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1 Introduction
At RAN #94, a new study on artificial intelligence/machine learning for NR air interface was approved [1] with the following evaluation goals briefly summarized as below:
· AI/ML positioning sub use cases
· Decide on what AI/ML positioning sub use cases to be evaluated
· Data modelling and generation: 
· [bookmark: _Int_nZNORfDe]Decide on any required extensions to 3GPP evaluation methodology and 3GPP channel modelling, (from TR 38.901 [2] and TR 38.857 [3]) for AI/ML positioning use case
· Decide if any field and/or raytracing data generation is required for AI/ML positioning use case and whether this is required for any robustness studies related to AI/ML positioning
· Decide if having common datasets should be required for AI/ML positioning evaluation

· Training strategy and generalization requirements:
· Decide on any requirements for separating training, validation, and testing data for AI/ML positioning use case
· Decide on whether common AI model is required for cross-checking and discuss related calibration 
· Decide on training assumptions that need to be reported by companies 
· Decide on any requirements to evaluate the generalization of trained AI/ML models 

· KPIs:
· Decide on AI/ML positioning KPIs for the selected sub use cases
· Decide on benchmarking scheme to evaluate the selected sub use cases
· Decide on KPIs related to AI/ML model operation (e.g., latency, complexity, hardware requirements – memory, power, etc.) and comparing them with baseline benchmarking scheme

In our previous contributions [4] [5] [6] [7] [8], we covered various aspects related to AI/ML positioning evaluation, including evaluation methodology, targeted scenarios, dataset generation, KPIs, and generalization evaluation. In this document, we provide additional evaluations and discussions for trade-off between performance and reporting overhead for different cases and measurement reporting options. The new material is presented in Section 2.1, Section 2.2, and Section 3.1. Updated prominent aspects on AI/ML positioning are discussed in [9]. Our updated views on general AI/ML framework for air interface are discussed in [10].

2 Discussion on Evaluating Complexity, Reporting Overhead, and Generalization of AI/ML Positioning
[bookmark: _Int_zlXomNCT]AI/ML methods offer significant enhancement to positioning accuracy in challenging multipath & NLOS conditions as they can take advantage of prominent spatial and temporal features of the wireless channel and learn mapping between these features and ground truth position. However, this gain can be reduced when the wireless environment becomes substantially different from the original training environment. Ensuring descent generalization of AI/ML positioning performance and robustness to changes in wireless environment is important for successful deployment of these methods.
2.1 Common model complexity and dataset evaluation
For easiness of analyzing results submitted by companies, it is recommended that each company considers a common model complexity for its reported evaluations. This helps draw conclusions and analyze results from different approaches and evaluations. For example, if a company wants to compare generalization settings A with B, the model complexities considered in settings A and B are better to be same. Similarly, if a company wants to compare Case A with Case B, then both cases need to consider the same model complexity for fair comparison. Each company can pick the common model complexity on its own. Companies are still encouraged to investigate other model complexities in addition to their common ones. The same applies to training and testing dataset sizes (as applicable). When comparing different schemes, scenarios, or settings, it is good to have common dataset sizes for training and testing. 

Proposal 1: For fair comparison across different cases and generalization results submitted by one company, each company considers a common model complexity for its reported evaluations. The common complexity can be different across companies. Companies are still encouraged to investigate other model complexities in addition to their common ones.

Proposal 2: For fair comparison across different cases and generalization results submitted by one company, each company considers a common dataset size for its reported evaluations. The common dataset size can be different across companies. Companies are still encouraged to investigate other dataset sizes in addition to their common ones.


2.2 Studying AI/ML positioning performance & signaling/reporting complexityAgreement RAN1-111-9.2.4.1
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


Agreement  RAN1-112-9.2.4.1
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.


In the previous agreement, companies agreed to study the tradeoff among model performance, model complexity, and signaling overhead for model inference. The first step is to lay down a common methodology for quantifying the signaling/reporting overhead for which companies can report the signaling/reporting overhead. The overhead of reporting can be quantified by counting the number of quantities to be reported. For example, a timing information can be a one quantity and a complex value can be treated as two quantities (i.e., magnitude and phase). For example, when reporting N’t CIR samples, the reporting overhead is 3N’t quantities, which accounts for N’t timing information, N’t magnitude values, and N’t phase values. 
Proposal 3: Companies report the signaling/reporting overhead expected for AI/ML positioning (both direct AI/ML and AI/ML assisted positioning). The overhead is computed by listing the number of values/quantities to be reported, including location, magnitude, phase, and timing/angle information (as applicable).

[bookmark: _Ref131587821]Table 1 Reporting/signalling overhead computation for different cases and measurements
	Case
	Reporting
	Reporting/signaling overhead (# quantities)
	Notes

	Case1
	UE location
	3 (2)
	3D UE location (horizontal UE location)

	Case2a
	Existing DL-TDoA signal measurements with first path (i.e., N’t =1)
	2*NTRP 
	measurements include magnitude and timing for first path (single port)

	Case2a/Case2b (existing or enhanced measurements)
	Existing DL-TDoA signal measurements with additional paths (i.e., N’t =8)
	16*NTRP 
	measurements include magnitude and timing for N’t paths (single port)

	
	Existing DL-TDoA signal measurements with additional paths (i.e., N’t =16)
	32*NTRP 
	

	Case2b (new measurements)
	New CIR measurements (i.e., N’t )
	3*NTRP * Nport * N’t
	measurements include magnitude, phase, and timing for reported samples



For example, let NTRP * Nport * Nt be the dimension of CIR measurements to be considered at LMF side, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples, and N’t (N’t < Nt) samples with the strongest power are selected as model input. A company reports the overhead of this measurement reporting as 3*NTRP * Nport * N’t, where the measurement includes magnitude, phase, and timing for the samples. When reporting an equivalent PDP measurement, then the overhead of reporting is counted as 2*NTRP * Nport * N’t , which accounts for magnitude and timing information of reported samples. For direct AI/ML positioning, the overhead of reporting is 3 quantities, corresponding to target’s 3D location (or 2 quantities if it is a horizontal location). For AI/ML assisted positioning, the UE or gNB/TRP needs to report the timing for the first arrival path. It is also possible to report power value and additional paths (including their power and timing information). Let N’t be the number of paths to be reported to LMF. Then a company counts the overhead as 2*NTRP * N’t (assuming single port operation). We summarize formulas to calculate reporting overhead for various cases in Table 1. We evaluate the tradeoff between performance and reporting overhead for different cases and reporting options in Section 3.1.
The evaluation template needs to be enhanced for incorporating reporting/signaling overhead required during inference.
Proposal 4: Enhance the template for reporting AI/ML positioning evaluation results to include signaling and reporting overhead (e.g., number of quantities, including location, magnitude, phase, and/or timing/angle).
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Reporting/signaling overhead
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity 
	Computation complexity
	NTRP * Nport * [N’t +N’t +N’t ] or N’t  for location information
	AI/ML

	
	
	
	
	
	
	
	
	
	
	





2.3 Studying model robustness and generalization for AI/ML positioning
Direct AI/ML positioning methods, e.g., RF (Radio Frequency) fingerprinting (RFFP), usually utilize the entire multipath observation (i.e., both LOS and NLOS) to estimate the position. While this results in excellent positioning accuracy, this makes the RFFP more sensitive to environmental changes that significantly affect the multipath profile. 
AI/ML assisted positioning methods, on the other hand, usually utilize multipath observation differently. A subset of methods uses enhanced estimation related to existing parameters primarily focusing on the LOS component of the channel. These methods are expected to be robust to changes in the multipath profile of the channel if the LOS path is not strongly impacted. A second subset of methods (ex. ML-based soft information reporting), which focus on reporting new parameters (such as soft-information of the ToA estimate, e.g., likelihood/probability of ToA) may also be partially sensitive to changes in the multipath environment. 
We thus focus on studying the robustness and generalization for direct AI/ML methods and the ML-based soft information reporting-based method. We first note that evaluating true generalization performance due to environment changes is not feasible due to the statistical nature of the 3gpp 38.901 channel model used for evaluations. With this constraint, we discuss a few options to modify the statistical channel generation to enable the evaluation of robustness to changes in multipath profiles. We consider the following categorizations for evaluating generalization and robustness of AI/ML positioning:
· Type 1: Heterogeneous inter-site (or heterogeneous inter-zone): Performance of AI/ML model on unseen deployment type (e.g., Umi vs. InF scenarios)

· Type 2: Homogeneous inter-site (or homogeneous inter-zone): Performance of AI/ML model on unseen deployment of the same type (e.g., trained on drop 1 and tested on drop 2 of the same scenario) 

· Type 3: Time varying changes: Performance of AI/ML model on unseen time variations within the same site (or zone) (e.g., moving objects, small environment variations over time in a factory, floor, warehouse, etc.)

