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1	Introduction
The approval of the Rel-18 work package marks the start of 5G Advanced evolution. The package includes a study item on AI/ML for NR air interface, and the work item description can be found in [1].
One objective of the SI is to investigate AI/ML framework for NR air interface:
 (
AI/ML model, 
terminology
 and description to identify common and specific characteristics for framework investigations:
Characterize the defining stages of AI/ML related algorithms
 and associated complexity
:
Model generation, e.g., model training (including input/output, pre-/post-process, online/offline as applicable), model validation, model testing, as 
applicable
 
Inference operation, e.g., input/output, pre-/post-process, as applicable
Identify various levels of collaboration 
between UE and 
gNB
 pertinent to the selected use cases, e.g., 
No collaboration: implementation-based only AI/ML algorithms without information exchange [for comparison purposes]
Various levels of UE/
gNB
 collaboration targeting at separate or joint ML operation. 
Characterize 
lifecycle management of AI/M
L m
odel: e.g.
, 
 model
 training, 
model deployment
 
, 
model inference, 
model monitoring, model updating
Dataset(s) for training, validation, testing, and inference 
Identify common notation and terminology for AI/ML related functions, procedures and 
interfaces
Note: 
Consider the work done for 
FS_NR_ENDC_data_collect
 when appropriate
)
At RAN1#109-e and RAN1#110, initial agreements were made to provide directions for further investigation (see Appendix A.1 and A.2). In this contribution, we discuss the general aspects of AI/ML framework for NR air interface. 
2	Background
AI applications—running on vast data centers in the cloud—have already transformed many industries. From retail to infotainment, AI has augmented human cognition and decision making, automated routine tasks, and unearthed unique insights from data. AI enables enterprises to detect fraud, improve customer relationships, optimize the supply chain, and deliver innovative products and services in an increasingly competitive marketplace.
Running AI applications at the edge brings the benefits of localization by processing data closer to where it is generated, captured, and used. This enables enterprises to react and adapt based on local conditions and requirements. Functionally, the edge cloud inherits most principles, mechanisms, and tools from the data center cloud. In addition, its proximity to end users brings new benefits such as lower latency for time-sensitive applications, transport and backhaul efficiencies for data-intensive applications, and data compliance for regulatory reasons. 
Since AI is a highly compute-intensive process, having the right infrastructure optimized for the unique demands of AI workloads at the edge is essential. Data center clouds typically use lots of GPU-accelerated server infrastructure to ensure their high efficiency and effectiveness. Bringing this supercomputing capability to the edge requires integrating GPU-accelerated servers into the edge, together with specialized provisioning, management, and monitoring.
5G is poised to overcome the challenges of creating a seamless connection between data center AI and edge AI. Running AI applications on 5G will bring the true vision of AI applications anytime, anywhere to reality. It will bring extended coverage, mobility support, improved reliability, and enhanced security. This will enable, for example, more powerful deep learning training and inference—making AI better able to guide traffic flows, route autonomous vehicles, make factory robots more efficient at picking and packing goods, and more.
Observation 1: Running AI applications on 5G will bring the true vision of AI applications anytime, anywhere to reality.
On the other hand, 5G systems are becoming increasingly complex for supporting various deployment scenarios and applications. They generate humongous data. The use of rapidly advanced AI techniques, such as ML and data analytics, is critical to managing the complexity, identifying patterns in data, optimizing network design, enhancing system performance, and reducing operating costs. The current use of AI techniques in 5G systems primarily relies on proprietary implementations and solutions. To reap the full benefits from AI techniques in 5G and beyond, we must optimize the integration of AI into the system design and realization, including the air interface.
Observation 2: Integrating AI techniques in 5G systems, including NR air interface, is crucial to further enhancing 5G performance.
3	Defining stages of AI/ML related algorithms
AI/ML related algorithms vary in scale and complexity, but their general defining stages are similar. Figure 1 provides an illustration of the general defining stages of AI/ML related algorithms.
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Figure 1: Defining stages of AI/ML related algorithms.
The functions of the defining stages of AI/ML related algorithms are described below.
· Data extraction is a stage where the relevant data for the AI/ML algorithm is extracted.

