS and calculates CQI based on that. This is already possible with legacy CSI framework. Due to the two-stage nature of this option, a large delay can be expected before the gNB can obtain the CQI and this scheme is thus subject to channel aging. In addition, there is additional CSI-RS overhead and PDCCH triggering overhead for obtaining the second stage, also gNB complexity increases as UE specific CSI-RS precoding is needed. 
In general, target CSI is a more reliable and thus a preferred reference for calculating CQI (Option 1a and 1b), as it is the quantity that the UE knows perfectly and that the gNB strives to decode and reconstruct. Assuming the gNB can obtain a decent decoded target CSI, then the mismatch between the reported CQI and the actual CQI is minimized. The potential mismatch in CQI (Option 1b) can be adjusted based on UE reporting or gNB configuration. Mechanisms for adjusting CQI can be further studied. However, through training and monitoring the gNB may already have obtained an accurate estimate or model of the mismatch.
A hypothetical precoder (e.g., CSI assuming PMI+RI) can be used for calculating CQI as is done in legacy, where the hypothetical precoder can be calculated based on the target CSI. Depending on the content of the target CSI, the hypothetical precoder can take different forms, which can be further studied, for example:
· If the target CSI is an explicit channel tensor, the hypothetical precoder can utilize both RI and PMI, where the RI is the maximum rank of the target CSI, while the PMI is calculated as the RI strongest Tx eigenvectors of the target CSI.
· Alternatively, the target CSI can be calculated based on legacy codebook (Option 1c)
· If the target CSI is implicit channel information, such as Tx eigenvectors or PMI for a number of layers, the target CSI can be directly used as hypothetical RI and PMI (potentially with domain transformation).
· Alternatively, a hypothetical CSI can be calculated based on a codebook approximation of the target CSI. This can lower the computational complexity for the UE while at the same time be consistent and predictable from the perspective of the gNB.

Note that the basic principle that the RI/CQI calculation should be up to UE implementation is not violated; our proposal here is to have a common transmission hypothesis as done in legacy CQI calculation, where the transmission hypothesis can be as consistent and predictable as possible. The UE can still calculate the target CSI based on its own implementation. 
[bookmark: _Toc131752948][bookmark: _Toc142675934]Conclude in this SI that Option 1 with CQI being calculated based on a hypothetical CSI which is derived, in a standardized fashion from target CSI is the preferred option 
[bookmark: _Toc131589777][bookmark: _Toc131665983]
3.4 Performance monitoring
In general, the performance metric(s)/methods for AI/ML model monitoring can be categorized into three types, i.e., intermediate KPI based, input/output data distribution based, and system/link performance (“eventual KPI”) based. Table  summarizes our views on these different performance metric(s) based model monitoring methods for the CSI-compression use case.
[bookmark: _Ref134907757]Table 5 Overview of different performance metrics based monitoring methods
	Performance metric
	 Examples 
	Benefits
	Challenges

	
	Performance metric examples
	Required data samples for to derive the performance metric
	
	

	System/Link performance metric(s)
(so called Eventual KPIs)
	Throughput 
ACK/NACK
Hypothetical BLER


	Eventual KPI values using AI/ML model. 
Reference eventual KPI values for a non-AI/ML solution, or preconfigured threshold values
	Metric reflects the true system/link performance with the use of AI/ML very well
Low complexity and signalling overhead 
Frequent monitoring possible
If based on NW side, it can capture also MU-MIMO performance
	Challenging to identify whether an observed performance degradation is due to an inaccurate AI/ML model (inaccurate AI/ML model monitoring) or due to other factors.
Many samples required to reliably achieve a reliable statistic

	Data distribution
	Input/output data distribution of AI/ML

	Encoder input/output distribution, if monitored at UE-side
Decoder input/output distribution, if monitored at NW-side

	No additional signalling overhead for obtaining input/output data
Shorter latency for obtaining data samples for model monitoring
Frequent monitoring possible
	Data drift detected only at one-side of the model does not necessarily mean that the two-sided model does not work well
May not reflect model performance as good as intermediate-KPI-based methods
May not reflect system performance as good as system/link performance metric(s) based methods and can only capture SU-MIMO performance
To achieve reliable model failure detection, many samples may be required to calculate statistical metrics. This may lead to
· Potential high complexity (computation and memory cost)
· Potential long monitoring window, hence, increased latency from model failure occurs to detecting the failure 

	Intermediate KPI(s)
	Intermediate KPI (e.g., SGCS or loss) calculated based on output CSI and target CSI
	{output CSI, target CSI} data samples for deriving intermediate KPIs
	Metric may reflect the models SU-MIMO performance well (provided that a good metric can be found also for rank>1)
Expect to provide more reliable model performance information
Can be used to check model performance occasionally or periodically (but with a relatively long periodicity)
	To achieve reliable model failure detection, many samples may be required to calculate statistical metrics. Frequent monitoring degrades the usability of the model.
May not reflect the system performance very well (e.g., a higher SGCS does not necessarily mean a better system/link KPI)
Unable to capture the MU-MIMO system performance which is the ultimate measure of these CSI enhancements