· Type 4: Cross-configuration: Performance of AI/ML models across TX/RX configurations (e.g., training and testing can have different beam or transmit powers/SNR mismatch, synchronization/timing errors, etc.).
We first remind ourselves that direct AI/ML positioning methods rely on learning the multipath characteristics of the channel to estimate the UE position. In other words, direct AI/ML models for positioning are zone specific by design and hence it is hard for them to generalize across zones (i.e., sites). Consequently, we note that direct AI/ML methods in general are not expected to generalize across unseen zones (i.e., Type 1 and Type 2 generalization) as the multipath realization (i.e., propagation delays and arrival/departure angles of NLOS taps) has no correlation across different zones. 
While multipath realization is different across different drops, some aspects such as LOS probability, path loss, etc., are consistent across scenarios. Thus, while a model trained on zone 1 (drop 1) may not generalize well to zone 2 (drop 2), a model trained on a composite dataset of many drops is expected to learn common characteristics across the zones and provide marginal generalization performance on unseen sites. 
Robustness of AI/ML positioning performance against channel variations due to moving objects and environment changes over time is important. Thus, it is important to study robustness to Type 3 changes. 
2.4 Channel modeling for robustness and generalization study
In this document, we denote training dataset as “dataset A” and testing dataset as “dataset B.” For evaluating model’s generalization, train the model on a mixture of datasets, e.g., , ,… ,  and evaluate the model on unseen changes, e.g., datasets , ,… , , where training and evaluation datasets reflect the change expected in real scenario. The model trained on mixed datasets, i.e., , ,… , , can be compared to a baseline model that is trained on a single dataset, e.g., . The intention is to show training on mixture of datasets show better generalization to unseen changes than single dataset training.
In meeting (RAN1-110), companies agreed on studying generalization for Type1, Type2, and some aspects of Type 4 generalizations (TX/RX timing errors) and discussed related modeling options.Agreement (RAN1-110)
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
· Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
· Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
· Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.
Agreement (RAN1-110)
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).




In meeting (RAN1-111), companies also agreed on studying Type 3 changes and additional aspects related to generalization for Type4 (including SNR mismatch and channel estimation error). Agreement (RAN1-111)
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error


2.4.1 Studying Type1 and Type 2 generalization using 3gpp channel models
To study Type 1 generalization, we can generate datasets A and B using different scenarios (e.g., different clutter settings) within the same evaluation methodology. For Type 2 generalization, we can generate datasets A and B using different drops (i.e., same scenario and clutter setting but with different random seeds) within the same evaluation methodology. For example, datasets A and B can be generated with InF-DH scenario and {60%, 6, 2} clutter settings but using different random seeds. We also provide evaluations to show Type 2 generalization of direct AI/ML positioning in Section 3.2.2.1 and Type1/Type2 generalization for AI/ML assisted positioning in Sections 3.3.5 and Section 3.3.6.

2.4.2 Studying Type 3 robustness using 3gpp channel models
One aspect of generalization is the robustness of AI/ML positioning model to zone-specific time varying changes, i.e., intra-site robustness, in which model needs to be tested against time varying changes in each site (e.g., movement of reflecting objects, small environment variation over time, etc.). In the meeting (RAN1-110), there was a request for further clarification on how site time changes can be modeled based on the channel models in TR 38.901. We provide a detailed modeling of Type 3 changes and how to evaluate robustness in Appendix 1. Another option for modeling Type 3 changes can be based on the blockage modeling in TR 38.901, i.e., Blockage Model A and Blockage Model B (Section 7.6.4 [2]). We provide evaluations to show robustness to time varying changes of direct AI/ML positioning in Section 3.2.2.2 and Section 3.2.2.3 and robustness of AI/ML assisted positioning in Section 3.3.7 based on the modeling in Appendix 1.
Proposal 5: For studying the impact of time varying changes (e.g., mobility of clutter objects and blockers in the environment), the following modelling approaches can be considered:
· Option1: Modeling approach listed in Appendix 1
· Option2: Blocker Model A or Blocker Model B in TR 38.901 (Section 7.6.4 [2]).

2.4.3 Studying Type 4 robustness using 3gpp channel models
We also study robustness of AI/ML positioning to different Type 4 changes, including timing and synchronization errors in Section 3.2.2.4, and SNR/TX power mismatch in Section 3.2.2.5. 

2.5 Studying model LCM (Life Cycle Management) for AI/ML positioning
2.3.1 Studying model LCM: finetuning
In meeting (RAN1-110), companies agreed on aspects for evaluating model finetuning. Agreement (RAN1-110)
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.
Agreement: RAN1-110-9.2.4.1
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
horizontal positioning accuracy (in meters) before and after model finetuning.

Agreement RAN1-111-9.2.4.1
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.


While it is possible to do extensive training data collection for positioning at a few points in time (e.g., every few months), it would be difficult and challenging to do it frequently (e.g., every day). Model finetuning can be a solution to help models adapt to continuously changing wireless environments. The feasibility of model finetuning depends on the size and availability of finetuning dataset. Depending on the expected change in the environment, the size of finetuning dataset required to enhance positioning performance can be quite large. 
Observation 1: Positioning enhancement gains of AI/ML model fine-tuning depends on the size of fine-tuning data. 
Therefore, model finetuning can be a solution to address zone-specific changes (e.g., movement of reflecting objects, small environment variation over time, etc.), in which small training dataset can be collected continuously and used to finetune a zone-specific AI/ML positioning model. Considering finetuning as a solution for addressing inter-site generalizations (i.e., Type1 and Type2) might not be the right approach because these types entail substantial changes and require extensive data collection. We provide evaluations to finetuning and show the infeasibility of finetuning to address inter-site generalizations in Section 3.2.3.1. 
2.5.2 Studying model LCM: switching
In the meeting (RAN1-110be AI 9.2.1), companies agreed on considering model switching as one of the approaches to enhance performance across different scenarios, configurations, sites, etc. 
Agreement (RAN1-110be AI 9.2.1)
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
i. Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
ii. Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
iii. Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Some AI/ML positioning models are site specific and can guarantee excellent performance when tested under settings that match their training ones. Such models should not be expected to generalize to unseen settings (e.g., sites with significantly different multipath profiles). Model switching allows activating the right model that suites the operating condition and thereby achieving excellent performance across different scenarios, configurations, sites, etc. Model switching can ensure the scalability of site-specific AI/ML positioning models and secure their desired excellent positioning performance. 
Observation 2: Site-specific AI/ML positioning models achieve excellent performance within their intended coverage area (i.e., the trained site). 
Observation 3: Model switching can help scaling the excellent performance of site-specific AI/ML positioning models across different sites. 
To evaluate model switching, companies can consider a situation in which a UE moves between multiple sites. These sites can be modelled with different drop values, clutter settings, or scenarios. Companies can train multiple site-specific models for these sites. Then, two cases can be evaluated: ‘no model switching’ and ‘model switching.’ In the ‘no model switching’ case, the UE keeps using the same model that is trained only on dataset from one (or multiple) site across all seen and unseen sites. In the ‘model switching’ case, the UE, on the other hand, can switch its model as it moves between these sites and use the right model that matches the site under test. The performance KPI can show the AI/ML positioning performance for the two cases across all sites. 
Proposal 6: To evaluate AI/ML positioning enhancement with model switching, consider multiple sites (e.g., N sites) that have different drop values, clutter settings, and/or deployment scenario. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L sites among the N sites (where L<N), and test on all N sites using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N sites, and test on all N sites while switching between the M trained models and picking the right model that fits the testing site. 
We provide evaluations to show the feasibility of model switching to address inter-site generalizations in Section 3.2.3.2. 

2.5.3 Discussion on model LCM for AI/ML positioning approaches
Agreement RAN1-111-9.2.4.1
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary.


In the previous meeting, companies agreed to provide inputs on identifying generalization aspects for which different LCM approaches can be beneficial (i.e., model switching, mixed training dataset, and model finetuning). While the agreement only covers the AI/ML assisted positioning approach, we would like to indicate our general observations for both direct AI/ML and AI/ML assisted approaches. These approaches are valid options for ensuring proper model generalization and high accuracy. However, each approach has its own pros and cons. We find that model switching can offer the best accuracy and generalization to different settings if the switching is done timely and properly. The mixed training dataset approach can also offer good accuracy when the AI/ML positioning model is tested on the same settings included in the mixed dataset. However, the mixed training dataset approach can be slightly worse than model switching. The mixed training dataset construction helps overcome the need for timely and proper model switching but learning mixture of datasets comes at expense of reduced performance when compared with the case of learning single dataset. The model finetuning can be helpful to adapt to slight changes using small dataset size. However, it cannot adapt and generalize well when significant changes are expected. 
Proposal 7: consider the following observations on LCM approaches (i.e., model switching, mixed training dataset, and model finetuning) for AI/ML positioning:
· Model switching offers the best positioning accuracy followed by mixed training dataset construction and model finetuning
· Model finetuning with small dataset size can only be feasible for enhancing positioning accuracy for small unseen changes 

In terms of the AI/ML positioning approach, we find that the best approach for achieving high accuracy is direct AI/ML positioning, followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction, respectively. We also find that the AI/ML assisted positioning with single-TRP input construction and soft-information output achieves higher accuracy than having a hard-information output. The AI/ML assisted positioning with single-TRP input construction can, on the other hand, offer better generalization performance to unseen changes than direct AI/ML and AI/ML assisted positioning with multi-TRP input construction when no LCM is applied. Our findings and views are shown in Figure 1. 

Proposal 8: consider the following observations on AI/ML positioning approaches:
· Direct AI/ML positioning approach offers the best positioning accuracy followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction approaches, respectively
· AI/ML assisted positioning with single-TRP input construction approach offers the best generalization performance (when applying no model LCM to other approaches).
· AI/ML assisted positioning with soft-information output offers higher positioning accuracy than AI/ML assisted positioning with hard-information output.


