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Introduction
This document summarizes the discussions during RAN1#112bis for the agenda item 9.2.4.1, Evaluation on AI/ML for positioning accuracy enhancement.

This discussion corresponds to the objectives related to the positioning use case described in RP-213599 (SID) below.
	RP-213599 (SID):
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels

Note: the selection of use cases for this study solely targets the formulation of a framework to apply AI/ML to the air-interface for these and other use cases. The selection itself does not intend to provide any indication of the prospects of any future normative project. 

AI/ML model, terminology and description to identify common and specific characteristics for framework investigations:
· Characterize the defining stages of AI/ML related algorithms and associated complexity:
· Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as applicable 
· Inference operation, e.g., input/output, pre-/post-process, as applicable
· Identify various levels of collaboration between UE and gNB pertinent to the selected use cases, e.g., 
· No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
· Various levels of UE/gNB collaboration targeting at separate or joint ML operation. 
· Characterize lifecycle management of AI/ML model: e.g.,  model training, model deployment , model inference, model monitoring, model updating
· Dataset(s) for training, validation, testing, and inference 
· Identify common notation and terminology for AI/ML related functions, procedures and interfaces
· Note: Consider the work done for FS_NR_ENDC_data_collect when appropriate

For the use cases under consideration:

1. Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.
…

Note 1: specific AI/ML models are not expected to be specified and are left to implementation. User data privacy needs to be preserved.
Note 2: The study on AI/ML for air interface is based on the current RAN architecture and new interfaces shall not be introduced.



Please check and update the contact information for delegates covering 9.2.4.1 below.
	Company
	Name
	Email

	Apple
	Kome Oteri
	ooteri@apple.com

	CMCC
	Liu Yongchang
	liuyongchang@chinamobile.com

	China Telecom
	Bei YANG
	yangbei1@chinatelecom.cn

	Ericsson
	Yufei Blankenship
	yufei.blankenship@ericsson.com

	Ericsson
	Henrik Ryden
	henrik.a.ryden@ericsson.com

	Fujitsu
	Wang, Xin
	wangxin@fujitsu.com

	Fujitsu 
	Shan, Yujia
	shanyujia@fujitsu.com 

	Huawei, HiSilicon
	Thorsten Schier
	thorsten.schier@huawei.com

	InterDigital
	Fumihiro Hasegawa
	Fumihiro.Hasegawa@InterDigital.com

	LG Electronics
	Jaehoon Chung
	jhoon.chung@lge.com

	MediaTek
	Harrison Chuang
	harrison.chuang@mediatek.com

	Nokia
	Dick Carrillo Melgarejo
	dick.carrillo_melgarejo@nokia.com

	Nokia
	Venkatraman, Ganesh
	ganesh.venkatraman@nokia.com

	QC
	Mohammed Hirzallah (Ali) 
	mhirzall@qti.qualcomm.com

	Vivo
	Huaming Wu
	huaming.wu@vivo.com

	CATT
	Yongqiang Fei
	feiyongqiang@catt.cn

	NEC
	Wei Chen
	chen_wei@nec.cn

	OPPO
	Zhe Liu
	zhe.liu@oppo.com

	NVIDIA
	Xingqin Lin
	xingqinl@nvidia.com

	Intel
	Javad Abdoli
	Javad.abdoli@intel.com



Dataset, model complexity
Dataset 
	· Qualcomm (R1-2303586)
Proposal 2: For fair comparison across different cases and generalization results submitted by one company, each company considers a common dataset size for its reported evaluations. The common dataset size can be different across companies. Companies are still encouraged to investigate other dataset sizes in addition to their common ones.


	· CMCC (R1-2303228)
Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.

	· Huawei (R1-2302362)
Observation 20 : For direct AI/ML positioning, when the model input is PDP or CIR, over different dataset sizes for training, the performance of AI/ML-based fingerprint positioning decreases when the training dataset becomes smaller. In general, less complex models converge faster and need less labels to achieve a given accuracy, e.g.,
•	4 TRPs with length-128 PDP-based fingerprinting can provide sub-meter accuracy with training 15,000 samples, whereas the more complex CIR based model requires up to 25,000 samples for the same input dimensions.

	· MediaTek (R1-2303340)
Proposal 5: Support different user density of training dataset for different requirement on AI/ML positioning.
Proposal 7: Support semi-supervised learning for AI/ML positioning when limited labelled data are collected for training.
Proposal 12：For AI/ML positioning, support better training dataset construction (e.g., mix dataset with different clutter parameters, different timing errors, and different channel estimation errors) for AI/ML model generalization.

	· Ericsson (R1-2302335)
Table 7 90%tile 2D positioning accuracy using PDP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.531
	0.680
	0.902
	1.249

	
	Cent. Assist.
	0.36 M
	9 M
	0.426
	0.524
	0.658
	0.873

	
	Cent. Direct
	0.36 M
	9 M
	0.426
	0.510
	0.656
	0.863

	Medium-size models PDP
	Dist. Assist.
	1.69 M
	43 M
	0.351
	0.476
	0.675
	1.004

	
	Cent. Assist.
	1.4 M
	34 M
	0.282
	0.360
	0.474
	0.707

	
	Cent. Direct
	1.4 M
	34 M
	0.269
	0.349
	0.496
	0.735

	Large models PDP
	Dist. Assist.
	5.6 M
	140 M
	0.273
	0.403
	0.596
	0.933

	
	Cent. Assist.
	5.6 M
	132 M
	0.202
	0.271
	0.397
	0.629

	
	Cent. Direct
	5.6 M
	132 M
	0.214
	0.288
	0.425
	0.653






Model complexity 
	· Qualcomm (R1-2303586)
Proposal 1: For fair comparison across different cases and generalization results submitted by one company, each company considers a common model complexity for its reported evaluations. The common complexity can be different across companies. Companies are still encouraged to investigate other model complexities in addition to their common ones.


	· Lenovo (R1-2303528)
Observation 1: AI/ML models for positioning require a careful balance between performance and complexity depending on the type of positioning mode (UE-assisted or UE-based).

	· CMCC (R1-2303228)
Table V. Evaluation results for direct AI/ML positioning with different complexity
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	CIR
	POS
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed

	78400
	1600
	3.7M
	7.4M
	0.537

	
	
	
	
	
	
	
	6.4M
	12.8M
	0.386


Observation 5: As the complexity of the model increases, the positioning accuracy improves.


	· InterDigital (R1-2303450)
Table 3. Evaluation results for AI/ML model deployed on UE-side, CIR input, without model generalization, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M FLOPs
	0.98

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	1.4 M
	38 M FLOPs
	1.41



Observation 12: More complex AI/ML model compared to less complex AI/ML model with CIR measurements as a model input achieves ~ 0.43m better 90% horizontal positioning accuracy with ~26 times higher model complexity and ~22 times higher computational complexity.

	· Ericsson (R1-2302335)
Table 4 90%tile 2D positioning accuracy using CIR inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.366
	0.453
	0.665
	0.954

	
	Cent. Assist.
	0.73 M
	32 M
	0.306
	0.371
	0.512
	0.720

	
	Cent. Direct
	0.73 M
	32 M
	0.300
	0.373
	0.498
	0.718

	Medium-size models CIR
	Dist. Assist.
	3.37 M
	132 M
	0.215
	0.310
	0.483
	0.795

	
	Cent. Assist.
	2.85 M
	110 M
	0.194
	0.260
	0.378
	0.583

	
	Cent. Direct
	2.85 M
	110 M
	0.199
	0.268
	0.385
	0.597

	Large models CIR
	Dist. Assist.
	11.2 M
	425 M
	0.171
	0.258
	0.417
	0.762

	
	Cent. Assist.
	11.26 M
	410 M
	0.156
	0.223
	0.330
	0.539

	
	Cent. Direct
	11.26 M
	410 M
	0.155
	0.233
	0.354
	0.556




	· Samsung (R1-2303124)
Proposal 4: Further study the impact of the trade-off between computational complexity and model complexity for evaluating an AI Model in Positioning.



1st round discussion
Based on companies’ evaluation results and observations, the following are recommended for discussion. 
Proposal 2.3-1
For AI/ML based positioning, support data collection of training dataset with different sample density (e.g., #samples/m2) for different positioning approach (direct AI/ML, AI/ML-assisted), different type of model input (e.g., CIR, PDP, DP), and different positioning accuracy targets.

	
	Company

	Support
	Fujitsu, InterDigital, NVIDIA

	Not support
	



	Company
	Comments

	Fujitsu
	We support to have different sample densities for evaluation, not only for different positioning approaches, dataset construction with multiple sample densities will be also useful for a single positioning approach. As for the model input type, it can be left for companies’ preference, so we are OK with all sorts of input type as long as the proposed companies can prove the benefits by using specific model input type.

	vivo
	Not clear about the intention. It this for performance evaluation? I.e., companies are requested to evaluate with different sample density, model input and accuracy targets? If so, we have concern on agreeing such proposal at this stage of SI.

	CATT
	[bookmark: OLE_LINK3][bookmark: OLE_LINK4]We think the intention is not clear enough. Is it for further performance evaluation, or recommendation for spec impact study? 
Additionally, most companies use CIR as model input, so other types of model input need more justification.

	NOK
	It is not clear if it is an Observation, Conclusion, or Proposal. I fit is a proposal, and companies are required to evaluate different sample densities. We support the initiative. However, it should be included other characteristics beyond the dataset size and density (#samples/m2). For the study, we should start to consider non-ideal user distributions (e.g., others than uniform distribution). In our contribution, we have shown that dataset size or #samples/m2 is not enough indication of the dataset quality for positioning. We should consider a metric as IPD (inter-point distance metric), which was already evaluated in our contribution.  

	LG
	Similar view with vivo that the intention of the proposal seems not clear for which aspects.

	Samsung 
	This is evaluation agenda in a SI, we did not say support something for a feature, I guess FL’s intention is to say, the different sample density can be used in the evalution. Some rewording is needed.  

	ZTE
	It’s already agreed as following. Interested companies can bring their evaluation results.
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

	Qualcomm
	Th diversity of training dataset (in terms of user density) can be realized naturally through data collection and implementation. There is no need for this proposal.


	Apple
	Agree with ZTE that this has already been captured in the agreeement highlighted. Some companies, including us, have brought results reflecting this already.




Proposal 2.3-2
For AI/ML based positioning, support data collection of training dataset that includes a mixture of labelled and unlabeled data for semi-supervised learning.
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Fujitsu
	To our knowledge, it is inevitable to use a mixture of labelled and unlabeled data for semi-supervised learning, i.e., if the semi-supervised learning is supported then this proposal will be supported without discussion.

	vivo
	Not clear about the intention. It this for performance evaluation? If so, we think that’s obvious by definition of semi-supervised learning. 
Given there’re already evaluation results on semi-supervised learning from multiple contributions in this meeting, we suggest to capture some observations on performance evaluations and benefits of semi-supervised learning. 

	CATT
	Not sure this is for performance evaluation or recommendation on future normative work. 
If it is for performance evaluation, to verify the benefits of semi-supervised learning, we suggest to agree on some evaluation assumptions firstly, e.g. the amount/ratio of labelled data and unlabeled data, and invite more companies to provide their evaluations based on the agreed assumptions.

	MediaTek
	Not clear about the intention. Not sure if there is performance difference with different sample density for different positioning approach and different type of model input.

	HW/HiSi
	For semi-supervised learning, isn’t it needed by definition that labelled and unlabeled data is used? In that case, this proposal would not be needed

	NOK
	This proposal looks like an Observation and not a proposal for evaluation.

At the current stage, we need to agree on a proposal defining specific evaluation assumptions to evaluate semi-supervised learning to be aligned between companies.

We agree with CATT.

	LG
	It seems for future work on the simulation considering the semi-supervised method

	Samsung
	Not sure what this proposal tris to get. “support“ of an operation is not something we do now. “ a mixture of labelled and unlabeled data for semi-supervised learning“ is not clear. If it’s intended to say, company can use the data with and without (ground truth )label together in the training in the evluation. Rewording is needed.  




Observation 2.3-3
For AI/ML based positioning method, the achievable positioning accuracy is improved as the model complexity increases.

	
	Company

	Support
	InterDigital

	Not support
	vivo



	Company
	Comments

	Fujitsu
	There is no inherent relationship between the positioning accuracy and model complexity, and there are both theoretical performance upper bound (100% accuracy) and achievable performance upper bound (<100% accuracy) for AI/ML method, increasing the model complexity cannot let the model outperform both of the two upper bounds. What is more, increasing model complexity may result in over-fitting which may even introduce performance degradation. 

We are not sure what is the motivation for this observation, if FL just wants to give a conclusion based on the evaluation results, then maybe some wording changes (e.g., adding more constraint conditions) will make this observation more technically acceptable.

	Vivo
	Per previous agreement, the complexity of AI model is not the focus of this SI. Our understanding is that reported model complexity in many contributions are not optimized. As such, the statement in this observation actually give the wrong impression that positioning accuracy always improves when model complexity increase. 
Not only this statement may not be always true, we also don’t see the need to capture observations on model complexity which has been deemed not to be the focus of this SI from the beginning.

	CATT
	Agree with Fujitsu and vivo.

	MediaTek
	Agree with Fujitsu and vivo.

	OPPO
	Agree with Fujitsu and vivo.

	HW/HiSI
	Agree with Fujitsu and vivo.

	NVIDIA
	Agree with Fujitsu and vivo.

	NOK
	Agree partially with vivo. However, if the intention is to capture the evaluations already done on the model and computational complexity, the observation should add specific constraints in the message to avoid technical misunderstandings in the field of ML. For example, increasing the model and computational complexity nothing guarantees to get over-fitting.

	Intel
	Agree with Fujitsu and vivo.

	LG
	To our understanding, the observation is not always guaranteed on the relationship between the accuracy performance and the model complexity.

	Samsung 
	Way too pre-mature.



2nd round discussion
For Proposal 2.3-1, it is expanded from MediaTek (R1-2303340) proposal 5 (quoted in section 2.1) to include more aspects that can affect the required sample density:
Proposal 5: Support different user density of training dataset for different requirement on AI/ML positioning.

There are also evaluation results and observations from multiple companies that point to the same direction, see some quotes from CMCC (R1-2303228) and Huawei (R1-2302362) in section 2.1.
From moderator’s view, the proposal is natural outcome based on companies’ evaluations. The intention of the proposal is to draw recommendations on training dataset construction, based on the evaluation results. Revise the proposal to explain that this is based on evaluation results.

Proposal 2.4-1
For AI/ML based positioning, support data collection of training dataset with different sample density (e.g., #samples/m2) for different positioning approach (direct AI/ML, AI/ML-assisted), different type of model input (e.g., CIR, PDP, DP), and different positioning accuracy targets.
· Evaluation results show that the required sample density (e.g., #samples/m2) varies, depending on the positioning approach (direct AI/ML, AI/ML-assisted), the type of model input (e.g., CIR, PDP, DP), and the positioning accuracy targets. 
· Exemplary references: CMCC (R1-2303228), Huawei (R1-2302362), MediaTek (R1-2303340), Ericsson (R1-2302335). 

	
	Company

	Support
	Fujitsu, MediaTek

	Not support
	



	Company
	Comments

	Fujitsu
	Support. Acturally in one word, we support training dataset with different sample density no matter what for. 

	CATT
	If the intention is to draw recommendations on training dataset construction, we’d better directly conclude that how the aspects (approach, type of input, accuarcy target) affects the (required) sample density. For example, direct AI/ML positioning requires higher (or lower, depends on the results averaged from different companies) sample density than AI/ML-assisted positioning.

	NOK
	We agree on the evaluation. However, considering that for simulation purposes, all companies are using uniform UEs distribution. The conclusion is trivial. As bigger the dataset, the performance will be enhanced. It could provide false information for real environments, where the data collection will not follow the uniform distribution. We have done this exercise in our RAN1#112 contribution (R1-2300608).
We suggest to add the following note:

Note: other UEs distributions different than uniform distribution are not precluded.



	HW/HiSi
	Maybe the DP should be discussed separately firstly, before included here? 
We think, if we make a proposal on required sample density, we also could also make a proposal on the required size of needed measurements? In R1-2302362 we have for example shown that for different channel conditions, the required measurement size (length of CIR/PDP) varies.
But in general we feel that the intention of the proposal should be clarified firstly. It seems that it would suit better with an observation here.
If making it as a proposal, we woudl suggest the following update:
For AI/ML based positioning, support data collection of training dataset with different sample density (e.g., #samples/m2) and different model input sizes (e.g. length of CIR, PDP) for different positioning approach (direct AI/ML, AI/ML-assisted), different type of model input (e.g., CIR, PDP, [DP]), and different positioning accuracy targets.
· Evaluation results show that the required sample density (e.g., #samples/m2) varies, depending on the positioning approach (direct AI/ML, AI/ML-assisted), the type of model input (e.g., CIR, PDP, DP), and the positioning accuracy targets. 
· Exemplary references: CMCC (R1-2303228), Huawei (R1-2302362), MediaTek (R1-2303340), Ericsson (R1-2302335). 
· Evaluation results show that the required measurement length (e.g., CIR/PDP length) to achieve a given accuracy target varies, depending on the channel conditions. 
· Exemplary references: Huawei (R1-2302362)


	Samsung
	We still fail to see the point of such proposal after reading the description from FL.
First, the MTK mentions the UE density per m2, I think it’s more clear than sample density, as ususally the one path in CIR called sample or others. 
Second, in MTK’s tdoc, it clearly said, “ The higher user density means more training data.“ So coming around, the key point is still trying to say training data size. 
Then what’s the purpose of this proposal, does it simply want to say, for different positioning approach (direct AI/ML, AI/ML-assisted), or different type of model input (e.g., CIR, PDP, DP), or different positioning accuracy targets, different training data size may be needed. 
If that’s the case, I am not sure if we need such proposal for a common fact to be agreed. Could FL explain the value of having such agreement, instead of simply we did not clearly agree such thing before. 

	Apple
	Agree with Nokia that the Note may be needed. We may also agree on a study for non-uniform density to verify the observation across multiple density types.

	Qualcomm
	Th diversity of training dataset (in terms of user density) can be realized naturally through data collection and implementation. There is no need for this proposal.




For Proposal 2.3-2, it was expanded from MediaTek (R1-2303340) Proposal 7:
Proposal 7: Support semi-supervised learning for AI/ML positioning when limited labelled data are collected for training.
For semi-supervised learning, previous agreements are copied below, which only invited companies to study the performance when some training data do not have ground truth labels.
Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete abelling is considered in the evaluation
· Imperfection of the ground truth labels, if any

Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.

The intention of the proposal is, based on evaluation results on semi-supervised learning, training data collection should be supported where some training data are unlabeled. Revise the proposal to explain that this is based on evaluation results.
 
Proposal 2.4-2
For AI/ML based positioning, support data collection of training dataset that includes a mixture of labelled and unlabeled data for semi-supervised learning.
· Evaluation results have demonstrated that semi-supervised learning can improve positioning performance using unlabeled data in addition to labelled data. 
· Exemplary references: vivo (R1-2302481), MediaTek (R1-2303340), ZTE (R1-2302441), Ericsson (R1-2300141).

	
	Company

	Support
	Fujitsu

	Not support
	



	Company
	Comments

	Fujitsu
	Similar to round 1, we can simply support semi-supervised learning due to basically the only difference between semi-supervised, supervised and unsupervised learning is the label construction. 

	CATT
	If the intention is to draw recommendations on training dataset construction, we’d better firstly conclude how semi-supervised learning can achieve good performance (e.g. simiar to or even better than supervised learning). And then we can proceed further on whether/how to support.

	NOK
	If the target is to address only semi-supervised learning, we propose to postpone this proposal when more companies have delivered more results on semi-supervised learning and potentially compared to other learning methods (e.g., supervised learning).

	MediaTek
	Support semi-supervised learning can improve positioning performance with limited labelled data. 
In our simualtion, when labelled data is limited, semi-supervised learning with large amounts of unlabeled data can improve performance over supervised learning.

	LG
	Similar view with Nokia where the mixture of the labelled-/unlabelled-data is confined for semi-supervised learning

	HW/HiSi
	Agree with Fujitsu and CATT

	CAICT
	Fine to discuss semi-supervised learning late with more simulation results.

	Qualcomm
	We are ok with the concept of collecting unlabeled data for semi-supervised training, but we do not see spec impact.



For Observation 2.3-3, it is updated to be more accurate. However, moderator does not understand why RAN1 cannot capture anything about complexity. The SID has this sentence on Objective: “Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.” All companies are asked to provide model complexity and computational complexity values for their evaluation, even though they are not optimized for hardware. 

Observation 2.4-3
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases and their model design, a higher complexity model can achieve better positioning accuracy than a lower complexity model. 
· Exemplary references: CMCC (R1-2303228), InterDigital (R1-2303450), Ericsson (R1-2302335).

	
	Company

	Support
	

	Not support
	vivo



	Company
	Comments

	Fujitsu
	It is OK for this observation if it is only based on the companies‘ submitted evaluation results.

	CATT
	Thanks to FL’s update we understand the motivation better. But we still feel hesitant to support, since ‘higher/lower complexity‘ is too broad. The observation may only hold under some restrictions/consditions, e.g. same model structure? Same training procedure?
Without any restrictions/conditions, we may even observe opposite results. For example, from template Excel (supervised, no label error, same setting), Ericsson’s model with lower complexity (0.73M size, 32M FLOPs) outperforms our model with higher complexity (11.2M size, 2.78G FLOPs) by 0.3m vs 0.58m. 

	HW/HiSi
	We have a feeling that this proposal os somewhat misleading since it would put the focus on complexity and gives the impression that with higher complexity always more accuracy can always be achieved.
We would like to look at it from a different angle and observe that when descreasin complexity, accuracy can still be good. 
For direct poistioning positioning, for example with have shown that even when reducing complexity by about 70% (using 4 TRPs instead of 18 TRPs) we can still maintain sub-meter level accuracy. Also many companies seems to have submitted results that point into this direction.
How about this alternative formulation?
For AI/ML based positioning method, companies have submitted evaluation results to show that for their evaluated cases and their model design, a higherlower complexity model can achieve similar better positioning accuracy as than a higher lower complexity model. 
Exemplary references: Huawei (R1-2302362) ,….

	Intel
	The observation gives a wrong impression that increasing model complexity would necessarily improve the positioning accuracy. If any observation is to be made on the impact of model complexity on positioning accuracy, it should be more collective and also cover other possible impacts based on other companies‘ submitted results, e.g. HW/HiSi’s results. We also tend to agree with CATT that condition(s) under which the impact has been observed need to be also mentioned.

	vivo
	We echo the above comment from Intel. The proposed observation may give the wrong impression. What’s the implication from this observation? If we want to improve positioning accuracy, then we need to develop more complex model?

	Qualcomm
	We think the relation of model complexity versus performance can be sophisticated and depends on many other factors such as dataset diversity, quality, and size. The monotonic increase in positioning accuracy with model complexity can not be always maintained, depending on model optimization. Our understanding is that for a given learning task there can be an optimal complexity but increasing the model complexity may or may not enhance positioning accuracy depending on model optimization.



Model input
Type of measurements as model input

	· Ericsson (R1-2302335)
[image: ]
Figure 10: Example of a power delay profile sample derived from the CIR in Figure 7.
 [image: ]
Figure 11: Example of a 16-tap delay profile sample derived from the PDP in Figure 10.
Observation 17	Delay profile input type is highly effective for centralized direct positioning or assisted positioning models. Models using 32-tap DP inputs can achieve positioning accuracy comparable to that achieved by models using CIR or PDP inputs but with a fraction of the training dataset storage sizes.