3.4.1. Performance monitoring at the NW-side 
As discussed in pervious sections, to enable a gNB serving multiple UEs simultaneously and keep implementation efficiency, cost and complexity feasible at the NW side, it is required that a single model is operated at the gNB side, regardless of the models operated in different UEs with different vendor versions or/and chipset versions. Any new models to be deployed at the UE-sided must be trained, validated and properly tested together with the single model at the NW-side before being deployed at the UEs. Hence, the performance monitoring of the two-sided CSI-compression AI/ML model is expected to be performance at the NW-side. The feature/functionality related system/link/eventual KPIs together with the intermediate KPIs can be used by the NW to monitor the two-sided CSI-compression model.
The system/link/eventual KPI (e.g., throughput, SNR, ACK-NACK, BLER) based monitoring method can be used by the NW to detect potential AI/ML CSI-compression feature/functionality performance degradation, thereby, triggering model LCM actions (e.g., model fallback) or/and performing further error cause analysis (e.g., whether the system/link performance degradation is caused by the AI/ML CSI-compression functionality or other issues). The system/link/eventual KPI based monitoring methods has low complexity and no additional signaling overhead for monitoring data collection. A large benefit is that such monitoring on the NW side can take into account MU-MIMO performance as well.  
Hence, the NW can perform frequent monitoring of system/link/eventual KPIs and use it as a first step for detecting potential AI/ML functionality failure.
[bookmark: _Toc142675963]Eventual KPI based monitoring has low complexity, low overhead, and can capture network MU-MIMO performance. The NW can perform frequent monitoring of eventual KPIs and use it as a first step for detecting potential AI/ML feature/functionality failure.
When detecting/predicting potential AI/ML functionality failure based on the observation of eventual KPI degradation, the NW can configure intermediate KPI based model monitoring to perform further error cause analysis. The NW may also configure periodic intermediate KPI based model monitoring with a very large periodicity to do an infrequent monitoring of the two-side CSI-compression functionality performance. 
Comparing to other performance metrics like eventual KPIs and data distribution, intermediate KPIs (if a good KPI can be found also for rank>1) are expected to better reflect the model/functionality performance, thereby, providing more reliable results on the model/functionality performance information. For CSI-compression use case, intermediate KPIs being used for evaluation studies are the SGCS between reconstructed CSI and target CSI and NMSE, but it has been observed that it only works well for rank=1 and SU-MIMO. In practice, the intermediate KPIs used for model performance monitoring can be a decoder reconstruction error metric defined by a loss function used for training at the NW-side and this loss function is unknown to the UE side. Hence, it is the NW-side who can derive the most accurate intermediate KPIs that truly reflect two-sided model performance.
Two methods can be used for intermediate KPI based model monitoring at the NW-side:
· Case 1-1: NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE, or obtained from the UE-side.
· Case 1-2: NW-side monitoring based on the output of a proxy model at the NW-side, where the proxy model directly outputs an intermediate KPI indicating the performance of the two-sided CSI-compression model.

For Case 1-1, to derive the intermediate KPIs, the NW needs to collect the target CSI (ground-truth) and the encoder output (the output of the UE part of the two-sided CSI-compression model). The NW feds the encoder output into its decoder model and generates the reconstructed CSI (also called output CSI, the output of the gNB-part of the two-sided CSI-compression model), and then the NW compares the reconstructed CSI with the associated target CSI to calculate the intermediate KPI. 
Based on the model monitoring evaluation results in [2] and [3] high resolution target CSI format is required to achieve sufficient good monitoring accuracy. For CSI-compression use case, intermediate KPIs being used for evaluation studies are the SGCS between reconstructed CSI and target CSI and NMSE but it has been observed that it only works well for rank=1 and SU-MIMO. In practice, the intermediate KPIs used for model performance monitoring can be a decoder reconstruction error metric defined by a loss function used for training at the NW-side and this loss function is unknown to the UE side. Hence, it is the NW-side who can derive the most accurate intermediate KPIs that truly reflect two-sided model performance. Therefore, standard should support UE reporting high resolution target (ground-truth) CSI together with the UE-part model output for Case 1-1 based model monitoring at the NW side. 
[bookmark: _Toc142675964]It is necessary to specify UE reporting high resolution target (ground-truth) CSI to enable NW-side monitoring of the two-sided CSI-compression model.
To collect sufficient monitoring data for obtaining the intermediate KPI statistics for model monitoring, a time window for monitoring data collection needs to be configured, and the length of the time window depends on how many monitoring data samples are needed to enable a reliable model monitoring result. It is expected that the intermediate-KPI-based model monitoring will be performed either periodically with a large periodicity, or it can be event triggered (e.g., when detecting an eventual KPI degradation), hence, the signalling and reporting overhead for data collection is not an issue. To keep both accuracy improvement and overhead reduction benefits of AI/ML-based CSI compression, high accuracy/fidelity target CSI is needed for both model train and monitoring.
[bookmark: _Toc142675965]NW-side monitoring of the two-sided CSI-compression model based on target CSI reporting is expected to be implemented infrequently (e.g., event triggered or periodically with a large periodicity), hence, the monitoring data collection overhead for this model monitoring method is in general not an issue.
[bookmark: _Toc142675935]In CSI compression using two-sided model use case, capture in TR that enhancements of the eType-II format with new parameters is a feasible way forward to ensure high-accuracy model monitoring at the NW-side. Potential specification impact to enable intermediate-KPI based model monitoring at the NW side based on target CSI reporting include: 
· [bookmark: _Toc142675936]RRC-message based and L1-fast CSI reporting-based methods to support UE reporting accurate/high-fidelity target CSI (ground truth of output CSI) together with the encoder output for data collection used for monitoring the two-sided model
· [bookmark: _Toc142675937]Signaling and configuration for event triggered and periodical data collection used for monitoring the two-sided model