[image: ]
[bookmark: _Ref127460590]Figure 1 Accuracy and generalization performance for different LCM options (top) and AI/ML positioning approaches (1model finetuning with reasonable small dataset size, 2 Generalization without applying LCM).


3 Performance Results
We provide evaluations for both direct AI/ML and AI/ML-assisted positioning approaches. We consider the RFFP [9] as the direct AI/ML positioning approach and we use it to show the gain that AI/ML can offer in extreme NLOS indoor scenarios and its robustness to zone-specific generalizations. For the AI/ML assisted approach, we evaluate the ML-based soft information reporting for DL-TDoA scheme [9]  and show its enhancements to both indoor and outdoor scenarios as well as its robustness to inter-site generalizations. In our evaluations we consider a baseline scheme that is based on TDoA. The baseline scheme has also SNR pruning enabled and RANSAC for outliers’ rejection. The evaluations consider 100 MHz bandwidth. Our simulation parameters are in line with those in TR 38.857 [3] and reflect updates agreed in previous meeting (RAN1-109e). The spatial consistency is enabled according to Section 7.6.3, TR 38.901 [2] with decorrelation distance 10 meters and the grid-based method discussed in Section 5.3 [11]. We also provide evaluations based on field dataset in Section 3.2.4 and raytracing dataset in Section 3.2.5. 

3.1 Evaluating trade-off between reporting/signalling overhead and performance
We evaluate the trade-off between performance and signalling overhead for various cases and settings, as shown in Table 2 and Figure 2. We show the performance for Case1, Case2a, and Case2b along with their reporting overhead. For Case2b, we investigate different reporting options, including existing multipath reporting in DL-TDoA and new measurement reporting of CIR complex values. For the two options, we also investigate different optimizations of the number of paths or samples to be reported. 
For Case2b with existing measurement reporting, the UE finds up to N’t paths for each TRP and reports their timing and power to the LMF. The LMF decides the mapping of each sample to model input index based on the multipath timings. We evaluate two values for multipath reporting, i.e., N’t =8 and N’t=16. For Case2b with new CIR measurements, the UE finds the strongest N’t samples in CIR, and reports them to LMF along with their timing information. We evaluated different realizations of CIR optimizations, i.e., N’t = {8, 16, 64, 400}.
We observe the following:
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 2 reporting overhead).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 34 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 288 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 288 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 576 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 576 vs. 13824)   than Case2b with CIR of N’t =64 samples.
We conclude from the above observations that Case2b can achieve a higher positioning accuracy with multipath reporting than CIR measurements reporting (see cases with N’t < 64) and smaller reporting overhead. Case2b can also achieve a comparable positioning accuracy with up to 16 multipath reporting and much smaller reporting overhead when compared to CIR measurement reporting with N’t = 64. Any reporting of CIR measurements with  N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). In summary, for a given reporting overhead, Case2b with multipath reporting achieves higher positioning accuracy than Case2b with new CIR measurement reporting. We find CIR measurement reporting has unjustified huge reporting overhead and minimal enhancement when compared to existing multipath reporting. We propose to deprioritize CIR measurement reporting for Case2b.
[bookmark: _Ref131752857][bookmark: _Ref131763072]Table 2 Evaluation results for AI/ML model complexity and reporting overhead when deployed on UE- or NW-side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
(NTRP * Nport * Nt * N’t)
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Reporting/signalling complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	NTRP * Nport * [N’t +N’t +N’t ]
(values)
	AI/ML

	CIR (18,4, 400, 400) - Case1
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3
	2.24

	CIR (18,4, 400, 400) - Case2a
	17x (RSTD, RSRP)
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	34
	2.92

	RSRPP + Timing (18,1, 400, 8) – Case2b (existing measurements)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	288
	2.52

	RSRPP + Timing (18,1, 400, 16) – Case2b (existing measurements)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	576
	2.31

	CIR (18,4, 400, 8) – Case2b (new measurements - CIR)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	1728

	3.17

	CIR (18,4, 400, 16) – Case2b (new measurements - CIR)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	3456

	2.51


	CIR (18,4, 400, 64) – Case2b (new measurements - CIR)
	2D
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	13824

	2.29


	CIR (18,4, 400, 400) – Case2b (new measurements - CIR)
	2D 
	0%
	Drop A 
	Drop A 
	15k
	2k
	1.5M 
	1.54G FLOPs
	86400

	2.24




[bookmark: _Ref131754848]Figure 2 Horizontal positioning error at 90%-tile versus reporting overhead for different cases and measurement reporting options.
Observation 4: We observe the following regarding the trade-off between performance and reporting overhead: 
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 2 reporting overhead).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 34 vs. 1728) than Case2b with CIR of N’t =8 samples.
· [bookmark: _Int_dOaeQd1k][bookmark: _Int_OpbkNNAR]Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 288 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 288 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 576 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 576 vs. 13824)   than Case2b with CIR of N’t =64 samples.
Observation 5: For Case2b, reporting of CIR measurements with N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). 
Observation 6: For Case2b, reporting of CIR measurements with N’t  64 can have less or comparable performance gain to multipath reporting and has higher reporting overhead. 
Observation 7: For same reporting overhead when N’t  64, Case2b achieves higher positioning accuracy with multipath reporting than CIR measurement reporting. 
Proposal 9:  For specifying model input in Case2b, deprioritize CIR measurement reporting due to its the huge reporting overhead and comparable or minimal performance gain when compared to existing multipath reporting. 

3.2 Direct AI/ML positioning: RFFP 
We consider three indoor deployments for evaluating RFFP, including 3GPP InF-DH deployment based on synthetic statistical modelling from TR 38.901, over-the-air indoor deployment, and raytracing-generated indoor deployment. The three deployments include sufficiently significant NLOS conditions that help showing gain of RFFP in zone specific scenarios. 
3.2.1 [bookmark: _Ref101994076]Performance evaluation of RFFP using TR 38.901 channel model
We consider the InF-DH deployment [2], as shown in  Figure 3. To simulate extreme NLOS condition, clutter parameters are set to {60%, 6, 2}. We drop 17K Ues uniformly in the whole hall layout and use15K for RFFP training. The UE area density of training dataset is 2.2 Ues/m2. The testing set has 2K Ues widely spread in the whole hall layout, as summarized in Table 3. The RFFP ML model takes a truncated CIR (Channel Impulse Response) input received from different gNBs as input and produces estimated position as output.
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[bookmark: _Ref101875857]Figure 3 InF-DH deployment (red triangles: TRPs, blue dots: UE locations).

[bookmark: _Ref115427203]Table 3 Evaluation results for AI/ML model deployed on UE-side, without model generalization, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Training
	test
	Model complexity [parameters]
	Computational complexity
	AI/ML

	CIR (18,4, 400)
	2D 
	0%
	Drop A (with UE clock drift)
	Drop A (with UE clock drift)
	15k
	2k
	1.5M params
	1.54G FLOPs
	2.77



In Figure 4, we plot CDF of horizontal positioning error for RFFP and classical benchmarking schemes. The RFFP scheme offers significant improvement to positioning accuracy. The 90th percentile of RFFP and classical schemes are ~3 m and >20 m, respectively. Due to the extremely low LOS probability in the InF-DH scenario with {60%, 6, 2} clutter setting, the classical scheme diverges and cannot provide accurate results. This proves the significant enhancement that RFFP can offer in extreme NLOS environments. We also discuss next further ML enhancements that helps pushing positioning error to smaller values.


[image: ]
[bookmark: _Ref101879247]Figure 4 CDF of horizontal positioning error for RFFP and classical schemes.
The impact of enabling spatial consistency on RFFP scheme is investigated in Figure 5. The RFFP performance shows better performance when trained on channel realizations generated according to Section 7.6.3 [2] and Section 5.3 [11].
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[bookmark: _Ref101879576]Figure 5 CDF of horizontal positioning error for RFFP scheme under different channel modelling assumptions (blue plot: channel model involves spatial consistency as modeled in Section 7.6.3 [2] and Section 5.3 [11]; black plot: channel model is based on TR 38.901 but does not involve spatial consistency modeling in Section 7.6.3 3 [2] and Section 5.3 [11]).

The impact of UE area density on RFFP performance is investigated in Figure 6. We consider multiple realizations of the RFFP ML model with different UE area densities. Other training assumptions for the considered UE area densities are the same. To simulate different UE densities, we consider a smaller region of 25 sq. mt. in the layout for training and testing. We increase the UE area density from 2.2 Ues/m2 to 640 Ues/m2. As observed, increasing UE area density when doing training helps reducing positioning error significantly. The 90th percentile of error reduces to ~50 cm (see the black solid plot). Considering performance improvement as function of UE area density is important because it helps companies decide on data collection strategies and signalling requirements depending on the sub use case of interest. 
While density of training samples is important for studying the performance of supervised trained RFFP, we note that, in practice, we can train the RFFP via semi-supervised training using a lot fewer training sample. Thus, the above sampling density requirement does not diminish the feasibility of RFFP.
Observation 8: RFFP can demonstrate different performance metrics depending on the UE area density considered for training. It is important to study how UE area density can affect performance as this helps companies decide on data collection strategies and signalling requirements depending on the case of interest.
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[bookmark: _Ref101884490]Figure 6 CDF of horizontal positioning error for RFFP under different UE area densities (blue plot: sparse UE area density; black: dense UE area density).

