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Introduction
In the meetings of RAN1#109-e, RAN1#110, RAN1#110-bis-e, RAN1#111 and RAN1# 112, many agreements were made, based on meaningful discussions, on the evaluation methodology and KPIs for AI/ML for beam management [1], [2], [3], [4], [5]. We hereby recollect the agreements/working assumptions/conclusions made in the last RAN1 meeting, i.e., RAN1 #112. The agreements made during the meetings held before RAN1 #112 can be found in [1], [2], [3] and [4]. 
Agreements/conclusions made in RAN1#111 are as follows [4]:
	Agreement
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference)  for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model. 
Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 

Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion 

Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.

Agreement
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g. 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumption can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.  
Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)



In this document, we further discuss our views on some of the open aspects of AI/ML for beam management. 
[bookmark: _Hlk100228640]KPIs 
In the following, we present our views on performance metrics that need to be considered for including them into the list of KPIs for AI/ML based beam management. 
RS overhead for BM Case-2
For beam management case 2, which is the temporal beam prediction, there was an agreement, in RAN1 #111 meeting, on RS overhead reduction as below:
Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.

In the RAN1 #112 meeting, there was discussion on the “FFS: Option 3” of the above agreement and there has been an active discussion on considering Option 3a vs. Option 3b. Both these options, that are currently under consideration, are as follows. 
For RS overhead reduction for BM-Case2: 
· Option 3a:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each repeated time window
· where M is the total number of beams (pairs) to be predicted for each repeated time instance window
· Companies to report the assumption on the repeated time-window (e.g. periodicity)
· Option 3b:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each history time instance
· where  the beams (pairs) required for additional measurements after the prediction for each future time instance if applicable.
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction

We hereby provide our view on including another definition (or a way to measure) the RS overhead reduction in BM case-2. 

It is desirable to compute overhead reduction with respect to “exhaustive search” as the baseline method where we search across all the available M beams to find the best beam. The formula 


where we define N as the number of beams (beam-pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement in each time window and M as the total number of beams (beam-pairs) from which we predict the best beam (beam-pair) in each time window is a suitable formula for RS overhead reduction, when exhaustive search is the baseline. However, such a formula is applicable only when the value of N remains the same across all time windows – In other words, the above stated formula is valid only when if we always measure N beams for predicting Top-1/K beams from M beams.  

However, it is important to recall that, some of the AI/ML methods may have a variable Set B. Recall that, set B is the set of beams that are measured for beam prediction and set B is a subset of set A, where set A is the set of all available beams from which we need to predict Top1/K beams. When set B is a variable set, where the number of elements in set B varies from across time from one instantiation of beam prediction to another instantiation of beam prediction, then we need to measure the RS overhead accommodating this variable number of beam measurements across different beam predictions instances. To accommodate the AI/ML models that perform varying number of beam measurements in each time window, the RS overhead reduction may be expressed as follows:
 		, 
Where  is the number of beam measurements in  time window (or  instance of beam prediction) and  (an integer) is the total number of time windows across we observe the results (or evaluate the beam prediction performance) and M is the total number of beams (beam-pairs) from which we predict the Top-1/K beams (beam-pairs). 
Note that the quantity  indicates the average number of beam measurements required per time window, when “averaged” across many time windows of beam predictions, where the number of beam measurements in  time window is equal to . Thus,  may be considered the number indicating the amount of averaging – a higher value of  ensures a better estimate of the average number of beam measurements in a time window. Further, it should be noted that this definition is general enough to accommodate both the cases of fixed set B and variable set B. In the case of fixed set B,  remains the same for all values of , which means that, in each time window, the number beam measurements in each time window remains the same.     
For RS overhead reduction in BM case 2, with exhaustive search as the baseline, consider the following definition as Option 3 for the RS overhead reduction KPI: 
, 
where  is the number of beam measurements in  time window,   is the total number of time windows over which the performance is evaluated, and M is the total number of beams (beam-pairs) from which we need to predict the Top-1/K beams (beam-pairs).
Reporting overhead 

To account for the other kind of overhead, which is the reporting overhead, it is required to account for the number of UCI reports and the size of each UCI report (in bits). These quantities (i.e., the no. of UCI reports and the size of such reports) need to be compared with the case of exhaustive search for arriving at a meaningful measure of the amount of reporting overhead reduction offered by the AI/ML model under consideration.   