	· Google (R1-2303054)
Proposal 1: For CIR/PDP based model input, study the impact from the following Rx schemes 
· Rx Scheme 1: The CIR/PDP is measured from the Rx port with the strongest RSRP
· Rx Scheme 2: The CIR/PDP is averaged over all the Rx ports
Proposal 2: For CIR/PDP based model input, study at least the following options for CIR/PDP quantization:
· Option 1: The CIR/PDP is quantized based on several DFT bases
· Option 2: The CIR/PDP is quantized based on several DCT bases
Proposal 3: Study to use L1-SINR from each cell in addition to the CIR/PDP as the input to reflect the potential channel estimation accuracy for the CIR/PDP.

	· vivo (R1-2302481)
Table 2	Evaluation results of different model inputs for AI/ML model deployed on UE or Network side, without model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	0.99

	Power + delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.19

	Power  + delay of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.31

	Delay + angle of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.43

	Angle + power of the first path
	Pos.
	0
	{0.6,6,2}
	25k
	1k
	1.65M 
	22.30M
	1.79




	· CMCC (R1-2303228)
Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.



Size of model input: Nt, N’t
	· Ericsson (R1-2302335)
Table 8 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824


Observation 11	Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset sizes.
- Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
- Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models.
- Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.

	· ZTE (R1-2302441)
Observation 1: Direct AI/ML positioning has excellent performances even in heavy NLOS conditions (e.g., InF-DH {60%, 6m,2m}) when the model input is PDP.
Observation 2: When the grid width used for training dataset generation is 1.0, the value should be larger than 32 in order to have sub-meter level positioning accuracy at 90% UEs.
Observation 3: When the grid width used for training dataset generation is 1.0, the   value should be larger than 8 in order to have sub-meter level positioning accuracy at 90% UEs.
Observation 4: With the decrease in N_t^' value, positioning performances degrade significantly. In the following cases, the positioning accuracy at 90% UEs is even smaller than the grid width used for training dataset generation:
·  when grid width is 1.0 m.
·  when grid width is 0.5 m;

	· Huawei (R1-2302362)
Observation 7 : For direct AI/ML positioning, when the model input type is CIR, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.21 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
Observation 8 : For direct AI/ML positioning, when the model input type is PDP, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.12 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32.
Proposal 1 : At least for direct positioning, since the required measurement payload size to achieve a given accuracy target varies depending on deployment scenario and channel conditions, measurement reporting with flexible payload size should be supported.

	· MediaTek (R1-2303340)
Proposal 15：It is suggested to reduce signaling overhead, model complexity and computational complexity by reducing Nt and Nt’ first for direct AI/ML positioning because NTRP has a greater impact on performance.



Size of model input: number of TRPs
	· vivo (R1-2302481)
[image: ]
Figure 92	Illustration of reducing the number of TRPs for positioning

	· CATT (R1-2302699)
In our simulation, we select 9 TRPs out of 18 TRPs for model input. The selected TRPs are with the ID of {0, 2, 4, 6 ... 14, 16}.
Observation 12: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.

	· MediaTek (R1-2303340)
Reducing the number of TRPs in our simulation does not reduce the model complexity or computational complexity because the dimension of the model input does not change. Obviously, the signaling complexity decreases as the number of TRPs decreases.


	· Nokia (R1-2302632)
Table 14 - Evaluation for different number of TRPs (N_TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter was PDP, the N’t =128. UE distribution area = 120x60 m.
	N_TRPs
	4
	8
	12
	16
	18

	Model complexity (parameters)
	462.8K
	464K
	465.2K
	466.3K
	466.9K

	computational complexity (flops)
	498M
	720M
	943M
	1170M
	1280M

	Horizontal 2D error at CDF 90% (meters)
	23.33
	10.17
	7.138
	5.79
	5.114

	Variance of Horizontal 2D error (meters)
	0.964
	0.158
	0.104
	0.063
	0.046




	· Apple (R1-2303926)
We evaluate the direct AI/ML positioning performance assuming the N TRPs with the highest RSRP are used in the model where N = 4,9 or 18.

	· Ericsson (R1-2302335)
[image: ]




Signaling/reporting complexity 
	· Qualcomm (R1-2303586)
Proposal 3: Companies report the signaling/reporting overhead expected for AI/ML positioning (both direct AI/ML and AI/ML assisted positioning). The overhead is computed by listing the number of values/quantities to be reported, including location, magnitude, phase, and timing/angle information (as applicable).
Proposal 4: Enhance the template for reporting AI/ML positioning evaluation results to include signaling and reporting overhead (e.g., number of quantities, including location, magnitude, phase, and/or timing/angle).
Table 1 Reporting/signalling overhead computation for different cases and measurements
	Case
	Reporting
	Reporting/signaling overhead (# quantities)
	Notes

	Case1
	UE location
	3 (2)
	3D UE location (horizontal UE location)

	Case2a
	Existing DL-TDoA signal measurements with first path (i.e., N’t =1)
	2*NTRP 
	measurements include magnitude and timing for first path (single port)

	Case2a/Case2b (existing or enhanced measurements)
	Existing DL-TDoA signal measurements with additional paths (i.e., N’t =8)
	16*NTRP 
	measurements include magnitude and timing for N’t paths (single port)

	
	Existing DL-TDoA signal measurements with additional paths (i.e., N’t =16)
	32*NTRP 
	

	Case2b (new measurements)
	New CIR measurements (i.e., N’t )
	3*NTRP * Nport * N’t
	measurements include magnitude, phase, and timing for reported samples




	· Ericsson (R1-2302335)
Sources have used time domain CIR or PDP on a regular sampling grid as input to the AI/ML models. To store Nsamples of the CIR or PDP samples, the dataset will use:
· For CIR: Nsamples * NTRP * Nport * Nt * 2 * Breal bits
· For PDP: Nsamples * NTRP * 1 * Nt * Breal bits

A generic representation of such sub-sampled CIR or PDP is to store each sample in two pieces of information:
· A length-Nt bitmap representing the locations of the nonzero taps for a TRP link.
· The values of the nonzero taps.
To store Nsamples of the down sampled CIR samples, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * Nport * Nt’ * 2 * Breal bits for the nonzero taps.
To store Nsamples of the down sampled PDP samples, the dataset will use:
· Nsamples * NTRP * Nt bits for the bitmaps.
· Nsamples * NTRP * 1 * Nt’ * Breal bits for the nonzero taps.

to store Nsamples of the down sampled DP samples, the dataset can use
· Nsamples * NTRP * Nt bits for the bitmaps.

Observation 9	One way to reduce the number of active (nonzero) time domain taps while keeping as much radio environment information is to down-select from the Nt taps only the Nt’ taps with stronger power than the rest of the taps. For the CIR, such tap down-selection is determined by average the power over RX ports.
Observation 10	A generic representation of sub-sampled CIR or PDP is to store each sample in two pieces of information: (1) a length-Nt bitmap representing the location of the nonzero taps; and (2) the values of the nonzero taps.

	· vivo (R1-2302481)
Specifically, for CIR and PDP reporting, the bit overhead after compression is calculated as follows:

	
Where

	
· For CIR, each non-zero element is a complex number, and both real part and imaginary part should be included:

	
· For PDP, each non-zero element is a real number, and only one part should be included:

	

Where  is the number of non-zero elements within a CIR.




1st round discussion
Regarding model input, the following agreement was made in RAN1#112.
	Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.



For this meeting, Ericsson (R1-2302335) demonstrated that delay profile (DP) can be used as model input as well, where delay profile is simplified from PDP by keeping only the path timing information. Thus it is proposed that delay profile is also investigated as a type of information for model input.

Proposal 3.5-1
For both the direct AI/ML positioning and AI/ML assisted positioning, study delay profile (DP) as a type of information for model input, considering the trade-off among model performance, model complexity and computational complexity.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

	
	Company

	Support
	

	Not support
	vivo



	Company
	Comments

	vivo
	Before we comment on this proposal, we have a general clarification question to the moderator.
It seems our results on model input type in section 3.1.2 of R1-2302481 was NOT captured in section 3.1 of this summary.
[Moderator] Now added to section 3.1.
It seems our results on model input size in section 8.1 of R1-2302481 was NOT captured in section 3.2 of this summary.
[Moderator] See section 5.4.2 (direct) and 6.5.2 (assisted) on truncated model input.
Section 3.3 of this summary copied an illustration figure from our contribution R1-2302481. However, all of our results and observations on model input size w.r.t. number of TRP in section 8.2.1 and 8.2.2 of R1-2302481 was NOT captured.
[Moderator] See section 5.4.4 (direct) and 6.5.4 (assisted) on reuced number of TRPs.
It seems our results on model input overhead in section 8.3 of R1-2302481 was NOT captured in section 3.4 of this summary.
[Moderator] Now added to section 3.4.

We have concern to agree a different type of model input for evaluation. There’s only 2 meetings (after RAN1#112bis-e) left for the SI. It’s not reasonable to have new candidate and asking companies for evaluation campaign at this stage of SI.
Given DP is not precluded by previous agreement, we think the proponent company can evaluate and submit their evaluations without RAN1 agreement of such proposal.  

	CATT
	We think the DP evaluation can be left for companies who are interested in it.

	HW/HiSi
	Tend to agree with vivo, but in general our view is that we do not need to limit ourselves on specific measurements during the SI. 
The SI could agree on new measurements and other measurements than the already extensively discussed PDP and CIR are not precluded.

	NOK
	The advantage of DP in terms of complexity is trivial compared to CIR/PDP. If the intention is to compare the performance between DP, CIR, PDP, a fair scenario should be defined fixing some settings, including complexity. 

However, we agree with vivo’s concern about the lack of time.

	LG
	The previous agreement already means that the corresponding aspect is not precluded

	Samsung 
	Upto company to use and report. No need such proposal. If majority company use, we can consider has it explicity agreed, otherwise, it can be captured as company’s report. 

	ZTE
	It’s up to each company to report their assumption aside from CIR and PDP. Agree with vivo, we don’t have enough time to enumerate/evaluate all types of model input.

	Xiaomi
	We tend to agree with vivo’s comment. As for the evaluation of the DP, it is up to company’s interest

	Apple
	Although it does seem like a viable input, the use of DP as input should be based on company interest given the time left for the study




Regarding the understanding of N’t, there seems to be a confusion whether it refers to additional paths or all reported paths, see Qualcomm (R1-2303586).  The exemplary text from TS37.355 is provided below for reference.
NR-DL-TDOA-MeasElement-r16 ::= SEQUENCE {
…
	nr-DL-PRS-FirstPathRSRP-Result-r17	INTEGER (0..126)							OPTIONAL,
	nr-AdditionalPathListExt-r17		NR-AdditionalPathListExt-r17				OPTIONAL,
…
}

	nr-DL-PRS-FirstPathRSRP-Result
This field specifies the NR DL-PRS reference signal received path power (DL PRS-RSRPP) of the first detected path in time, as defined in TS 38.215 [36]. The mapping of the measured quantity is defined as in TS 38.133 [46].

	nr-AdditionalPathListExt
This field provides up to 8 additional detected path timing values for the TRP or resource, relative to the path timing used for determining the nr-RSTD value. If this field was requested but is not included, it means the UE did not detect any additional path timing values. If this field is present, the field nr-AdditionalPathList shall be absent.



Based on FL understanding of companies’ evaluation, N’t include the first path as well as the additional paths. That is, the CIR/PDP/DP measurement contains a total of N’t detected paths, the first detected path and (N’t -1) additional detected paths. Thus N’t is clarified below, since this affects the calculation of model input size and signaling overhead.

Proposal 3.5-2
For AI/ML based positioning, if subsampling is used, measurements of N’t detected paths are provided as model input, i.e., the first detected path and (N’t -1) additional detected paths.

	
	Company

	Support
	Fujitsu

	Not support
	Vivo, NOK



	Company
	Comments

	Fujitsu
	We think the IE of additional path in 37.355 has to be designed as the power of 2 but actually nobody will use 1+8 or 1+16 paths as model input, so we support this proposal.

	vivo
	I copied previous agreement below.
Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Nt, N’t are defined as time domain samples to align evaluation setup. It’s up to each company how to use N’t samples and report. 
It’s not clear to us why evaluation need to be tied with existing measurement report to begin with.

	CATT
	Sharing the same view as vivo, we think the previous agreement already means what is proposing here. If better clarification is really needed, we are fine to make it a conclusion.

	MediaTek
	From RAN1#111 agreement, N’t paths are the strongest power paths. It’s not clear to us why evaluation need to be changed.

	NOK
	In terms of evaluation, we believe that this proposal is not needed. However, in the future, the TR should mention the specification impact of using this new measurements(CIR/PDP) which should include the parameter N’t.

	Samsung
	As we understand, the post processing of CIR is still unders study. We dont think it’s really needed to map the evaluation disucssion to exact signlaing details in current rel17 spec. For the future, it might need some new design for model input design in its signaling. 




Proposal 3.5-3
For both direct AI/ML positioning and AI/ML assisted positioning, support measurements for model input with a range of Nt and N’t:
· Nt is the number of consecutive time domain measurement samples that are considered for model input.
· If subsampling is not applied, the full set of Nt consecutive time domain measurement samples are used as model input.
· If subsampling is applied, N’t (N’t < Nt) taps are selected as model input, with the remaining (Nt – N’t) time domain samples set to zero.
· Evaluation results show that the required measurement size in term of Nt, and N’t vary depending on factors such as the type of information used as model input (e.g., CIR, PDP, DP), the deployment scenario, and the positioning accuracy target.

	
	Company

	Support
	Fujitsu

	Not support
	vivo



	Company
	Comments

	Fujitsu
	It is OK, but Nt looks a bit redundant, because the only difference between these two seems to be if the input sequence contains zero element or not.

	Vivo
	I copied previous agreement below.
Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Nt, N’t are defined as time domain samples to align evaluation setup. It’s up to each company how to use N’t samples and report. 
We have serious concern on modifying definitions from meeting to meeting. What does it mean by ‘measurement samples’. Does that mean Nt or N’t need to be defined in existing measurement report to begin with?

	CATT
	We have agreed the definitions on Nt and N’t in RAN1#111. To address vivo’s concern, we can consider removing ‘measurement’, i.e. time domain measurement samples?
Generally OK with the second part, i.e. the observation on evaluation results.

	MediaTek
	From RAN1#111 agreement, N’t paths are the strongest power paths. It’s not clear to us why evaluation need to be changed.

	OPPO
	Better to keep the definitions align with previous agreement. Then, it seems the difference is the last sub-bullet compared with the previous agreement. If so, we suggest only keep the last sub-bullet in this proposal.

	HW/HiSi
	Tend to support.

	NOK
	If the target is to update previous agreements on evaluation, we do not agree with the proposal. Because it does not make difference between previous agreements in terms of evaluation. 

However, for reporting both ( N’t ) and (Nt - N’t ) maybe we need further clarification. We provide further inputs about it in the proposals 3.5-6. 




Regarding the investigation of varying number of TRPs, different companies used different approaches in their evaluation. Correspondingly, different approaches have different ramification on model input size, model complexity, and computational complexity. Based on FL understanding, the following approaches have been used by companies.
Proposal 3.5-4
For AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. The remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel models are provided to cover the entire evaluation area, the total complexity (model complexity and computational complexity) is the summation of the Nmodel models.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	vivo
	What is the intention of this proposal? To agree on these two approaches for further evaluations?

	CATT
	OK

	HW/HiSi
	It seems that both approaches have been used. What is the intention of this proposal, is it for model complexity?
For clarification, for approach 2, why would Nmodels be needed to cover the entire evaluation areas? Could this please been explained? Is it for UE side deployment, where different models are needed?
[Moderator] Nmodels is in case some company use multiple models, either for UE side or network side. In this case, the complexity should be a summation of all models used for fair comparison. If nobody plans to use more than 1 model, then this can be crossed out.

	NOK
	Our understanding is that this proposal is aligned with previous proposals. Thus, we request a clarification about it.




Also, to have a common understanding of which TRPs are selected, FL suggest that the TRPs are given common indices. Then companies can report exactly which TRPs are used in their evaluation if Approach 1-A or Approach 2 is used.

Proposal 3.5-5
In AI/ML based positioning, for the study of impact from different number of TRPs, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
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	Company

	Support
	Fujitsu, CATT

	Not support
	



	Company
	Comments

	Fujitsu
	OK for us, other index options are not precluded.

	vivo
	It’s not clear to us the need to report TRP index. Our understanding of the study is on the impact of the number of TRPs rather than the index of each TRP. For different UE, the relevant TRPs are most likely different.

	CATT
	If this proposal is for companies to report/clarify the TRP set in this evaluation, we are OK with it.

	MediaTek
	Report TRP index is not related to the evaluation results. There is no need to use TRP indices.

	OPPO
	The intention of reporting TRP indices need clarify.

	HW/HiSi
	If the purpose is for alignment across companies’ results, it should be fine.

	NOK
	If the idea is to align results between companies, the index should be fixed between all companies. We suggest complementing the proposal with a specific evaluation target where this index can be used.



Proposal 3.5-6
For each AI/ML based positioning method, companies report the model input size used in the evaluation. The size (in bits) of measurement for one sample of model input is shown below.
	Model input type
	Content of model input
	Sample size (in bits) of measurement for model input

	Full CIR
	Full size of Nt total samples (Nt’ is not used)
	N’TRP * Nport * Nt * 2 * Breal,CIR (bits)

	Subsampled CIR
	Use Nt’ taps among Nt total time domain samples
	· N’TRP * Nt bits for the bitmaps, and
· N’TRP * Nport * N’t * 2 * Breal,CIR bits for the Nt’ taps

	Full PDP
	Full size of Nt total time domain samples (Nt’ is not used) 
	N’TRP * 1 * Nt * Breal,PDP (bits)


	Subsampled PDP
	Use Nt’ taps among Nt total samples
	· N’TRP * Nt bits for the bitmaps, and
· N’TRP * 1 * N’t * Breal,PDP bits for the Nt’ taps


	DP
	Timing information of Nt’ taps
	N’TRP * Nt bits for the bitmaps


* N’TRP: the number of TRPs that provide measurement values as model input. 
* Breal,CIR, Breal,PDP: the number of bits to represent a real value for CIR (I, Q) and PDP (power), respectively. 
Note: The measurement size of model input affects the training data collection signaling overhead and training data storage size. For Case 2b/3b, the measurement size of model input also affects the signaling overhead for model inference.

	
	Company

	Support
	InterDigital

	Not support
	vivo



	Company
	Comments

	Fujitsu
	We will be fine for this proposal if proposal 3.5-3 is supported by companies.

	vivo
	1. First of all, DP is not agreed in previous agreement as candidate for evaluation.
2. It should be up to each company how they intend to do overhead reduction on report. We disagree with this proposal that restrict the report to be bitmap plus N’t taps. The details signaling of measurement report in LPP and/or NRPPa is NOT in RAN1’s scope.

	CATT
	A clarification question: is the intention to capture/categorize all the input design from all companies? If so, we are generally OK.

	MediaTek
	For PDP, Nport is always 1? We also disagree with this proposal that restrict the report to be bitmap plus N’t taps.

	HW/HiSi
	We agree with vivo, that mentioning DP in the context here with the already studied and agreed measurements (PDP, CIR) should be avoided. For DP a separate discussion would be needed firstly.
Understand the point from vico („It should be up to each company how they intend to do overhead reduction on report. We disagree with this proposal that restrict the report to be bitmap plus N’t taps“), but somehow the overhead for reporting which samples have been used should be taken into account.

	NOK
	Agree with vivo and HW. DP is not yet agreed as input measurement for evaluation, and it should not be considered in the proposal.


We have also request some clarifications the first bullet for the subsampled CIR and PDP
· N’TRP * Nt bits for the bitmaps

It should be N’TRP * (Nt -N’t) to map only the samples set to zero (the remaining samples) ?. 

From the computational point of view, two different variables should be reported. One variable to store the N’t samples(e.g. float ) and other variable to store the (Nt -N’t) bitmap. Is it the intention?.

	Moderator
	The intention of the proposal is to align the way the overhead is counted. There are several proposals by companies to report overhead. But to do that, it’s necessary to align how to count fist.
We can come back to this proposal later. 

	Qualcomm
	We share the view of Moderator on importance to align calculating the reporting overhead.

These are comments from our late submission (1st round):
- The current table does not include multipath reporting as one of the potential model input. There is no need for the bitmap to report the multipath components.
	Multipath
	Use Nt’ multipath components (first and additional paths)
	N’TRP * 1 * N’t * (Breal,multipath-value + Breal,multipath-timing) bits for the Nt’ multipath components (including first and additional paths)




* Breal,multipath-value: the number of bits to represent a real value for a path (power). 
* Breal,multipath-timing: the number of bits to represent relative timing for a path. 

-Our understanding is the listed options in table are still potential measurements to be evaluated and we have not yet agreed on them as model input. Please add (potential) to (model input type) in the table.




2nd round discussion
Regarding Proposal 3.5-1, it is clarified that delay profile is supported in existing specs as a default version of PDP. See below that RSRPP values are marked as OPTIONAL (O in NRPPa). The timing information is mandatory. When RSRPP values are absent, then only timing information is reported, and PDP degenerates to DP. 

For uplink:
[bookmark: _Toc99056321][bookmark: _Toc99959254][bookmark: _Toc105612440][bookmark: _Toc106109656][bookmark: _Toc112766548][bookmark: _Toc113379464][bookmark: _Toc120092017][bookmark: _Toc120534934]9.2.74    Extended Additional Path List
This IE contains the extended additional path results of time measurement.
	IE/Group Name
	Presence
	Range
	IE Type and Reference
	Semantics Description

	Additional Path Item
	
	1..<maxNoPathExtended>
	
	

	>CHOICE Relative Path Delay
	M
	
	
	

	…
	…
	…
	…
	

	>Path Power
	O
	
	UL SRS-RSRPP
9.2.72
	



For downlink:
NR-AdditionalPath-r16 ::= SEQUENCE {
    nr-RelativeTimeDifference-r16   CHOICE {
               k0-r16                 INTEGER(0..16351),
               k1-r16                 INTEGER(0..8176),
               k2-r16                 INTEGER(0..4088),
               k3-r16                 INTEGER(0..2044),
               k4-r16                 INTEGER(0..1022),
               k5-r16                 INTEGER(0..511),
               ...
    },
    nr-PathQuality-r16              NR-TimingQuality-r16                    OPTIONAL,
    ...,
    [[
    nr-DL-PRS-RSRPP-r17             INTEGER (0..126)                       OPTIONAL
    ]]
}

From this perspective, DP can be considered as already included in the study. On the other hand, DP is different from PDP in terms of positioning performance, model input size, measurement requirement, measurement reporting, etc. Thus it is necessary to differentiate DP from PDP in discussion. Regarding the concern of time, it’s clarified as optional evaluation. 

Proposal 3.6-1
For both the direct AI/ML positioning and AI/ML assisted positioning, company optionally study delay profile (DP) as a type of information for model input, considering the trade-off among model performance, model complexity and computational complexity.
· DP is a degenerated version of PDP, where the path power is not provided.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

	
	Company

	Support
	

	Not support
	vivo



	Company
	Comments

	Fujitsu
	Fine.

	CATT
	OK.

	NOK
	OK

	HW/HiSi
	Ok.

	CAICT
	Support

	Samsung 
	We see the intention of FL, but the proposal with too much redundent information. Suggested change to conclusion:
Conclusion:
Delay profile (DP) as a model input, can be used in the evaluation for both the direct AI/ML positioning and AI/ML assisted positioning.
Note: DP is a degenerated version of PDP, where the path power is not provided.