3.2.2 Generalization and robustness evaluation for RFFP
3.2.2.1 RFFP generalization to drops
We evaluate inter-site generalization performance, i.e., Type 2, of RFFP positioning. We generate two datasets, i.e., Drop A and Drop B, with different random seed values. Ues in the two drops experience different multipath realizations and mimic two different sites having same clutter settings, i.e., {60%, 6, 2}. The ML model is trained with 15K Ues from Drop A that are uniformly dropped in the whole hall layout. We test the trained model on another 2K Ues from Drop A and another 2K Ues from Drop B. We plot the CDF of horizontal positioning errors in Figure 7 and summarize the error at different percentiles in Table 4. As can be observed, the RFFP demonstrates superior performance when tested on the site it has been trained on, but it is sensitive when tested on a different site of different multipath profiles. This is because RFFP method learns the mapping between the entire multipath realization and position at a given UE location. At a different site, the multipath profile at the given UE location is entirely different and this results in misleading outputs.
Observation 9: RFFP method is site-specific and can provide excellent performance when operated on the site being trained on. It should not be expected to generalize over unseen sites that have entirely different reflections and multipath realization.

[bookmark: _Ref111123281][bookmark: _Ref111123274]Table 4 Horizontal positioning error (meters) of RFFP with Type 2 generalizations
	Train
	Test
	50%
	67%
	80%
	90%tile

	Drop A
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	Drop B
	5.98
	7.81
	9.88
	12.33

	Classical – Drop A
	14.65
	>20
	>20
	>20

	Classical – Drop B
	13.88
	>20
	>20
	>20
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[bookmark: _Ref111123220][bookmark: _Ref111123211]Figure 7 CDF of horizontal positioning errors of direct AI/ML positioning (solid plots: Baseline performance; dashed plots: Type 2 generalizations).

3.2.2.2 RFFP robustness to time varying changes
We study the impact the robustness of RFFP to zone-specific changes (i.e., time varying changes). To do so, we generate multiple datasets that have slightly different cluster realizations. This reflects, for example, appearance of blocking objects that may create or block a multipath cluster 
To mimic such scenario, we generate datasets that have same clutter settings and random seed value but with partially common cluster assignments, as discussed in Appendix 1. The partially common cluster assignment between datasets ensure they correspond to the same site in which additional reflections and/or blocking occurs due to dynamically varying environment such as moving objects. Clusters are ordered based on their delays. The index of cluster number indicates how early the rays arrive at a given UE location. We consider the following cluster assignments for generating datasets of robustness study:
· Odd clusters: Consider odd-numbered clusters when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 1&3: Consider odd-numbered clusters except for the first and third ones when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 1&5: Consider odd-numbered clusters except for the first and fifth ones when generating channel coefficients at all UE locations and TRP links.
· Odd except clusters 5&7: Consider odd-numbered clusters except for the fifth and seventh ones when generating channel coefficients at all UE locations and TRP links.
· Odd with clusters 2&4: Consider odd-numbered clusters plus the second and forth ones when generating channel coefficients at all UE locations and TRP links.
· Odd with clusters 6&8: Consider odd-numbered clusters plus the sixth and eighth ones when generating channel coefficients at all UE locations and TRP links.
· Odd with random addition and removal of clusters: For a given UE link, consider odd-numbered clusters except at most two random odd-numbered clusters. In addition, add at most two random even clusters.

The different cluster assignments above mimic addition of up to two reflections and/or blocking of up to two paths. We train RFFP model with 15K Ues from the dataset of odd clusters and test its performance over different cluster assignments. The horizontal positioning errors of different tests are summarized in Table 5. The RFFP method shows good robustness to adding new reflections as can be observed from the testing performance on datasets with additional clusters, i.e., ‘odd with clusters 2&4’ and ‘odd with clusters 6&8’. The 90th percentile of positioning accuracy only drops from 2.74m to 2.88m and 2.89m when adding clusters 2&4 and 6&8, respectively. 
Observation 10: RFFP shows good robustness to subtle and moderate unseen reflections and multipath components that are different from training.
We study how blocking can affect RFFP method. We test the trained RFFP model on unseen changes that mimic blocking by considering the datasets with cluster removal. Introducing a blocker removes cluster contributions when computing channel coefficients. We test the RFFP model on datasets ‘odd except clusters 1&3’, ‘odd except clusters 1&5’, and ‘odd with clusters 5&7’. We see that RFFP model experiences different sensitivity to adding a blocker depending on which paths get blocked. We observe that blocking the earliest clusters brings more degradation to RFFP performance. The 90th percentile of positioning error drops from 2.74m to 5.63m, 5.62m, and 3.16m when blocking clusters 1&3, 1&5, and 5&6, respectively. We note that RFFP experiences performance losses when blocking occurs on earliest clusters as they have more power contributions. Our performance evaluations of RFFP robustness to Type 3-time variations are summarized in Table 6.
[bookmark: _Ref111127320]
[bookmark: _Ref118476604]Table 5 Horizontal positioning error (meter) for RFFP method robustness with Type 3-time varying changes (ML model trained on one channel realization, i.e., channel with odd clusters)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Odd clusters
	Odd clusters
	1.27
	1.65
	2.13
	2.74

	Odd clusters
	Odd except clusters 1&3 
	2.87
	3.69
	4.54
	5.63

	Odd clusters
	Odd except clusters 1&5
	2.73
	3.60
	4.60
	5.62

	Odd clusters
	Odd except clusters 5&7
	1.47
	1.91
	2.41
	3.16

	Odd clusters
	Odd with clusters 2&4
	1.33
	1.75
	2.19
	2.88

	Odd clusters
	Odd with clusters 6&8
	1.30
	1.69
	2.18
	2.89

	Odd clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.60
	2.11
	2.67
	3.46




[bookmark: _Ref115427598]Table 6 Evaluation results for AI/ML model deployed on UE-side, with Type 3-time varying changes, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train 
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd clusters) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.74

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd except clusters 3&5) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.16

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd with clusters 2&4) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.88

	CIR (18,4,400)
	2D
	0%
	Drop 1 (odd clusters) (with UE clock drift)
	Drop 1 (odd with removal & addition of two random clusters) (with UE clock drift)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.46



3.2.2.3 RFFP robustness to time varying changes with mixed dataset training
It is expected that blockers come and go during data collection. Therefore, it better reflects the practical reality to construct the training dataset based on a mixture of several different clutter assignments. Therefore, in the next experiment, we train the RFFP model on a mixture of datasets, including ‘odd clusters’ and ‘odd clusters with random addition and removal of clusters,’ and then test it on unseen zone-specific changes. We summarize testing results in Table 7. We also plot a comparison between testing results of the RFFP model trained on mixture of zone-specific changes and the earliest one trained on dataset containing only odd clusters, as shown in Figure 8. The solid plots correspond to the RFFP model trained with only odd clusters while the dashed plots correspond to the RFFP model trained on mixture of datasets. It should be noticed that, in the Mixed Training scenarios, the testing datasets with fixed addition and removal of clusters consist of unseen cluster assignments that do not present in the training dataset. As can be seen, the RFFP method shows enhanced robustness to unseen zone-specific changes when it is trained on mixture of zone-specific changes. 
Observation 11: RFFP method can show improved robustness to slight environment changes such as time-varying blocking when trained on mixture of such changes.
[bookmark: _Ref111138292]Table 7 Horizontal positioning error (meter) for RFFP robustness with Type 3 ‘time varying changes’ (ML model trained on mixture of channel realizations)
	Train
	Test
	50%tile
	67%tile
	80%tile
	90%tile

	Mixed clusters
	Odd clusters
	1.33
	1.59
	2.19
	2.80

	Mixed clusters
	Odd except clusters 1&3
	2.41
	3.07
	3.81
	4.87

	Mixed clusters
	Odd except clusters 1&5
	2.21
	2.97
	3.72
	4.64

	Mixed clusters
	Odd except clusters 5&7
	1.45
	1.84
	2.42
	3.15

	Mixed clusters
	Odd with clusters 2&4
	1.39
	1.63
	2.25
	2.89

	Mixed clusters
	Odd with clusters 6&8
	1.34
	1.60
	2.23
	2.87

	Mixed clusters
	Remove up to two random odd clusters and add up to two random even ones 
	1.50
	1.822
	2.46
	3.17