Any other signals that need to be exchanged between UE and gNB to support the AI/ML model, such as signaling in another carrier (e.g., FR1), UE location information, spatial features of the environment etc., should also be considered accounted for.

Consider the number of UCI reports and the size of each UCI report (in bits) as a measure of the reporting overhead. The reporting overhead need to be included into the KPIs.  
Latency 
Time taken for beam search, or, the latency, should be considered as one of the key KPIs as any simple scheme would also be able to find the optimal beam if given enough time for beam search. Latency, or latency reduction should quantify, 
· How much time it takes for the unconnected/initial access users to find the best beam pair 
· How much time it takes to switch beams for the connected users when the existing beam pair becomes sub-optimal due to changing channel conditions
Taking the exhaustive search as the baseline, the reduction in the latency can be defined as follows: 

where N is the number of beams in set of beams required for measurement with AI/ML inference, e.g., number of beams in measurement beam set B, and M is the total number of beams required for measurement without AI/ML inference, e.g., number of beams in prediction beam set A.
In our opinion, the above three KPIs should be considered as the key KPIs in evaluating any AI/ML method for beam management. Further, we are open to consider other KPIs as well, as per the need. 
Consider Latency Reduction as a key KPI in evaluating an AI/ML model for beam management and consider adopting the definition proposed above.
[bookmark: _Toc100923943]Generalizability of the AI/ML Model for Beam Management
Generalizability of an AI/ML model is a measure of its ability to adapt to new, previously unseen statistical variations of the data such that the model produces desired output by faithfully capturing the variations in the mapping between input data and the desired output of the model that results due to changes in the statistical characteristics of the input data. Such an ability of generalization is required for the AI/ML models being developed for wireless cellular networks, as the wireless environment and the cellular network conditions are dynamic in nature.  The AI/ML models proposed for the use case of beam management should be studied thoroughly with respect to their generalization ability. 
In general, evaluating the performance of an AI/ML model under possible changes in the statistical properties of the input data and different possible mappings between input data and the desired output, can help assess the generalizability of the model. Thus, evaluating generalization should be across multiple different scenarios/configurations. In the last meeting, two agreements have been made with regard to generalizability. Kindly refer to the first two agreements, stated in Section 1. 
Deciding the list of scenarios/configurations that are to be considered for evaluating the generalizability of an AI/ML model is the first step/phase in determining whether an AI/ML model generalizable. An agreement has been in the last meeting on such a list of scenarios/configurations that are to be considered.  
The second step/phase is to decide on what should be the precise procedure for evaluating whether a given AI/ML model is generalizable or not. The subsequent proposals, proposals 1 and the related discussion present our views on this aspect.   
Generalizability can be evaluated by computing all the KPIs for a proposed beam management AI/ML model under different network conditions/scenarios/parameter values that are finalized to be considered for generalizability of beam management.  In such an evaluation, we must consider the achieved gains (e.g., beam prediction accuracy, overhead reduction, latency reduction) as well as the incurred costs (e.g., the computational complexity, cost of any additional hardware needed, additional signaling overhead due to assistance information etc.) of the proposed AI/ML model.  
Generalizability of a proposed AI/ML model for beam management is evaluated by computing the agreed KPIs, inclusive of the gains achieved and the costs incurred, by the model for each of the different network conditions/scenarios/parameter values. 
Once we evaluate and tabulate all the gains and the costs of the proposed AI/ML model under each of the different network conditions/scenarios/parameter values, the question would be, how can we say whether the AI/ML model under consideration is generalizable or not based on the values of these gains and costs? 
For illustrative purposes, consider an AI/ML model and assume we evaluate its performance in two network scenarios (or, network settings, network conditions) A and B, for knowing whether it is generalizable or not. Assume that, for A and B, its gains are  (compared to the agreed baseline), respectively, and its costs are  (compared to the baseline), respectively. Note that, here we consider only two scenarios and only one kind of gain (e.g., beam prediction accuracy), and one cost (e.g., computational complexity) as an example for the purpose of illustration. In practice, we will have to consider multiple scenarios, all kinds of gains and all incurred costs.     
In the ideal case of a truly generalizable, or a universal, AI/ML model,  and . However, in practice,  and  would be different and same would be the case with  and . Based on the values of , ,  and , how to determine whether the given AI/ML model is generalizable across both the settings considered? We need to devise a method to declare whether the AI/ML model can generalize across the considered scenarios. We propose that, such a decision should be based on  and , where  denotes the absolute value of . 
For the example being considered, one way of deciding the generalizability could be as follows: 
· If   and  then the model can be declared generalizable across scenarios A and B, and it is considered as not having the ability to generalize across A and B, if   or . 
Here,  and  are the thresholds chosen for the difference in the gains and difference in the costs, respectively. Note that the value of need not be same as that of . 
The above approach results in a binary decision on whether the model is generalizable or not. A more graded approach, where we categorize generalization capability of an AI/ML model into multiple classes, might prove to be more useful in some situations. For example, the generalization ability of an AI/ML model can be considered as High/Strong/Superior, Moderate or Low/Weak/Inferior by appropriately selecting three threshold values  for the gain where , and three threshold values  for the cost where , and by employing the following decision rule:
· If   and , the generalization ability of the model is High/Strong/Superior
· If    and , the generalization ability of the model is Moderate
· If   and , the generalization ability of the model is Low/Weak/Inferior
Note that we may consider only the gains while quantifying the generalizability. Such a method would be simple to compute and might be relevant in situations where the AI/ML models that are being considered are expected to have costs that do not change considerably across the different scenarios being considered. 
The above stated approaches can be extended for a more realistic situation where we have a greater number of gains and costs which are computed by evaluating the AI/ML model across many network scenarios/settings (rather than in just two scenarios as in the previous example).   
Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of the gains achieved, and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study.   
Evaluation Results
In this contribution, the evaluation is performed based on our new AI model which outputs predicted beam pairs and corresponding predicted RSRPs simultaneously.
Simulation results summary
[bookmark: _Hlk127534340]We provide a table to collect our evaluation conditions and results for AI on beam management as listed Table 1, focuses on BM-Case1, i.e., AI/ML for spatial beam prediction. The detailed simulation assumptions and extensive performance results can be found in section 4.2 and section 4.3. 
[bookmark: _Ref126746802]Table 1 Evaluation results without model generalization for Tx-Rx beam pair prediction
	Parameters
	Lenovo (BM-Case1)