	Apple
	OK

	vivo
	We don’t see the need to have this proposal agreed. Nothing prevent companies to evaluate DP if theyt want. 
However, on moderator’s comment on optional RSRPP. We think the logic is not correct and misleading. I copied below from 37.355. nr-AdditionalPathList-r16 and nr-AdditionalPathListExt-r17 for additional path timing are also optional. If moderator think RSRPP is not always available, then the same applies to DP.

-- ASN1START

NR-DL-TDOA-SignalMeasurementInformation-r16 ::= SEQUENCE {
[bookmark: _Hlk30954207]	dl-PRS-ReferenceInfo-r16		DL-PRS-ID-Info-r16,
	nr-DL-TDOA-MeasList-r16			NR-DL-TDOA-MeasList-r16,
	...,
	[[
	nr-UE-RxTEG-TimingErrorMargin-r17	TEG-TimingErrorMargin-r17		OPTIONAL	-- Cond UERxTEG
	]]
}

NR-DL-TDOA-MeasList-r16 ::= SEQUENCE (SIZE(1..nrMaxTRPs-r16)) OF NR-DL-TDOA-MeasElement-r16

NR-DL-TDOA-MeasElement-r16 ::= SEQUENCE {
	dl-PRS-ID-r16					INTEGER (0..255),
	nr-PhysCellID-r16				NR-PhysCellID-r16								OPTIONAL,
	nr-CellGlobalID-r16				NCGI-r15										OPTIONAL,
	nr-ARFCN-r16					ARFCN-ValueNR-r15								OPTIONAL,
	nr-DL-PRS-ResourceID-r16		NR-DL-PRS-ResourceID-r16						OPTIONAL,
	nr-DL-PRS-ResourceSetID-r16		NR-DL-PRS-ResourceSetID-r16						OPTIONAL,
	nr-TimeStamp-r16				NR-TimeStamp-r16,
	nr-RSTD-r16						CHOICE {
			k0-r16						INTEGER (0..1970049),
			k1-r16						INTEGER (0..985025),
			k2-r16						INTEGER (0..492513),
			k3-r16						INTEGER (0..246257),
			k4-r16						INTEGER (0..123129),
			k5-r16						INTEGER (0..61565),
			...
	},
	nr-AdditionalPathList-r16		NR-AdditionalPathList-r16						OPTIONAL,
	nr-TimingQuality-r16			NR-TimingQuality-r16,
	nr-DL-PRS-RSRP-Result-r16		INTEGER (0..126)								OPTIONAL,
	nr-DL-TDOA-AdditionalMeasurements-r16
									NR-DL-TDOA-AdditionalMeasurements-r16			OPTIONAL,
	...,
	[[
	nr-UE-Rx-TEG-ID-r17					INTEGER (0..maxNumOfRxTEGs-1-r17)			OPTIONAL,
	nr-DL-PRS-FirstPathRSRP-Result-r17	INTEGER (0..126)							OPTIONAL,
	nr-los-nlos-Indicator-r17			CHOICE {
			perTRP-r17						LOS-NLOS-Indicator-r17,
			perResource-r17					LOS-NLOS-Indicator-r17
	}																				OPTIONAL,
	nr-AdditionalPathListExt-r17		NR-AdditionalPathListExt-r17				OPTIONAL,
	nr-DL-TDOA-AdditionalMeasurementsExt-r17
										NR-DL-TDOA-AdditionalMeasurementsExt-r17	OPTIONAL
	]]
}

NR-DL-TDOA-AdditionalMeasurements-r16 ::= SEQUENCE (SIZE (1..3)) OF
													NR-DL-TDOA-AdditionalMeasurementElement-r16

NR-DL-TDOA-AdditionalMeasurementsExt-r17 ::= SEQUENCE (SIZE (1..maxAddMeasTDOA-r17)) OF
													NR-DL-TDOA-AdditionalMeasurementElement-r16

NR-DL-TDOA-AdditionalMeasurementElement-r16 ::= SEQUENCE {
	nr-DL-PRS-ResourceID-r16		NR-DL-PRS-ResourceID-r16						OPTIONAL,
	nr-DL-PRS-ResourceSetID-r16		NR-DL-PRS-ResourceSetID-r16						OPTIONAL,
	nr-TimeStamp-r16				NR-TimeStamp-r16,
	nr-RSTD-ResultDiff-r16			CHOICE {
			k0-r16						INTEGER (0..8191),
			k1-r16						INTEGER (0..4095),
			k2-r16						INTEGER (0..2047),
			k3-r16						INTEGER (0..1023),
			k4-r16						INTEGER (0..511),
			k5-r16						INTEGER (0..255),
			...
	},
	nr-TimingQuality-r16			NR-TimingQuality-r16,
	nr-DL-PRS-RSRP-ResultDiff-r16	INTEGER (0..61)									OPTIONAL,
	nr-AdditionalPathList-r16		NR-AdditionalPathList-r16						OPTIONAL,
	...,
	[[
	nr-UE-Rx-TEG-ID-r17				INTEGER (0..maxNumOfRxTEGs-1-r17)				OPTIONAL,
	nr-DL-PRS-FirstPathRSRP-ResultDiff-r17
									INTEGER (0..61)									OPTIONAL,
	nr-los-nlos-IndicatorPerResource-r17
									LOS-NLOS-Indicator-r17							OPTIONAL,
	nr-AdditionalPathListExt-r17	NR-AdditionalPathListExt-r17					OPTIONAL
	]]
}

-- ASN1STOP


	Qualcomm
	Companies can also evaluate existing multipath reporting as a baseline for evaluation. This helps understand the gain of new measurements when compared to existing ones. So far, there is limited number of companies considered such evaluations. In addition, our undersnatding is that PDP evaluated by different companies considers the magnitude of CIR with quantized timing info (depending on tap resolution), but the existing mulitpath reporting listed above by the FL includes a finer timing information and can scale to different deployments without having requirements on truncation size of PDP/CIR. It is good to have alignment among companies on PDP vs. multipath understanding. We suggest the following rewording: 
For both the direct AI/ML positioning and AI/ML assisted positioning, company optionally study evaluates delay profile (DP) and multipath (first and additional paths) as baseline a types of information for model input, considering the trade-off among model performance, model complexity and computational complexity.
· DP is a degenerated version of PDP, where the path power is not provided.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.





Regarding Proposal 3.5-3, the intention is not to change previous agreement or definition. The explanation on Nt and N’t is meant to be the same as before. 
· The first intention is to reflect companies’ proposal to support model input of a range of Nt and N’t, see ZTE (R1-2302441) and Huawei (R1-2302362) for example. 
· The second intention is to summarize that companies used two methods in their evaluations, some didn’t apply subsampling, some applied subsampling. This is not clearly described in previous agreement. Both methods have many evaluation results by companies. Eventually there may be a need to select one method to specify.
 
Proposal 3.6-2
For both direct AI/ML positioning and AI/ML assisted positioning, support measurements for model input with a range of Nt and N’t (if subsampling is applied):
· Nt is the number of consecutive time domain measurement samples that are considered for model input.
· If subsampling is not applied, the full set of Nt consecutive time domain measurement samples are used as model input.
· If subsampling is applied, N’t (N’t < Nt) taps are selected as model input, with the remaining (Nt – N’t) time domain samples set to zero.
· Evaluation results show that the required measurement size in term of Nt, and N’t vary depending on factors such as the type of information used as model input (e.g., CIR, PDP, DP), the deployment scenario, and the positioning accuracy target.
· Exemplary references: ZTE (R1-2302441), Huawei (R1-2302362), MediaTek (R1-2303340), Ericsson (R1-2302335)

	
	Company

	Support
	MediaTek, Hw/HiSi, CAICT

	Not support
	vivo



	Company
	Comments

	CATT
	Generally OK. To better align with previous agreement, we should consider add back ‘with the strongest power‘ for N’t:
If subsampling is applied, N’t (N’t < Nt) taps with the strongest power are selected as model input, with the remaining (Nt – N’t) time domain samples set to zero.

	NOK
	As indicated by Moderator, many companies have evaluated different scenarios for N’t and  Nt . To align between companies, we suggest creating a common table to report considering both with/without subsampling. Probably most of companies only need to map their current evaluations on N’t and Nt on the common table.


	HW/HiSi
	Support

	Samsung
	What has changed to have this new proposal. 
For first bullet, Is it simply introducing a new term „“subsampling“ to describle the operation on picking the N’t? As in previous agreement, the N’t can already be picked by company if they want to use it. 
For second bullet, what is „measurement size“? does it mean simply the Nt or N’t value might be different due to these different factors? So is this sort of observation to be draw?

	vivo
	Nt and N’t are defined for evaluation purpose. We don’t agree with the sub-bullets where it limit how model input is determined. 

	Qualcomm
	We have concerns with supporting the current proposal. We suggest the FL to first consider performance vs. reporting overhead conclusions. It is too early to support these new measurements for model inputs. We also do not see this necessary for Case1, Cas2a, and Case3a.




Regarding Proposal 3.5-4, moderator’s intention is to list the approaches that have been used by companies, although some contributions do not have clear description about exactly how they selected the TRPs. At the moment, it is quite confusing how each company performed their evaluation, when the contribution just say “reduced number of TRP”. Moderator’s guess is, 
· Approach 1-A: vivo 
· Approach 1-B: Apple, Nokia
· Approach 2: CATT, Huawei
· Unclear: MediaTek?
With all approaches clearly described, then in next meeting, companies can point out which approach they followed, and what’s the consequence for each approach in terms of performance and complexity.
The second sub-bullet of Approach 2 can be deleted per Huawei comment, if nobody plans to use multiple models to cover the whole area. Note: for AI/ML assisted positioning, there are numerous evaluations that used multiple models, although no TRP reduction simulated thus far. Please share your thoughts whether second sub-bullet of Approach 2 should be deleted. It’s shown as deleted below.
Proposal 3.6-3
For AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. The remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed.
· For Approach 2: one model can be is provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel models are provided to cover the entire evaluation area, the total complexity (model complexity and computational complexity) is the summation of the Nmodel models.

	
	Company

	Support
	

	Not support
	



	Company
	Comments

	CATT
	OK. Open to keep the second sub-bullet of Approach 2. Anyway it should be optional.

	NOK
	Just a clarification, in our contribution we do not set zero the remaining (NTRP  N’TRP). Our approach fits better with Approach 2. 

In general, we agree with the proposal. We only suggest to provide further clarification for each approach. 

Approach 1: the input model is always fixed and it is NTRP=18. If N’TRP  <  NTRP. The remaining TRPs information are set to zero.

Approach 2: the input model is not fixed and it is N’TRP <=18. If N’TRP  <  NTRP. The remaining TRPs information are ignored.

	MediaTek
	We used the Approach 1-B in R1-2303340.

	Hw/HiSI
	Ok.

	vivo
	It’s still not clear to us about the intention. Assuming companies did the study, is the intention then to down-select between approaches? How UE choose which TRPs to measure and report is not specified in current specification. 

	Qualcomm
	We do not see the applicability of this proposal to UE-side or gNB/TRP sided models as the the selection of TRPs is an implementation. However, this might be applicable to Case2b and Case3b. We generally do not support specification impact that requires the UE to measure specific TRPs. The measurement strategy at the UE side should be left for implementation.  



  
For Proposal 3.5-5, the intention is for companies to align to one way to describe TRP index so it’s clear which sub-set of TRPs are selected for evaluation. For example, vivo (R1-2302481) Figure 92 drew a row of TRP 1-18, but it’s not clearly which ones they refer to when the TRPs are actually laid out in two dimensions. Similar problem in CATT (R1-2302699), “The selected TRPs are with the ID of {0, 2, 4, 6 … 14, 16}”. 
The proposal is slightly revised so that the indices are used whenever a subset of TRPs are used by companies.

Proposal 3.6-4
In AI/ML based positioning, for the study of impact from different number of TRPs, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]
	
	Company

	Support
	

	Not support
	



	Company
	Comments

	Fujitsu
	OK. Other idx options are not precluded.

	CATT
	Fine with the proposal.

	NOK
	We agree with the intention of the proposal. We suggest to fix the index for all companies to align potential conclusions on specific TRPs selection. For example, selecting TRPs index 12, 15, 13, 16 provides any specific performance. 

	MediaTek
	Fine with the proposal if the set of TRPs (N’TRP) that provide measurements is fixed.

	Hw/HiSi
	Ok





Model output
	· MediaTek (R1-2303340)
Proposal 3: For AI/ML assisted LOS/NLOS identification positioning, study the impact of labelling error to positioning accuracy.
· The ground truth label error of LOS/NLOS identification can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n is up to sources.
Proposal 4: Support means and variance of TOA as model output to report for AI/ML assisted TOA estimation positioning.

	· ZTE (R1-2302441)
Proposal 8: Study and evaluate the performance of AI/ML assisted positioning where the AI model output includes DL PRS RSTD values.
Proposal 9: Study and evaluate the performance of AI/ML assisted positioning where the model output includes confidence level of LOS/NLOS identification.

	· vivo (R1-2302481)
Table 9	TOA based positioning and RSTD based positioning, UE Evaluation results for distribution area = [120x60 m]
	Measurement for location calculation
	UE timing error
	Model input
	Model output
	Number of TRP for location calculation
	Positioning accuracy(m) @90% CDF=90%

	TOA
	0ns
	CIR
	TOA
	4
	0.62

	RSTD
	0ns
	CIR
	TOA
	4
	9.03

	TOA
	0ns
	CIR
	TOA
	6
	0.64

	RSTD
	0ns
	CIR
	TOA
	6
	2.04






1st round discussion
As suggested by MediaTek (R1-2303340), the following proposals are for the study of labelling error for AI/ML assisted positioning.
Proposal 4.1-1
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.

	
	Company

	Support
	CATT, MediaTek

	Not support
	[HW/HiSi]



	Company
	Comments

	vivo
	We’re ok with the intention of this proposal. 
However, we have a general clarification question to the moderator.
It seems our results on model output type in section 3.2.2 of R1-2302481 was NOT captured in section 4.1 of this summary.
[Moderator] Now captured above. In general, it’s not possible to capture all companies‘ input in summary doc. Only exemplary input is included.


	HW/HiSi
	We think the impact of the labelling error should be studied for the intermediate KPI (TOA) instead.
[Moderator] OK, update to have both intermediate KPI and positioning accuracy.

	NOK
	We agree with HW/HiSi, the impact should be evaluated on the intermediate measurement.

	LG
	Similar view with HW/HiSi

	Samsung
	On top of FL’s proposal and HW’s comments, I think maybe both can be reported, the impact to intermediate KPI and final pos error. It can provide different level of understanding to these impacts. For example, it may happen the intermediate KPI is not sensitive to the error but the pos error at final is.

	Qualcomm
	There are many other measurement quantities (e.g., RSTD, RSRP, RSRPP, angles, soft-info of timing/angle/LOS, etc.) and it is not clear why only a subset of them are introduced.
 
We also share HW/HiSi’s view. The modeling of error is better to be tied directly to the intermediate measurement.


	Xiaomi
	We share similar consideration with samsung 

	Apple
	Agree with Samsung that we can look at both the intermediate KPI and the final positioning error.




Proposal 4.1-2
For AI/ML assisted positioning with LOS/NLOS identification as model output, study the impact of labelling error to positioning accuracy.
· The ground truth label error of LOS/NLOS identification can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.

	
	Company

	Support
	MediaTek

	Not support
	[Hw/HiSi]



	Company
	Comments

	HW/HiSi
	We think the impact of the labelling error should be studied for the intermediate KPI (LOS) instead.
[Moderator] OK, update to have both intermediate KPI and positioning accuracy.

	NOK
	We agree to do the evaluation if the study is on the intermediate feature.

We also request a clarification, in real scenarios a soft indication of the LOS/NLOS labeling can be considered. For this purpose, we suggest adding in the proposal that for this specific evaluation the labeling is based on a binary indication (0  NLOS, 1LOS).
[Moderator] OK, added ‘binary ‘

	LG
	Same view as mentioned above

	Samsung
	On top of FL’s proposal and HW’s comments, I think maybe both can be reported, the impact to intermediate KPI and final pos error. It can provide different level of understanding to these impacts. For example, it may happen the intermediate KPI is not sensitive to the error but the pos error at final is.

	Qualcomm
	Same to our comment in Proposal 4.1-1




2nd round discussion
Based on companies’ input, the proposals are updated so that intermediate KPI is also studied.

Proposal 4.2-1
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.

	
	Company

	Support
	CATT, NOK, MediaTek, Apple

	Not support
	



	Company
	Comments

	HW/HiSI
	We think that just modelling of the intermediate KPI would be sufficient. But we would not block the final KPI. Suggest the following way forward:
Updated Proposal 4.2-1
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.

	Qualcomm
	There are many other measurement quantities (e.g., RSTD, RSRP, RSRPP, angles, soft-info of timing/angle/LOS, etc.) and it is not clear why only ToA is introduced.
We also share HW/HiSi’s view. The modeling of error is better to be tied directly to the intermediate measurement.






Proposal 4.2-2
For AI/ML assisted positioning with binary LOS/NLOS identification as model output, study the impact of labelling error to LOS/NLOS identification accuracy and positioning accuracy.
· The ground truth label error of LOS/NLOS identification can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.

	
	Company

	Support
	CATT, NOK, MediaTek, Apple

	Not support
	



	Company
	Comments

	LG
	No need to confine the binary NOS/NLOS identification as model output since the identification accuracy can be quantified based on the soft-value of model output.

	HW/HiSi
	Same comment as above, suggest to update with „and/or“:
For AI/ML assisted positioning with binary LOS/NLOS identification as model output, study the impact of labelling error to LOS/NLOS identification accuracy and/or positioning accuracy.
· The ground truth label error of LOS/NLOS identification can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.

	Qualcomm
	Same to our comment in 4.2-1




Performed evaluation of direct AI/ML positioning
In this meeting, a large amount of evaluation work has been performed by companies for direct AI/ML positioning. These valuable results are very important to help RAN1 to make progress.
Selected results submitted by companies are copied below.
Evaluation without generalization considerations (same setting for training and testing)
	· OPPO (R1-2302544)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 40,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	39,200
	800
	2.66M
	5.32 MFLOPs
	0.38


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 20,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	19,600
	400
	2.66M
	5.32 MFLOPs
	0.51


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 10,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	9,800
	200
	2.66M
	5.32 MFLOPs
	0.67


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 5,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	4,900
	100
	2.66M
	5.32 MFLOPs
	0.95


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	10 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drops 
	784,000
	16,000
	2.66M
	5.32 MFLOPs
	0.52


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	80,000 drops, 1 UE per drop 

{60%, 6, 2}
	Same drops 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	4.35





	· CATT (R1-2302699)
Observation 1: For directly estimating UE’s positioning with perfect network synchronization, the horizontal positioning accuracy is 0.58m@90% of CDF percentile.

	· Apple (R1-2303926)
Observation 1
·  Direct AI based positioning shows good performance in the baseline case
· Direct AI ML does not show good generalization performance
· Finetuning improves the performance with more improvement as the data size increases. 

Table 4: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1,480,140
	2.75G
	0.884m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1,480,140
	2.75G
	1.234m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 1
	9500
	500
	1,480,140
	2.75G
	1.860m




	· InterDigital (R1-2303450)
Table 2. Evaluation results for AI/ML model deployed on UE-side, without model generalization, Res-Net model, UE distribution area = 120x60 m
	Model input
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP 
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.35

	RSRP +RSTD
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	334k
	11.41 M FLOPs
	1.69

	CIR (NTRP =18* Nt = 256*Complex Number=2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M FLOPs
	0.98



Observation 8: Direct AI/ML positioning technique based on CIR measurements as an input achieves better positioning accuracy for 90%ile UEs compared to RSRP measurements and RSRP+RSTD measurements as model input. 
Observation 9: Direct AI/ML positioning technique based on CIR measurements as an input achieves sub meter level 90% horizontal accuracy with significantly higher model complexity (~112 times) and computational complexity (~76 times) compared to RSRP measurements and RSRP+RSTD measurements as model input.

	· MediaTek (R1-2303340)
Table 20. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	202.10K
	73.18M
	1.32

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.940

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.821






Evaluation of generalization aspects (different setting for training and testing)
	· Ericsson (R1-2302335)
Observation 20	Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.
Observation 21	Once the models are fine-tuned to operate for a substantially different, new, environment, they no long perform adequately for the original environment. That is, if operation at state-of-the-art performance in multiple environments is needed, multiple sets of model weights need to be stored.
Table 13. 90%tile UE 2D positioning errors for small Model I trained with 40,000 CIR samples from {60%, 6m, 2m} and fine-tuned with different number of CIR samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.86 M
	0.409
	0.420
	0.543
	0.782
	1.285
	1.808
	2.404
	8.720

	Cent. Assist.
	0.73 M
	0.697
	0.621
	0.818
	1.141
	1.806
	2.284
	2.885
	6.913

	Cent. Direct
	0.73 M
	0.674
	0.621
	0.841
	1.177
	1.801
	2.329
	3.030
	7.354



Observation 22	Even with small model sizes, models trained with mixed datasets can operate at state-of-the-art performance in multiple substantially different environments with no need of explicit environment identification and model switching.
Observation 23	For the alternative approach of keeping multiple models for multiple operating environments, reliability of environment identification becomes the critical point of failure.
Observation 24	To operate at state-of-the-art performance in multiple substantially different environments, mixed dataset training is superior to either training multiple models from scratch or storing multiple fine-tuned models with explicit environment identification and model switching.

	· Qualcomm (R1-2303586)
Proposal 7: consider the following observations on LCM approaches (i.e., model switching, mixed training dataset, and model finetuning) for AI/ML positioning:
· Model switching offers the best positioning accuracy followed by mixed training dataset construction and model finetuning
· Model finetuning with small dataset size can only be feasible for enhancing positioning accuracy for small unseen changes 



Different drops
	· OPPO (R1-2302544)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	Another drop 

{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.53


	RSTD + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 
{60%, 6, 2}
	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	9.3


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	Another drop 

{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	10.11


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 
{60%, 6, 2}
	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	6.55





	· Apple (R1-2303926)
Table 5: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
	Drop 2
	47500
	2500
	1,480,140
	2.75G
	4.665m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	47500
	2500
	1,480,140
	2.75G
	5.076m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	1,480,140
	2.75G
	10.9103m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	47500
	2500
	1,480,140
	2.75G
	6.037m






Model fine-tuning for different drops
	· vivo (R1-2302481)
[image: ]
Figure 49	Evaluation of model fine-tuning for different drops

	· OPPO (R1-2302544)
Table 16. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different drops, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coord.
	UE coord.
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	1000 samples from the 2nd drop

{60%, 6, 2}
	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	1.233

	Normalized CIR + RSRP
	UE coord.
	UE coord.
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	5000 samples from the 2nd drop

{60%, 6, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.688




	· Qualcomm (R1-2303586)
Table 9 Horizontal positioning error (meters) of RFFP with finetuning for Type 2 generalizations
	Training
	Finetuning (Drop B)
	Testing
	50%
	67%
	80%
	90%

	Drop A
	--
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	--
	Drop B
	5.98
	7.81
	9.88
	12.33

	Drop A
	500 samples
	Drop B
	3.09
	4.02
	4.98
	6.07

	Drop A
	240 samples
	Drop B
	3.54
	4.55
	5.61
	6.92

	Drop A
	100 samples
	Drop B
	5.17
	6.64
	8.46
	10.47


Observation 14: Model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of direct AI/ML positioning when tested with different drops (i.e., inter-site generalization).