For Case 1-2, a proxy model is developed and used at the NW side to predict/estimate the intermediate KPI of the two-sided model. The proxy model takes the output CSI generated from the NW-side decoder model as input and directly outputs an intermediate KPI (e.g., SGCS or loss value), hence, there is no need for the UE to report target CSI for monitoring the two-sided model performance. The proxy model training needs to use SGCS/loss labels derived from the output CSI generated by the actual decoder at the NW and the corresponding target CSI obtained from the UE side. The UE side can provide the target CSI along with the necessary information exchange while training the two-sided CSI-compression model. This also implies that to monitor the performance of the proxy model, target CSI needs to be reported from UE to the NW. It shall be pointed out that introducing a proxy model adds additional model LCM complexity at the NW side. In addition, it is unclear if the proxy model can be monitored less frequently as compared to monitoring the two-sided CSI-compression model. Hence, to understand whether Case 1-2 can reduce the UL signalling overhead as compared to Case 1-1, further evaluation of the generalization performance of the proxy model is needed. 
[bookmark: _Toc142675966]For CSI compression using two-sided model use case, the method of NW-side monitoring based on a proxy model at the NW (e.g., Case 1-2 with an intermediate KPI prediction/estimation model) may reduce the UL signalling overhead, however, it introduces additional model LCM overhead for training/deploying/monitoring/testing the proxy model.
Therefore, we propose
[bookmark: _Toc142675938]In CSI compression using two-sided model use case, for intermediate-KPI based performance monitoring at the NW side, add proxy model based monitoring method as a candidate solution.

3.4.2. Performance monitoring at UE-side 
Achieving reliable performance monitoring results of two-sided CSI-compression AI/ML model via only UE-side model monitoring is very challenging and may not be feasible in practice.
A UE might use the system/link/eventual KPI (e.g., throughput, SNR, ACK-NACK, BLER) based monitoring method to detect potential AI/ML CSI-compression feature/functionality performance degradation. However, different from NW-sided monitoring, a UE does not know the detailed information about user scheduling and precoding selection decisions made at the gNB. Hence, it is better and more reliable if eventual KPIs are monitored at the NW-side.
[bookmark: _Toc142675967]UE-side based monitoring is problematic as the UE does not have CSI-RS precoding information and cell shaping information nor can it capture the model’s performance in MU-MIMO which is the main motivation for AI/ML based CSI reporting.
A UE might frequently monitor the distribution of its encoder input/output data samples and detect potential data drifts by comparing the input/output data distribution statistics with the ones obtained during its model training stage. Even though input/output data distribution-based monitoring methods does not require additional signaling overhead for monitoring data collection (since it utilizes the data collected/generated during model inference), it still requires sufficient input/output data samples to derive data distribution statistics for detecting a potential data drift. This implies latency for data drift detection (the time between the data drift occurs and the drift is detected). 
In addition, it is nontrivial to define conditions and the measurable statistic KPIs to represent input/output data distribution for a data drift detection for the CSI-compression use case, so that a good trade-off between data drift detection reliability/accuracy (low false alarm rate and low missed detection) and the latency can be achieved. 
Even if a UE can detect data drift with high accuracy and low latency, it is still questionable on how useful such data drift detection result is since a data drift detected at the UE side may not necessarily mean that the two-sided CSI-compression model does not work. 
[bookmark: _Toc142675968]Input/output data distribution-based monitoring method put requirements on computation power and memory at the UE side. Data drifts detected at the UE-part of a two-sided model does not necessarily mean that the two-sided model is not functioning.
In CSI compression using two-sided model use case, for input/output data distribution based performance monitoring at the UE side, the feasibility of defining conditions, measurable data statistic KPIs and measurable monitoring results KPIs (e.g., false alarm rate, missed detection rate, latency) to evaluate the performance of this monitoring method requires further study. 
For intermediate KPI based monitoring at UE-side, these options can be further discussed:
· Case 2: UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW, or obtained from the network side.
· Case 3: UE-side monitoring based on the output of a proxy model at the UE-side, where the proxy model is a proxy CSI reconstruction part.
· Case 4: UE-side monitoring based on the output of a proxy model at the UE-side, where the proxy model directly output intermediate KPIs.

For Case 2, the NW needs to transmit/provide the output of its CSI reconstruction model (decoder) to the UE. In addition, the NW needs to provide the loss function used for training at the NW-side to the UE so that the UE can use it to derive the intermediate KPI, otherwise, there may be mismatch on how the loss is calculated (i.e., the NW and the UE may have different loss function to assess the performance), then, whether there is a problem or not for the two-sided model will not be aligned between NW and UE. 
Moreover, to collect sufficient monitoring data samples for obtaining the intermediate KPI statistics for model monitoring at the UE side, Case 2 requires signalling of multiple samples of the NW decoder output to the UE within a time window. To reduce the signalling overhead, Case 2 based intermediate-KPI-based model monitoring at the UE-side can only be performed either periodically with a large periodicity or be event triggered. 
A major concern with Case 2 is that the input and output relation of the decoder and the loss function of the decoder will be exposed which then opens for disclosing proprietary aspects of the NW-part of the two-sided model (decoder). Hence, we don’t think the Case 2 based UE-side monitoring will be feasible in practice.
[bookmark: _Toc142675969]For CSI compression using two-sided model use case, the method of UE-side monitoring based on the output of the CSI reconstruction model indicated/provided by NW does not seem to be feasible in practice, since it may open for disclosing proprietary aspects of the NW-part model.

Case 3 does not require NW to transmit/provide the reconstructed/output CSI to the UE, since the UE can obtain proxy reconstrued CSIs using its proxy model (e.g., a nominal decoder), and thereby deriving a proxy intermediate KPI by comparing the proxy reconstructed CSI with the associated target CSI using a loss function associated with the proxy model. However, in practice, especially for NW-first training approach (which is a necessary condition to enable a single decoder at gNB regardless of the models operated in different UEs with different vendor versions or/and chipset versions), the proxy model (nominal decoder) at the UE side may not be the accurate representation of the actual decoder in the NW-side. 