	Beam pair assumptions
	Number of beam pairs in Set A
	128

	
	Number of beam pairs in Set B
	32

	
	Baseline scheme
	Best beam within Set A via exhaustive beam pair search (i.e., Option 1)

	AI/ML model
input/output
	Model input
	L1-RSRPs of all beam pairs in Set B 

	
	Model output
	RSRPs of beam pairs in Set A

	Data Size
	Training
	40,000 samples

	
	Testing
	10,000 samples

	AI/ML model
	Short model description
	5-layer DNN {32,128,256,256,128}

	
	Model complexity
	135,936 parameters

	
	Computational complexity
	135,168 MACs

	Evaluation results
with AI/ML / baseline
	Beam prediction accuracy (%)
	Top1/1
	53.57%

	
	
	Top3/1
	92.55%

	
	
	Top5/1
	97.23%

	
	
	1dB margin
	80.57%

	
	
	2dB margin
	94.59%

	
	L1-RSRP Diff
	Average L1-RSRP diff. 
	0.47dB

	
	
	5%ile of L1-RSRP diff.
	0dB

	
	
	95%ile of L1-RSRP diff.
	2.05dB

	
	Predicted L1-RSRP Diff.
	Average L1-RSRP diff.
	0.92dB

	
	
	5%ile of predicted L1-RSRP diff.
	0.07dB

	
	
	95%ile of L1-RSRP diff.
	2.59dB

	
	System performance
	RS overhead Reduction/
RS overhead (N)
	RS overhead Reduction KPI:
1-N/M=1-32/128=75%

	
	