· Data validation is a stage where the decision on whether to proceed with (re)training the model is made. For example, at this stage, we validate if there are data schema skews which are considered anomalies in the input data. Examples of schema skews include receiving unexpected features, not receiving all the expected features, or receiving features with unexpected values. As another example, at this stage, we may check data values skews. If there are significant changes in the statistical properties of data, a retraining of the model is necessary to capture the changes.

· Data preparation is a stage where data cleaning, data transformation, and feature engineering are performed and where the data is split into training, validation, and test sets.

· Model training is a stage where various AI/ML modes are trained with different algorithms and hyperparameter tuning. The output of this stage is a trained model.

· Model evaluation is a stage where the quality of the trained model is evaluated using the test data set. The output of this stage is a set of metrics that characterize the quality of the model.

· Model validation is a stage where whether the model is adequate for deployment is validated. Examples include checking whether the model predictive performance is better than a certain baseline, validating the model performance is consistent on various slices of the data, testing mode for deployment such as infrastructure compatibility, among others.

· Model serving is a stage where the validated model is deployed to a target environment to serve predictions. 

· Performance monitoring is a stage where the model predictive performance is monitored to potentially trigger a retraining of the model.

· Trigger is a stage where the retraining of the model is triggered. Depending on the use cases, the trigger can be on demand, on a schedule, on availability of new training data, on model performance degradation, on significant changes in the data distributions, among others.
The details of each defining stage largely depends on specific use cases. The model generation, e.g., model training (including input/output, pre-/post-process, online/offline, etc.), model validation, model testing, and the model inference operation, e.g., input/output, pre-/post-process, needs to be analysed case by case. Accordingly, the associated complexity of the defining stages of AI/ML related algorithms needs to be analysed case by case.
Proposal 1: The defining stages of AI/ML related algorithms, including the model generation, e.g., model training (including input/output, pre-/post-process, online/offline, etc.), model validation, model testing, the model inference operation, e.g., input/output, pre-/post-process, and the associated complexity, need to be analysed case by case.
4	Types of collaboration between UE and gNB
The following collaboration framework was identified earlier despite it is not a consensus.
· 0a) No collaboration framework: AI/ML algorithms purely implementation based and not requiring air-interface changes. 

· 0b) No collaboration framework with modified Air-Interface catering to efficient implementation-based AI/ML algorithms. 
· 1) Inter-node assistance to improve the respective nodes’ AI/ML algorithms. This would apply to UEs getting assistance from gNBs (for training, adaptation, etc.) and vice-versa. This level does not require model exchange between network nodes. 