Therefore, the proxy intermediate KPI values may not reflect the actual intermediate KPI values for the two-sided model, which may delude the purpose of the performance monitoring itself. This implies that an additional model LCM is required for training/deploying/monitoring/testing the proxy CSI reconstruction model at the UE. 

Hence, for Case 3, the feasibility for the UE-side to design such proxy model or obtain the proxy model from the NW needs to be justified. The feasibility and complexity for testing/tracking the performance of the proxy model to ensure the derived proxy intermediate KPI statistics based on such proxy model can accurately reflect the real-world two-sided model performance also need to be justified. 

For Case 4, there is no need for the NW to transmit/provide the output of its CSI reconstruction model (decoder) to the UE. A proxy model is used to directly output proxy intermediate KPIs, hence, the reliability/accuracy of the Case 4 based model monitoring results heavily depends on the performance of the proxy model, which implies that an additional model LCM is required for training/deploying/monitoring/testing the proxy model. Similar for Case 3, the feasibility of the Case 4 approach requires further justification, e.g., how to train/obtain the proxy model, and how to ensure the proxy model is valid in the field operation.
[bookmark: _Toc142675970]For CSI compression using two-sided model use case, the method of UE-side monitoring based on a proxy model (e.g., Case 3 with a CSI reconstruction model or Case 4 with an intermediate KPI prediction/estimation model) at the UE may not provide accurately monitoring results, since the proxy intermediate KPI statistics derived/obtained from the proxy model may not reflect the actual intermediate KPI statistics of the two-sided CSI-compression model.

[bookmark: _Toc142675971]For CSI compression using two-sided model use case, the method of UE-side monitoring based on a proxy model (e.g., Case 3 with a CSI reconstruction model or Case 4 with an intermediate KPI prediction/estimation model) at the UE introduces additional model LCM overhead for training/deploying/monitoring/testing the proxy model.

For both Case 3 and Case 4, it is unclear if the proxy model needs to be monitored more frequently than monitoring the two-sided CSI model or not. Based on the evaluation results from [3], a proxy CSI reconstruction model at the UE-side has worse generalization performance comparing to the two-sided CSI-compression model, this implies that the proxy model at UE-side shall be monitored more frequently, leading to much higher DL signalling overhead (NW transmitting output CSI generated from the actual decoder) and additional model LCM (switching/activation/deactivating proxy model) than just monitoring the two-sided CSI-compression model. However, the results shown in [4] indicate the opposite, that is, a proxy CSI reconstruction model at UE-side can work for scenarios that are different from the training scenario. As the observations from [3] and [4] are not aligned, further study is required to better understand whether proxy model based two-sided model monitoring solution works or not.
[bookmark: _Toc142675972]For CSI compression using two-sided model use case, it is unclear if proxy model based model monitoring solutions can reduce the over-the-air signalling overhead, since additional signalling overhead is required for monitoring the performance of the proxy model. 
In Table , we compare different intermediate-KPI based monitoring methods, i.e., Case 1 for NW-sided monitoring and Cases 2-4 for UE-sided monitoring:
[bookmark: _Ref134968483]Table 6 Overview of different intermediate-KPI based monitoring methods/Cases
	
	NW-side monitoring
	UE-side monitoring

	
	Case 1-1
	Case 1-2
	Case 2
	Case 3
	Case 4

	Overhead
	UE reporting target CSI to NW in a time window

Infrequent UE reporting
	Additional proxy model LCM overhead, e.g., train/deploy/monitoring/test the proxy model
	NW signaling reconstructed CSI (output CSI) to UE
NW signaling loss function to UE

Infrequent NW signaling
	Additional proxy model LCM overhead, e.g., train/deploy/monitoring/test the proxy model
	Additional proxy model LCM overhead, e.g., train/deploy/monitoring/test the proxy model

	Accuracy/reliability of the monitoring results
	High
	Medium
A low-cost monitoring method that can be used with other system information to incubate if a more accurate/reliable method should be initiated.
	High
	Medium
proxy reconstrued CSI may not reflect the actual reconstrued CSI from gNB
misaligned loss function to access model performance at UE and gNB
	Medium
proxy intermediate KPI values may not reflect the actual intermediate KPI values of the two-sided model

	Proprietary protection
	Kept
	Kept
	Likely be exposed
	Depend on how the proxy model is trained/obtained
	Depend on how the proxy model is trained/obtained



We have the following proposal for UE-sided monitoring of two-sided CSI-compression model performance based on intermediate-KPIs:
[bookmark: _Toc142675939]Capture these three options in the TR for intermediate-KPI based performance monitoring at the UE side. The study of the feasibility, complexity and signaling overhead of these options has not been concluded in the SI:
· [bookmark: _Toc142675940]Option 1: UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW, or obtained from the network side.
· [bookmark: _Toc142675941]Option 2: UE-side monitoring based on the output of a proxy model at the UE-side, where the proxy model is a proxy CSI reconstruction part.
· [bookmark: _Toc142675942]Option 3: UE-side monitoring based on the output of proxy model at the UE-side, where the proxy model directly outputs intermediate KPIs.