	· Apple (R1-2303926)
Table 6: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, with model finetuning, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	5000
	2500
	1,480,140
	2.75G
	3.69m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	1,480,140
	2.75G
	4.02m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	5000
	2500
	1,480,140
	2.75G
	4.41m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	60%,6,2
	40%,2,2
	40%,2,2
	47500
	2500
	2500
	1,480,140
	2.75G
	4.81m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5000
	2500
	1,480,140
	2.75G
	8.22m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	2500
	2500
	1,480,140
	2.75G
	8.62m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	5000
	2500
	1,480,140
	2.75G
	5.08m

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	2500
	2500
	1,480,140
	2.75G
	4.8m




	· CMCC (R1-2303228)
Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size:18*1*256

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1

	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500

	2500

	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000

	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95




	· MediaTek (R1-2303340)
Table 22. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different drop
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	202.10K
	73.18M
	9.15

	
	
	
	
	
	
	
	1200
	
	
	
	3.05

	
	
	
	
	
	
	
	2400
	
	
	
	2.52

	
	
	
	
	
	
	
	3600
	
	
	
	2.25

	CIR [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	464.24K
	0.266G
	9.36

	
	
	
	
	
	
	
	1200
	
	
	
	3.08

	
	
	
	
	
	
	
	2400
	
	
	
	2.54

	
	
	
	
	
	
	
	3600
	
	
	
	2.17

	PDP [18,2,256]
	UE pos [x,y]
	0%
	Drop1
	Drop2
	Drop2
	32400
	0
	3600
	463.95K
	0.264G
	8.57

	
	
	
	
	
	
	
	1200
	
	
	
	3.23

	
	
	
	
	
	
	
	2400
	
	
	
	3.01

	
	
	
	
	
	
	
	3600
	
	
	
	2.37




	· Huawei (R1-2302362)
Observation 26 : For direct AI/ML positioning, when the model input is PDP, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain meter level accuracy.

	· NVIDIA (R1-2303439)
[image: A picture containing chart

Description automatically generated]
Figure 6: Positioning accuracy of AI/ML based method under different drops.




Mixed dataset for different drops
	· OPPO (R1-2302544)
Table 6: Generalization performance: training and testing data sets are generated from different drops
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/o generalization
	1 drop for both training and testing
	8.20
	0.48
	0.33
	0.52

	w/
generalization
	1 drop for training 
Another drop for testing
	9.92
	10.53
	10.11
	11.29

	w/o generalization
	10 drops for both training and testing
	10.16
	0.46
	0.52
	1.03

	w/
generalization
	5 drops for training 
Another 5 drops for testing
	10.2
	9.3
	6.55
	7.4




	· CMCC (R1-2303228)
Table III. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
size：18*1*256
	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	18.45

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop
)
	2500
	
	
	0.49

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed
	25000（2500/Drop）
	2500 (250/Drop
)
	
	
	0.88

	CIR
(size:18*1*256) +RSRP
(size:18*1)

	UE coordinates

	ideal UE coordinates

	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	14.58

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop
)
	2500
	
	
	0.37

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 

	{60%, 6m, 2m}, 10 Drops mixed
	25000（2500/Drop）
	2500 (250/Drop
)
	
	
	0.58




	· MediaTek (R1-2303340)
Table 21. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed training for different drop
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1-port CIR [18,1,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	202.10K
	73.18M
	9.15

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	3.63

	CIR [18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	464.24K
	0.266G
	9.36

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.52

	PDP
[18,2,256]
	UE pos
[x,y]
	0%
	Drop1
	Drop2
	32400
	3600
	463.95K
	0.264G
	8.57

	
	
	
	Drop1+Drop2
	Drop2
	16200+16200
	3600
	
	
	1.72







Different clutter parameters 
Model fine-tuning for different clutter parameters
	· Samsung (R1-2303124)
[image: ]
Fig.4 CDF of positioning errors with different clutter parameter.

	· vivo (R1-2302481)
[image: ]
Figure 47	 Evaluation of model fine-tuning for different clutter parameters (train with {0.4, 2, 2}, fine-tuning and testing with {0.6, 6, 2})

	· OPPO (R1-2302544)
Table 17. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different clutter settings, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	1000 samples from the 2nd drop

{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	2.712

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	5000 samples from the 2nd drop

{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	1.282




	· CATT (R1-2302699)
Observation 7: For direct AI/ML positioning, by training the AI/ML model using the dataset that assumes a clutter parameter of {60%, 6m, 2m}, and subsequently fine-tuning it using a small dataset that assumes a clutter parameter of {40%, 2m, 2m}, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.

	· MediaTek (R1-2303340)
Table 24. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning for different clutter setting
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]

	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	202.10K
	73.18M
	9.10

	
	
	
	
	
	
	
	1200
	
	
	
	4.49

	
	
	
	
	
	
	
	2400
	
	
	
	3.86

	
	
	
	
	
	
	
	3600
	
	
	
	3.50

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	464.24K
	0.266G
	7.43

	
	
	
	
	
	
	
	1200
	
	
	
	3.80

	
	
	
	
	
	
	
	2400
	
	
	
	3.42

	
	
	
	
	
	
	
	3600
	
	
	
	3.09

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400
	0
	3600
	463.95K
	0.264G
	7.72

	
	
	
	
	
	
	
	1200
	
	
	
	3.74

	
	
	
	
	
	
	
	2400
	
	
	
	3.38

	
	
	
	
	
	
	
	3600
	
	
	
	3.10




	· NVIDIA (R1-2303439)
[image: Diagram

Description automatically generated with low confidence]
Figure 8: Positioning accuracy of AI/ML based method under different drops.
Observation 8: Compared to finetuning for different drops, finetuning for different clutter parameter sets provides less positioning accuracy improvement with the same finetuning samples. This shows that finetuning is more effective when the first scenario (for which the AI/ML model is originally trained) and the second scenario (that finetuning targets) are more similar.


Mixed dataset for different clutter parameters
	· CATT (R1-2302699)
Observation 4: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of clutter parameter {60%, 6m, 2m} with a small dataset of clutter parameter {40%, 2m, 2m}, the AI/ML model achieved a horizontal positioning accuracy of 1.77m, which represents an improvement compared to the performance achieved without mix-training and with a positioning accuracy of 2.64m.

	· MediaTek (R1-2303340)
Table 23. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], mixed trainig for different clutter setting
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	1port-CIR [18,1,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	202.10K
	73.18M
	9.10

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	5.49

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	464.24K
	0.266G
	7.43

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.30

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	32400
	3600
	463.95K
	0.264G
	7.72

	
	
	
	{60%, 6m, 2m}+{40%, 2m, 2m}
	{40%, 2m, 2m}
	16200+16200
	3600
	
	
	2.43






Network synchronization error 
	· vivo (R1-2302481)
Table 23	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	[bookmark: _Hlk130549188]CIR
	Pos.
	0
	0ns
	0ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	2ns
	25k
	1k
	1.65M
	22.30M
	1.64

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18




	· Ericsson (R1-2302335)
Observation 25	Centralized ML positioning models can overcome uncorrelated network synchronization errors. In fact, network synchronization errors can be used as a type of data augmentation during training to enhanced trained model performance.
- Models trained without any network synchronization error can achieve high positioning accuracy for network synchronization error STD up to 10 ns.
- Models trained with network synchronization error STD of 25 ns can achieve high positioning accuracy for network synchronization error STD up to at least 50 ns.
[bookmark: _Hlk131164680]Table 22 90%tile 2D positioning accuracy using CIR inputs for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	CIR trained with 0 ns
	Cent. Assist.
	0.73 M
	32 M
	0.423
	0.518
	0.77
	2.553
	13.514

	
	Cent. Direct
	0.73 M
	32 M
	0.432
	0.504
	0.701
	2.394
	12.787

	CIR trained with 25 ns
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.372
	0.376
	0.444
	0.855

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.376
	0.376
	0.433
	0.841

	CIR trained with 50 ns
	Cent. Assist.
	0.73 M
	32 M
	0.410
	0.412
	0.412
	0.436
	0.522

	
	Cent. Direct
	0.73 M
	32 M
	0.419
	0.415
	0.414
	0.439
	0.528




	· ZTE (R1-2302441)
Observation 15: 	For model generalization evaluation in various network synchronization errors, when a dataset for training has ideal network synchronization errors and a dataset for test has network synchronization errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), the positioning performance degrades seriously compared to ideal network synchronization.
Observation 16: 	For model generalization evaluation in various network synchronization errors, when both training dataset and test dataset have network synchronization errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), positioning performance is comparable to ideal network synchronization. This may be explained by:
•	CNN model is translation-invariant to the time shift of channel information due to network synchronization error;
•	Add random network synchronization errors on training dataset are analogous to data augmentation on the training dataset, thus increase the model robustness to various network synchronization errors.

	· CATT (R1-2302699)
Observation 2: For directly estimating UE’s positioning with network synchronization error (truncated Gaussian distribution of 50 ns), the horizontal positioning accuracy is 0.84m@90% of CDF percentile.

	· xiaomi (R1-2302979)
Observation 6: 
-	If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed



Model fine-tuning for network synchronization error
	· vivo (R1-2302481)
[image: ]
Figure 51	Evaluation of model fine-tuning for different synchronization errors (50ns)

	· OPPO (R1-2302544)
Table 18. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: NW synchronization error, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o NW sync error
{60%, 6, 2}

	1000 samples from the 2nd drop

w/ NW sync error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	0.841

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
w/o NW sync error
{60%, 6, 2}
	5000 samples from the 2nd drop

w/ NW sync error

{40%, 2, 2}
	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.563




	· CATT (R1-2302699)
Observation 8: For direct AI/ML positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.



Mixed dataset for network synchronization error
	· vivo (R1-2302481)
Network synchronization error
Table 24	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	4.56

	CIR
	Pos.
	0
	Mix 0ns+10ns
	10ns
	25k+2k
	1k
	1.65M
	22.30M
	1.16

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	10.18

	CIR
	Pos.
	0
	Mix 0ns+50ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	1.52




	· CATT (R1-2302699)
Observation 5: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of ideal network synchronization with a small dataset of network synchronization error of 50ns, the AI/ML model achieved a horizontal positioning accuracy of 3.04m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 12.6m.

	· xiaomi (R1-2302979)
Observation 7: 
-	Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability



UE/gNB RX and TX timing error
	· vivo (R1-2302481)
Table 27	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	[bookmark: _Hlk130549666]CIR
	Pos.
	0
	0ns
	0ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	2ns
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	1.24

	CIR
	Pos.
	0
	0ns
	50ns
	25k
	1k
	1.65M
	22.30M
	3.45




	· MediaTek (R1-2303340)
Table 25. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different timing error
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test
Train
	50ns
	30ns
	10ns
	Ideal

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	50ns
	3.275
	2.813
	2.714
	2.673

	
	
	
	
	30ns
	4.260
	2.667
	1.867
	1.865

	
	
	
	
	10ns
	9.231
	4.058
	1.782
	1.146

	
	
	
	
	Ideal
	17.201
	12.172
	8.917
	0.940

	
	
	16200+16200
	3600
	50ns&10ns
	3.743
	2.519
	2.448
	2.090

	
	
	32400+32400
	3600
	50ns&10ns
	2.994
	2.050
	2.075
	1.687

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	50ns
	3.366
	2.772
	2.705
	2.703

	
	
	
	
	30ns
	4.749
	3.400
	1.905
	1.924

	
	
	
	
	10ns
	8.539
	3.872
	1.665
	1.218

	
	
	
	
	Ideal
	12.461
	6.948
	3.405
	0.821

	
	
	16200+16200
	3600
	50ns&10ns
	3.513
	2.504
	2.327
	2.006

	
	
	32400+32400
	3600
	50ns&10ns
	2.510
	1.765
	1.791
	1.358


Observation 31:	Direct AI/ML model trained with large timing error dataset can be generalized to dataset with small timing error.
Observation 32:	The positioning performance of direct AI/ML can be improved by mixing dataset with different timing errors at the cost of the training complexity.

	· ZTE (R1-2302441)
Observation 17: 	For model generalization evaluation in various UE Rx timing errors, the positioning performance in a test dataset with UE Rx timing errors degrades slightly compared to the dateset without UE Rx timing errors.
Observation 18: 	For model generalization evaluation in various UE Rx timing errors, when both training dataset and test dataset have UE Rx timing errors following a truncated Gaussian distribution between [-2T1, 2T1] (T1 is a rms value), positioning performance is comparable to the case without UE Rx timing error. This may be explained by:
•	CNN model is translation-invariant to the time shift of channel information due to UE Rx timing error;
•	Add random UE Rx timing errors on training dataset are analogous to data augmentation on the training dataset, thus increase the model robustness to various UE Rx timing errors.



Model fine-tuning for UE/gNB RX and TX timing error
	· OPPO (R1-2302544)
Table 19. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: UE timing error, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o UE timing error

{60%, 6, 2}


	1000 samples from the 2nd drop

w/ UE timing error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	0.814

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

w/o UE timing error
{60%, 6, 2}
	5000 samples from the 2nd drop

w/ UE timing error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.567




	· xiaomi (R1-2302979)
Observation 11: 
-	From the aspect that AI model is trained by data set with ideal timing error and fine-tuned by data set with 10ns Rx timing error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor



Mixed dataset for UE/gNB RX and TX timing error
	· vivo (R1-2302481)
UE timing error
Table 28	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	0ns
	10ns
	25k
	1k
	1.65M
	22.30M
	1.24

	CIR
	Pos.
	0
	Mix 0ns+10ns
	10ns
	25k+2k
	1k
	1.65M
	22.30M
	1.18

	CIR
	Pos.
	0
	0ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	3.45

	CIR
	Pos.
	0
	Mix 0ns+50ns
	50ns
	25k+2k
	1k
	1.65M
	22.30M
	2.04



Observation 23:	The positioning accuracy of AI/ML model is significantly improved from 3.45m@90% to 2.04m@90% by mix-training with samples of UE timing error for direct AI/ML positioning.

	· xiaomi (R1-2302979)
Observation 10: 
-	Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability



Different InF scenarios 
Model fine-tuning for different InF scenarios
	· vivo (R1-2302481)
[image: ]
Figure 50	Evaluation of model fine-tuning for different scenarios

	· MediaTek (R1-2303340)
Table 29. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, InF-DH area = [120x60 m], InF-SH/HH area == [300x150 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
InF-SH
	AI/ML
InF-HH

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m}),small hall
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	32400
	0
	3600
	464.24K
	0.266G
	>100
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.806
	14.073

	
	
	
	
	
	
	
	3600
	
	
	
	5.391
	5.972

	
	
	
	
	
	
	
	7200
	
	
	
	3.815
	5.104

	PDP [18,2,256]
	UE pos [x,y]
	0%
	InF-DH({60%, 6m, 2m})
	InF-SH/HH, large hall
	InF-SH/HH, large hall
	32400
	0
	3600
	463.95K
	0.264G
	>100
	.>100

	
	
	
	
	
	
	
	1200
	
	
	
	8.964
	21.755

	
	
	
	
	
	
	
	3600
	
	
	
	5.186
	14.537

	
	
	
	
	
	
	
	7200
	
	
	
	4.162
	9.581




	· Samsung (R1-2303124)
[image: ]
Fig.3 CDF of positioning errors in different scenarios



Mixed dataset for different InF scenarios
	· CATT (R1-2302699)
Observation 6: For direct AI/ML positioning, by employing the mix-train method and combining the dataset of InF-DH {60%, 6m, 2m} with a small dataset of InF-SH {20%, 2m, 10m}, the AI/ML model achieved a horizontal positioning accuracy of 1.81m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 6.48m.



SNR mismatch
	· Qualcomm (R1-2303586)
Observation 13: If training and testing have mismatched SNR (e.g., due to change in transmit power), training direct AI/ML model on a higher SNR regime can achieve better generalization to unseen SNR settings than training on a smaller SNR regime.
Table 8 Evaluation results for AI/ML model deployed on UE-side, with different TX power settings, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm) 
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.6

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.12

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.64

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.89

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.91

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.39

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.45

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.56




	· Ericsson (R1-2302335)
Observation 28	Centralized ML assisted or direct positioning models using PDP inputs exhibits much lower sensitive to train/test SNR drops than models using CIR inputs.
- Models using PDP inputs are still usable with an SNR drop of 15 dB with 90%tile 2D positioning errors below 0.7 m.
- The 90%tile 2D positioning errors of models using CIR inputs jump to >2 m with an SNR drop of 15 dB.
- With an SNR drop of 30 dB, models using CIR or PDP inputs are not usable.
Observation 29	Centralized ML assisted or direct positioning models using PDP inputs exhibits much higher sensitive to train/test SNR increases than models using CIR inputs. All models become unusable with SNR increases of at least 15 dB.
Observation 30	Centralized ML assisted or direct positioning models using DP inputs are protected from train/test SNR mismatch. Even with an SNR mismatch of 30 dB, the models maintain 90%tile 2D positioning error below 0.9 m.
Observation 31	Semi-distributed ML assisted positioning models exhibit very high sensitivity to train/test SNR mismatch.
Observation 32	Model position accuracy in the presence of SNR mismatch may be improved by training the models with multiple datasets corresponding to various extents of SNR mismatch.

Table 26 90%tile 2D positioning accuracy using CIR inputs for different UE transmit powers in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different UE transmit powers.
	Model details
	Positioning approach
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different UE transmit powers in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	23 dBm UE
	8 dBm UE
	-7 dBm UE

	CIR trained with 23 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	0.371
	2.253
	52.587

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	2.146
	29.281

	CIR trained with -7 dBm UE
	Cent. Assist.
	0.73 M
	32 M
	7.664
	4.938
	0.513

	
	Cent. Direct
	0.73 M
	32 M
	7.441
	5.188
	0.532




	· Samsung (R1-2303124)
	Case 
	Training 
	Interference
	Pos error (m) @90%

	1
	-10db SNR level
	-10db SNR level
	9.21

	2
	-10db SNR level
	10db SNR level
	7.52

	3
	10db SNR level
	-10db SNR level
	49.41

	4
	10db SNR level
	10db SNR level
	3.47


Observation 2: the mis-alignment of the SNR may not always degrade the performance, e.g., low SNR model may have better pos accuracy by having high SNR inference input than same low SNR inference input.



Time varying changes
	· MediaTek (R1-2303340)
Table 30. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of time varying  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	32400
	0
	3600
	464.24K
	0.266G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	11.206

	
	
	
	
	
	
	
	3600
	
	
	
	6.712

	
	
	
	
	
	
	
	7200
	
	
	
	5.076

	PDP [18,2,256]
	UE pos [x,y]
	0%
	without time varying
	with time varying
	with time varying
	32400
	0
	3600
	463.95K
	0.264G
	>100

	
	
	
	
	
	
	
	1200
	
	
	
	9.950

	
	
	
	
	
	
	
	3600
	
	
	
	6.146

	
	
	
	
	
	
	
	7200
	
	
	
	4.796



Observation 37:	Performance of direct AI/ML positioning degrades when there is time varying change between the training data and test data, and fine-tuning can improve the performance.



Channel estimation error
	· vivo (R1-2302481)
[bookmark: _Ref115426247]Table 22. Evaluation results for AI/ML model deployed on UE or Network side, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Without interference
	0 interfering TRP (Without interference)
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	
	1 interfering TRP
	25k
	1k
	1.65M
	22.30M
	8.35

	CIR
	Pos.
	0
	
	4 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	10.22

	CIR
	Pos.
	0
	
	8 interfering TRPs
	25k
	1k
	1.65M
	22.30M
	13.14


Observation 17:	The interference from TPRs can dramatically impair the positioning performance of AI/ML model.
Proposal 6:	 Further study the impact and potential solution of CIR estimation error on AI/ML based positioning performance.

	· InterDigital (R1-2303450)
Table 4. Evaluation results for AI/ML model deployed on UE-side, CIR input under different SNR conditions, without model generalization, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	0.98

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	1.20

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.07

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	1.41

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	2.00

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	3.55



Table 5. Evaluation results for AI/ML model deployed on UE-side, CIR input, trained and tested under different SNR conditions, with model generalization without mixed dataset or model finetuning, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	>15 

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	1.40

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	2.28

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	37 M
	843 M FLOPs
	2.77

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	1.4 M
	38 M FLOPs
	4.85

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.93

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	5.05



Observation 23: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.

	· MediaTek (R1-2303340)
Table 27. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], different channel estimation error
	Model input
	Model output
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	Train
	Test
	Test 
Train
	SNR=0dB
	SNR=10dB
	SNR=20dB
	Ideal

	CIR [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.645
	3.825
	3.956
	3.953

	
	
	
	
	SNR=10dB
	53.064
	1.520
	1.752
	1.769

	
	
	
	
	SNR=20dB
	60.615
	51.917
	1.115
	0.948

	
	
	
	
	Ideal
	53.918
	59.543
	43.803
	0.940

	
	
	16200+16200
	3600
	0dB & 10dB
	2.760
	1.819
	1.524
	1.540

	
	
	32400+32400
	3600
	0dB & 10dB
	2.135
	1.386
	1.142
	1.150

	PDP [18,2,256]
	UE pos [x,y]
	32400
	3600
	SNR=0dB
	2.255
	2.339
	2.405
	2.439

	
	
	
	
	SNR=10dB
	43.713
	1.427
	1.051
	1.093

	
	
	
	
	SNR=20dB
	68.18
	37.334
	1.034
	0.756

	
	
	
	
	Ideal
	54.430
	21.131
	1.532
	0.821

	
	
	16200+16200
	3600
	0dB & 10dB
	2.297
	1.629
	1.325
	1.332

	
	
	32400+32400
	3600
	0dB & 10dB
	2.087
	1.510
	1.139
	1.161


Observation 33:	The direct AI Model trained by dataset with large channel estimation error can be generalized to dataset with small channel estimation error.
Observation 34:	The positioning performance can be improved by mixing dataset with different channel estimation errors at the cost of the training complexity.



Model fine-tuning for channel estimation error
	· MediaTek (R1-2303340)
Table 28. Evaluation results for AI/ML model deployed on UE or network-side with generalization, CNN, UE distribution area = [120x60 m], fine-tuning of channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML
20dB
	AI/ML
0dB

	CIR [18,2,256]
	UE pos [x,y]
	0%
	0dB
	20dB 
	20dB
	32400
	0
	3600
	464.24K
	0.266G
	3.956
	2.645

	
	
	
	
	
	
	
	1200
	
	
	
	2.024
	7.420

	
	
	
	
	
	
	
	3600
	
	
	
	1.944
	14.220

	
	
	
	
	
	
	
	7200
	
	
	
	1.778
	45.923

	PDP [18,2,256]
	UE pos [x,y]
	0%
	0dB
	20dB
	20dB
	32400
	0
	3600
	463.95K
	0.264G
	2.405
	2.255

	
	
	
	
	
	
	
	1200
	
	
	
	1.875
	3.755

	
	
	
	
	
	
	
	3600
	
	
	
	1.733
	13.873

	
	
	
	
	
	
	
	7200
	
	
	
	1.607
	16.828



Observation 35:	Fine-tuning a model with samples of new parameter setting (e.g., drop, clutter setting, channel estimation error, timing error, scenario) can achieve positioning accuracy improvement when the pre-trained model is transferred to a new parameter setting for direct AI/ML positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained parameter setting.