	UPT
	Baseline: 29.688Mbit/s
AI-based BM: 29.420Mbit/s


[bookmark: _Ref126839050][bookmark: _Ref127533418]Simulation Assumptions
In the section, we further describe simulation assumptions for spatial beam prediction evaluation.
Set B selection 
In our simulations, Set B is a subset of Set A with all beam pairs of a BS-UE link, which can be obtained through various patterns, either even-spaced or uneven-spaced pattern as 
· Set B with an even-spaced pattern is a subset selected from Set A at a regular interval, e.g., [0, 4, 8, …, 124]. 
· Set B with an uneven-spaced pattern is generated through selecting beam randomly from Set A. 
No matter which type of Set B pattern, it is fixed across training and inference in our simulations.
AI model structure
In the evaluation of AI for spatial beam prediction, we adopt Deep Neural Network (DNN) model with 5 layers {32, 128, 256, 256, 128}, and use L1-RSRP measurements of beam pairs in Set B as the input to the DNN model, with RSRPs of all beam pairs in Set A as the output. Based on the predicted RSRPs of all beam pairs in Set A, the predicted beam IDs were obtained by simple post-processing, i.e., the beam indices (including the Tx beam ID and the Rx beam ID) with K highest RSRPs are selected as the Top-K beam pairs. 
Non-AI based BM approaches to be compared with AI-based spatial beam prediction
To better illustrate the performance of AI-based spatial beam prediction, we consider two typical non-AI based beam management approaches as below:
· Baseline (exhaustive beam sweeping): Select the best Tx-Rx beam pair within Set A based on all measurements of Set A. Obviously, this is the upper bound of spatial beam prediction performance.
· Non-AI BM: A UE randomly select a Rx beam for P2 and with the chosen UE Rx beam, best Tx beam is selected based on measurements of all gNB Tx beams. In P3, the gNB repeats the UE reported best Tx beam and UE sweeps all the RX beams to find the best RX beam. The selected Tx-Rx beam pair consists of the best Tx beam on P2 and the best Rx beam in P3.
Note that the RS resource overheads for above BM schemes are different: given Rx beams and  Tx beams, Baseline (exhaustive beam sweeping) scheme has largest RS resource overhead, i.e., , and achieves the upper bound of performance. Non-AI BM requires  RS resources to find the best Rx beam during P3 BM procedure, and it needs RS resources to find the best Tx beam during P2 BM procedure, making the resource overhead for BM using Non-AI BM equal to . 
System level simulation assumptions for data generation and performance evaluation
In our simulations, we consider Dense Urban scenario for data generation and performance evaluation. The detailed system level simulation assumptions are summarized in Table 2. 1000 UEs are dropped in each sector per site to generate beam measurement data for AI model training, while 10 UEs per sector are used for AI model inference evaluation. gNB Tx beam codebook consists of 16 horizontal beams and 2 vertical beams, and UE Rx beam codebook consists of 4 horizontal beams and 1 vertical beam. 
[bookmark: _Ref126769348]Table 2 System level simulation assumption for data generation and performance evaluation
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz, SCS: 120 kHz

	Deployment scenario 
	Dense Urban. 
200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	System BW
	80MHz

	BS Tx power
	40dBm

	UE distribution
	10 UEs per sector/cell for model inference evaluation.
1000 UEs per sector/cell for model training.
80% indoor UE and 20% outdoor UE.

	BS Antenna Configuration
	(M, N, P, Mg, Ng ; Mp Np) = (4, 8, 2, 1, 1; 2,2), (dV, dH) = (0.5, 0.5) λ 

	UE Antenna Configuration
	(M, N, P, Mg, Ng ;Mp Np)= (2,4,2,1,2; 1,1)

	Traffic Model
	Full buffer

	BF scheme 
	· gNB 32 Tx beamforming scheme: 
· 16 DFT beams in azimuth and 2 DFT beams in elevation  
· UE 4 Rx beamforming scheme: 
· 4 DFT beams in azimuth and 1 DFT beams in elevation