3.5	Framework, UE capability, and other topics
3.5.1 Codebook subset restriction
In RAN1#113, the following agreement was made.
	Agreement
In CSI compression using two-sided model use case, further study the feasibility of at least the following methods to support codebook subset restriction:
•	input-CSI-NW/output-CSI-UE is in angular-delay domain, beam restriction can be based on legacy SD basis vector-based input CSI in angular domain. 
•	FFS amplitude restriction
•	FFS if input-CSI-NW/output-CSI-UE is in spatial-frequency domain



If the target CSI definition (as discussed above) is based on an eType-II structure (possible with larger number of SD and FD basis compared to legacy CSI reporting), then CBSR for AI based CSI enhancement can be based on this target CSI.
Hence, the gNB configures the UE with a desired target CSI (e.g. L, M and CBSR) that the UE shall use for its CSI report. How this should be configured (e.g., dynamic or semi-static / DCI, MAC or RRC based) and how it impacts the UCI payload has not been discussed. Note, that an advantage of a well-defined and collectable target CSI is that CBSR can be defined on the target CSI. Thus, it is up to UE-implementation how to achieve it since the relation between target CSI and encoder input is up to UE implementation.
[bookmark: _Toc131531801][bookmark: _Toc131534150][bookmark: _Toc131580309][bookmark: _Toc131589788][bookmark: _Toc131752962][bookmark: _Toc142675973]A benefit of a Target CSI definition based on eType-II is that CBSR can straightforwardly be applied by gNB to UE configuration of the target.
If the target CSI definition is instead based on explicit channel such as eigenvectors, in principle, the base station can remove unwanted directions with proprietary implementation methods. For example, when the base station calculates a precoder based on the reconstructed channel, the base station can take unwanted directions as additional constraint. However, in this case, the UE will report unwanted part of the channel information which creates unnecessary overhead. In addition, if CQI is to be reported with explicit channel and is calculated based on the reported explicit channel, the CQI may have a mismatch since the base station will not use the full channel for DL transmission. 
In this case, the CBSR concept needs to be revised compared to legacy CBSR, introducing some signalling that is restricting certain directions in the channel. 
For this case with eigenvectors in the CSI reporting, the CBSR configuration can still be based on the legacy methods, where the CBSR can be based on explicit indication of spatial beam directions from a defined codebook of vectors. One way to do this can be when the gNB configures CBSR via the index of beam in the unwanted direction as in legacy CBSR method for Type-I CSI report, such that UE removes the eigenvectors from the CSI report that have a high correlation with the indicated restricted beams. 
Accordingly, the UE avoids or pre-processes the estimated eigenvectors based on the specific beams configured by the gNB. This corresponds to restricting a subspace of the MIMO channel along the direction(s) indicated by the gNB.
[bookmark: _Toc142675974]For eigenvector-based CSI reporting, CBSR configuration using a codebook (e.g. NR Type-I codebook) can still be used for subspace indication to restrict the UE from reporting CSI having a high correlation with the restricted subspace. 
3.5.2 On model pairing
In RAN1#113 meeting, the following agreement was made on model paring for the two-sided AI CSI compression use case.
	Agreement
In CSI compression using two-sided model use case, further study feasibility and procedure to align the information that enables the UE to select a CSI generation model(s) compatible with the CSI reconstruction model(s) used by the gNB.



In general, two types of procedures can be used to pair the UE encoder (CSI generation model) with the a compatible NW decoder (CSI reconstruction model): 
· identifier-based procedure, 
· model-performance-based procedure.
The identifier-based procedure utilizes a pairing ID to identify a CSI generation model at the UE for a specific CSI reconstruction model used at the gNB. When collecting to a NW, a UE can report all its supported pairing IDs for the AI CSI compression feature to the gNB via UE capability reporting; this procedure is the UE reporting which (AI/ML) codebooks it is supporting and analogous to how the standard works today. Based on the received pairing IDs, the gNB identifies/selects a CSI generation model for the UE to use for this feature and indicates this to the UE. 
There are two ways for defining and book-keeping of an identifier based pairing ID (to be further discussed in RAN2):
· A global pairing ID is assigned from and stored by a central entity for each pair of the CSI generation model and the CSI reconstruction model trained for a two-sided CSI compression model. 
· A register of all model pairing IDs is kept and maintained by this central entity. This approach require large standardization efforts since standardized procedures will be required for defining, storing, registering, and maintaining a list of global pairing IDs. In addition, a global trustworthy entity needs to be identified for handling these global pairing IDs.
· A pairing ID is locally/randomly generated for a training session of a two-sided model(s). For instance, the pairing ID can be generated using a one or a combination of techniques. For example, the pairing ID can be generated using a combination of timestamps, unique machine identifiers, pseudo-random number generators, unique vendor/location/site IDs, and standardized encoding (e.g., hash functions). The pairing ID should be known to the parties that took part of the training session (e.g., the UE/chip-set vendor(s) and the NW vendor(s)), or, in case of a single vendor trains both UE and NW part models, the single vendor generates the pairing ID. Typically, there is no need for a central storage entity for pair IDs. 