Impact of user density/size of the training dataset
	· MediaTek (R1-2303340)
Table 31. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different UE density  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
UE density 
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	InF-DH {60%,6m,2m}
	InF-DH {60%,6m,2m}
	4.5UEs/
	464.24K
	0.266G
	0.940

	
	
	
	
	
	2.25UEs/
	
	
	1.273

	
	
	
	
	
	1.125UEs/
	
	
	1.839

	
	
	
	
	
	0.5625UEs/
	
	
	3.250

	PDP [18,2,256]
	UE pos [x,y]
	0%
	
	
	4.5UEs/
	463.95K
	0.264G
	0.821

	
	
	
	
	
	2.25UEs/
	
	
	1.357

	
	
	
	
	
	1.125UEs/
	
	
	2.039

	
	
	
	
	
	0.5625UEs/
	
	
	2.758




	· Huawei (R1-2302362)
Table 14. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different sizes of training dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	2.14M
	0.81

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	15000
	5000
	13.08K
	2.14M
	0.99

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	10000
	5000
	13.08K
	2.14M
	1.11

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	5000
	5000
	13.08K
	2.14M
	1.83




	· Ericsson (R1-2302335)
[image: ]
Figure 6: Positioning accuracy vs training data size according to Table 4. Model input is CIR.
Observation 3	Positioning accuracy significantly better than the average training sample distance can be achieved using distributed or centralized ML assisted positioning or centralized ML direct positioning approaches with CIR inputs in a highly non-LoS environment such as the {60%, 6m, 2m} InF-DH scenario.

	· NVIDIA (R1-2303439)
[image: Chart

Description automatically generated]
Figure 9: Positioning accuracy of AI/ML based method under different user densities.

	· xiaomi (R1-2302979)
[image: ]
Figure 3 Relationship between size of training data set and positioning accuracy for direct AI-based positioning



Evaluation of input size reduction
Different type of model input
	· Huawei (R1-2302362)
Table 10. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR 4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR 4*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.88

	CIR 4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.19

	CIR 4*4*32
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.52

	PDP 4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP 4*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	1.04

	PDP 4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	0.92

	PDP 4*4*32
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	1.68



Proposal 1 : At least for direct positioning, since the required measurement payload size to achieve a given accuracy target varies depending on deployment scenario and channel conditions, measurement reporting with flexible payload size should be supported.

	· Ericsson (R1-2302335)
Table 9 90%tile 2D positioning accuracy using 32-tap DP inputs for different model size classes and different training dataset sizes in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different train set sizes in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	80,000
	40,000
	20,000
	10,000

	Small models DP
	Cent. Assist.
	0.36 M
	9 M
	0.571
	0.653
	0.798
	0.989

	
	Cent. Direct
	0.36 M
	9 M
	0.558
	0.658
	0.789
	1.014

	Medium models DP
	Cent. Assist.
	1.4 M
	34 M
	0.390
	0.477
	0.600
	0.834

	
	Cent. Direct
	1.4 M
	34 M
	0.391
	0.465
	0.600
	0.823

	Large models DP
	Cent. Assist.
	5.6 M
	132 M
	0.294
	0.371
	0.502
	0.715

	
	Cent. Direct
	5.6 M
	132 M
	0.298
	0.379
	0.522
	0.758






Model input truncated in time domain

	· vivo (R1-2302481)
Table 67	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Truncated CIR 
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	1-30
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.04

	CIR
	Pos.
	1-100
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.04

	CIR
	Pos.
	30-100
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	2.99



Observation 46:	There is no obvious positioning accuracy degradation for direct AI/ML positioning when only the first 30 samples of time-domain CIR are truncated.
Observation 47:	The position of truncation of CIR has a significant impact on positioning performance for direct AI/ML positioning.
Proposal 31:	Further study the impact of CIR truncation on positioning performance and overhead reduction for direct AI/ML positioning, at least for the following aspects:
•	The minimal length of truncated CIR to reach a target positioning accuracy.
•	The position of truncated CIR, such as the front part or the middle part.

	· Huawei (R1-2302362)
Table 4. Evaluation results for AI/ML model deployed on network-side, ResNet, 18 TRPs, different CIR lengths
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
18*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	12.91M
	0.5

	CIR
18*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	6.52M
	0.64

	CIR
18*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	3.36M
	0.71



Observation 3 : For direct AI/ML positioning, when the model input is CIR, compared to the initial assumptions of 18 TRPs and 256 samples per CIR as model input, the signaling payload could be reduced to 1/18 when going down to 4 TRPs and 64 samples per CIR, while still maintaining sub-meter level accuracy.



Reduced number of taps as model input
	· MediaTek (R1-2303340)
Table 34. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different N’t and Nt  
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	464.24K
	0.266G
	0.940

	
	
	
	
	20
	
	
	
	
	0.915

	
	
	
	
	15
	
	
	
	
	1.017

	
	
	
	64
	25
	
	
	243.058K
	0.066G
	0.984

	
	
	
	
	20
	
	
	
	
	0.851

	
	
	
	
	15
	
	
	
	
	1.097

	PDP [18,2,256]
	UE pos [x,y]
	0%
	256
	25
	32400
	3600
	463.95K
	0.264G
	0.821

	
	
	
	
	20
	
	
	
	
	1.089

	
	
	
	
	15
	
	
	
	
	1.133

	
	
	
	64
	25
	
	
	242.770K
	0.066G
	0.942

	
	
	
	
	20
	
	
	
	
	0.965

	
	
	
	
	15
	
	
	
	
	1.057



Observation 40:	By selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.

	· Ericsson (R1-2302335)

Observation 11	Retaining a smaller number of strongest CIR or PDP taps can be an effective approach to reduce training dataset sizes.
- Zeroing out half of the 256 taps result in negligible positioning accuracy losses.
- Approaching or better than 1 m UE positioning accuracy can be achieved by retaining only 9 strongest CIR or PDP taps with the centralized models.
- Approaching or better than 0.5 m UE positioning accuracy can be achieved by retaining 64 strongest CIR taps with the centralized models.

Table 8 UE 2D positioning errors for {60%, 6m, 2m} test dataset at different percentiles and different numbers of down sampled taps (training dataset size = 40,000 samples).
	Model class
	Positioning approach
	Model complexity
[# paras]
	90%tile 2D positioning error [m] with numbers of down sampled taps in {60%, 6m, 2m} InF-DH

	
	
	
	256 taps
	128 taps
	64 taps
	32 taps
	16 taps
	9 taps

	Small models CIR
	Dist. Assist.
	0.86 M
	0.453
	0.478
	0.558
	0.764
	1.208
	1.995

	
	Cent. Assist.
	0.73 M
	0.371
	0.372
	0.434
	0.545
	0.678
	0.805

	
	Cent. Direct
	0.73 M
	0.373
	0.382
	0.425
	0.540
	0.678
	0.824

	Small models PDP
	Dist. Assist.
	0.43 M
	0.680
	0.687
	0.732
	0.856
	1.001
	1.452

	
	Cent. Assist.
	0.36 M
	0.524
	0.534
	0.514
	0.604
	0.698
	0.868

	
	Cent. Direct
	0.36 M
	0.510
	0.522
	0.522
	0.580
	0.689
	0.824




	· xiaomi (R1-2302979)
Table 1 Evaluation results for reduced CIR taps per TRP for direct AI-based positioning, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6, 2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.4462

	18*24*2 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	539.94MFlops
	0.8219






Reduced number of TRPs
	· vivo (R1-2302481)
Table 70	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Number of TRP
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	2
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	4.71

	CIR
	Pos.
	4
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.60

	CIR
	Pos.
	9
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.26

	CIR
	Pos.
	18
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	0.99




	· CATT (R1-2302699)
Observation 11: For direct AI/ML positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.


	· Nokia (R1-2302632)
[image: ]
Figure 11 - Positioning accuracy vs. IPD for 18, 9, and 6 TRPs cases.

	· MediaTek (R1-2303340)

Table 35. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different NTRP
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	0.940

	CIR [12,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	1.251

	CIR [9,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	1.834

	CIR [5,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	3.352

	CIR [3,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	464.24K
	0.266G
	6.406

	PDP [18,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	0.821

	PDP [12,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	1.526

	PDP [9,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	1.772

	PDP [5,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	5.010

	PDP [3,2,256]
	UE pos [x,y]
	0%
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400
	3600
	463.95K
	0.264G
	6.004


[bookmark: _Ref131170249]
Observation 41: The performance of direct AI/ML positioning decreases with the decrease of NTRP.
[bookmark: _Ref131168125]Observation 42: The effect of NTRP on direct AI/ML positioning performance is higher than that of Nt and Nt’.

	· Huawei (R1-2302362)
Table 3. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR
2*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.18K
	3.26M
	2.4

	CIR
1*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.11K
	1.63M
	5.16




	· xiaomi (R1-2302979)
Table 2 Evaluation results for reduced TRPs for direct AI-based positioning, model deployed on UE or NW side, without model generalization, ResNet
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.4462

	9*256 *1 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	3.38GFlops
	1.2738




	· Apple (R1-2303926)
Table 10: Direct AI/ML Positioning: Evaluation results for AI/ML model deployed on UE or Network side, using different # of TRPs , with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	47500
	2500
	1,480,140
	2.75G
	0.884m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	47500
	2500
	1,480,140
	2.75G
	1.0629

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	47500
	2500
	1,480,140
	2.75G
	

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	23750
	1250
	1,480,140
	2.75G
	1.234m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	23750
	1250
	1,480,140
	2.75G
	1.2960

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	23750
	1250
	1,480,140
	2.75G
	1.8235

	CIR
[18,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
18 TRP
	Drop 1
18 TRP
	9500
	500
	1,480,140
	2.75G
	1.860m

	CIR
[9,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
9 TRP
	Drop 1
9 TRP
	9500
	500
	1,480,140
	2.75G
	1.9717m

	CIR
[4,1,256,2]
	UE coordinates
[1x2]
	2-D UE position  100% labeled
	Drop 1
4 TRP 
	Drop 1
4 TRP
	9500
	500
	1,480,140
	2.75G
	2.7403m



Observation 3: There are trade-offs in the size/type of input to the model and the positioning performance.
Proposal: Study the performance using mixed inputs



Evaluation of noisy ground truth labels
	· vivo (R1-2302481)
Table 26	Evaluation results for AI/ML model deployed on UE or Network side, with model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Std = 0
	0
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	Pos.
	0
	Std = 0.5
	0
	25k
	1k
	1.65M
	22.30M
	1.66

	CIR
	Pos.
	0
	Std = 1
	0
	25k
	1k
	1.65M
	22.30M
	2.20

	CIR
	Pos.
	0
	Std = 2
	0
	25k
	1k
	1.65M
	22.30M
	3.47



Observation 20:	The positioning accuracy gradually degrades with the increase of labeling error, but is still acceptable until standard deviation   is 1 m. The maximum acceptable labeling errors (standard deviation) in the horizontal direction should be less than 1m to achieve 2m@90% positioning accuracy.
Observation 21:	AI/ML based positioning is robust to label noise to some extent.
Proposal 8:	According to the requirement of positioning accuracy, the maximum acceptable labeling error should be identified firstly before data collection
Proposal 9:	Further study the impact and potential solution of labeling error on AI/ML based positioning performance

	· Ericsson (R1-2302335)

Observation 18	Different ML positioning approaches can exhibit different levels of sensitivity to labeling errors. Semi-distributed ML assisted positioning approaches exhibit lower sensitivity to labeling errors than centralized ML positioning approaches.
Observation 19	Different model inputs can affect the sensitivity of the ML models to labeling errors. For the centralized ML assisted positioning or direct positioning approaches, higher sensitivity to labeling errors is observed with CIR inputs than with PDP or DP inputs.
Table 10. 90%tile 2D positioning accuracy using CIR inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models CIR
	Dist. Assist.
	0.86 M
	36 M
	0.453
	0.552
	0.704
	1.116

	
	Cent. Assist.
	0.73 M
	32 M
	0.371
	0.462
	0.702
	1.253

	
	Cent. Direct
	0.73 M
	32 M
	0.373
	0.478
	0.709
	1.262




	· xiaomi (R1-2302979)
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
Error std=0.3 m
	{0.6，6，2}

	{0.6，6，2}

	70000
	10000
	21,277,442
	5.76GFlops
	0.6032

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
Error std=0.8 m
	{0.6，6，2}

	{0.6，6，2}

	70000
	10000
	21,277,442
	5.76GFlops
	0.9500

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
Error std=1.5 m
	{0.6，6，2}

	{0.6，6，2}

	70000
	10000
	21,277,442
	5.76GFlops
	1.1748

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
Error std=2 m
	{0.6，6，2}

	{0.6，6，2}

	70000
	10000
	21,277,442
	5.76GFlops
	1.7503




	· OPPO (R1-2302544)
Table 20. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on NR positioning, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop , 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	7.82

	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop , 20,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	19,600
	400
	2.66M
	5.32 MFLOPs
	7.76

	Normalized CIR + RSRP
	UE coordination
	50% Ideal UE coordination
50% Obtained by existing DL-TDOA scheme
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	4.63


  Table 21. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on NR positioning, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.39


	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop, 80,000 UEs per drop 

{40%,2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	3.55



Observation 10: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
· Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case. 
Table 22. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on truncated Gaussian modeling , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=0.5
	1 drop , 80,000 UEs per drop 
{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.583

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=1
	1 drop , 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.924

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=2
	1 drop , 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.649

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=4
	1 drop , 80,000 UEs per drop 
{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	2.253

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 
{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.39


	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=0.5
	1 drop , 80,000 UEs per drop 
{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.714

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=1
	1 drop , 80,000 UEs per drop 
{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.12

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=2
	1 drop , 80,000 UEs per drop 
{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.71

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=4
	1 drop , 80,000 UEs per drop 
{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	2.75



Observation 11: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance for the case will degrade as the value of L increases

	· Apple (R1-2303926)
[image: ]
Figure 4: Performance Accuracy vs label accuracy

Observation 4: 
· label error that is on the order of (less than or equal to) the positioning accuracy without label errors does not hurt (or even helps) the overall performance. 
· Label error larger than the order of the performance error hurts overall performance as expected. 
Proposal 2:
· The expected label error is needed during data collection for training and for  performance monitoring. 

	· Samsung (R1-2303124)
[image: ]
Fig.9 the impact of labelling error

	· CATT (R1-2302699)
· When the value of L is 1m, the horizontal position accuracy is 1.47m@90% of CDF percentile.
· When the value of L is 3m, the horizontal position accuracy is 2.95m@90% of CDF percentile.
· When the value of L is 5m, the horizontal position accuracy is 4.41m@90% of CDF percentile.
Observation 10: When AI/ML model is trained with different value of label error, as value of L increases, direct AI/ML positioning performance deteriorates. 

	· Nokia (R1-2302632)
Table 13 - Evaluation of ground truth labelling error with different noise standard deviation and their impact on the horizontal 2D error at CDF 90%. The error is indicated using the mean and the variance between 20 different realizations of the same experiment. UE distribution area = 120x60 m.
	Standard deviation of L meters.
	0.0
	0.5
	1.0
	1.5
	2.0
	2.5
	3.0

	Horizontal 2D error at CDF 90% (meters)
	5.8134
	5.8458
	5.9526
	6.0620
	6.300
	6.7307
	6.874

	Percentage of error compared to L=0
	0%
	0.55%
	2.39%
	4.28%
	8.38%
	15.77%
	17.19%




	· InterDigital (R1-2303450)
Table 1. Evaluation results for AI/ML model deployed on [UE]-side, without model generalization, with noisy label data, [short model description], UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error (std. = L m) 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP fingerprint
	UE position
	0% (default)
	 0
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.35

	RSRP fingerprint
	UE position
	0% (default)
	0.05
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.31

	RSRP fingerprint
	UE position
	0% (default)
	0.1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.30

	RSRP fingerprint
	UE position
	0% (default)
	0.25
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.33

	RSRP fingerprint
	UE position
	0% (default)
	0.5
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.38

	RSRP fingerprint
	UE position
	0% (default)
	1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.52

	RSRP fingerprint
	UE position
	0% (default)
	2
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.98




	· MediaTek (R1-2303340)
Table 36. Evaluation results for AI/ML model deployed on UE or network-side without generalization, CNN, UE distribution area = [120x60 m], different standard deviation of labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0
	L=0
	32400
	3600
	464.24K
	0.266G
	0.940

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0.2
	L=0
	32400
	3600
	464.24K
	0.266G
	1.029

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=0.5
	L=0
	32400
	3600
	464.24K
	0.266G
	1.649

	CIR [18,2,256]
	UE pos [x,y]
	0%
	L=2
	L=0
	32400
	3600
	464.24K
	0.266G
	4.115

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0
	L=0
	32400
	3600
	463.95K
	0.264G
	0.821

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0.2
	L=0
	32400
	3600
	463.95K
	0.264G
	1.025

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=0.5
	L=0
	32400
	3600
	463.95K
	0.264G
	1.308

	PDP [18,2,256]
	UE pos [x,y]
	0%
	L=2
	L=0
	32400
	3600
	463.95K
	0.264G
	4.137




	· NVIDIA (R1-2303439)
[image: Chart

Description automatically generated]
Figure 10: Positioning accuracy of AI/ML based method under different degrees of label errors.
Observation 11: Increased labelling error degrades the positioning accuracy of the AI/ML model for RF fingerprinting. When L is not larger than 1 m, the impact of labelling error on positioning accuracy is minor.



Semi-supervised learning
	· vivo (R1-2302481)
Table 61	Evaluation results of semi-supervised learning for AI/ML model deployed on UE or Network side, without model generalization, ViT, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	test
	Model complexity
	Computational complexity
	AI/ML

	CIR
	Pos.
	96%
	{0.6, 6, 2}
	1k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	5.05

	CIR
	Pos.
	99%
	{0.6, 6, 2}
	0.3k labeled &
25k unlabeled
	1k
	1.65M 
	22.30M
	8.78

	CIR
	Pos.
	0
	{0.6, 6, 2}
	1k
	1k
	1.65M 
	22.30M
	12.06

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	9.03

	CIR
	Pos.
	0
	{0.6, 6, 2}
	2k
	1k
	1.65M 
	22.30M
	5.53




	· ZTE (R1-2302441)
Observation 19: 	Semi-supervised learning (i.e., using a large number of unlabeled samples to pretrain a model and the model is further fine-tuned by a small number of labeled samples) outperforms supervised learning (e.g., training from scratch) under the same number of labeled samples for model training.
Observation 20: 	As the increase of labeled samples used for model training, semi-supervised learning has a similar performance as supervised learning.
Proposal 6: 	Study and identify the benefit of semi-supervised learning for AI/ML based positioning.



Other
	· vivo (R1-2302481)
[image: ]
Figure 72	CDF of positioning accuracy of multi-port positioning and single-port positioning.
Observation 39:	Positioning with multi-port data can achieve a more accurate position estimation as compared to single-port positioning.

	· ZTE (R1-2302441)
[image: ]
Figure. 2 CDFs of positioning errors for multi-port AI/ML positioning

	· Samsung (R1-2303124)
[image: ]
Fig.7 CDF of positioning errors with different deployment (hall size)
Observation 4:  When the training dataset is from DH662 small hall size, and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three genralzation cases are degraded severely. 
Observation 5:  When the training dataset is from DH662 small hall size, and 1k training data update and the testing/inference dataset generated from different scenario (InF-SH), or different clutter parameter (DH422), or different deployment (large hall size), the performance of all three generalizations cases are recovered significantly. The larger FH size, the better performance could be achieved.




1st round discussion
Based on the extensive evaluation results submitted by companies, the following observations are recommended.

Observation 5.8-1
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results demonstrate that for generalization purposes, the training data collection need to obtain data from various deployment scenarios for the training dataset, including at least, data from the target deployment scenario.

	
	Company

	Support
	Fujitsu, CATT, InterDigital

	Not support
	vivo



	Company
	Comments

	vivo
	It's not clear to us what ‘the target deployment scenario’ referring to. Also whether ‘training data collection’ here is for initial model training or for fine-tuning/updating. We have concern with the former (initial model training)
Evaluation results showed training with mixed dataset in general has better generalization performance. However, we don’t think such performance results can mandate that “training data collection need to obtain data from various deployment scenarios for the training dataset, including at least, data from the target deployment scenario”. Such statement is too restrictive for AI/ML model deployment where data needs to be collected for any target deployment scenario. As observed below, an AI/ML model can be trained without data from a target scenario in the beginning but adapt to new scenario later.
Even though it may be desirable to collect training data for various scenarios, however, we don’t think such requirement should be mandated for model development considering all these training data collection complexity and overhead, not to mention alternative approaches of model development. 

	MediaTek
	We have concern about the training data collection need to obtain data from various deployment scenarios for the training dataset. 

	HW/HiSi
	Not support. Agree with vivo.
Additionally, the initial training dataset can contain multiple scenarios, but they do not need to include the target scenario. The model can be updated for target scenario (if needed) with model fine-tuning.

	NVIDIA
	Agree with vivo.

	NOK
	We agree with the direction oft he proposal. However, some clarifications should be provided on using the terms:
is it mandatory to get a dataset from the deployment scenario?, what is the scope of fine tuning on this proposal?.

	LG
	Regarding the observation, it is sufficient to describe that the performance is improved based on the mixed dataset in terms of generalization

	Samsung 
	For generalization purposes, data from target scenario is needed for generalization (infernece), why it’s needed for training purpose? Does the intention target to the finetuning/mix data traning?

	ZTE
	The scope should be clear. Observation 5.8-1 is for mixed datasets and Observation 5.8-2 is for fine-tuning.

	Qualcomm
	The intention of the proposal is not clear. We suggest the FL to elaborate more on the intention and it is better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.


	Xiaomi
	Agree with vivo

	Apple
	Agree with LG




Observation 5.8-2 
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results demonstrate that with the support of model fine-tuning/re-training, the AI/ML model can adapt to a new or changing deployment scenario, if the existing training dataset and/or trained model(s) cannot adequately cover the new or changing deployment scenario.

	
	Company

	Support
	Fujitsu, CATT, MediaTek, OPPO, Hw/HiSi, InterDigital, NVIDIA, ZTE, Apple

	Not support
	



	Company
	Comments

	NOK
	We are ok with the direction of the proposal. 

	Samsung
	Support in principle, but we agrees the finetuning etc an improve the peformance in last meeting, isn’t the same as „evaluation results demonstrate that with the support of model fine-tuning/re-training, the AI/ML model can adapt to a new or changing deployment scenario,“? and for „if the existing training dataset and/or trained model(s) cannot adequately cover the new or changing deployment scenario“, does it mean the model did not pass the monitoring?
[Moderator] How to trigger model fine-tuning is a separate issue. Yes, model monitoring can be applied.

	Qualcomm
	· It is better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.

· The Moderator needs to clarify the intended spec impact for this porposal. 
· We do not observe that model finetuning (with reasonably small dataset size) can work for new environments unless it considers large dataset size. We suggest the following edit:
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results demonstrate that with the support of model fine-tuning/re-training, the AI/ML model can adapt to a new or changing deployment scenario, if the existing training dataset and/or trained model(s) cannot adequately cover the new or changing deployment scenario.
To Moderator:
We actually do not see our proposals/observations been captured in the summary of Section 5.2.7 (time varying changes) and Section 5.4 (evaluation of input size reduction)

	Xiaomi
	We are OK with this direction. 
But we have some concern on the wording of “adapt to a new or changing deployment scenario“. We are not sure how to judge one model can „adapt to a new or changing deplotyment scenario“ or can’t. What is the exact metrics. 
· We prefer the statement that the support of model fine-tuning/re-training, theperformance  AI/ML model can be improved. 




Based on several companies’ input (e.g., MediaTek (R1-2303340), Qualcomm (R1-2303586) and NVIDIA (R1-2303439)), the following observations are made on fine-tuning. 

Observation 5.8-3 
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results show that fine-tuning a model with dataset of the new deployment scenario can achieve positioning accuracy improvement when the model is transferred to a new deployment scenario. On the other hand, the performance degrades for the previous deployment scenario that the model was trained for.