[image: ]
[bookmark: _Ref111138461]Figure 8 CDF of horizontal positioning error of RFFP method for different Type 3-time varying changes (solid plots: ML model trained on odd clusters; dashed plots: ML model trained on odd clusters while randomly removing and adding up to two odd and even cluster).
[bookmark: _Ref127461042]3.2.2.4 RFFP robustness to synchronization and timing errors
AI/ML offers advantages to positioning that go beyond improving accuracy. AI/ML can be leveraged to enhance positioning performance against network and UE impairments, including UE clock drift and TRP synchronization. RFFP ML model can be trained to account for UE clock drifts and TRP mis-synchronization. We evaluate the impact of accounting for these impairments on the generalization performance of RFFP scheme. In Figure 9, we plot the CDF of positioning error for RFFP scheme under two scenarios: ‘no clock drift’ and ‘clock drift’. The two scenarios have same training complexity. The ‘no clock drift’ scenario corresponds to an ideal setting where UE clock is tightly coupled and synchronized with TRPs, while the ‘clock drift’ scenario represents the RFFP testing performance when UE clock drift is set variable within [-150, 150] nanoseconds. We train RFFP ML model to account for such drift. As can be observed, RFFP ML model can be trained to be robust against UE clock drifts. It should be noted that the gap between ‘no clock drift’ and ‘clock drift’ scenarios can be further tightened by applying further optimizations. 
The Impact of TRP mis-synchronization is evaluated in Figure 10. For the ‘relaxed TRPs sync.’ Scenario, we relax TRP synchronization assumption and add artificial synchronization error within [-10,10] nanoseconds during training. This helps accounting for potential residual clock synchronization offsets between TRPs that could happen in real deployments. RFFP ML model is can account for such error and provide comparable performance to ideal synchronization settings, as seen in the ‘relaxed TRP sync.’ Scenario. In conclusion, with careful training, RFFP can be made robust to network and UE impairments. We also would like to mention that ML can be trained to learn compensating other static impairments such as group delays. 
Observation 12: RFFP can be made robust to network and UE timing errors (e.g., UE clock drift, network synchronization, etc.), by taking timing impairments into the training dataset.
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[bookmark: _Ref101880951]Figure 9 CDF of horizontal positioning error for RFFP scheme under different UE clock drift conditions (green plot: RFFP performance in ideal settings when no clock drift present; blue plot: training accounts for UE clock drift and testing includes UE clock drift within [-150,150] nanoseconds).
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[bookmark: _Ref101883668]Figure 10 CDF of horizontal positioning error for RFFP scheme under different TRPs’ synchronization assumptions (blue plot: TRPs are synchronized; magenta plot: TRPs have random synchronization error within [-10, 10] nanoseconds).

3.2.2.5 RFFP robustness to SNR mismatch
We investigate the sensitivity of RFFP to SNR mismatch between the training and testing. To model SNR mismatch, we consider different transmit power settings for training and testing. We consider two baseline transmit powers for training, including 12 dBm and 18 dBm. Two models are trained for each value. For testing, in addition to baseline transmit powers, we consider two additional transmit powers, i.e., 21 dBm and 24 dBm. Except for the transmit powers, all other simulation parameters are common between all training and testing datasets. To rule out any factors that may affect the performance, other than the transmit power, we consider timing errors in both training and testing datasets to be perfectly compensated. 
We show the performance for both matched and mismatched SNR setting of training and testing in Table 8. First, for the matched SNR setting, we observe, as expected, that increasing the SNR helps improving the performance. For example, increasing SNR by 6 dB (by increasing the transmit power from 12 dBm to 18 dBm) offers enhancement to the positioning accuracy (almost 7.2% reduction in positioning error). Second, for the mismatched SNR setting with 12 dBm training, the positioning accuracy experience some slight and moderate degradation. For example, the testing on 18 dBm, 21 dBm, and 24 dBm, shows 23%, 40%, and 50% increase in the positioning error, respectively, when compared to the baseline case of 12 dBm testing. This happens because as SNR improves in testing new unseen multipath information become available at RFFP model input, and this causes additional positioning errors. We observe that this degradation in performance becomes smaller as training SNR gets higher. For example, for the mismatched SNR setting with 18 dBm training, the positioning accuracy experiences less degradation than that with 12 dBm training. For example, the testing on 12 dBm, 21 dBm, and 24 dBm, show 21.7%, 2.5%, and 7.1% increase in the positioning error, respectively, when compared to the baseline case of 18 dBm testing. We conclude that training on higher SNR settings can help making direct AI/ML positioning robust to SNR mismatch at testing time.

Observation 13: If training and testing have mismatched SNR (e.g., due to change in transmit power), training direct AI/ML model on a higher SNR regime can achieve better generalization to unseen SNR settings than training on a smaller SNR regime.


[bookmark: _Ref127449378]Table 8 Evaluation results for AI/ML model deployed on UE-side, with different TX power settings, CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Setting ({60%, 6, 2})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Train
	Test
	Train
	Test 
	Model complexity
	Computational complexity
	AI/ML

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm) 
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.6

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.12

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.64

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 12 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	3.89

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 12 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.91

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 18 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.39

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 21 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.45

	CIR (18,4,400)
	2D
	0%
	Drop 1 (TX power 18 dBm)
	Drop 1 (TX power 24 dBm)
	15k
	2k
	1.5M
	1.54G FLOPs
	2.56


 

3.2.3 Model LCM evaluation for RFFP
3.2.3.1 RFFP model LCM evaluation: Model finetuning for inter-site generalization
We investigate amount of data needed to finetune a trained direct AI/ML positioning model for enhancing performance for inter-site generalization. We consider small datasets of 100, 240, and 500 samples from Drop B and use them to finetune the model trained with 15K samples from Drop A dataset. We plot the CDF of horizontal positioning errors in Figure 11 and summarize the error at different percentiles in Table 9 for different finetuning dataset sizes. Finetuning the model with 100 samples offer slight enhancement to inter-site generalization performance. The positioning error at 90th percentile improves from 12.33m to 10.47m. As we double the size of training samples, we observe good gain. The positioning error at 90th percentile improves from 12.33m to 6.92m when finetuning with 240 samples. However, this gain starts to saturate as more samples are considered. By doubling the size of finetuning samples from 240 to 500 samples, we only see slight enhancement as the positioning error at 90th percentile improves from 6.92m to 6.07m.  However, this still far from the desired baseline performance around ~3m. 
Observation 14: Model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of direct AI/ML positioning when tested with different drops (i.e., inter-site generalization).
As can be seen, although model finetuning with small dataset size can help enhance the performance for inter-site generalization, it cannot be relied on when having inter-site operation. Direct AI/ML positioning approaches rely on learning multipath operation and as the UE moves between different zones (i.e., inter-site), it requires large dataset size to tune the model and achieve excellent performance. Thus, online finetuning would not be a suitable approach to maintain the excellent performance of direct AI/ML positioning. Instead, offline finetuning (e.g., transfer learning) can be a better solution in which data can be collected from new sites and model can be retrained or finetuned offline. Our performance evaluations are summarized in Table 10. 
[bookmark: _Ref118476422]Table 9 Horizontal positioning error (meters) of RFFP with finetuning for Type 2 generalizations
	Training
	Finetuning (Drop B)
	Testing
	50%
	67%
	80%
	90%

	Drop A
	--
	Drop A
	1.41
	1.79
	2.19
	2.77

	Drop A
	--
	Drop B
	5.98
	7.81
	9.88
	12.33

	Drop A
	500 samples
	Drop B
	3.09
	4.02
	4.98
	6.07

	Drop A
	240 samples
	Drop B
	3.54
	4.55
	5.61
	6.92

	Drop A
	100 samples
	Drop B
	5.17
	6.64
	8.46
	10.47
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[bookmark: _Ref115257478]Figure 11 CDF of horizontal positioning errors of direct AI/ML positioning (solid red plot: Baseline performance; solid green plot: Type2 generalization without finetuning; dashed and dotted plots: Type 2 generalizations with fine tuning).

[bookmark: _Ref115427518]Table 10 Evaluation results for AI/ML model deployed on UE-side, with model finetuning generalization (Type 2 – different drops), CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Settings ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	train
	finetune
	Test
	Train 
	Finetune
	Test
	Model complexity [parameters]
	Computational complexity FLOPs
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	drop A (with UE clock drift)
	--
	drop B (with UE clock drift)
	15k
	0
	2K
	1.5M 
	1.54G 
	12.33

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	100
	2K
	1.5M 
	1.54G 
	10.47

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	240
	2K
	1.5M 
	1.54G 
	6.92

	CIR (18,4,400)
	2D
	0%
	drop A (with UE clock drift)
	drop B (with UE clock drift)
	drop B (with UE clock drift)
	15k
	500
	2K
	1.5M 
	1.54G 
	6.07



3.2.3.2 RFFP model LCM evaluation: Model switching for inter-site generalization
We evaluate the model switching to enhance performance for inter-site generalization. We emulate a scenario in which a UE keeps moving between two sites with significantly different realization of blocking and reflections. We evaluate two cases: ‘no model switching’ and ‘model switching.’ In the ‘no model switching’ case, the UE keeps using the same model that is trained only on dataset from the first site, while in the ‘model switching’ case, the UE switches the model as it moves between the two sites and uses the right model that matches the testing site. Each model is trained with 15K samples. The testing in each site considers 2K samples. The two sites are modelled with two different drop values. In Table 11 and Table 12, we summarize the performance for the two cases. We also plot the evaluation results in Figure 12 . As can be observed, the positioning performance is maintained to an excellent level when model switching is enabled, while it deteriorates when UE does not consider model switching. The positioning error at 90th percentile improves from 9.54m to 2.75m when model switching is considered. 
Observation 15: With model switching, direct AI/ML positioning offers excellent performance when considering generalization across different drops. 
By comparing the enhancement of finetuning and model switching, we notice that model switching offers better enhancement and maintains the excellent performance of direct AI/ML positioning. Model finetuning, on the other hand, offers only a mild enhancement and is still far from achieving the performance with model switching. This can be observed by comparing the numbers in Table 10 and Table 11. The positioning error at 90th percentile with model finetuning is 6.07m and it is still far from the site-specific testing performance of 2.74m. On the other hand, the positioning error at 90th percentile with model switching is 2.75m, and it is comparable to the site-specific performance of 2.74m. 
Observation 16: Model switching offers superior performance enhancement than model fine-tuning when considering generalization of direct AI/ML positioning across different drops. 
When considering generalization of direct AI/ML positioning approach across different sites (i.e., different drops), model switching should be considered the baseline solution and future discussions on specification impacts to enhance direct AI/ML positioning model generalization should prioritize model switching. 