The model-performance-based procedure utilizes the model performance metrics to identify a CSI generation model at a UE for a specific CSI reconstruction model used at the gNB. Considering the cost and complexity for a UE to support multiple UE-part models for a two-sided AI/ML model based feature, it is reasonable to assume that a UE supports only a limited number of CSI generation models for the AI-based CSI-compression feature. A UE can report the number of supported CSI generation models to NW via UE capability reporting. Then, when connecting to a gNB, the UE can be configured to report the model output of all its supported CSI generation models together with the target CSI to the gNB. Based on the received UE report, the gNB can check the two-sided model performance for each of these CSI generation models and select the one that works well with the CSI reconstruction model used at the gNB and indicate this to the UE. The model performance monitoring algorithm at the gNB side can be largely reused for this model paring purposes. However, it is likely that at most one of the UE part models are paired with the CSI reconstruction model used at the gNB. Moreover, given the space of possible codewords and precoders it is likely that an unpaired model will result in a precoder with close to zero correlation with the target CSI. Hence, the number of samples needed to determine if the UE has a model paired with the CSI reconstruction model used at the gNB is likely to be small. Note that the model-performance-based model pairing solution adds both uplink signalling overhead and “blind-decoding of UE-part models” complexity at the NW-side, hence, this solution is only feasible when the UE supports a small number of UE-part CSI generation models for the AI-based CSI-compression feature. And this solution does not scale if the number of UE-part CSI generation models at the UE or the number of NW-part CSI reconstruction models at the gNB explode.
[bookmark: _Toc142675943] In CSI compression using two-sided model use case, an ID based procedure without the need of a central entity for storing/maintaining the IDs is the preferred solution for model pairing.
4 CSI Prediction
RAN#100 meeting discussed AI-based CSI prediction with the following agreement.
	Agreement
· RAN tasks RAN WGs to study a subset of the specification impacts of CSI prediction limited to the following aspects:
· data collection procedures reusing as much as possible what is defined for UE side use cases
· monitoring procedure and associated fallback mechanism to legacy CSI reporting
· The RAN WGs spec impact work on this use case shall not affect progress on the on-going work for other use cases.



In this section, we share our views regarding data collection procedure, monitoring procedure and associated fallback mechanism as well as CSI validity time reporting.
4.1 Data collection procedure
The data collection for CSI prediction at the UE side is based on the measurement of CSI-RS transmitted from base station to UE. For periodic and semi-persistent non-AI-based CSI prediction in MIMO Rel-18, the mechanism of CSI-RS transmission is same as the legacy solution; that is, the period of CSI-RS can be configured to 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320 or 640 slots. For aperiodic non-AI-based CSI prediction in MIMO Rel-18, the period of CSI-RS can be configured to 1 or 2 slots, and the sample number is 4, 8 or 12. The mechanism of CSI-RS configuration for non-AI-based CSI prediction in MIMO Rel-18 can be reused for model inference of AI-based CSI prediction in this SI in our understanding.
[bookmark: _Toc142675944]The mechanism of CSI-RS configuration for non-AI-based CSI prediction in MIMO Rel-18 can be reused for model inference of AI-based CSI prediction and no specification enhancement is needed.
Regarding data collection for performance monitoring, the UE can monitor the performance for periodic CSI prediction and semi-persistent CSI prediction due to the available CSI-RS transmission in the same time slot as the predicted CSI, while the UE is unable to get the performance for aperiodic CSI prediction if the CSI-RS is not transmitted in the same time slot as the predicted CSI. Therefore, CSI-RS configuration enhancement for aperiodic CSI prediction is preferred to support performance monitoring of aperiodic CSI prediction.
[bookmark: _Toc142675945]CSI-RS procedure enhancement for aperiodic CSI prediction is needed to support performance monitoring of aperiodic CSI prediction.
Regarding data collection for training, to reduce UE cost, complexity and power consumption, offline training is more suitable for AI-based CSI prediction. For example, the measurement data (e.g. measured channel information, TDCP, UE speed, cell ID and timestamp) from the UEs in the field test can be stored in the UE-OTT server where the models are trained offline by using the collected data. Therefore, no specification enhancement is needed.
[bookmark: _Toc142675946]Offline training is more suitable for CSI prediction to reduce UE cost, complexity and power consumption, and no specification enhancement is needed in data collection for training in CSI prediction.
4.2 Monitoring procedures
The monitoring procedures for AI-based CSI prediction at the UE side include UE-side performance monitoring and network-side performance monitoring. Moreover, the performance monitoring can be further split into NW side monitoring of channel properties related to CSI-RS configuration (using TDCP reporting), UE side monitoring related to model switching in case a UE has multiple models implemented and CSI prediction performance monitoring related to CSI prediction accuracy. 
These are discussed in more detail below, and of these three, only the last one has specification impact.
[bookmark: _Toc142675975][bookmark: _Toc142658981][bookmark: _Toc142658982]The only specification impact related to monitoring for AI-based CSI prediction is monitoring and reporting of CSI prediction accuracy.
It is expected that CSI-RS configuration is UE specific or scenario specific to improve network and UE performance. For example, if UE speed is low, then CSI-RS periodicity can be longer for overhead reduction, and vice versa. One potential solution to support flexible CSI-RS configuration is based on the legacy information of time-domain channel property (TDCP) from UE to network in Rel-18, where TDCP is measured by the UE via DL CSI-RS-for-tracking (TRS) and indicates the degree of time-variability of DL channel.
[bookmark: _Toc142675947]Monitoring related to CSI-RS configuration can be supported via legacy TDCP reporting in Rel-18 and there is no need for specification enhancements.
Model configuration for CSI prediction is up to UE in our understanding, and the UE can use either single model or multiple models. If using single model for CSI prediction, then this single model should be trained via the data with mixed UE speeds. However, if using more models for CSI prediction, then each model corresponds to one specific UE-speed level. Hence the solution with multiple models increases UE complexity due to the additional support of model switching.
[bookmark: _Toc142675948]Model selection for UE-side CSI prediction is transparent to the network. The usage of single model has the potential to reduce UE complexity.
Regarding CSI prediction performance monitoring related to CSI prediction accuracy, the UE can obtain this performance via comparing the estimated CSI at time t based on at least measured CSI-RS at time t and the reported predicted CSI at time t based on historical CSI-RS, with the consideration of UE-side post processing if needed. This performance is related to the CSI used by the network for precoding design, and thus it is beneficial if the UE can report this information to the network. To reduce the signal overhead for performance reporting, this performance can be, e.g., error variance of reported predicted CSI based on UE best estimation. Another way to report the performance metric is the report of real-time error variance for the predicted CSI, i.e., the UE reports predicted CSI associated with its error variance. 
[bookmark: _Toc142675949]Network-side performance monitoring related to CSI prediction accuracy is supported via specification of UE reporting of the monitoring performance (e.g. real time and/or statistical error variance depending on report configuration)
4.3 Fallback mechanism
The fallback from AI-based CSI prediction to other solutions can be triggered by either UE or network. Regarding UE-triggered fallback, for example, if the UE detects the performance of AI-based CSI prediction is not good for a given time duration, then the UE can fall back to the preferred solution with the information indication to the network about its fallback. 
For network triggered fallback, for example, if the network detects the performance based on AI-based CSI prediction is not good for a preferred time duration, then the network can send information to the UE for fallback to legacy solution or non-AI-based CSI prediction.
[bookmark: _Toc142675950]Fallback to legacy solutions to consider for AI-based CSI prediction includes triggering by either UE or network.
For UE-triggered fallback, the UE can fall back to a pre-configured fallback configuration associated with a information indication to the network about occurrence of a fallback. For network-triggered fallback, this is supported in the specifications already by two CSI report configurations with different reportQuantity. Whether there is any benefit of the additional standardization effort needed for the UE-triggered fallback has not been studied and can be resolved in a work item. 