· 2) Joint ML operation between UEs and gNBs. This level requires AI/ML model instruction or exchange between network nodes.
The framework above is a good starting point for categorizing different levels of collaboration between UE and gNB. However, the description is not entirely clear. For example, the difference between Category 0b) and Category 1) is ambiguous. In general, the discussion on the levels of collaboration between UE and gNB would become more concrete when the study on the selected use cases progresses. After that, the categorization would become more straightforward.
Some initial consensus was achieved at RAN1#109-e, leading to the following agreed as one aspect for defining collaboration levels:
· Level x: No collaboration
· Level y: Signaling-based collaboration without model transfer
· Level z: Signaling-based collaboration with model transfer
Figure 2 provides an illustration of UE-gNB collaboration levels x, y, and z. 
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Figure 2: UE-gNB collaboration levels x, y, and z.
However, the specific meaning of each level and the boundaries between adjacent levels require further clarification.
At level x, there is no collaboration between gNB and UE. The use of AI techniques in this case is purely based on proprietary implementations and solutions. We do not change the air interface specifically for AI models.
At level y, there is signaling based collaboration without model transfer. Compared to level x, the difference is that here we may modify air interface and introduce new signaling to facilitate efficient AI/ML based features, such as introducing new measurements and reporting. 
However, even if a new signaling (e.g., a new measurement reporting) is defined to facilitate AI/ML operation, it may also be applicable to non-AI/ML operation. Therefore, there needs to be a particular signaling that is only applicable to AI/ML operation in order to define level x-y boundary precisely. Such signaling can be related to AI/ML model management (e.g., model activation/deactivation/registration), and thus are not applicable to non-AI/ML operation.  
Observation 3: Even if a new signaling (e.g., a new measurement reporting) is defined to facilitate AI/ML operation, it may also be applicable to non-AI/ML operation.
Observation 4: In order to define level x-y boundary precisely, there needs to be some particular signaling that is applicable to AI/ML operation and is not applicable to non-AI/ML operation. 
It was clarified at RAN1#110bis that “Level x is implementation-based AI/ML operation without any dedicated AI/ML-specific enhancement (e.g., LCM related signalling, RS) collaboration between network and UE. However, the meaning of “dedicated AI/ML-specific enhancement” is unclear. For example, if RAN1 introduced the feature that “UE to report the measurement results of more than 4 beams in one reporting instance” for AI/ML based beam management, would the feature be qualified as “dedicated AI/ML-specific enhancement”? One might argue that this feature would be applicable to non-AI/ML operation, despite it were introduced under the discussion of AI/ML based beam management.
Proposal 2: RAN1 to further clarify the meaning of “dedicated AI/ML-specific enhancement.” 
· For example, if RAN1 introduced the feature that “UE to report the measurement results of more than 4 beams in one reporting instance” for AI/ML based beam management, would the feature be qualified as “dedicated AI/ML-specific enhancement”?
Level z is defined as signaling-based collaboration with model transfer, where model transfer is (as a working assumption) defined as delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters, and delivery may contain a full model or a partial model. 
It was clarified at RAN1#110bis that level y-z boundary is defined based on whether model delivery is transparent to 3GPP signalling over the air interface or not. In other words, model delivery in level z is not transparent to 3GPP signalling, while level y includes cases without model delivery and with model delivery transparent to 3GPP signaling.
Observation 5: Model delivery in level z is not transparent to 3GPP signalling, while level y includes cases without model delivery and with model delivery transparent to 3GPP signaling.
There are as two separate model format categories relevant for discussion: proprietary models and open-format models. Proprietary models refer to ML models of vendor-/device-specific proprietary format. One example is a device-specific binary executable format. Open-format models refer to ML models of specified format that are mutually recognizable across vendors and allow interoperability. In other words, proprietary-format models are not mutually recognizable across vendors, hide model design information from other vendors when shared, while open-format models are mutually recognizable between vendors, do not hide model design information from other vendors when shared.
Another aspect related to one-sided model/two-sided model is also relevant. The controversy lies in the fact that it is challenging to sort the order of the levels with two different dimensions: one in the dimension of with/without model transfer and another in the dimension of one-sided model/two-sided model, because multiple ordering options exist and the order depends on many factors such as use case, deployment scenarios, network/UE capabilities (current and future), etc.
Observation 6: It is challenging to sort the order of the levels with two different dimensions: one in the dimension of with/without model transfer and another in the dimension of one-sided model/two-sided model, because multiple ordering options exist and the order depends on many factors such as use case, deployment scenarios, network/UE capabilities (current and future), etc.
One solution to resolving the difficulty could be to avoid calling the different categories as different levels, as the term “level” implies ordering. Instead, it is sufficient to simply refer to them as different types, as “type 1/type 2 or type A/type B” is often used in RAN1 discussion. 
Based on the collaboration framework with level x/y/z, RAN1 further agreed to consider the following cases where different combinations of model delivery/transfer to UE, training location, and model delivery/transfer format are considered for UE-side models and UE-part of two-sided models.