[bookmark: _Ref118298315]Table 11 Horizontal positioning error (meters) of RFFP with model switching for Type 2 generalizations (different drops)
	Testing on two drops
	50%
	67%
	80%
	90%tile

	No model switching
	2.56
	4.42
	7.01
	9.45

	Model switching
	1.34
	1.72
	2.16
	2.75
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[bookmark: _Ref118299768]Figure 12 CDF of horizontal positioning errors of direct AI/ML positioning (solid red plot: Performance with model switching on two drops; solid blue plot: Performance without model switching on two drops – model is trained on one drop only).

[bookmark: _Ref118298364]Table 12 Evaluation results for AI/ML model deployed on UE-side, with model switching for generalization (Type 2 – different drops), CNN, UE distribution area = 120x60 m
	Model input
	Model output
	Label
	Model switching (number of models)

	Setting ({60%, 6m, 2m})
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Training 
	Test 
	Model complexity [parameters]
	Computational complexity [FLOPs]
	AI/ML

	CIR (18,4,400)
	2D 
	0%
	2
	two drops (with UE clock drift)
	two drops (with UE clock drift) 
	15k
	2k
	1.5M 
	1.54G
	2.75

	CIR (18,4,400)
	2D
	0%
	1
	one drop (with UE clock drift)
	two drops (with UE clock drift)
	15k 
	2k
	1.5M 
	1.54G
	9.45




3.2.4 Performance evaluation of RFFP using field data
We employ field data to verify on previous findings from statistical channel models. We conduct experiment using an in-house testbed that has six TRPs and UE mounted on an Automated Ground Vehicle (AGV), as shown in Figure 13. To emulate NLOS condition, we introduce a metal sheet blocker that causes blocking to two TRPs, i.e., TRP 3 and TRP 4. This deployment considers positioning using uplink SRS signals with 100 MHz channel centred at 3.75 GHz. We conduct 3D positioning using RFFP and classical schemes. The CDFs of horizontal positioning error for the two schemes are shown in Figure 14. The RFFP scheme offers good improvement to positioning accuracy when compared to classical scheme. We would like to mention that classical scheme in this experiment applies time filtering using Kalman filter to further improve positioning performance. The RFFP performance still outperforms the classical one and aligns with our findings in previous section.
[image: ]
[bookmark: _Ref101905917][bookmark: _Ref101905912]Figure 13 In-house positioning prototype.
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[bookmark: _Ref101905963]Figure 14 CDF of horizontal positioning error for RFFP and classical schemes based on OTA field data.

Observation 17: RFFP method demonstrates excellent performance in practical field setup under NLOS conditions.
3.2.5 Performance evaluation of RFFP using raytracing data
Raytracing offers spatially consistent modelling of radio propagation for indoor and outdoor scenarios. Path gain and phase can be accurately modelled to capture the impact of different propagation phenomena, including reflection, refraction, diffraction, and diffuse scattering. We build an indoor 3D factory model and use raytracing to generate channel impulse responses, as shown in Figure 15. This layout is 100 by 150 sq. mt. and has sophisticated modelling of materials. Raytracing tool uses shoot and bounce raytracing methodology and employs sophisticated modelling of reflection and refraction, using geometrical optics, as well as diffraction, using uniform theory of diffraction (UTD). Our setup has eight TRPs and dense UE deployment in the right-most middle room. In this room, Ues have extreme NLOS condition and most TRPs do not have LOS path with them. We evaluate positioning using this layout with 100 MHz channel bandwidth centred at 3.5 GHz. The CDF of horizontal positioning error is shown in Figure 16. The ML RFFP scheme still shows excellent performance when compared to the classical one. This highlights the significant improvement that AI/ML can provide for positioning and aligns with findings obtained from statistical models. 
Observation 18: RFFP method demonstrates excellent performance in ray tracing simulations under extreme NLOS conditions.

[image: ]
[bookmark: _Ref101907916]Figure 15 Indoor factory modelling using raytracing.
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[bookmark: _Ref101908442]Figure 16 CDF of horizontal positioning error of RFFP and classical schemes based on raytracing-generated data.

3.3 AI/ML-assisted positioning: ML-based soft-information reporting for UE-assisted DL-TdoA 

AI/ML model

CER à                             à Probability distribution of TdoA
 
In multipath scenarios, combining soft information about the LOS path can outperform a hard-decision based approach. This section evaluates the performance of such an ML-assisted algorithm: ML-based soft information reporting for DL-TdoA.

· For each TRP, the UE uses an AI/ML model to derive the probability distribution of DL-TdoA from the channel energy response (CER). We model the probability distribution as a Gaussian mixture, which is completely described by the weights, means and standard deviations of the mixture components. 
· The UE reports the distribution to the LMF server (e.g., the parameters of a Gaussian mixture), 
· The LMF server fuses the likelihoods across TRPs to derive the position estimate. 

3.3.1 Comparison of ML-based TOA approaches
Companies have previously reported results for AI/ML-assisted positioning where the ML model estimates a single value of the TOA. Instead of such a hard-decision approach, we could improve accuracy by deriving soft information about the LOS path. In this section, we compare the performance of the two approaches.

Consider the following scenario with three TRPs, where TRP1 experiences NLOS. Suppose the UE reports soft information, for instance, for TRP1, its report could inform the network that the time-of-arrival could have two possible values, together with the relative confidence associated with the values. By combining with the reports based on the other two TRPs, the network can improve its position estimate.
[image: Diagram
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Figure 17 ML-based soft information reporting to address impact of multipath.


In Table 13, we compare the performance of the following approaches for the InF-DH layout (FR1) with clutter parameters set to {60%, 6m, 2m}. 
· Hard-decision approach (ML-based ToA estimation): We train a ML model at the UE-side to estimate the TOA based on the channel energy response (CER) from a single TRP. The TDOA is signalled to the LMF. The LMF then uses RANSAC to estimate the position based on the TDOAs from all TRPs. 
· Soft-information approach (ML-based soft information reporting): The UE-side ML model learns a probability distribution of the TOA based on the CER from a single TRP. The RSTD distribution is then reported to the LMF. At the LMF, the position is then estimated using a likelihood fusion approach that combines the distributions across TRPs.

[bookmark: _Ref118477681]Table 13 Evaluation results for the {60%, 6m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs, UE distribution area = 120x60 m
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	1000 UEs x 18 TRPS
	1000 UEs x 18 TRPS)
	0.02M params
	0.21M FLOPs per TRP
3.7M FLOPs for 18 TRPs
	25.0

	Soft information
	CER (1,2, 256)
	Distribution of ToA
	0%
	{60%, 6m, 2m},
Drop A
	{60%, 6m, 2m},
Drop A
	16000 UEs x 18 TRPS
	2000 UEs x 18 TRPS
	2.1M params
	37.59M FLOPs per TRP

676.62M FLOPs for 18 TRPs
	4.7
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Figure 18 Comparison of ML-based soft information and hard-decision approaches in the {60%, 6m, 2m} clutter setting.

In Table 14, we report on the comparison for the InF-DH layout (FR1) with clutter parameters set to {40%, 4m, 2m}.
[bookmark: _Ref118477740]Table 14 Evaluation results for the {40%, 4m, 2m} clutter setting, with the AI/ML model deployed on UE-side, without model generalization, using a single-TRP construction with the same model for all TRPs, UE distribution area = 120x60 m
	Method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	Test
	Training
	Test
	Model complexity
	Computational complexity
	AI/ML

	Hard decision
	CER (1,2, 64)
	Single value of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	1000 UEs x 18 TRPs
	1000 UEs * 18 TRPs
	0.02M params
	0.21M FLOPs per TRP
3.7M FLOPs for 18 TRPs
	14.8

	Soft information
	CER (1, 2, 64)
	Distribution of ToA
	0%
	{40%, 4m, 2m}, 
Drop A
	{40%, 4m, 2m}, 
Drop A
	1000 UEs x 18 TRPs
	1000 UEs x 18 TRPs
	2.1M params
	37.59M FLOPs per TRP

676.62M FLOPs for 18 TRPs
	0.5



Observation 19: The soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 4.7 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 

3.3.2 Intermediate performance metric 
We consider the following intermediate performance metrics for AI/ML-assisted positioning:
· Soft-information approach: We consider the top-K error in ToA as the intermediate metric, computed as follows. For each link between UE and TRP, the AI/ML model outputs multiple hypotheses for the ToA along with their probabilities. We find the K most likely hypotheses of ToA and report the lowest of the K ToA errors.
· Hard decision approach: The error in the ToA derived by the AI/ML model is reported as the intermediate metric.
Proposal 10: For AI/ML-based soft information reporting approaches, the 90th percentile of the top-K error in ToA is reported as an intermediate KPI. FFS: the value of K to be reported.
3.3.3 Comparison of single-TRP and multi-TRP approaches

For AI/ML-assisted positioning, the UE can train an AI/ML model in two approaches:
1. Single-TRP approach: Using as input the channel response from a single TRP, the AI/ML model outputs the TOA associated with that TRP. The same model is used for all TRPs.
2. Multi-TRP approach: The AI/ML model uses as input the channel responses from all 18 TRPs, and outputs 18 TOAs jointly.
A multi-TRP approach is expected to perform better than a single-TRP approach when the training and test sets contain identical sets of TRP locations, however, the multi-TRP approach may require higher complexity. It would be preferable to instead do direct AI/ML positioning if we use channel responses from all TRPs as the direct AI/ML can achieve better performance (e.g., direct AI/ML positioning can achieve 2.24m vs. 2.92m for the multi-TRP approach - see Table 2). Given that multi-TRP provides enough information (triangulation, trilateration) to derive positioning directly, we can view the multi-TRP approach to be direct AI/ML positioning in disguise. If so, it would make more sense to directly derive positioning (i.e., direct AI/ML positioning) if we were to use multi-TRP observation as input to an AI/ML.