[bookmark: _Ref142473541]4.4 Others
If a UE can predict the CSI in the future time slots, then it is understood that the UE has the capability to estimate the validity time of the predicted CSI. Hence, one solution is to introduce a validity time report in the CSI report. The benefits on system performance of specifying CSI validity time reporting has not been studied in the SI.
[bookmark: _Toc142675951]CSI validity time reporting is one candidate information for CSI prediction reporting although no studies has been concluded on the performance gain of CSI validity time reporting over the solution without CSI validity time reporting.

5 Conclusion of this document
In the previous sections we made the following observations: 
Observation 1	At the end of the RAN1 part of the study item, it is observed that the feasibility, specification impact and performance gains for the two-sided CSI compression use case are not well understood in RAN1.
Observation 2	For the CSI use case, CSI compression needs more studies and is not mature for a Rel.19 WI. The CSI prediction is a candidate for Rel.19 WI.
Observation 3	Type 2 Sequential training naturally starts with the NW vendor, as starting with the UE vendor is equivalent to UE first Type 3 training.
Observation 4	Defining a Target CSI on the UE is in line with how the classical standard is defined. Moreover, a defined Target CSI facilitates testing and pairing, gives a meaning to CQI, and allows CBSR to be defined, all without impairing the implementation freedom. A Target CSI also allows model monitoring.
Observation 5	Existing eType II formats are inferior at representing the optimal precoders of the channel, compared to new extended formats. The discrepancy is worse for higher layers.
Observation 6	Existing eType II formats cannot be trusted for model monitoring. Extended formats can be trusted for model monitoring and come with an acceptable payload size.
Observation 7	Data collected in a modified eType-II format with new parameters can achieve training result close to the ideal. However, using legacy eType-II format for training data collection can come at a noticeable performance degradation.
Observation 8	Quantization alignment between the encoder and the decoder is needed in two-sided CSI compression.
Observation 9	Quantization alignment can be obtained via standardized quantization or via information exchanges, e.g., during the training phase.
Observation 10	If the distribution of the quantization point of the scalar quantization is to be standardized, uniform quantization should be used as the starting point.
Observation 11	The SI has not concluded on whether to support flexible UCI bits via flexible quantization bits, flexible encoder output size, or both, and whether number of quantization bits should be part of the CSI report configuration.
Observation 12	Eventual KPI based monitoring has low complexity, low overhead, and can capture network MU-MIMO performance. The NW can perform frequent monitoring of eventual KPIs and use it as a first step for detecting potential AI/ML feature/functionality failure.
Observation 13	It is necessary to specify UE reporting high resolution target (ground-truth) CSI to enable NW-side monitoring of the two-sided CSI-compression model.
Observation 14	NW-side monitoring of the two-sided CSI-compression model based on target CSI reporting is expected to be implemented infrequently (e.g., event triggered or periodically with a large periodicity), hence, the monitoring data collection overhead for this model monitoring method is in general not an issue.
Observation 15	For CSI compression using two-sided model use case, the method of NW-side monitoring based on a proxy model at the NW (e.g., Case 1-2 with an intermediate KPI prediction/estimation model) may reduce the UL signalling overhead, however, it introduces additional model LCM overhead for training/deploying/monitoring/testing the proxy model.
Observation 16	UE-side based monitoring is problematic as the UE does not have CSI-RS precoding information and cell shaping information nor can it capture the model’s performance in MU-MIMO which is the main motivation for AI/ML based CSI reporting.
Observation 17	Input/output data distribution-based monitoring method put requirements on computation power and memory at the UE side. Data drifts detected at the UE-part of a two-sided model does not necessarily mean that the two-sided model is not functioning.
Observation 18	For CSI compression using two-sided model use case, the method of UE-side monitoring based on the output of the CSI reconstruction model indicated/provided by NW does not seem to be feasible in practice, since it may open for disclosing proprietary aspects of the NW-part model.
Observation 19	For CSI compression using two-sided model use case, the method of UE-side monitoring based on a proxy model (e.g., Case 3 with a CSI reconstruction model or Case 4 with an intermediate KPI prediction/estimation model) at the UE may not provide accurately monitoring results, since the proxy intermediate KPI statistics derived/obtained from the proxy model may not reflect the actual intermediate KPI statistics of the two-sided CSI-compression model.
Observation 20	For CSI compression using two-sided model use case, the method of UE-side monitoring based on a proxy model (e.g., Case 3 with a CSI reconstruction model or Case 4 with an intermediate KPI prediction/estimation model) at the UE introduces additional model LCM overhead for training/deploying/monitoring/testing the proxy model.
Observation 21	For CSI compression using two-sided model use case, it is unclear if proxy model based model monitoring solutions can reduce the over-the-air signalling overhead, since additional signalling overhead is required for monitoring the performance of the proxy model.
Observation 22	A benefit of a Target CSI definition based on eType-II is that CBSR can straightforwardly be applied by gNB to UE configuration of the target.
Observation 23	For eigenvector-based CSI reporting, CBSR configuration using a codebook (e.g. NR Type-I codebook) can still be used for subspace indication to restrict the UE from reporting CSI having a high correlation with the restricted subspace.
Observation 24	The only specification impact related to monitoring for AI-based CSI prediction is monitoring and reporting of CSI prediction accuracy.