· Case y, where model delivery (if needed) is over-the-top, model storage location is outside 3GPP network, and training location is UE-side / network-side / neutral site.
· Case z1, where model transfer is in proprietary format, model storage location is within 3GPP network, and training location is UE-side / neutral site.
· Case z2, where model transfer is in proprietary format, model storage location is within 3GPP network, and training location is network-side.
· Case z3, where model transfer is in open format, model storage location is within 3GPP network, and training location is UE-side / neutral site.
· Case z4, where model transfer is in open format of a known model structure at UE, model storage location is within 3GPP network, and training location is network-side.
· Case z5, where model transfer is in open format of an unknown model structure at UE, model storage location is within 3GPP network, and training location is network-side.
However, the above cases are categorized to facilitate discussion and are not an attempt to introduce sub-levels of level z.
5	Common aspects of evaluation methodology
5.1	Dataset
Data is the new oil in today’s age of AI. When it comes to telecom, despite the mobile systems generate humongous data, their general accessibility is limited for various reasons. Nonetheless, it would be beneficial to identify existing sets of real data and/or build up new sets of real data, as part of the 3GPP Rel-18 AI/ML study for NR air interface. Such efforts would pay off as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
Observation 7: Identifying existing sets of real data and/or building up new sets of real data will be of high value as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
Proposal 3: Companies are encouraged to contribute real data to the 3GPP Rel-18 AI/ML study for NR air interface to help start to build up sets of real data in 3GPP.
The 3GPP Rel-18 AI/ML study for NR air interface may need large, carefully labelled datasets to train AI/ML models. More diverse training data generally makes for more accurate AI models. The problem is gathering and labelling datasets that may contain a few thousand to tens of millions of elements is time consuming and often prohibitively expensive. 
In other words, despite the importance of real data for AI/ML development cannot be emphasized enough, it is acknowledged that building up solid sets of real data would likely be a long-term effort which would take time to mature. Therefore, it is equally important that we use synthetic data in the 3GPP Rel-18 AI/ML study for NR air interface, as synthetic data is less expensive while being effective when generated properly.
Synthetic data reflects real-world data, mathematically or statistically. Developers of deep neural networks increasingly use synthetic data to train their models. Indeed, a 2019 survey of the field [2] calls use of synthetic data “one of the most promising general techniques on the rise in modern deep learning, especially computer vision” that relies on unstructured data like images and video. In particular, because synthetic datasets are automatically labelled and can deliberately include rare but crucial corner cases, it is sometimes better than real-world data.
3GPP has well established simulation methodology, which can be used to generate synthetic data.
Observation 8: Synthetic data reflects real-world data. It is less expensive compared to real-world data while being effective for AI/ML development when generated properly.
Observation 9: Developers of AI/ML models increasingly use synthetic data to train their models.
Observation 10: 3GPP has established simulation methodology, which can be used to generate synthetic data.
During the study of the 3GPP Rel-18 AI/ML study for NR air interface, additional simulation methodology for generating synthetic data, such as digital twins, can be explored. A digital twin is a virtual representation — a true-to-reality simulation of physics and materials — of a real-world physical asset or system, which is continuously updated. Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
The notion of a digital twin has been taking off in many industries such as smart manufacturing, oil and gas, construction, bio-engineering and automotive. For industrial applications such as factory and warehouse design, logistics, and distribution, physically accurate, precision-timed digital twins are the key to unlocking operational efficiencies. Enabled by AI, they can deliver enhanced predictive analysis and software and process automation that maximize productivity and help maintain faultless operation. 
A 5G digital twin will be a large-scale, physically accurate simulation of a 5G network [4][5]. Its key characteristics include:
· Physically Accurate Replica: 5G digital twins need to be physically accurate with true-to-reality physics, materials, lighting, rendering, and behavior. This allows for virtual system testing, layout changes, software optimizations, or upgrades, avoiding any system downtime or failure in the physical twin.
· Perfectly Synchronized: 5G digital twins need to be true real-time, living simulations that are operating in precise timing, where the virtual representation is constantly synchronized to the physical world. This enables not only diagnosing a single moment in time but accurately simulating and predicting infinite ‘what-if’ scenarios.
· AI-Enabling, AI-Enabled: 5G digital twins need to provide an autonomous feedback loop between the real world and digital twin environments, constantly retraining and optimizing AI models, or, constantly run predictive “what-if” simulations to reoptimize the digital twin itself.
A 5G digital twin for 3GPP simulation may not need to have all the characteristics of a comprehensive 5G digital twin of a real 5G network. The most important aspect for 3GPP simulation will be the modeling of a physically accurate replica with, e.g., true-to-reality physics, materials, lighting, rendering, and behavior.
Observation 11: Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
Observation 12: Key characteristics of a 5G digital twin include (1) Physically Accurate Replica, (2) Perfectly Synchronized, and (3) AI-Enabling, AI-Enabled.
5.2	Common KPIs
A variety of KPIs have been brought up. RAN1 has agreed an initial list of common KPIs for evaluating performance benefits of AI/ML, as summarized in the following table.
Table 1: Common KPIs for evaluating performance benefits of AI/ML.
	Common KPI category
	Common KPI type