	
	Company

	Support
	Fujitsu, CATT, MediaTek, OPPO,LG

	Not support
	



	Company
	Comments

	HW/HiSi
	We do not agree with the last sentence, or it should at least be clarified 
“On the other hand, the performance degrades for the previous deployment scenario that the model was trained for.”
If this would be the case, the previous model is not lost. So if the environment changes back, the old model could be re-used.
[Moderator] Evaluations by several companies show this phenomenon, see for example, MediaTek (R1-2303340) and Ericsson (R1-2302335). 

	NOK
	OK with the direction oft he proposal. One important thing that we shared in our previous contributions is that the amount of data used in fine tuning has an impact on the “performance degradation fort he previous deployment scenario“. Thus, we suggest to include this extra complement detail in the proposal. As example, we have provided an evaluation related to this proposal in our RAN1#111 contribution (R1- 2212331).

[image: ]
[Moderator] OK, updated the Observation with the above.

	ZTE
	Similar view with Huawei. The new model cannot work well for previous deployment scenario, but the legacy model can.

	Qualcomm
	· It is better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.
· Just to clarify, what we observe is that the model finetuning still far from giving considerable improvement. The improvement of model finetuning with reasonably small dataset size is minimal.

	Apple
	Also see in our results that the amount of fine-tuning data affects the positioning accuracy similar to Nokia.




Observation 5.8-4 
For both direct AI/ML positioning and AI/ML assisted positioning: 
· Model fine-tuning with a small dataset size is most useful for enhancing positioning accuracy for small unseen changes (e.g., different drops). 
· If the new deployment scenario is significantly different from the deployment scenario the model was trained for (e.g., light NLOS to heavy NLOS due to clutter parameter change), fine-tuning require similarly large dataset size as training the model from scratch, in order to achieve the best performance for the new deployment scenario.

	
	Company

	Support
	Fujitsu

	Not support
	vivo



	Company
	Comments

	vivo
	The proposed observation is not accurate and/or complete. 
We showed in our evaluation results that fine-tuning can improve positioning accuracy for different synchronization error, not just different drops for the 1st bullet. Furthermore, we showed in our evaluation results that fine-tuning can improve positioning accuracy for large unseen changes (i.e., from heavy NLOS InF-DH to light or no NLOS (InF-HH, InF-SH)) for both direct AI/ML positioning and AI/ML assisted positioning as well.   

	CATT
	Can moderator clarify what is the first observation of ‘most useful’ is compared to? Compared to model switching? Or mix-train? Or any other methods?

	MediaTek
	Need more clarification on what scenario is small unseen changes and what is significantly deployment scenario.

	OPPO
	It is difficult to define small unseen changes, it is better to describe the detail scenario.

	HW/HiSi
	We do not support, since the expression used here are rather vague and give a lot of room for interpretation (like, what exactly is a small unseen change)?

	NOK
	We agree with the intention. However, some rewording is needed as suggested by other companies. 

In general, fine tuning is not expected to outperform training the model from scratch in any specific scenario. Thus, we suggest replacing the last sentence:
 “… , in order to achieve the best performance for the new deployment scenario.”
By
“ to achieve an acceptable performance.”

	LG
	Fine in principle but the clarification is needed to the amount of change on the scenario.

	ZTE
	More clarifications on what are unseen changes are necessary.

	Qualcomm
	· It is better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions when it comes to model finetuning.
· We are ok with the second bullet. 
For the first bullet, doing model switching can achieve better performance than model finetuning. The example of having different drops is not a minimal unseen change. The performance can degrade significantly for different drops in direct AI/ML positioning.

	Xiaomi
	· More specific scenario or unseen change should be clarified for the first bullet and second bullet. Currently, FL just give two examples. Besides these two examples, is there any other scenarios? 

	Apple
	· May need to show explicit examples as in our results for AI-assisted positioning, finetuning helped quite a bit in the change from InF-DH TO InF-SH.



Observation 5.8-5 
For both direct AI/ML positioning and AI/ML assisted positioning, the positioning accuracy is significantly affected by the training dataset size for a given UE distribution area (or equivalently, sample density in #samples/m2). 
· The larger the training dataset size (i.e., smaller average distance between samples), the smaller the positioning error (in meters).
· If changing training dataset size while holding other parameters constant,  the positioning accuracy (in meters) follows the trend of average distance (in meters) between samples. 
· Evaluation results show that the best compromise between sample density and achieved positioning accuracy can be found.

	
	Company

	Support
	Fujitsu, InterDigital

	Not support
	Vivo, [HW/HiSi]



	Company
	Comments

	vivo
	We think this statement of “the positioning accuracy is significantly affected by the training dataset size for a given UE distribution area” is not always correct.
The 1st bullet may be interpreted that positioning accuracy always improves as the training dataset size increase. However, as many companies (including ours) showed, the positioning accuracy improvement is diminishing after some training dataset size. Therefore, there’s a tradeoff between training dataset size (efficiency) and positioning accuracy, not just dataset size itself.

	HW/HiSi
	Agree with the comment form vivo, that there actually is a saturation on how many data samples are useful to further increase accuracy.
Also, if an observation for the training data set size should be made, we suggest that also observations for other varying parameters should be made, like number of TRPs, measurement lengths, etc.

	NOK
	We are ok with the direction. However, we should take care that in simulations, the dataset size (or sample density) indicates the quality of our datasets because we are considering only uniform UE distribution. However, it is challenging to get a uniform distribution of real data collection in the field. Thus, for this reason, we should include in the observation that it applies only to “uniform users distribution”.

	ZTE
	We are fine with the direction. However, we need to discuss how to capture the evaluation results. For example, shall we capture the conditions (model input type, dataset density) to achieve a target performance(e.g., sub-meter level).

	Qualcomm
	· We are fine with the first bullet and also observe the saturation discussed by other companies. For the other two bullets, we have not seen enough evaluations from companies to support these observations.
· It is also better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.


	Xiaomi
	· Similar comment with vivo

	Apple
	· Agree witht the first two bullets. 




Observation 5.8-6 
For direct AI/ML positioning, evaluation results using 10dB step size show that a model trained by a dataset with larger channel estimation error can generalize well in a deployment scenario with smaller channel estimation error. 
· In contrast, a model trained by a dataset with smaller channel estimation error does not generalize well in a deployment scenario with larger channel estimation error.

	
	Company

	Support
	MediaTek

	Not support
	



	Company
	Comments

	NOK
	We need more evaluation to do this observation.

	LG
	Similar view with Nokia for the specific value of step size

	ZTE
	Agree with Nokia.

	Qualcomm
	Channel estimation error is a function of implementation and SNR. Collecting data from large number of UE locations should naturally account for SNR heterogeity. In practice, SNR can be high for UE close to cell center and lower as moving to cell edge. To compensate for SNR loss, the NW can configure repetitions for PRS. Overall, we do not see a strong need to make such a conclusion.




Observation 5.8-7 
For direct AI/ML positioning, evaluation results show that a model trained by a dataset with lower SNR have better generalization property than a model trained by a dataset with higher SNR.
· Evaluation results show that the model deteriorates significantly if there is a SNR difference of more than 15 dB between training and testing.

	
	Company

	Support
	InterDigital

	Not support
	



	Company
	Comments

	vivo
	We have results of channel estimation error for AI/ML assisted positioning as well. We didn’t find any proposed observations on this topic ion section 6.9. Then we suggest to capture observations for both direct and AI/ML assisted positioning here.
We suggest the following as observation:
For both direct AI/ML and AI/ML assisted positioning, evaluation results show that there is a range of applicable SINR for model input for a trained model.
· Evaluation results show that the model deteriorates significantly with out of range model input (e.g. a SINR difference of more than 15 dB between training and testing model input).


	Qualcomm
	We actually observe the opposite in our evaluations. Training the model on higher SNR settings gives it better generalization to other SNR regimes.  Same discussion to Observation 5.8-6 applies here as well.




Observation 5.8-8 
For direct AI/ML positioning, based on evaluation results of timing error in the range of 0-50 ns, the model trained by a dataset with larger UE/gNB RX and TX timing error can generalize well in a deployment scenario with smaller UE/gNB RX and TX timing error.
· In contrast, a model trained by a dataset with smaller UE/gNB RX and TX timing error does not generalize well in a deployment scenario with larger UE/gNB RX and TX timing error.

	
	Company

	Support
	Fujitsu, HW/HiSi

	Not support
	



	Company
	Comments

	MediaTek
	We have same observation for network synchronization error. Another observation for network synchronization error could be:
For direct AI/ML positioning, based on evaluation results of timing error in the range of 0-50 ns, the model trained by a dataset with larger network synchronization error can generalize well in a deployment scenario with smaller network synchronization error.
· In contrast, a model trained by a dataset with smaller network synchronization error does not generalize well in a deployment scenario with network synchronization error.




Observation 5.8-9 
For direct AI/ML positioning, the positioning error increases approximately linearly as L increases, where L (in meters) is the standard deviation of the ground truth label error.  

	
	Company

	Support
	CATT

	Not support
	



	Company
	Comments

	vivo
	We have results of labelling error for AI/ML assisted positioning as well. We didn’t find any proposed observations on this topic ion section 6.9. Then we suggest to capture observations for both direct and AI/ML assisted positioning here.
It’s not clear how to interpret “approximately linearly as L increases”. 
We think the intention of this labeling error study is to verify that noisy ground truth label can still be used for AI/ML model training/development for a given positioning accuracy target.  

	MediaTek
	Agree with vivo for the intention of this labeling error study is to verify that noisy ground truth label can still be used for AI/ML model training/development for a given positioning accuracy target.

	OPPO
	The observation is fine. However, as elaborated in our contribution(R1-2302544), if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance cannot reflect that of a practical AI model (e.g., an AI model trained by labels based on NR positioning. The estimation errors of NR positioning are correlated for the close UEs due to the spatial consistency, whereas the errors of truncated Gaussian modelling are independent even for collocated UEs.

	InterDigital
	We generated labelling error for L= {0 m, 0.05m, 0.1m, 0.25m, 0.5m, 1m, 2m}. By observing other companies’ inputs, it seems like companies have used values of L which are in order of meters. We wonder if the proposed observation is valid for smaller values of L (a few centimeters or tens of centimeters). Our preference is to encourage more evaluations covering L smaller than 1 meter at centimeter level granularity.

	NOK
	We should include in the observation the distribution used in simulation to add the error because we can provide a false generic observation of a scenario that is difficult to identify in the field. 
As many companies indicated, we should include the common understanding between companies in this evaluation result. It is that for small labeling errors, the performance was not degraded so much.

	LG
	Similar understanding with vivo that the noisy ground truth label can still be used for AI/ML model training/development for a given positioning accuracy target not for the accuracy performance itself.

	Qualcomm
	It is not clear whether this observation can hold true in all cases and scenarios.

	Xiaomi
	We have similar understanding with vivo, MTK and LG. 



2nd round discussion
The following observations have broad support.

Observation 5.9-1 
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results demonstrate that with the support of model fine-tuning/re-training, the AI/ML model can adapt to a new or changing deployment scenario, if the existing training dataset and/or trained model(s) cannot adequately cover the new or changing deployment scenario.

	Company
	Comments

	Samsung
	Even we agree such intention, one concern is that we did not have actually the critiera on defining “adapt“, can adapt means the pos error gets how much close to the inference performance in the new or changing deployment scenario? Or the pos error goes below what level to be called „can be adapt“.
Another question is, for all the generalization factors, only deployment scenario is mentioned here, will we have such kind of potential observation for each of the generalization factor? Or here is the broad meaning of scenario which covers all possible generalization factor?

	Qualcomm
	· We think it is better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.
· Would the Moderator please clarify the intended spec impact for this porposal?
· We do not observe that model finetuning (with reasonably small dataset size) can work for new environments unless it considers large dataset size. We suggest the following edit:
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results demonstrate that with the support of model fine-tuning/re-training, the AI/ML model can adapt to a new or changing deployment scenario, if the existing training dataset and/or trained model(s) cannot adequately cover the new or changing deployment scenario.
To Moderator:
We also do not see our proposals/observations been captured in the summary of Section 5.2.7 (time varying changes) and Section 5.4 (evaluation of input size reduction)



Observation 5.9-2 
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results show that fine-tuning a model with dataset of the new deployment scenario can achieve positioning accuracy improvement when the model is transferred to a new deployment scenario. On the other hand, the performance degrades for the previous deployment scenario that the model was trained for. The degree of degradation varies with the amount of data used in fine-tuning.  

	
	Company

	Support
	Fujitsu, CATT, NOK, MediaTek, LG, CAICT, Apple

	Not support
	



	Company
	Comments

	HW/HiSi
	We think that the behavior/performance in the old environment is not relevant here. We are looking how the model can adopt to changing conditions. The fine-tuned model is for the new environment and the old environment which it has „left behind“ is not applicable. So there is no need to add the last sentences in our view.
Could it please be explained if the purpose for this observation is to observe how a model can adapt to unseen conditions, or how it can maintain its performance for an old environment that is not applciable anymore?
Based on our understanding we would prefer to delete the last sentiens
Updated :Observation 5.9-2 
For both direct AI/ML positioning and AI/ML assisted positioning, evaluation results show that fine-tuning a model with dataset of the new deployment scenario can achieve positioning accuracy improvement when the model is transferred to a new deployment scenario. On the other hand, the performance degrades for the previous deployment scenario that the model was trained for. The degree of degradation varies with the amount of data used in fine-tuning.  


	Qualcomm
	· Just to clarify, what we observe is that the model finetuning still far from giving considerable improvement. The improvement of model finetuning with reasonably small dataset size is minimal.
· It is also better to split the discussion for direct AI/ML and AI/ML assisted as they may have different implications and conclusions.



Performed Evaluation of AI/ML-assisted positioning
In this meeting, a large amount of evaluation work has been performed by companies for AI/ML-assisted positioning. These valuable results are crucial to help RAN1 to make progress.
Representative results submitted by companies are copied below.
Evaluation of single-TRP construction with same model for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· vivo (R1-2302481)
Table 5	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR w. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M*1
	0.83

	CIR w/o. BS info.
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	2.57




	· OPPO (R1-2302544)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	2.42

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 
{60%, 6, 2}
Single-TRP construction
	Same drops 
	784,000
	16,000
	0.33M
	0.66 MFLOPs
	7.17

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 
{60%, 6, 2}
Single-TRP construction
	Same drops 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	14.47

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS (0,1)
	1 drop, 80,000 UEs per drop 
{40%, 2, 2}
Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	0.35




	· Qualcomm (R1-2303586)
Observation 19: The soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 4.7 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 
Proposal 11: For AI/ML-assisted positioning, the single-TRP approach is adopted for evaluation as a baseline.

	· MediaTek (R1-2303340)
Table 8. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(256*8)
	1TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	187k
	15M*18
	20.1

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.05

	non-normalized PDP(256*8)
	1TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	187k
	15M*18
	14.9

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56






Generalization aspects (different setting for training and testing)
	· CATT (R1-2302699)
Observation 26: For the AI/ML-assisted positioning with LOS/NLOS identification, the generalization performance with different clutter parameters and different scenarios is good.

	· Qualcomm (R1-2303586)
Proposal 8: consider the following observations on AI/ML positioning approaches:
· Direct AI/ML positioning approach offers the best positioning accuracy followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction approaches, respectively
· AI/ML assisted positioning with single-TRP input construction approach offers the best generalization performance (when applying no model LCM to other approaches).
· AI/ML assisted positioning with soft-information output offers higher positioning accuracy than AI/ML assisted positioning with hard-information output.



Different drops
	· OPPO (R1-2302544)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops , UE distribution area = [120x60 m]
	[bookmark: _Hlk132130725]Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS indicator (0,1)
	1 drop, 80,000 UEs per drop 
{40%, 2, 2}
Single-TRP construction
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	0.33M
	0.66 MFLOPs
	5.25




	· Qualcomm (R1-2303586)
Observation 21: The ML-assisted soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
[image: Chart, line chart

Description automatically generated]
Figure 21 CDF of horizontal positioning error for ML-based soft information reporting across drops

	· MediaTek (R1-2303340)
Table 3. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	93.0%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	97.2%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	60.3%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	93.7%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal
	
	InF-SH
hall size 300x150
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	92.9%


Observation 3:	Performance of AI/ML assisted LOS/NLOS identification positioning degrades when the model is trained with dataset of InF-DH scenario and tested with dataset of InF-SH large hall size scenario. And the performance is improved when mix InF-DH and InF-SH training data.



Different clutter parameters
	· Qualcomm (R1-2303586)
Observation 22: Training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 4.74 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 
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Figure 22. CDF of horizontal positioning error for ML-based soft information reporting across clutter settings



UE/gNB RX and TX timing error
	· MediaTek (R1-2303340)
Observation 6:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 7:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.
Proposal 2	: If generalization over timing error is considered, training data should at least include large timing error for AI/ML positioning.



Different InF scenarios
	· Huawei (R1-2302362)
Table 20. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity(Single-TRP, same model for N TRPs)
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-SH {20%, 2m, 10m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	95.1%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	78%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	97.8%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.3%






Time varying changes
	· Qualcomm (R1-2303586)
Observation 23: The ML-assisted soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
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Figure 23. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.



Channel estimation error
	· MediaTek (R1-2303340)
Observation 4:	Performance of AI/ML assisted LOS/NLOS identification positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 5:	AI/ML model in AI/ML assisted LOS/NLOS identification positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.
Proposal 1	: If generalization over channel estimation error is considered, training data should at least include large channel estimation error for AI/ML positioning.



Evaluation of single-TRP construction with N models for N TRP
Evaluation without generalization considerations (same setting for training and testing)
	· vivo (R1-2302481)
Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	Pos.
	0
	Drop1
	Drop1
	25k
	1k
	1.65M
	22.30M
	0.99

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73



Table 12	Evaluation results for AI/ML model deployed on UE or Network side, without model generalization, full-connection network, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size & type
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	[bookmark: _Hlk115339209]CIR
	LOS/NLOS
	0
	{0.4, 2, 2}
	25k 
	1k
	3.62M*18
	7.24M*18
	1.10

	CIR
	TOA
	0
	{0.4, 2, 2}
	25k 
	1k
	44M*18
	1.45G*18
	0.39


Observation 6:	 AI/ML based LOS/NLOS identification for positioning has the following advantages:
-	More accurate LOS/NLOS identification along with a confidence metric 
-	Better compatibility with existing positioning protocol framework. 
-	Great generalization capability.
and disadvantages: 
-	Positioning performance could suffer from severe degradation in heavy-NLOS scenarios.
-	Obtain LOS/NLOS labels is a challenging task for data collection.

	· Huawei (R1-2302362)
Table 21. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(For Single-TRP, N models for N TRPs; For Multi-TRP, one centralized model)
	ToA estimation accuracy at CDF=90% (m)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	AI/ML

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.88
	1.25

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.84
	1.43

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.45
	0.72

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.55
	0.81






Generalization aspects (different setting for training and testing)
Different drops
	· vivo (R1-2302481)
Table 16. Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	Drop1
	Drop2
	25k
	1k
	4.26M*18
	8.50M*18
	10.37



Observation 11:	Positioning performance of AI/ML assisted positioning degrades when the model trained with dataset of one drop is tested with dataset of other drops.
[image: ]
Figure 55	CDF of positioning accuracy of fine-tuning in different drops



Different clutter parameters
	· vivo (R1-2302481)
Table 18. Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	{0.6, 6, 2}
	{0.6, 6, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	{0.6, 6, 2}
	{0.4, 2, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	3.70

	CIR
	TOA
	0
	{0.4, 2, 2}
	{0.4, 2, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	0.32

	CIR
	TOA
	0
	{0.4, 2, 2}
	{0.6, 6, 2}
	25k
	1k
	4.26M*18
	8.50M*18
	1.53



Observation 12:	Positioning performance of AI/ML assisted positioning is slightly degraded but still acceptable when the model trained with dataset of one clutter parameter is tested with dataset of another clutter parameter.
Observation 13:	AI/ML assisted positioning enjoys better generalization performance than direct AI/ML positioning across clutter parameters.
[image: ]
Figure 53	Positioning accuracy of model fine-tuning for different clutter parameters (train with {0.4, 2, 2}, fine-tuning and testing with {0.6, 6, 2})



Network synchronization error
	· vivo (R1-2302481)
Table 31	 Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	0ns
	0ns
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	0ns
	2ns
	25k
	1k
	4.26M*18
	8.50M*18
	1.63

	CIR
	TOA
	0
	0ns
	10ns
	25k
	1k
	4.26M*18
	8.50M*18
	2.05

	CIR
	TOA
	0
	0ns
	50ns
	25k
	1k
	4.26M*18
	8.50M*18
	8.45


Observation 25:	The positioning accuracy of AI/ML assisted positioning significantly degrades with the increase of network synchronization error, but it is still better than direct AI/ML positioning.
[image: ]
Figure 61	Positioning accuracy of model fine-tuning for different synchronization errors (train without sync. error, fine-tuning and testing with 50ns sync. error)



UE/gNB RX and TX timing error
	· vivo (R1-2302481)
Table 35	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	0ns
	0ns
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	0ns
	2ns
	25k
	1k
	4.26M*18
	8.50M*18
	0.75

	CIR
	TOA
	0
	0ns
	10ns
	25k
	1k
	4.26M*18
	8.50M*18
	1.51

	CIR
	TOA
	0
	0ns
	50ns
	25k
	1k
	4.26M*18
	8.50M*18
	10.18


Observation 27:	Large UE timing error can dramatically deteriorate the positioning performance of AI/ML model for AI/ML assisted positioning, such as 50ns.

	· Qualcomm (R1-2303586)
Observation 12: RFFP can be made robust to network and UE timing errors (e.g., UE clock drift, network synchronization, etc.), by taking timing impairments into the training dataset.



Different InF scenarios
	· vivo (R1-2302481)
Table 20. Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	DH
	HH
	25k
	1k
	4.26M*18
	8.50M*18
	>10

	CIR
	TOA
	0
	DH
	SH
	25k
	1k
	4.26M*18
	8.50M*18
	>10

	CIR
	TOA
	0
	HH
	SH
	25k
	1k
	4.26M*18
	8.50M*18
	0.05



Observation 14:	Positioning performance of AI/ML assisted positioning is degraded when the model trained with dataset of DH is tested with datasets of SH and HH.
Observation 15:	For those scenarios whose positioning does not rely on fingerprint features, AI/ML based TOA estimation has better generalization ability than direct AI/ML positioning.
Observation 16:	AI/ML based TOA estimation has great advantages in positioning performance, deployment flexibility, compatibility with existing positioning protocol framework, and generalization capability.




Model fine-tuning for different InF scenarios
	· vivo (R1-2302481)
[image: ]
Figure 57	Positioning accuracy of model fine-tuning for different scenarios (train with DH, fine-tuning and testing with HH)



Channel estimation error
	· vivo (R1-2302481)
Table 29	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	Without interference
	0 interfering TRP (Without interference)
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	
	1 interfering TRP
	25k
	1k
	4.26M*18
	8.50M*18
	3.43

	CIR
	TOA
	0
	
	4 interfering TRPs
	25k
	1k
	4.26M*18
	8.50M*18
	11.35

	CIR
	TOA
	0
	
	8 interfering TRPs
	25k
	1k
	4.26M*18
	8.50M*18
	16.01


Observation 24:	CIR estimation error can dramatically degrade the positioning performance of AI/ML assisted positioning, while is more robust to small CIR estimation error compared to direct AI/ML positioning.