KPIs  
The KPIs related to spatial beam prediction performance used in this document includes:
Beam prediction accuracy:
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· X dB margin (%): the percentage of “L1-RSRP difference of top-1 predicted beam and top-1 genie-aided beam is less than X dB”
L1-RSRP diff.: the L1-RSRP difference of top-1 predicted beam and top-1 genie-aided beam
Predicted L1-RSRP diff.: the difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the same beam.
System performance KPIs: 
· UPT (User-perceived Throughput)
· RS overhead: the number of beam pairs (with reference signal (SSB and/or CSI-RS)) required for measurement.
· RS overhead reduction (%) = 1-N/M; RS overhead = N
· where N is the number of beam pairs (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beam pairs to be predicted 
[bookmark: _Ref126839056]Detailed performance results
In this section, we show performance results in detail with different conditions for spatial beam prediction. 
 Performance of beam prediction and L1-RSRP
In our simulations, we have determined beam prediction performance and L1-RSRP performance of AI-based BM approach for BM-Case1. Firstly, we consider performance with different Set B selection, including different Set B patterns and different sizes of Set B. 
Table 3 and Table 4 show that performance of beam prediction accuracy and L1-RSRP for AI-based BM with different Set B pattern. The results of Table 3 and Table 4 show that AI-based BM with different Set B pattern have different performance that the uneven-spaced Set B pattern achieves better performance than even-spaced pattern. With uneven spaced Set B pattern, up to 97.23% beam prediction accuracy can be obtained by AI model considering KPI of top5/1 beam prediction accuracy. Up to 80.57% and 94.59% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. AI model with uneven spaced Set B pattern can achieve average/5%ile/95%ile L1-RSRP difference of 0.47dB/0dB/2.05dB, which means that the actual L1-RSRP of predicted beam pair is very close to actual L1-RSRP of ideal beam pair. From the perspective of L1-RSRP, the performance gap of predicted beam pair and ideal beam pair is marginal. Average/5%ile/95%ile predicted L1-RSRP difference of 0.92dB/0.07dB/2.59dB can be obtained by AI model with uneven spaced Set B pattern, which reveals that the L1-RSRP predicted by AI model is very closed to actual L1-RSRP.
[bookmark: _Ref126769364]Table 3. Beam prediction accuracy for AI-based BM with different Set B pattern
	 Set B pattern with 32 of size
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Even-spaced
	41.28%
	79.15%
	88.65%
	68.35%
	84.27%

	Uneven-spaced
	53.57%
	92.55%
	97.23%
	80.57%
	94.59%


[bookmark: _Ref131512966][bookmark: _Ref126769368]
Table 4. L1-RSRP performance for AI-based BM with different Set B pattern
	Set B pattern with 32 of size
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Even-spaced
	1.00
	0
	3.88
	1.60
	0.14
	3.70

	Uneven-spaced
	0.47
	0
	2.05
	0.92
	0.07
	2.59


Table 5 and Table 6 show that performance of beam prediction accuracy and L1-RSRP for AI-based BM with different size of Set B. Based on the results of Table 5 and Table 6, it can be observed that beam prediction accuracy and L1-RSRP difference from AI-based BM for spatial beam prediction increases as the size of Set B, i.e., size of AI model input, increases.
[bookmark: _Ref131514699]
Table 5. Beam prediction accuracy for AI-based BM with different size of Set B
	Size of Set B with un-even spaced pattern
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	8
	34.24%
	70.00%
	80.62%
	47.31%
	61.53%

	16
	35.12%
	71.98%
	81.28%
	52.37%
	67.31%

	32
	53.57%
	92.55%
	97.23%
	80.57%
	94.59%


[bookmark: _Ref131512997]
Table 6. L1-RSRP performance for AI-based BM with different size of Set B
	Size of Set B with un-even spaced pattern
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	8
	2.01
	0
	9.04
	2.22
	0.10
	7.53