Based on the discussion in the previous sections we propose the following:
Proposal 1	Do not capture the column “Type 1 training at UE/NW neutral site with 3GPP transparent model delivery to UE and NW respectively” in the table that summarize training collaboration Types 1.
Proposal 2	Accept the below table that summarize the training collaboration Types 1. Crossed-out elements should not be captured in the TR.
Proposal 3	In the TR, capture the following as an example of training collaboration type 2 sequential, with a frozen decoder and gradient transfer using API, according to the following description.
Proposal 4	Modify the discussed table that summarize the training collaboration Types 2 and 3 as below.
Proposal 5	In the TR, capture at least one of the following modified eType-II formats as a suggested standardized format for target CSI.
a.	New parameters , , , 4 bits for reference amplitude, 3 bits for differential amplitude, and 4 bits for phase quantization.
b.	New parameters , , , 6 bits for reference amplitude, 4 bits for differential amplitude, and 6 bits for phase quantization.
Proposal 6	Conclude that the number of quantization methods that should be handled by the NW should be limited to a single or a small set, using either standardized quantization or NW-determined quantization (NW-first training).
Proposal 7	Conclude that in scalar quantization, the different encoder outputs in the output layer should be quantized with the same granularity.
Proposal 8	The UCI for an AI-CSI report consists of  bits carried in CSI part 1 for the auxiliary information common across all the transmission layers,  bits carried in CSI part 2 used to complete the interpretation of the output CSI, and   bits carried in CSI part 2, representing the quantized latent space output of the encoder.
Proposal 9	Model ID should not be used to select UCI payload. Instead, a given model can support multiple payloads of which one is selected.
Proposal 10	Conclude in this SI that Option 1 with CQI being calculated based on a hypothetical CSI which is derived, in a standardized fashion from target CSI is the preferred option
Proposal 11	In CSI compression using two-sided model use case, capture in TR that enhancements of the eType-II format with new parameters is a feasible way forward to ensure high-accuracy model monitoring at the NW-side. Potential specification impact to enable intermediate-KPI based model monitoring at the NW side based on target CSI reporting include:
	RRC-message based and L1-fast CSI reporting-based methods to support UE reporting accurate/high-fidelity target CSI (ground truth of output CSI) together with the encoder output for data collection used for monitoring the two-sided model
	Signaling and configuration for event triggered and periodical data collection used for monitoring the two-sided model
Proposal 12	In CSI compression using two-sided model use case, for intermediate-KPI based performance monitoring at the NW side, add proxy model based monitoring method as a candidate solution.
Proposal 13	Capture these three options in the TR for intermediate-KPI based performance monitoring at the UE side. The study of the feasibility, complexity and signaling overhead of these options has not been concluded in the SI:
	Option 1: UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW, or obtained from the network side.
	Option 2: UE-side monitoring based on the output of a proxy model at the UE-side, where the proxy model is a proxy CSI reconstruction part.
	Option 3: UE-side monitoring based on the output of proxy model at the UE-side, where the proxy model directly outputs intermediate KPIs.
Proposal 14	In CSI compression using two-sided model use case, an ID based procedure without the need of a central entity for storing/maintaining the IDs is the preferred solution for model pairing.
Proposal 15	The mechanism of CSI-RS configuration for non-AI-based CSI prediction in MIMO Rel-18 can be reused for model inference of AI-based CSI prediction and no specification enhancement is needed.
Proposal 16	CSI-RS procedure enhancement for aperiodic CSI prediction is needed to support performance monitoring of aperiodic CSI prediction.
Proposal 17	Offline training is more suitable for CSI prediction to reduce UE cost, complexity and power consumption, and no specification enhancement is needed in data collection for training in CSI prediction.
Proposal 18	Monitoring related to CSI-RS configuration can be supported via legacy TDCP reporting in Rel-18 and there is no need for specification enhancements.
Proposal 19	Model selection for UE-side CSI prediction is transparent to the network. The usage of single model has the potential to reduce UE complexity.
Proposal 20	Network-side performance monitoring related to CSI prediction accuracy is supported via specification of UE reporting of the monitoring performance (e.g. real time and/or statistical error variance depending on report configuration)
Proposal 21	Fallback to legacy solutions to consider for AI-based CSI prediction includes triggering by either UE or network.
Proposal 22	CSI validity time reporting is one candidate information for CSI prediction reporting although no studies has been concluded on the performance gain of CSI validity time reporting over the solution without CSI validity time reporting.
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