Evaluation of multi-TRP construction
Evaluation without generalization considerations (same setting for training and testing)
	· vivo (R1-2302481)
Table 7	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Construction
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	Construction 1
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	Construction 2
	CIR
	TOA
	0
	Drop1
	Drop1
	25k*18
	1k*18
	11.92M*1
	23.79M *1
	0.83

	Construction 3
	CIR
	TOA
	0
	Drop1
	Drop1
	25k
	1k
	1.65M 
	22.30M
	1.08




	· OPPO (R1-2302544)
Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Same drop 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	0.52

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 
{60%, 6, 2}
Multi-TRP construction
	Same drops 
	784,000
	16,000
	1.48M
	2.96 MFLOPs
	1.03

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 
{60%, 6, 2}
Multi-TRP construction

	Same drops 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	5.78




	· CATT (R1-2302699)
Observation 13: For AI/ML-assisted positioning with perfect network synchronization, the intermediate result of ToA estimating is 1.59ns@90% and the horizontal position accuracy is 0.655m@90% of CDF percentile.

	· Apple (R1-2303926)
Observation 2
·  AI-ML assisted positioning shows good performance in the baseline case
· AI-ML assisted positioning shows better generalization performance than the direct AI/ML case
· Finetuning improves the performance with more improvement as the data size increases with 
Table 7:  AI/ML-assisted Positioning (TOA estimation): Evaluation results for AI/ML model deployed on UE or Network-side, without model generalization, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	47500
	2500
	1.6
	3.1
	1.138m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	23750
	1250
	1.6
	3.1
	1.396m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 1
	9500
	500
	1.6
	3.1
	1.748m






Evaluation of generalization aspects
	· Ericsson (R1-2302335)
Observation 20	Fine-tuning is a viable technique to adapt models originally trained for a first environment to operate in a second, substantially different, environment. However, fine-tuning does not appear to provide much saving in the number of samples to reach state-of-the-art positioning accuracy when compared to training the models from scratch.
Table 14. 90%tile UE 2D positioning errors for small Model I trained with 40,000 PDP samples from {60%, 6m, 2m} and fine-tuned with different number of PDP samples from {40%, 2m, 2m}. Tested on {40%, 2m, 2m} test dataset.
	Positioning approach
	Model complexity [# of parameters]
	90%tile UE 2D positioning errors [m] – small Model I

	
	
	Trained with samples from {40%, 2m, 2m}
	Originally trained with 40,000 samples from 
{60%, 6m, 2m} and fine-tuned with 
different number of samples from {40%, 2m, 2m}
	Trained with samples from {60%, 6m, 2m}

	
	
	40,000
	40,000
	20,000
	10,000
	4,000
	2,000
	1,000
	40,000

	Dist. Assist.
	0.43 M
	0.596
	0.552
	0.738
	0.989
	1.408
	1.882
	2.486
	8.176

	Cent. Assist.
	0.36 M
	0.854
	0.782
	0.983
	1.269
	1.879
	2.378
	2.843
	6.904

	Cent. Direct
	0.36 M
	0.810
	0.791
	0.991
	1.267
	1.876
	2.418
	2.880
	6.542






Different drops
	· OPPO (R1-2302544)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
Multi-TRP construction
	Another drop 

{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	11.29

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
Multi-TRP construction
	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	7.4



Observation 4: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated from different drops, there will be large performance degradation for AI-based positioning. 

	· Apple (R1-2303926)
Table 8: AI/ML-assisted Positioning (TOA estimation): Evaluation results for AI/ML model deployed on UE/network-side, model generalization, with a CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop 1
	Drop 2
	47500
	2500
	1,480,140
	2.75G
	3.3219m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	60%,6,2
	40%,2,2
	47500
	2500
	1,480,140
	2.75G
	3.9532m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	47500
	2500
	1,480,140
	2.75G
	11.0172m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	47500
	2500
	1,480,140
	2.75G
	3.8203m




	· MediaTek (R1-2303340)
Table 11. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = [DH 120x60 m, SH 300x150 m], different scenario
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	Test
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
same drop
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	InF-DH {40%, 2m, 2m}
new drop
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.50

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	InF-DH {60%,6m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.36

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	>100

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	InF-DH {60%,6m, 2m}
	InF-DH {60%,6m, 2m}
same drop
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.05

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	
	InF-DH {60%,6m, 2m}
new drop
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	7.42

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	
	InF-DH {40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	8.14

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	>100

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	Mix
InF-DH {40%, 2m, 2m} and InF-SH
	InF-DH {40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.42

	non-normalized PDP(18*256*8)
	18TOA
	Ideal
	
	InF-SH
Large hall size
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.6



Observation 14:	Performance of AI/ML assisted TOA estimation positioning degrades when the model is trained with dataset of one scenario and tested with dataset of another scenario, especially for different hall size scenario.
Proposal 6	: Further study the monitor mechanism of different hall size scenario for AI/ML positioning.



Model fine-tuning for different drops
	· Apple (R1-2303926)
Table 9: AI/ML-assisted Positioning (TOA estimation):  Evaluation results for AI/ML model deployed on UE or Network side, with model finetuning, with a CNN, UE distribution area = 100x40 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	2.43
	5.12
	1.5884m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Drop1
	Drop 2
	Drop2
	47500
	2500
	2500
	2.43
	5.12
	1.8724m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	5000
	2500
	2.43
	5.12
	2.5522m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	{60%,6,2}
	{40%,2,2}
	{40%,2,2}
	47500
	2500
	2500
	2.43
	5.12
	2.7036m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	5000
	2500
	2.43
	5.12
	4.3411m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	Ideal n/w synch
	Non-ideal network sync
	Non-ideal network sync
	47500
	2500
	2500
	2.43
	5.12
	5.3007m

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	5000
	2500
	2.43
	5.12
	1.8826m 

	CIR
[18,1,256,2]
	Direct path ToA 
[1x1]
	Ideal TOA
100% labeled
	InF-DH
	InF-SH
	InF-SH
	47500
	2500
	2500
	2.43
	5.12
	2.1166m






Different clutter parameters
	· OPPO (R1-2302544)
Table 9. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different clutter settings , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	8.05

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.8

	RSTD + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	7.78

	RSTD + RSRP
	UE coordination
	UE coordination
	70,000  drops, 1  UE per drop 

{60%, 6, 2}
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	0.24M
	0.47 MFLOPs
	4.86

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	15.75

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	8.61

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	8.67

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	70,000  drops, 1  UE per drop 

{60%, 6, 2}
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	2.66M
	5.32 MFLOPs
	6.82

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	16.09

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}

Multi-TRP construction
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	8.88

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	8.49

	Normalized CIR
	TOA
	Ideal TOA
	70,000  drops, 1  UE per drop 

{60%, 6, 2}

Multi-TRP construction
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	1.48M
	2.96 MFLOPs
	6.66



Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning. 




Model fine-tuning for different clutter parameters
	· CATT (R1-2302699)
Observation 19: For AI/ML-assisted positioning, by training the AI/ML model using the dataset that assumes a clutter parameter of {60%, 6m, 2m}, and subsequently fine-tuning it using a small dataset that assumes a clutter parameter of {40%, 2m, 2m}, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.

	· MediaTek (R1-2303340)
Table 15. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	/
	{40%, 2m, 2m}
	32400UE* 18TRP
	0
	3600UE* 18TRP
	205k
	77M
	1.56

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{60%, 6m, 2m}
	
	
	
	205k
	77M
	4.36

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	{60%, 6m, 2m}
	{40%, 2m, 2m}
	
	1200UE* 18TRP
	
	205k
	77M
	6.97

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{60%, 6m, 2m}
	
	
	
	205k
	77M
	2.68

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{40%, 2m, 2m}
	
	3600UE* 18TRP
	
	205k
	77M
	5.9

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{60%, 6m, 2m}
	
	
	
	205k
	77M
	1.93

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{40%, 2m, 2m}
	
	7200UE*1        8TRP
	
	205k
	77M
	5.96

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	
	{60%, 6m, 2m}
	
	
	
	205k
	77M
	1.64


Observation 19:	Fine-tuning the model with samples from a scenario can achieve positioning accuracy improvement when the pre-trained model is transferred to a new scenario for AI/ML assisted TOA estimation positioning (the more fine-tuning data the better performance), but performance degrades for pre-trained scenario.



Mixed dataset for different clutter parameters
	· OPPO (R1-2302544)
Table 10: Generalization performance: AI model training based on mixed data sets
	
	Accuracy achieved @90% (m)
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting M-1
Mixed for training
{40%,2,2} for testing
	0.44
	0.38
	0.55

	w/
generalization
	Data setting M-2
Mixed for training
{60%,6,2} for testing
	0.78
	0.46
	0.66

	w/o
generalization
	{60%,6,2} for training
{60%,6,2} for testing
	0.48
	0.33
	0.52




	· CATT (R1-2302699)
Observation 16: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of clutter parameter {60%, 6m, 2m} with a small dataset of clutter parameter {40%, 2m, 2m}, the AI/ML model achieved a horizontal positioning accuracy of 1.51m, which represents an improvement compared to the performance achieved without mix-training and with a positioning accuracy of 3.11m.



Network synchronization error
	· OPPO (R1-2302544)
Table 12: Generalization performance: Training w/o NW syn error, Test w/ NW syn error
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting S-1
1 drop w/o NW sync error for training, 
1 drop w/ NW sync error for testing
	29.05
	5.29
	6.54
	27.85

	w/o
generalization
	1 drop w/o NW sync error for training and testing
	8.2
	0.48
	0.33
	0.52

	w/
generalization
	Data setting S-2
10 drops w/o NW sync error for training, 
10 drops w/ NW sync error for testing
	36.91
	7.11
	11.77
	33.62

	w/o
generalization
	10 drops w/o NW sync error for training and testing
	10.16
	0.46
	0.52
	1.03




	· Ericsson (R1-2302335)
Observation 26	Network synchronization error remains a challenging issue for semi-distributed ML assisted positioning models.
Table 25 90%tile 2D positioning accuracy using semi-distributed ML assisted positioning approach for different network synchronization STD [ns] in the {60%, 6m, 2m} InF-DH scenario for small model (Model I) trained with different network synchronization STD [ns].
	Model details
	Model input type
	Model complexity
[# paras]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different network synchronization STD in {60%, 6m, 2m} InF-DH

	
	
	
	
	0 ns
	5 ns
	10 ns
	25 ns
	50 ns

	trained with 0 ns
	CIR
	0.86 M
	36 M
	0.451
	0.647
	1.096
	4.806
	14.154

	
	PDP
	0.43 M
	11.5 M
	0.680
	0.836
	1.227
	3.850
	10.997

	trained with 25 ns
	CIR
	0.86 M
	36 M
	0.777
	0.792
	0.813
	1.005
	1.962

	
	PDP
	0.43 M
	11.5 M
	0.756
	0.761
	0.794
	0.924
	1.660

	trained with 50 ns
	CIR
	0.86 M
	36 M
	1.168
	1.202
	1.202
	1.299
	1.550

	
	PDP
	0.43 M
	11.5 M
	0.878
	0.878
	0.868
	0.913
	1.151




	· CATT (R1-2302699)
Observation 14: For AI/ML-assisted positioning with network synchronization error, the intermediate result of ToA estimating is 1.74ns@90% and the eventual result is 0.7m@90% of CDF percentile of horizontal accuracy.

	· MediaTek (R1-2303340)
Table 14. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m, timing error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
{60%, 6m, 2m}
	Test
{60%, 6m, 2m}
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	50ns
	50ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.09

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	20ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.06

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	0ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.28

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	20ns
	50ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	7.56

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	20ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.83

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	0ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.36

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	0ns
	50ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	16.59

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	20ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	10.62

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	0ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.05

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	Mix 50ns and 20ns
	50ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	5.05

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	20ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.1

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	0ns
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.07


Observation 17:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small timing error and tested with large timing error.  
Observation 18:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large timing error and tested with small timing error.



Model fine-tuning for network synchronization error
	· CATT (R1-2302699)
Observation 20: For AI/ML-assisted positioning, by training the AI/ML model using the dataset with perfect network synchronization, and subsequently fine-tuning it using a small dataset with network synchronization error, the horizontal positioning accuracy is significantly improved compared to the performance achieved without fine-tuning. The degree of improvement in the positioning accuracy is greater when the size of the fine-tuning dataset is larger.



Mixed dataset for network synchronization error
	· CATT (R1-2302699)
Observation 17: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of ideal network synchronization with a small dataset of network synchronization error of 50ns, the AI/ML model achieved a horizontal positioning accuracy of 1.81m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 12.8m.



UE/gNB RX and TX timing error
	· OPPO (R1-2302544)
Table 14: Generalization performance: Training w/o UE timing error, Test w/ UE timing error
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting T-1
1 drop w/o UE timing error for training, 
1 drop w/ UE timing error for testing
	8.38
	0.48
	6.18
	26.79

	w/o
generalization
	1 drop w/o UE timing error for training and testing
	8.2
	0.48
	0.33
	0.52

	w/
generalization
	Data setting T-2
10 drops w/o UE timing error for training, 
10 drops w/ UE timing error for testing
	10.28
	0.456
	12.393
	39.73

	w/o
generalization
	10 drops w/o UE timing for training and testing
	10.16
	0.46
	0.52
	1.03






Different InF scenarios

	· CATT (R1-2302699)
Observation 18: For AI/ML-assisted positioning, by employing the mix-train method and combining the dataset of InF-DH {60%, 6m, 2m} with a small dataset of InF-SH {20%, 2m, 10m}, the AI/ML model achieved a horizontal positioning accuracy of 1.467m, which represents a significant improvement compared to the performance achieved without mix-training and with a positioning accuracy of 6.894m.



Time varying changes
	· Qualcomm (R1-2303586)
Observation 11: RFFP method can show improved robustness to slight environment changes such as time-varying blocking when trained on mixture of such changes.
[image: ]
Figure 8 CDF of horizontal positioning error of RFFP method for different Type 3-time varying changes (solid plots: ML model trained on odd clusters; dashed plots: ML model trained on odd clusters while randomly removing and adding up to two odd and even cluster).



Channel estimation error
	· MediaTek (R1-2303340)
Table 12. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m,  channel estimation error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
{40%, 2m, 2m}
	Test
{40%, 2m, 2m}
	Training & validation
	Test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	SNR=0dB
	SNR=0dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.32

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =10dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.24

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =20dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.48

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	Without noise
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	4.31

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	SNR=10dB
	SNR=0dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	38

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =10dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.13

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =20dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.76

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	Without noise
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.67

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	SNR=20dB
	SNR=0dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	51.4

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =10dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	20.5

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =20dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.72

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	Without noise
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.1

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	Without noise
	SNR=0dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	50.6

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =10dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	43.4

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =20dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	20.8

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	Without noise
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	mix
SNR=0dB and SNR =20dB
	SNR=0dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.38

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =10dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.28

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	SNR =20dB
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.23

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	
	Without noise
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.22



Observation 15:	Performance of AI/ML assisted TOA estimation positioning significantly degrades when the model is trained with small channel estimation error and tested with large channel estimation error.  
Observation 16:	AI/ML model in AI/ML assisted TOA estimation positioning has robust generalization capability when the model is trained with large channel estimation error and tested with small channel estimation error.


Impact of user density/size of the training dataset
	· MediaTek (R1-2303340)
Table 2. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480UE*18TRP
	720UE*18TRP
	185.7k
	29.4M*18
	92.8%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	95.2%


Observation 2:	High user density of training dataset provides an improvement in LOS/NLOS identification accuracy over the low user density.
Table 10. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, different user density
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	6480UE*18TRP
	720UE*18TRP
	205k
	77M
	2.4

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.05

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	6480UE*18TRP
	720UE*18TRP
	205k
	77M
	3.1

	non-normalized PDP(18*256*8)
	18TOA
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56


Observation 13:	High user density of training dataset provides an improvement in AI/ML assisted TOA estimation positioning over the low user density.
Proposal 5	: Support different user density of training dataset for different requirement on AI/ML positioning.

	· Ericsson (R1-2302335)
[image: ]
Figure 9: Positioning accuracy vs training data size according to Table 7. Model input is PDP.
[image: ]
Figure 12: Positioning accuracy vs training data size according to Table 9. Model input is DP.

	· xiaomi (R1-2302979)
[image: ]
Figure 4 Relationship between size of training data set and positioning accuracy for ToA-based prediction



Evaluation of input size reduction
Different type of model input
	· CATT (R1-2302699)
Observation 25: For AI/ML-assisted positioning with LOS/NLOS identification, the performance is similar with model inputs between PDP and CIR.



Model input truncated in time domain
	· vivo (R1-2302481)
Table 68	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Truncated CIR 
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	1-256
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	1-30
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	3.72

	CIR
	TOA
	1-100
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	1.04

	CIR
	TOA
	30-100
	DH
	DH
	25k
	1k
	4.26M*18
	8.50M*18
	4.17


Observation 48:	For AI/ML assisted positioning, longer CIR is needed to achieve high-accuracy positioning comparable to direct AI/ML positioning.



Reduced number of taps as model input
	· Qualcomm (R1-2303586)

Figure 2 Horizontal positioning error at 90%-tile versus reporting overhead for different cases and measurement reporting options.
Observation 4: We observe the following regarding the trade-off between performance and reporting overhead: 
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 2 reporting overhead).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 34 vs. 1728) than Case2b with CIR of N’t =8 samples.
· [bookmark: _Int_dOaeQd1k][bookmark: _Int_OpbkNNAR]Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 288 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 288 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 576 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 576 vs. 13824)   than Case2b with CIR of N’t =64 samples.
Observation 5: For Case2b, reporting of CIR measurements with N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). 
Observation 6: For Case2b, reporting of CIR measurements with N’t  64 can have less or comparable performance gain to multipath reporting and has higher reporting overhead. 
Observation 7: For same reporting overhead when N’t  64, Case2b achieves higher positioning accuracy with multipath reporting than CIR measurement reporting. 
Proposal 9:  For specifying model input in Case2b, deprioritize CIR measurement reporting due to its the huge reporting overhead and comparable or minimal performance gain when compared to existing multipath reporting. 


	· MediaTek (R1-2303340)
Table 6. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	non-normalized CIR (Nt*8*2)
	LOS/NLOS
	Ideal
	256
	256
	32400UE *18TRP
	3600UE *18TRP
	185.7k
	29.4M*18
	95.2%

	
	
	
	
	25
	
	
	
	
	95.3%

	
	
	
	
	15
	
	
	
	
	95.0%

	
	
	
	64
	64
	32400UE *18TRP
	3600UE *18TRP
	173.4k
	7.39M*18
	94.7%

	
	
	
	
	25
	
	
	
	
	94.6%

	
	
	
	
	15
	
	
	
	
	94.8%



Table 18. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
{40%, 2m, 2m}
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Nt
	N’t
	Train
	AI/ML
	Model complexity
	Computation complexity
	AI/ML

	non-normalized PDP(18* Nt*8)
	18TOA
	Ideal
	256
	256
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56

	
	
	
	
	25
	
	
	
	
	1.65

	
	
	
	
	15
	
	
	
	
	1.63

	
	
	
	64
	64
	32400UE*18TRP
	3600UE*18TRP
	181.3k
	19.3M
	1.7

	
	
	
	
	25
	
	
	
	
	1.73

	
	
	
	
	15
	
	
	
	
	1.74



Observation 21:	For AI/ML assisted TOA estimation positioning, by selecting appropriate Nt and N’t, the computational complexity, model complexity and signaling overhead can be reduced without significant performance loss.




Reduced number of TRPs
	· vivo (R1-2302481)
Table 71	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	TRP number
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	4
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	5.76

	CIR
	TOA
	9
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	1.50

	CIR
	TOA
	18
	DH
	DH
	25k
	1k
	1.65M
	22.30M
	0.73


Observation 50:	AI//ML assisted positioning is more sensitive to the number of TRPs used for positioning than direct AI/ML positioning
Proposal 33:	The minimal number of TRPs used for positioning should be identified to reach the target positioning accuracy for AI/ML assisted positioning.
Observation 51:	Direct AI/ML positioning has greater potential for compressing the dimensions of the CIR/PDP compared to AI/ML assisted positioning.
Proposal 34:	For direct AI/ML positioning, support to report CIR/PDP from UE side to NW side.

	· CATT (R1-2302699)
Observation 23: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the AI/ML model performance will not significantly degrade.
Observation 24: For AI/ML-assisted positioning, when the input dimension is reduced from 18 TRPs to 9 TRPs, the FLOPs can be significantly reduced.



Evaluation of noisy ground truth labels
	· vivo (R1-2302481)
Table 33	Evaluation results for AI/ML model deployed on UE or Network side, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	CIR
	TOA
	0
	Std = 0
	0
	25k
	1k
	4.26M*18
	8.50M*18
	0.73

	CIR
	TOA
	0
	Std = 0.5
	0
	25k
	1k
	4.26M*18
	8.50M*18
	0.90

	CIR
	TOA
	0
	Std = 1
	0
	25k
	1k
	4.26M*18
	8.50M*18
	1.73

	CIR
	TOA
	0
	Std = 2
	0
	25k
	1k
	4.26M*18
	8.50M*18
	2.24


Observation 26:	Labeling error can slightly impair the positioning performance for AI/ML assisted positioning, and AI/ML assisted positioning is more robust to labeling error compared with direct AI/ML positioning.

	· Ericsson (R1-2302335)
Table 11 90%tile 2D positioning accuracy using PDP inputs for different training dataset labeling error STD [m] in the {60%, 6m, 2m} InF-DH scenario.
	Model class
	Positioning approach
	Model complexity
[# parameters]
	Computational complexity
[FLOPs]
	90%tile 2D positioning error [m]
with different labelling error STD in 
{60%, 6m, 2m} InF-DH

	
	
	
	
	0 m
	0.25 m
	0.5 m
	1 m

	Small models PDP
	Dist. Assist.
	0.43 M
	11.5 M
	0.680
	0.734
	0.866
	1.234

	
	Cent. Assist.
	0.36 M
	9 M
	0.524
	0.563
	0.690
	1.142

	
	Cent. Direct
	0.36 M
	9 M
	0.510
	0.566
	0.708
	1.141




	· CATT (R1-2302699)
· When the value of L is 1m, the horizontal positioning accuracy is 1.901 m@90% of CDF percentile.
· When the value of L is 3m, the horizontal positioning accuracy is 4.392 m@90% of CDF percentile.
· When the value of L is 5m, the horizontal positioning accuracy is 6.753 m@90% of CDF percentile.
Observation 22: When AI/ML model is trained with different value of label error, as value of L increases, AI/ML–assisted positioning performance deteriorated.