	16
	1.64
	0
	7.14
	2.04
	0.17
	5.87

	32
	0.47
	0
	2.05
	0.92
	0.07
	2.59


[bookmark: _Hlk131690298]
Observation 1: The beam prediction accuracy performance of AI-based BM is strongly connected with the Set B pattern selection.
Observation 2: With uneven spaced Set B pattern, up to 97.23% beam prediction accuracy can be obtained by AI model considering KPI of top5/1 beam prediction accuracy. 
Observation 3: With uneven spaced Set B pattern, up to 80.57% and 94.59% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. 
Observation 4: Actual L1-RSRP of top-1 predicted beam pair from AI-based spatial beam prediction is very close to actual L1-RSRP of ideal beam pair with average/5%ile/95%ile difference of 0.47dB/0dB/2.05dB.
Observation 5: Predicted L1-RSRP of top-1 predicted beam pair from AI-based BM is very close to actual L1-RSRP of the top-1 predicted beam pair with average/5%ile/95%ile difference of 0.92dB/0.07dB/2.59dB.
[bookmark: _Hlk127459800][image: ]Further, Figure 1 shows the CDFs of L1-RSRP of predicted beam using different BM approaches, which shows that the L1-RSRP performance of predicted beam with AI-based BM is better than that of non-AI based BM, and is very close to that of the baseline, i.e., upper bound of performance. The gap between the predicted L1-RSRP corresponding to prediected beam from AI model and the actual L1-RSRP of the same beam is negligible.Figure 1 Performance of L1-RSRP of predicted beam using different BM

Based on results shown in the figure above, we have the following observations:
Observation 6: AI-based BM is better than that of non-AI based BM and very close to that of the baseline.
L1-RSRP quantization 
According to the agreement realized in RAN1#112 meeting, it is deemed to be a consideration that performance impact of quantization error of inputted L1-RSRP (for training and inference) for AI/ML model for beam management. We have evaluated the performance of AI/ML model for spatial beam management with L1-RSRP quantization method in the current spec., i.e., 1dB quantization step for best beam and 2dB for the difference to the best beam. Note that the quantization method is applied during testing phase only.
Table 7 and Table 8 show that the performance of beam prediction accuracy and L1-RSRP, respectively, for AI-based spatial beam management. From the results of Table 7 and Table 8, we can observe that quantization method for L1-RSRP in the current spec. leads to slight performance loss, i.e., top5/1 beam prediction accuracy drops from 97.23% to 95.71%, average/5%ile/95%ile L1-RSRP difference increases from 0.47dB/0dB/2.05dB to 0.52dB/0dB/2.25dB, and average/5%ile/95%ile predicted L1-RSRP difference increases from 0.92dB/0.07dB/2.59dB to 1.33dB/0.10dB/3.58dB. 
[bookmark: _Ref131516129]Table 7. Beam prediction accuracy with L1-RSRP quantization error for AI-based spatial beam management
	Quantization
	Quantization part
	Beam prediction accuracy

	
	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	No
	NA
	53.57%
	92.55%
	97.23%
	80.57%
	94.59%

	Yes
	Testing
	52.75%
	89.47%
	95.71%
	79.43%
	93.47%


[bookmark: _Ref131516134]
Table 8. L1-RSRP performance with L1-RSRP quantization error for AI-based spatial beam management
	Quantization
	Quantization part
	L1-RSRP diff. (dB)
	Predicted L1-RSRP diff. (dB)

	
	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	No
	NA
	0.47
	0
	2.05
	0.92
	0.07
	2.59

	Yes
	Testing
	0.52
	0
	2.25
	1.33
	0.10
	3.58



Observation 7: Quantization method for L1-RSRP in the current spec. leads to some performance loss, i.e., top5/1 beam prediction accuracy loss from 97.23% to 95.71%, average/5%ile/95%ile L1-RSRP difference from 0.47dB/0dB/2.05dB to 0.52dB/0dB/2.25dB, and average/5%ile/95%ile predicted L1-RSRP difference from 0.92dB/0.07dB/2.59dB to 1.33dB/0.10dB/3.58dB.
System performance 
We’ve evaluated system performance of different BM approaches for spatial beam prediction. The evaluation results are summarized in Table 5, which includes observed throughput and overhead. 
[bookmark: _Ref126769269]Table 9 System performance of different BM schemes for spatial beam prediction
	BM approaches
	Throughput
	Overhead

	
	Average UPT (Mbit/s)
	Average UPT loss compared with baseline
	RS overhead
	RS overhead reduction