Proposal 11: For AI/ML-assisted positioning, the single-TRP approach is adopted for evaluation as a baseline.

3.3.4 Performance evaluation of ML-based soft information reporting

Figure 19 reports the CDF of the horizontal positioning error for the InF-DH layout (FR1) with clutter parameters set to {60%, 6m, 2m}. The channel model incorporates spatial consistency and absolute time-of-arrival modelling for NLOS links, as described in TR 38.901 [2]. We randomly drop 18K UEs and use 16K for training and the remaining 2K UEs for testing.
Observation 20: ML-based soft information reporting method provides a significant improvement in positioning accuracy over the classical scheme. The 90th percentile of the horizontal positioning error reduces from >20 m for the classical scheme to 4.74 m. 
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[bookmark: _Ref118478283]Figure 19 CDF of horizontal positioning error for ML-based soft information reporting and classical schemes (InF-DH layout).
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[bookmark: _Ref118478246]Figure 20 ML-based soft information reporting vs. classical scheme for Umi layout.
Figure  reports results for the outdoor Umi layout, where the 90th percentile of the horizontal positioning error reduces from 17 m. for the classical scheme to 7.9 m. for the ML-based scheme. The types of generalization problems in outdoor wide-area settings may be different from indoor scenarios. Use of a different ML model for each cell vs. a common model across cells can also affect performance.
Proposal 12: Consider outdoor wide-area scenario, e.g., Umi, as an additional baseline scenario for evaluation. 
3.3.5 Generalization across homogeneous inter-site (Type 2) changes
Figure  compares performance between training and testing on the same drop, and testing on a different set of drops. Each drop contains 2K UEs and corresponds to a different seed value for the random variables used to generate large scale parameters.
Observation 21: The ML-assisted soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
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[bookmark: _Ref118478222]Figure 21 CDF of horizontal positioning error for ML-based soft information reporting across drops
3.3.6 Generalization across clutter settings
Figure 22 compares performance between training and testing on the same clutter setting, and training on a mix of (60%, 6m, 2m) and (40%, 2m, 2m) clutter and testing on each of the two. 
Observation 22: Training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 4.74 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 
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Figure 22. CDF of horizontal positioning error for ML-based soft information reporting across clutter settings

3.3.7 Robustness to time varying changes
Figure 23 reports on performance across time varying changes for a specific zone. We compare training and testing on the same subset of clusters (blue and cyan curves), with training on a different subset of clusters as compared to the test set (red and green curves).
Observation 23: The ML-assisted soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
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Figure 23. CDF of horizontal positioning error for ML-based soft information reporting across time varying changes in a specific zone.

3.4 Summary of direct and AI/ML assisted positioning evaluations
A summary of the performance of direct AI/ML (RFFP), AI/ML-assisted (ML-based soft information reporting) and classical (RANSAC) approaches is shown in Table 15, Table 16, and Table 17. Both AI/ML approaches provide significant gains over the classical scheme. RFFP is the most accurate positioning method in site-specific scenarios (Table 15 and  Table 17), while soft-information fusion yields better generalization across inter-site changes (Table 16). 
[bookmark: _Ref118479639]Table 15 Horizontal positioning accuracies (m) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on the same drop
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	2.77             

	AI/ML-assisted (ML-based soft information reporting)
	4.74

	Classical (RANSAC)
	>20



[bookmark: _Ref118479641]Table 16 Generalization performance across homogeneous inter-site changes (i.e., Type 2 generalization) for InF-DH with (60%, 6m, 2m) clutter, when training and testing on different drops
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	12.33

	AI/ML-assisted (ML-based soft information reporting)
	6.38

	Classical (RANSAC)
	>20



[bookmark: _Ref118479642]Table 17 Robustness of performance to zone-specific changes (i.e., Type 3-time varying changes)
	Setting
	Approach
	90%tile error (m)

	Direct AI/ML (RFFP)
	Train and test on odd clusters
	2.74

	
	Train on mixed clusters, test on odd clusters while removing up to two random odd clusters and adding up to two random even ones
	3.17

	AI/ML-assisted (ML-based soft information reporting)
	Train and test on odd clusters
	6.23

	
	Train on odd clusters, test on even clusters
	6.54




Observation 24: Direct AI/ML methods may be better suited for scenarios where model switching is possible, or for scenarios where devices operate only within a given premises (e.g., AGVs in a factory), while AI/ML-assisted methods may be better suited for scenarios where a common model is required for different scenarios.
4. Conclusions
In this document, we discussed various aspects related to evaluating the generalization and robustness of AI/ML-based positioning models. We provided categorization of expected generalizations to be considered for evaluating robustness, including inter-site, zone-specific, and cross-configuration generalizations. We also discussed the applicability of these categorization to direct AI/ML and AI/ML assisted positioning approaches. To model these generalizations, we provided options based on the channel modelling discussed in TR 38.901. We conducted extensive evaluations to explore robustness of RFFP and ML-based soft information reporting methods against different generalization categories. The RFFP method shows accurate positioning learning in site-specific scenarios and shows good robustness to zone-specific generalization. The ML-based soft information reporting using single-TRP approach, on the other hand, shows good robustness performance to inter-site generalization. The following is a summary of our proposals and observations:

Categorization of generalization and robustness for studying AI/ML positioning enhancement:
· Type 1: Heterogeneous inter-site (or heterogeneous inter-zone): Performance of AI/ML model on unseen deployment type (e.g., Umi vs. InF scenarios)

· Type 2: Homogeneous inter-site (or homogeneous inter-zone): Performance of AI/ML model on unseen deployment of the same type (e.g., trained on drop 1 and tested on drop 2 of the same scenario) 

· Type 3: Time varying changes: Performance of AI/ML model on unseen time variations within the same site (or zone) (e.g., moving objects, small environment variations over time in a factory, floor, warehouse, etc.)

· Type 4: Cross-configuration: Performance of AI/ML models across TX/RX configurations (e.g., training and testing can have different beam or transmit powers/SNR mismatch, synchronization/timing errors, etc.).

Observation 1: Positioning enhancement gains of AI/ML model fine-tuning depends on the size of fine-tuning data. 
Observation 2: Site-specific AI/ML positioning models achieve excellent performance within their intended coverage area (i.e., the trained site). 
Observation 3: Model switching can help scaling the excellent performance of site-specific AI/ML positioning models across different sites. 
Observation 4: We observe the following regarding the trade-off between performance and reporting overhead: 
· Case1 produces the best performance with least reporting overhead (e.g., 2.24m with 2 reporting overhead).
· Case2a with N’t =1 (i.e., one path) produces higher positioning accuracy (e.g., 2.93m vs. 3.17m) and has smaller reporting overhead (e.g., 34 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces higher positioning accuracy (e.g., 2.52m vs. 3.17m) and has smaller reporting overhead (e.g., 288 vs. 1728) than Case2b with CIR of N’t =8 samples.
· Case2b with multipath measurements (up to N’t =8 multipaths) produces comparable positioning accuracy (e.g., 2.52m vs. 2.51m)   and has smaller reporting overhead (e.g., 288 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces higher positioning accuracy (e.g., 2.31m vs. 2.51m)    and has smaller reporting overhead (e.g., 576 vs. 3456)   than Case2b with CIR of N’t =16 samples.
· Case2b with multipath measurements (up to N’t =16 multipaths) produces comparable positioning accuracy (e.g., 2.31m vs. 2.29m) and has much smaller reporting overhead (e.g., 576 vs. 13824)   than Case2b with CIR of N’t =64 samples.
Observation 5: For Case2b, reporting of CIR measurements with N’t > 64 incurs huge reporting overhead and the expected performance gain is minimal (e.g., enhancing accuracy from 2.29m to 2.24m). 
Observation 6: For Case2b, reporting of CIR measurements with N’t  64 can have less or comparable performance gain to multipath reporting and has higher reporting overhead. 
Observation 7: For same reporting overhead when N’t  64, Case2b achieves higher positioning accuracy with multipath reporting than CIR measurement reporting. 
Observation 8: RFFP can demonstrate different performance metrics depending on the UE area density considered for training. It is important to study how UE area density can affect performance as this helps companies decide on data collection strategies and signalling requirements depending on the case of interest.
Observation 9: RFFP method is site-specific and can provide excellent performance when operated on the site being trained on. It should not be expected to generalize over unseen sites that have entirely different reflections and multipath realization.
Observation 10: RFFP shows good robustness to subtle and moderate unseen reflections and multipath components that are different from training.
Observation 11: RFFP method can show improved robustness to slight environment changes such as time-varying blocking when trained on mixture of such changes.
Observation 12: RFFP can be made robust to network and UE timing errors (e.g., UE clock drift, network synchronization, etc.), by taking timing impairments into the training dataset.
Observation 13: If training and testing have mismatched SNR (e.g., due to change in transmit power), training direct AI/ML model on a higher SNR regime can achieve better generalization to unseen SNR settings than training on a smaller SNR regime.
Observation 14: Model fine-tuning with small dataset can only offer slight to moderate enhancement to positioning performance of direct AI/ML positioning when tested with different drops (i.e., inter-site generalization).
Observation 15: With model switching, direct AI/ML positioning offers excellent performance when considering generalization across different drops. 
Observation 16: Model switching offers superior performance enhancement than model fine-tuning when considering generalization of direct AI/ML positioning across different drops. 
Observation 17: RFFP method demonstrates excellent performance in practical field setup under NLOS conditions.
Observation 18: RFFP method demonstrates excellent performance in ray tracing simulations under extreme NLOS conditions.
Observation 19: The soft-decision algorithm outperforms the hard-decision approach for AI-ML-assisted positioning. 
· The 90th percentile positioning error improves from 25.0 m to 4.7 m for the {60%, 6m, 2m} clutter setting 
· The 90th percentile positioning error improves from 14.8 m to 0.5 m for the {40%, 4m, 2m} setting. 