	· MediaTek (R1-2303340)
Table 7. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	LOS/NLOS identification accuracy

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	Ideal 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	95.2%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	10% LOS labelling error
10% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	93.1%

	non-normalized CIR (256*8*2)
	LOS/NLOS 
	20% LOS labelling error
20% NLOS labelling error
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	185.7k
	29.4M*18
	92.1%



Table 19. Evaluation results for AI/ML model deployed on UE or network side, without model generalization, CNN, UE distribution area = 120x60 m, labelling error
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(18*256*8)
	18TOA
	L=0
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	1.56

	non-normalized PDP(18*256*8)
	18TOA
	L=0.5
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.20

	non-normalized PDP(18*256*8)
	18TOA
	L=1
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	2.37

	non-normalized PDP(18*256*8)
	18TOA
	L=2
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	32400UE*18TRP
	3600UE*18TRP
	205k
	77M
	3.32






Semi-supervised learning
	· MediaTek (R1-2303340)
Table 17. Evaluation results for AI/ML model deployed on UE or network side, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	(percentage of training data set without) Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training & validation
	test
	Model complexity
	Computational complexity
	AI/ML

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 2m, 2m}
	32400UE*18TRP labelled
	3600UE*18TRP
	205k
	77M
	1.56

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 2m, 2m}
	3600UE*18TRP labelled
	3600UE*18TRP
	205k
	77M
	5.58

	non-normalized PDP(256*8)
	18TOA
	50%
	{40%, 2m, 2m}
	3600UE*18TRP labelled
3600UE*18TRP un-labelled
	3600UE*18TRP
	205k
	77M
	4.64

	non-normalized PDP(256*8)
	18TOA
	88.9%
	{40%, 2m, 2m}
	3600UE*18TRP labelled
28800UE*18TRP un-labelled
	3600UE*18TRP
	205k
	77M
	4.46

	non-normalized PDP(256*8)
	18TOA
	0%
	{40%, 2m, 2m}
	7200UE*18TRP labelled
	7200UE*18TRP
	205k
	77M
	3.33

	non-normalized PDP(256*8)
	18TOA
	50%
	{40%, 2m, 2m}
	7200UE*18TRP labelled
7200UE*18TRP un-labelled
	7200UE*18TRP
	205k
	77M
	3.06

	non-normalized PDP(256*8)
	18TOA
	75%
	{40%, 2m, 2m}
	7200UE*18TRP labelled
21600UE*18TRP un-labelled
	7200UE*18TRP
	205k
	77M
	2.83



Observation 20:	With less amount of labelled data, semi-supervised learning with more un-labelled data provides a more accurate position accuracy than supervised learning for AI/ML assisted TOA estimation positioning. 
Proposal 7	: Support semi-supervised learning for AI/ML positioning when limited labelled data are collected for training.



Other
	· vivo (R1-2302481)
Table 9	Evaluation results for TOA based positioning and RSTD based positioning, UE distribution area = [120x60 m]
	Measurement for location calculation
	UE timing error
	Model input
	Model output
	Number of TRP for location calculation
	Positioning accuracy(m) @90% CDF=90%

	TOA
	0ns
	CIR
	TOA
	4
	0.62

	RSTD
	0ns
	CIR
	TOA
	4
	9.03

	TOA
	0ns
	CIR
	TOA
	6
	0.64

	RSTD
	0ns
	CIR
	TOA
	6
	2.04


Observation 5:	ToA as an intermediate report is better than RSTD for AI/ML assisted positioning.
Proposal 3:	Support TOA as an intermediate measurement for reporting from UE side to LMF side or from gNB side to LMF side directly.



1st round discussion
Based on the extensive evaluation results submitted by companies, the following observations are recommended.

Observation 6.9-1 
Evaluation results show that AI/ML assisted positioning using multi-TRP construction has similar generalization properties as direct AI/ML positioning in terms of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch
· Channel estimation error
· Time varying changes

	
	Company

	Support
	MediaTek, Hw/HiSi, LG

	Not support
	



	Company
	Comments

	Samsung
	Just want to understand on what „similar“ means.

	ZTE
	Better to copy the similar descriptions from the observation we made in last meeting. 


 
Observation 6.9-2 
Evaluation results show that AI/ML assisted positioning using single-TRP construction with N models for N TRP has similar generalization property as direct AI/ML positioning in terms of:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· UE/gNB RX and TX timing error
· SNR mismatch
· Channel estimation error
· Time varying changes

	
	Company

	Support
	Fujitsu

	Not support
	



	Company
	Comments

	HW/HiSi
	This observation does not seem correct.
For example Case 3a with gNB side model and LOS inference, only the LOS is important. This is not affected by NW synch errors or a UE/gNB RX and TX timing error.
Or this proposal only related to TOA as model output?

	ZTE
	Better to copy the similar descriptions from the observation we made in last meeting. In addition, we have similar view with Huawei, is this only applicable for TOA/RSTD?



Observation 6.9-3 
AI/ML assisted positioning using single-TRP construction with a same model for N TRP has robust generalization property under mild unseen changes, for example, when trained in one drop and tested in a different drop.

	
	Company

	Support
	Apple

	Not support
	



	Company
	Comments

	HW/HiSi
	Is this proposal for LOS as model output?
[Moderator] My understanding is, the observation applies to both LOS and TOA as output.

	ZTE
	The same comment as Huawei.

	Qualcomm
	We are fine with the observation.




Evaluation of model monitoring methods
For the topic of model monitoring, the following methods have been proposed by companies.
Label based methods 
	· vivo (R1-2302481)
Proposal 26:	The accuracy and quantity of ground truth labels should be considered for ground truth label based model monitoring

Observation 43:	 Motion sensors can be used to assist model monitoring.

[image: ]
Figure 81	Illustration of self-monitoring for AI/ML assisted positioning
Observation 44:	The proposed self-monitoring method can achieve model monitoring for AI/ML assisted positioning.


	· MediaTek (R1-2303340)
[image: ]
Figure 5. model monitoring for AI/ML assisted LOS/NLOS identification positioning
[image: ]
Figure 6. simulation results for model monitoring

	· Ericsson (R1-2302335)
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Figure 81: Residual losses from conventional triangulation-based error minimization positioning algorithms. The ML model is trained in the {60%, 6m, 2m} environment and tested in three environments: {60%, 6m, 2m}, {40%, 6m, 2m} and {40%, 2m, 2m}.
Observation 33	For AI/ML assisted positioning approaches (e.g., Case 3a), model monitoring metrics can be accurately and reliably provided by the conventional positioning methods (e.g., residual loss).



Label-free methods 
	· vivo (R1-2302481)
7.1.1.	The shift detection of dominant feature distribution
Table 63	Evaluation of distance metrics between SINR distributions
	Distribution for reference
	Distribution for test
	Maximal vertical distance
	KL divergence

	Without interference
	[bookmark: OLE_LINK72]With inference from 1TRP
	0.88
	3.96

	Without interference
	With inference from 4TRP
	0.99
	34.70

	Without interference
	With inference from 8TRP
	0.99
	41.20




Observation 40:	Adopting SINR as a dominant feature of CIR is valid for model monitoring
Proposal 23:	When model input is CIR or PDP, identify these dominant features strongly related to positioning for model monitoring
Proposal 24:	The metrics that can describe the difference between two distributions mathematically can be reused directly for model monitoring.

7.1.2.	AI/ML based adversarial validation
[image: ]
Observation 41:	 The proposed adversarial validation can achieve accurate model monitoring at the cost of acceptable hardware resource consumption for model training.

7.1.3.	AI/ML based out-of-distribution detection
[image: ]
Observation 42:	The proposed AI/ML based out-of-distribution detection can achieve accurate and flexible model monitoring without efforts of model training and large-scale data collection.

[image: ]
Observation 45:	Ranging model assisted model monitoring is valid for direct AI/ML positioning without need of ground truth label.

Proposal 29:	Testing AI/ML model with another different drop could be a starting point for the evaluation of model monitoring methods.
Proposal 30:	For the assessment of model monitoring, at least feasibility and performance should be considered as a starting point.

	· CATT (R1-2302699)
[image: ]
Figure 1: CDF of relative displacement method for direct AI/ML positioning.
Observation 27: For direct AI/ML positioning, the relative displacement method can monitor the model performance.
[image: ]
Observation 28: For AI/ML-assisted positioning, the relative displacement method can monitor the model performance.

	· Ericsson (R1-2302335)
3.2	Self-model monitoring for direct AI/ML positioning (Case 3b)
[image: ]
Figure 82. 2D position estimate difference using unmodified or modified positioning request data at production in different operating environments for a small centralized direct positioning model trained with {60%, 6m, 2m} dataset samples.
3.3	Model monitoring based on statistics of datasets
[image: ]
Figure 83 Initial simulations: CDFs of positioning errors at different data set distances defined in this section

3.4	Autoencoder assisted model monitoring
[image: ]
Figure 86 Comparisons: Model drift in performance vs operational dataset distance to output dataset at the assisted autoencoder

	· Nokia (R1-2302632)
Observation 7: The performance monitoring based on distribution comparison of different datasets is impacted by the feature that is selected to monitor. For instance, evaluating the similarity between two distributions with Kolmogorov Smirnov Test (Kstest) method, the RSRP measurement provides accurate distribution comparison compared to CIR and PDP. 
Proposal 7: To RAN1 further evaluate the impact of at least RSRP measurement as dominant feature for performance monitoring.
Observation 8: For Performance monitoring purposes, using ML models as binary classification provides an easily discriminatory criteria between two different dataset distributions. However, in real scenarios it is expected to get a diverse set of distributions. Thus, an extension of a binary classification to a multi-class classification could be a potential alternative, however an extra expense of model and computational complexity could be expected. 
Proposal 8: To RAN1 further study and evaluate the monitoring performance based on AI/ML models considering the model and computational complexity of the AI/ML model used for monitoring in a common table between companies.

	· LG (R1-2303080)
Proposal #1: For model monitoring evaluation, consider to align the procedure (e.g. model fine-tuning/transfer) depending on model monitoring metric/performance among companies.
Proposal #2: Consider model monitoring metric based on model input depending on the amount of similarity between input and training data distribution
Proposal #3: For LOS/NLOS classification of AI/ML assisted positioning, consider also to utilize a soft value of the ML output as a LOS classification accuracy and model monitoring metric.

	· MediaTek (R1-2303340)
[image: ]

Where () is known location; () is estimated location,  if the ground truth label is not available.
Observation 46:	Based on the soft information, the performance of the direct AI/ML model can be monitored whether the data is labeled or not.



1st round discussion
Based on the input submitted by companies on model monitoring, the following proposals are recommended.
Proposal 7.3-1
For AI/ML assisted positioning, it is feasible to support label-based model monitoring method, where the estimated ground truth label is provided by the location estimation from the conventional positioning method, which utilizes the AI/ML model output to determine target UE location. 

	
	Company

	Support
	Fujitsu

	Not support
	Vivo, NOK



	Company
	Comments

	vivo
	Our understanding of model monitoring is that the monitoring metric is comparing estimated ground truth label and AI/ML model output. Current wording “which utilizes the AI/ML model output to determine target UE location” seems indicating that conventional positioning method use AI/ML model output.
[Moderator] yes, my understaning is, the above reflects vivo Figure 81, MediaTek Fig 5, and Ericsson texts for Fig 81.   

	CATT
	This proposal is not clear enough to us. Is it suggesting comparison between the ground truth label (position that estimated by conventional positioning method) and the position derived from AI/ML model output?

	CMCC
	Our understanding is that the same positioning method is used for both ground truth label estimation and the AI/ML assisted positioning. We can further discuss whether this limitation is necessary.
[Moderator] The proposal above is only for model monitoring.

	OPPO
	The proposal is unclear for us. Is the comparison between intermediate result of the AI/ML model output and the estimated result of the conventional positioning method, or between UE location derived from AI/ML model output and the conventional positioning method?
[Moderator] The comparison is between ToA by AI/ML model, and the estimated ground truth ToA which can be obtained from output of conventional method. See vivo Figure 81, MediaTek Fig 5, and Ericsson texts for Fig 81.

	HW/HiSi
	For clarification: For assisted positioning the ground truth label is e.g. LOS status or TOA. In Case 3a for example that label is needed at the gNB. The location estimation from conventional positioning, however, would be a location. For example that is generated at the LMF. In that case, the observation would be wrong.
We think, this is more related to signaling for model monitoring and should be discussed in 9.2.4.2 instead.

	NOK
	What ensure that the AI/ML performance matches the degradation of the legacy method?. In general, we need further clarification in terms of the Evaluation of this proposal.

	LG
	More discussion is needed for the reference of ground truth label. 

	Samsung
	It’s the intention to say the covention methods generated the label used for label based monitoring? If that’s the case, I wonder why it should be stand out? The label derivation is a general topic for data collection, inference, not only monitoring.
[Moderator] For model monitoring, the conventional method is connected to an operational AI/ML model. This is different from training, for example.

	ZTE
	It should be inference accuracy when the model output and ground-truth label are compared.

	Qualcomm
	We think label-based method should work for both direct AI/ML and AI/ML asssited positioning. We also do not see the need to restrict the monitoring based on output from the classical part for the AI/ML assisted positioning. The estimated ground truth label can come from other methods, e.g., non-RAT positioning, or PRU data.

	Xiaomi
	Not clear the intension to compare the model output with the output of conventiional positioning method. In our understanding, it should be the inference accuracy. 

	Apple
	Agree with the general idea that label based methods can be used for monitoring but do not think the label has to be generated by conventional positioning methods.



Proposal 7.3-2
For both direct AI/ML and AI/ML assisted positioning, it is feasible to support label-free model monitoring method. The specific model monitoring method is up to implementation.

	
	Company

	Support
	Fujitsu

	Not support
	vivo, CATT, [HW/HiSi]



	Company
	Comments

	vivo
	What is the reason to have the 2nd sentence? Evaluation results showed feasibility. We don’t think whether a monitoring method is implementation or not is part of evaluation study outcome.

	CATT
	Only OK with the first sentence. But whether there is spec impact for the label-free monitoring method should be further discussed, perhaps in 9.2.4.2.

	MediaTek
	Remove “The specific model monitoring method is up to implementation”
Agree with Vivo.

	CMCC
	The potential spec impact, if any, should be further discussed.

	OPPO
	Further discussions are needed to identify the spec impact(s) for the label-free monitoring methods.

	HW/HiSi
	Isn’t this discussion also better suited for 9.2.4.2?

	NVIDIA
	Unclear how this is related to evaluation.

	NOK
	We are aligned with the direction. However, we need to get more input from other companies on this monitoring method. By the way, this proposal looks like an Observation related to 9.2.4.2, specifically because of the last sentence.

	Intel
	The first sentence is more an ovservation than a proposal. And the second sentence falls within the scope of 9.2.4.2.

	samsung
	A little early for this conclusion. 

	Qualcomm
	We are fine with the proposal.

	Xiaomi
	Generally we are OK with the first sentence. For the second sentence, more discussion is needed. 




2nd round discussion
For Proposal 7.3-1, the intention is summarize evaluation results by companies to say that label-based method is feasible to support for AI/ML assisted positioning. See vivo Figure 81, MediaTek Fig 5, Ericsson texts for Fig 81, and the evaluation results provided. If there is a better description, please suggest how to update the proposal. 
Note that signaling and specification impact is not included here, and can be further discussed under AI 9.2.4.2. 

Proposal 7.3-1
For AI/ML assisted positioning with TOA as model output, it is feasible to support label-based model monitoring method, where the estimated ground truth label is provided by the location estimation from the associated conventional positioning method. The associated conventional positioning method refers to the method which utilizes the AI/ML model output to determine target UE location. 
· Exemplary evaluation results are provided in: vivo (R1-2302481), MediaTek (R1-2303340), Ericsson (R1-2302335).

	
	Company

	Support
	

	Not support
	




	Company
	Comments

	CATT
	Reading FL’s comment to OPPO, we think TOA can be added after ground truth label, to tell that the ground truth label here is not a position(x,y) but just TOA. I.e.:
...where the estimated ground truth label (TOA) is provided by the location estimation from the associated conventional positioning method.

	NOK
	We request a clarification: 
If the legacy positioning method provides the ground truth, what guarantee the quality of this labeling in scenarios with high density of NLOS links?. Probably the weak point of the methodology is on scenarios were AI/ML is expected to outperform legacy methodologies (high NLOS links). 

The proposal can try to address specific scenarios with high NLOS samples density before to get any conclusion or observation. 

	MediaTek
	The output of the AI/ML assisted model in our simulation (R1-2303340) is LOS/NLOS.

	LG
	It is unclear that the label based model monitoring is only with TOA as a model output? Moreover, to obtain the ground truth label, there is not the only way from the associated conventional positioning method. In this sense, the proposal targets some specific case and it seems sort of observation to our view.

	HW/HiSi
	This method should be discussed in the group a little more before we can agree on the feasinility.
For example, we are curious to know what is obtained from the final positioning and with what is it is compared?  

	Qualcomm
	We think label-based method should work for both direct AI/ML and AI/ML asssited positioning. We also do not see the need to restrict the monitoring based on output from the classical part for the AI/ML assisted positioning. The estimated ground truth label can come from other methods, e.g., non-RAT positioning, or PRU data. We also do not support having the proposal limited to ToA, why not to include other options.




For Proposal 7.3-1, the intention is to summarize that label-free model monitoring is possible, as shown by the various methods proposed by companies. Many variations of methods are provided, and proponent companies have shown evaluation results to support their method.


Proposal 7.3-2
For both direct AI/ML and AI/ML assisted positioning, it is feasible to support label-free model monitoring method. 
· Exemplary methods and corresponding evaluation results are provided in: vivo (R1-2302481), CATT (R1-2302699), MediaTek (R1-2303340), Ericsson (R1-2302335).

	
	Company

	Support
	Fujitsu, MediaTek

	Not support
	



	Company
	Comments

	CATT
	Fine with the update. Potential spec impact can be discussed in 9.2.4.2

	NOK
	We are aligned with the direction of this proposal. However, more evaluations from other companies is needed get an observation of this type. 

	LG
	Fine with the proposal

	HW/HiSi
	Share the view from Nokia that more simulation results shoudl be provided.

	Qualcomm
	The proposal seems to give too broad conclusion. We are aligned on the importance of label-free methods but we do not find it essential to support their feasibility as they can be realized in implementation. In addition, some of the proposed label-free methods may not always be feasible. We think the spec impact of this proposal requires additional clarification.




Proposals for GTW
Proposals for Tuesday 4/18 GTW
Proposal 3.7-1
For both the direct AI/ML positioning and AI/ML assisted positioning, company optionally study delay profile (DP) as a type of information for model input.
· DP is a degenerated version of PDP, where the path power is not provided.

Proposal 3.7-2
For both direct AI/ML positioning and AI/ML assisted positioning, support measurements for model input with a range of Nt and N’t (if subsampling is applied):
· Nt is the number of consecutive time domain samples that are considered for model input.
· If subsampling is not applied, the full set of Nt consecutive time domain samples are used as model input.
· If subsampling is applied, N’t (N’t < Nt) taps with the strongest power are selected as model input, with the remaining (Nt – N’t) time domain samples set to zero.
· Evaluation results show that the required measurement size in term of Nt, and N’t vary depending on factors such as the type of information used as model input (e.g., CIR, PDP, DP), the deployment scenario, and the positioning accuracy target.
· Exemplary references: ZTE (R1-2302441), Huawei (R1-2302362), MediaTek (R1-2303340), Ericsson (R1-2302335)

Proposal 3.7-3
For AI/ML based positioning, the study of model input due to different number of TRPs include the following approaches. Proponent of each approach provide analysis for model performance, signaling overhead (including training data collection and model inference), model complexity and computational complexity.
· Approach 1: Model input size stays constant as NTRP=18. The number of TRPs (N’TRP) that provide measurements to model input varies. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs do not provide measurements to model input, i.e., measurement value is set to 0.
· Approach 1-A. The set of TRPs (N’TRP) that provide measurements is fixed.
· Approach 1-B. The set of TRPs (N’TRP) that provide measurements can change dynamically.
· Note: for Approach 1, one model is provided to cover the entire evaluation area.
· Approach 2: The TRP dimension of model input is equal to the number of TRPs (N’TRP) that provide measurements as model input. When N’TRP < NTRP, the remaining (NTRP  N’TRP) TRPs are ignored by the given model. For a given AI/ML model, the set of TRPs (N’TRP) that provide measurements is fixed. 
· For Approach 2: one model can be provided to cover the entire evaluation area, which is equivalent to deploying N’TRP TRPs in the evaluation area for positioning if ignoring the potential inference from the remaining (18  N’TRP) TRPs.
· For Approach 2, if Nmodel (Nmodel >1) models are provided to cover the entire evaluation area, the total complexity (model complexity and computational complexity) is the summation of the Nmodel models.

Proposal 3.7-4
In AI/ML based positioning, if N’TRP<18, the set of N’TRP TRPs that provide measurements to model input of an AI/ML model are reported using the TRP indices shown below.
[image: ]

Proposal 4.3-1
For AI/ML assisted positioning with TOA as model output, study the impact of labelling error to TOA accuracy and/or positioning accuracy.
· The ground truth label error of TOA is calculated based on location error. The location error in each dimension of x-axis and y-axis can be modelled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources.

Proposal 4.3-2
For AI/ML assisted positioning with binary LOS/NLOS identification as model output, study the impact of labelling error to LOS/NLOS identification accuracy and/or positioning accuracy.
· The ground truth label error of LOS/NLOS identification can be modelled as m% LOS label error and n% NLOS label error.
· Value m and n are up to sources.

Conclusion
TBD
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[bookmark: _Ref109630790]Appendix A. Agreements from RAN1#112

In RAN1#112 meeting for the AI PHY SI, the following agreements were made for AI 9.2.4.1 (Evaluation on AI/ML for positioning accuracy enhancement).
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.
Note: 
· Baseline evaluation area for InF-DH = 120x60 m.
· if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	



Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	



Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:
Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML


Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.


Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.

Conclusion
· No dedicated evaluation is needed for the positioning accuracy performance of model switching
· It does not preclude future discussion on model switching related performance

Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

Observation
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.






The following agreements were made for AI 9.2.4.2 (Other aspects on AI/ML for positioning accuracy enhancement).
	Agreement
Study further on sub use cases and potential specification impact of AI/ML for positioning accuracy enhancement considering various identified collaboration levels.
· Companies are encouraged to identify positioning specific aspects on collaboration levels if any in agenda 9.2.4.2.
· Note1: terminology, notation and common framework of Network-UE collaboration levels are to be discussed in agenda 9.2.1 and expected to be applicable to AI/ML for positioning accuracy enhancement. 
· Note2: not every collaboration level may be applicable to an AI/ML approach for a sub use case

Agreement
For further study, at least the following aspects of AI/ML for positioning accuracy enhancement are considered.
· Direct AI/ML positioning: the output of AI/ML model inference is UE location
· E.g., fingerprinting based on channel observation as the input of AI/ML model 
· FFS the details of channel observation as the input of AI/ML model, e.g. CIR, RSRP and/or other types of channel observation
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· AI/ML assisted positioning: the output of AI/ML model inference is new measurement and/or enhancement of existing measurement
· E.g., LOS/NLOS identification, timing and/or angle of measurement, likelihood of measurement
· FFS the details of input and output for corresponding AI/ML model(s)
· FFS: applicable scenario(s) and AI/ML model generalization aspect(s)
· Companies are encouraged to clarify all details/aspects of their proposed AI/ML approaches/sub use case(s) of AI/ML for positioning accuracy enhancement 

Agreement
Companies are encouraged to study and provide inputs on potential specification impact at least for the following aspects of AI/ML approaches for sub use cases of AI/ML for positioning accuracy enhancement.
· AI/ML model training
· training data type/size
· training data source determination (e.g., UE/PRU/TRP)
· assistance signalling and procedure for training data collection
· AI/ML model indication/configuration
· assistance signalling and procedure (e.g., for model configuration, model activation/deactivation, model recovery/termination, model selection)
· AI/ML model monitoring and update
· assistance signalling and procedure (e.g., for model performance monitoring, model update/tuning)
· AI/ML model inference input
· report/feedback of model input for inference (e.g., UE feedback as input for network side model inference)
· model input acquisition and pre-processing
· type/definition of model input
· AI/ML model inference output
· report/feedback of model inference output
· post-processing of model inference output
· UE capability for AI/ML model(s) (e.g., for model training, model inference and model monitoring)
· Other aspects are not precluded
· Note: not all aspects may apply to an AI/ML approach in a sub use case
· Note2: the definitions of common AI/ML model terminologies are to be discussed in agenda 9.2.1









Trade-off between positioning performance and reporting overhead
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