	Baseline (upper bound)
	29.688
	0%
	128
	0%

	Non-AI based BM
	28.583
	4.2%
	36
	71.88%

	AI-based BM 
	29.420
	0.9%
	32
	75%



Based on the results presented in the table above, non-AI based BM achieves 71.88% RS overhead reduction compared to baseline with 4.2% UPT loss. AI-based BM can achieve 75% RS overhead reduction with 0.9% UPT loss. In other words, AI-based BM can achieve 2.92% average UPT gain compared to non-AI based BM with similar or same RS overhead.
Observation 8: AI-based BM can achieve 75% RS overhead reduction while system performance loss is marginal, i.e., 0.9%UPT loss. 
Generalization Performance 
According to the agreement made in the past RAN1 meeting, we’ve evaluated the spatial beam prediction performance of our AI model with different scenarios/configurations. In our simulations, we train an AI model for spatial beam prediction in a scenario/configuration, which is referred to as Training case. Then, we evaluate beam predication performance of the AI model in one or more different scenarios/configurations which are called Inference cases. The detailed description of these scenarios/configurations is as follows:
Training case: Under UMa deployment scenario with ISD of 200m, the AI model is trained with Set B of 32 beam pairs, i.e., 8Tx  4Rx, and Set A of 128 beam pairs, i.e., 32Tx  4Rx. 
Inference cases:
· Inference case1 (baseline): The scenario/configuration of this case is same as the training case and is used as a baseline. The detailed parameters can be found in Table 2.
· Inference case2 (ISD 200m vs. 500m): Compared to the Training case, this case only changes the ISD from 200m to 500m while keeping other configurations the same.
· Inference case3 (UMa vs. UMi): Compared to the Training case, this case only changes the deployment scenario from UMa to UMi.
· Inference case4 (Beam set sizes): Different from the assumptions used for data collection, in this case, Set B has 16 beam pairs, i.e., 4Tx  4Rx, and Set A has 64 beam pairs, i.e., 16Tx  4Rx. In this case, a simple pre-processing and post-processing are applied to handle the input size and output size of AI model. For pre-processing, the input of AI model are expended through duplicating beam pair measurements of Set B, e.g., {RSRP1, RSRP1, RSRP2, RSRP2,…,RSRP128, RSRP128}. For post-processing, the predicted RSRPs of 128 beam pairs of AI model are mapped into RSRPs of 64 beam pairs. The predicted beam pairs can be obtained based on the RSRPs of 64 beam pairs.

[bookmark: _Ref126760920]Table 10. Generalization performance of beam prediction accuracy for AI-aided spatial beam prediction
	Inference case
	Beam prediction accuracy

	
	Top1/1
	Top3/1
	Top5/1
	1dB margin
	2dB margin

	Inference case1
	53.57%
	92.55%
	97.23%
	80.57%
	94.59%

	Inference case2
	53.08%
	90.53%
	96.28%
	80.19%
	93.99%

	Inference case3
	54.95%
	91.93%
	96.95%
	82.17%
	95.29%

	[bookmark: _Hlk126762615]Inference case4
	62.3%
	87.89%
	94.42%
	73.16%
	82.12%


[bookmark: _Ref131518589]
Table 11. Generalization performance of L1-RSRP for AI-aided spatial beam prediction
	Inference case
	L1-RSRP diff (dB)
	Predicted L1-RSRP diff (dB)