Observation 20: ML-based soft information reporting method provides a significant improvement in positioning accuracy over the classical scheme. The 90th percentile of the horizontal positioning error reduces from >20 m for the classical scheme to 4.74 m. 
Observation 21: The ML-assisted soft information reporting method using single-TRP approach generalizes well across inter-site changes with homogeneous clutter settings.
Observation 22: Training on a mix of clutter settings achieves good accuracy in each setting without the overhead of model switching, while training a separate model for each setting provides better accuracy. 
· The 90th percentile error increases from 4.74 m to 7.34 m when testing on (60%, 6m, 2m) clutter, and
· from 0.53 m to 0.91 m when testing on (40%, 2m, 2m) clutter 

Observation 23: The ML-assisted soft information reporting using single-TRP approach has good robustness to zone-specific time varying changes.
Observation 24: Direct AI/ML methods may be better suited for scenarios where model switching is possible, or for scenarios where devices operate only within a given premises (e.g., AGVs in a factory), while AI/ML-assisted methods may be better suited for scenarios where a common model is required for different scenarios.

Proposal 1: For fair comparison across different cases and generalization results submitted by one company, each company considers a common model complexity for its reported evaluations. The common complexity can be different across companies. Companies are still encouraged to investigate other model complexities in addition to their common ones.

Proposal 2: For fair comparison across different cases and generalization results submitted by one company, each company considers a common dataset size for its reported evaluations. The common dataset size can be different across companies. Companies are still encouraged to investigate other dataset sizes in addition to their common ones.

Proposal 3: Companies report the signaling/reporting overhead expected for AI/ML positioning (both direct AI/ML and AI/ML assisted positioning). The overhead is computed by listing the number of values/quantities to be reported, including location, magnitude, phase, and timing/angle information (as applicable).

Proposal 4: Enhance the template for reporting AI/ML positioning evaluation results to include signaling and reporting overhead (e.g., number of quantities, including location, magnitude, phase, and/or timing/angle).
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Reporting/signaling overhead
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity 
	Computation complexity
	NTRP * Nport * [N’t +N’t +N’t ] or N’t  for location information
	AI/ML

	
	
	
	
	
	
	
	
	
	
	




Proposal 5: For studying the impact of time varying changes (e.g., mobility of clutter objects and blockers in the environment), the following modelling approaches can be considered:
· Option1: Modeling approach listed in Appendix 1
· Option2: Blocker Model A or Blocker Model B in TR 38.901 (Section 7.6.4 [2]).

Proposal 6: To evaluate AI/ML positioning enhancement with model switching, consider multiple sites (e.g., N sites) that have different drop values, clutter settings, and/or deployment scenario. Then conduct evaluation for the two following cases:
· No model switching case: Train a single model with L datasets from L sites among the N sites (where L<N), and test on all N sites using the trained model. 
· Model switching case: Train M models (M>1) with datasets from the N sites, and test on all N sites while switching between the M trained models and picking the right model that fits the testing site. 
Proposal 7: consider the following observations on LCM approaches (i.e., model switching, mixed training dataset, and model finetuning) for AI/ML positioning:
· Model switching offers the best positioning accuracy followed by mixed training dataset construction and model finetuning
· Model finetuning with small dataset size can only be feasible for enhancing positioning accuracy for small unseen changes 

Proposal 8: consider the following observations on AI/ML positioning approaches:
· Direct AI/ML positioning approach offers the best positioning accuracy followed by AI/ML assisted positioning with multi-TRP input construction and AI/ML assisted positioning with single-TRP input construction approaches, respectively
· AI/ML assisted positioning with single-TRP input construction approach offers the best generalization performance (when applying no model LCM to other approaches).
· AI/ML assisted positioning with soft-information output offers higher positioning accuracy than AI/ML assisted positioning with hard-information output.


Proposal 9:  For specifying model input in Case2b, deprioritize CIR measurement reporting due to its the huge reporting overhead and comparable or minimal performance gain when compared to existing multipath reporting. 

Proposal 10: For AI/ML-based soft information reporting approaches, the 90th percentile of the top-K error in ToA is reported as an intermediate KPI. FFS: the value of K to be reported.
Proposal 11: For AI/ML-assisted positioning, the single-TRP approach is adopted for evaluation as a baseline.

Proposal 12: Consider outdoor wide-area scenario, e.g., Umi, as an additional baseline scenario for evaluation.

Proposal 13: To investigate the model robustness capability to time varying changes, the following aspect is also considered for the evaluation of AI/ML based positioning:
· Time variation in multipath 
· Training dataset from datasets {A0, A1, …, AN-1}, test dataset  from partially unseen reflections and blockings (i.e., partially different reflections and blockings than any in {A0, A1, …, AN-1} due to movement of reflecting objects, small environment variation over time, etc.). Here N>=1. FFS: modelling of {A0, A1, …, AN-1} and   based on TR 38.901.

[bookmark: _Int_I6dNTkpx]Proposal 14: To model changes for investigating AI/ML positioning model robustness to time variations at a given link between UE and TRP,  one option is to consider a set  for generating channel coefficients for training dataset , and consider a set  for generating channel coefficients of dataset , where  is set of  clusters between the UE and TRP. Then, the channel coefficient generation for training dataset  can follow these updated equations:
 (training dataset  - NLOS) 	
[bookmark: _Int_yg43aoyF]	.  (training dataset  - LOS)	
and channel coefficient generation for testing dataset  can follow these updated equations:
 (Testing dataset ) 	
	. (Testing dataset )	


Appendix1: Modelling of Type3 changes – zone-specific time variations
To model Type 3 changes, we can generate training datasets  and testing dataset  with partially unseen reflections by slightly changing multipath realizations to mimic subtle changes in the environment (e.g., movement of reflecting objects, small environment variation over time, etc.). One simple approach to achieve this could be by addition or removal of a few paths from the generated channel (e.g., based on equations 7.6-43 and 7.44 in TR 38.901 [2]):  

	(7.6-43)
	.	(7.6-44)
Note that the first summation in (7.6-43) above goes over the set of clusters and consider their contribution to the generated channel coefficient. By running the sum over partially different cluster sets, we can model zone-specific changes in which mild to moderate changes in reflections and blockings happen in the given zone. Let  be set of  clusters between a UE and given TRP. For dataset , consider a set  for generating channel coefficients for the link between UE and TRP, and consider a set  for generating channel coefficients of dataset . There should be many common clusters between  and  so that the change between training and testing dataset represents changes due to subtle environment variations. The channel coefficient generation for training dataset  can follow these updated equations:
 (Training dataset ) 	
	.  (Training dataset )	

Note that the only difference we apply is running the first summation on clusters considered for dataset , i.e., , instead to consider all  clusters. Channel coefficient generation for testing dataset  can follow the same procedure as follows:

 (Testing dataset ) 	
	. (Testing dataset )	
The first order summations in above equations go over the set of clusters of testing set , i.e., . Sets  and  still have common clusters and are not completely different, mimicking zone-specific changes in which mild to moderate changes in reflections and blockings happen in the given zone.
Proposal 13: To investigate the model robustness capability to time varying changes, the following aspect is also considered for the evaluation of AI/ML based positioning:
· Time variation in multipath 
· Training dataset from datasets {A0, A1, …, AN-1}, test dataset  from partially unseen reflections and blockings (i.e., partially different reflections and blockings than any in {A0, A1, …, AN-1} due to movement of reflecting objects, small environment variation over time, etc.). Here N>=1. FFS: modelling of {A0, A1, …, AN-1} and   based on TR 38.901.

[bookmark: _Int_HU35vBZI]Proposal 14: To model changes for investigating AI/ML positioning model robustness to time variations at a given link between UE and TRP,  one option is to consider a set  for generating channel coefficients for training dataset , and consider a set  for generating channel coefficients of dataset , where  is set of  clusters between the UE and TRP. Then, the channel coefficient generation for training dataset  can follow these updated equations:
 (training dataset  - NLOS) 	
[bookmark: _Int_unoTCXVI]	.  (training dataset  - LOS)	
and channel coefficient generation for testing dataset  can follow these updated equations:
 (Testing dataset ) 	
	. (Testing dataset )	
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