	
	Average
	5%ile
	95%ile
	Average
	5%ile
	95%ile

	Inference case1
	0.47
	0
	2.05
	0.92
	0.07
	2.59

	Inference case2
	0.51
	0
	2.17
	0.98
	0.08
	2.76

	Inference case3
	0.45
	0
	1.96
	0.88
	0.06
	2.51

	Inference case4
	0.96
	0
	5.03
	1.61
	0.08
	5.04



Table 10 and Table 11 show the generalization performance of AI model for spatial beam prediction. With various deployment scenarios or ISDs, the AI model can still achieve good beam prediction performance. When only changing the ISD to 500m (inference case2), the AI model achieves up to 96.28% of Top5/1 beam prediction accuracy, 0.51dB/0dB/2.17dB of average/5%ile/95%ile L1-RSRP difference and 0.98dB/0.08dB/2.76dB of average/5%ile/95%ile predicted L1-RSRP difference. When only changing the scenario to UMi (inference case3), the AI model achieves up to 96.95% of Top5/1 beam prediction accuracy, 0.45dB/0dB/1.96dB of average/5%ile/95%ile L1-RSRP difference and 0.88dB/0.06dB/2.51dB of average/5%ile/95%ile predicted L1-RSRP difference. When reducing sizes of Set A and Set B for testing (inference case4), beam prediction accuracy and L1-RSRP are affected marginally, i.e., top5/1 beam prediction accuracy from 97.23% to 94.42%, average/5%ile/95%ile L1-RSRP difference from 0.47dB/0dB/2.05dB to 0.96dB/0.07dB/5.03dB, and average/5%ile/95%ile predicted L1-RSRP difference from 0.92dB/0.07dB/2.59dB to 1.61dB/0.08dB/5.04dB. 
Observation 9: The AI model for spatial beam prediction can achieve stable and good performance in different deployment scenarios or different ISDs, e.g., training under UMa scenario and testing under UMi scenario, training with ISD1 and testing with ISD2 with the agreed simulation assumptions.
Observation 10: The beam prediction accuracy and average L1-RSRP difference are affected marginally when the size of Set A and Set B during testing is less than that for the training.
Conclusion
[bookmark: _Hlk100923477][bookmark: _Toc100924111][bookmark: _Toc100924138][bookmark: _Toc100924174]We have presented our views on some aspects of AI/ML for beam management, especially, on generalizability and the KPIs to be considered for evaluating an AI/ML model for beam management. We have the following proposals:
1. For RS overhead reduction in BM case 2, with exhaustive search as the baseline, consider the following definition as Option 3 for the RS overhead reduction KPI: 
, 
where  is the number of beam measurements in  time window,   is the total number of time windows over which the performance is evaluated, and M is the total number of beams (beam-pairs) from which we need to predict the Top-1/K beams (beam-pairs).
1. Consider the number of UCI reports and the size of each UCI report (in bits) as a measure of the reporting overhead. The reporting overhead need to be included into the KPIs.
1. Consider Latency Reduction as also a key KPI in evaluating an AI/ML model for beam management and consider adopting the definition,


1. Generalizability of a proposed AI/ML model for beam management is evaluated by computing the agreed KPIs, inclusive of the gains achieved and the costs incurred, by the model for each of the different network conditions/scenarios/parameter values.
1. Discuss how to decide on the generalization ability of an AI/ML model based on the KPIs, inclusive of the gains achieved, and the costs incurred, that are evaluated for each of the different network conditions/scenarios/parameter values. Further, consider the threshold-based methods for further study. 
Observation 1 The beam prediction accuracy performance of AI-based BM is relevant with the Set B pattern selection.
Observation 2 With uneven spaced Set B pattern, up to 97.23% beam prediction accuracy can be obtained by AI model considering KPI of top5/1 beam prediction accuracy. 
Observation 3 With uneven spaced Set B pattern, up to 80.57% and 94.59% beam prediction accuracy can be obtained with 1dB margin and 2dB margin, respectively, of top-1 predicted beam L1-RSRP difference. 
Observation 4 Actual L1-RSRP of top-1 predicted beam pair from AI-based spatial beam prediction is very close to actual L1-RSRP of ideal beam pair with average/5%ile/95%ile difference of 0.47dB/0dB/2.05dB.
Observation 5 Predicted L1-RSRP of top-1 predicted beam pair from AI-based BM is very close to actual L1-RSRP of the top-1 predicted beam pair with average/5%ile/95%ile difference of 0.92dB/0.07dB/2.59dB.
Observation 6 AI-based BM is better than that of non-AI based BM and very close to that of the baseline .

Observation 7 Quantization method for L1-RSRP in current spec. leads to slight performance loss, i.e., top5/1 beam prediction accuracy loss from 97.23% to 95.71%, average/5%ile/95%ile L1-RSRP difference from 0.47dB/0dB/2.05dB to 0.52dB/0dB/2.25dB, and average/5%ile/95%ile predicted L1-RSRP difference from 0.92dB/0.07dB/2.59dB to 1.33dB/0.10dB/3.58dB.

Observation 8 AI-based BM can achieve 75% RS overhead reduction while system performance loss is marginal, i.e., 0.9%UPT loss. 

Observation 9 The AI model for spatial beam prediction can achieve stable and good performance in different deployment scenarios or different ISDs, e.g., training under UMa scenario and testing under UMi scenario, training with ISD1 and testing with ISD2 with the agreed simulation assumptions.

Observation 10 The beam prediction accuracy and average L1-RSRP difference are affected marginally when the size of Set A and Set B during testing is less than that for the training.
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