	Performance
	· Intermediate KPIs
· Link and system level performance 
· Generalization performance

	Over-the-air overhead

	· Overhead of assistance information
· Overhead of data collection
· Overhead of model delivery/transfer
· Overhead of other AI/ML-related signaling

	Inference complexity

	· Computational complexity of model inference: FLOPs
· Computational complexity for pre- and post-processing
· Model complexity: e.g., the number of parameters and/or size (e.g., Mbyte)

	LCM related complexity and storage overhead
	· Storage/computation for training data collection 
· Storage/computation for training and model update 
· Storage/computation for model monitoring
· Storage/computation for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation

	Power consumption
	FFS

	Latency (e.g., inference latency)
	FFS


When it comes to complexity KPI, the computational complexity can be reported via the metric of floating point operations (FLOPs), and the model complexity may be measured by memory storage in terms of AI/ML model size and number of AI/ML parameters.
There may be a disconnection between actual complexity and the complexity evaluated using the agreed computational complexity KPIs for inference, due to factors such as the platform-dependency and implementation (hardware and software) optimization solutions. These factors are out of the scope of 3GPP.
It is also important to keep in mind that increasing hardware performance can support successively more complex models. For example, Figure 2 shows how single GPU performance has scaled up to meet the demands of deep learning. GPU inference performance has improved by 317x, more than doubling each year. Figure 3 shows single GPU FP64 performance increased by 20x over the decade from 2010 to 2020, an annual growth rate of 35%. In addition to scaling up the performance of individual GPUs, GPUs are also being scaled out to larger clusters for deep learning and high-performance computing applications.
Observation 13: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Proposal 4: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for NR air interface.
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Figure 3: GPU inference performance is more than doubling every year. (Source: Ref. [3])
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Figure 4: Single GPU performance scaling. (Source: Ref. [3])
5.3	Model generalization
Model generalization measures the ability of an AI/ML model to perform in new and unseen situations that do not form part of its training experience. It is natural that there is performance difference between how the AI/ML model performs in the training experiences it has seen and in the new unseen situations it is evaluated on. The smaller the performance difference, the better the AI/ML model’s generalization ability.
There are many different types of “unseen situations.” In AI/ML community, the type of generalization commonly investigated is the case where the distribution of the training samples is the same as that of the test samples. This type of generalization is referred to as “in-distribution generalization.”
In practise, there are often distribution shifts between training samples and test samples. Therefore, it is of practical relevance to study out-of-distribution generalization, which refers to generalization that is not in-distribution generalization. Certainly, one cannot expect the AI/ML model to generalize to test data that is arbitrary or unrelated to the training data. Therefore, specific assumptions are needed to address the out-of-distribution generalization for the problem in question.
There was an attempt in RAN1#110 to define the following generalization categories: 
· Type 1: Heterogeneous inter-site: performance of AI/ML model over various deployment types (e.g., Dense Urban, UMi, InF, etc.) 
· Type 2: Homogeneous inter-site: performance of AI/ML model over various sites of the same deployment type (e.g., multiple drops from InF-DH) 
· Type 3: Intra-site: performance of AI/ML model on variations within the same site (e.g., different UE locations, speeds, and trajectories within the drop, changes in moving objects in the environment) 
· Type 4: Cross-configuration:  performance of AI/ML models across various configurations (e.g., various beam configurations, various BWs, etc.) 
It is however challenging to agree on the above generalization categories, as they are not clearly defined and thus difficult to serve the purpose of providing a common framework. In the end, it would still be up to each use case to discuss and study generalization types.
From a common framework’s perspective, we feel that it is sufficient to define “in-distribution generalization” and “out-of-distribution generalization” in the terminology list and leave the details of generalization types to the discussion of each use case (which is anyway happening).
Proposal 5: From a common framework’s perspective, introduce “in-distribution generalization” and “out-of-distribution generalization” in the terminology list and leave the details of generalization types to the discussion of each use case.
Proposal 6: In-distribution generalization: training and test data have the same distribution.
Proposal 7: Out-of-distribution generalization: training and test data do not have the same distribution.
6	Model life cycle management and specification impact
To enable and facilitate AI/ML for NR air interface, an AI/ML model needs to be created and then be managed during the entire lifecycle. For example, the AI/ML model needs to be validated, tested, deployed, etc. The AI/ML-enabled function also needs to be managed (e.g., deployment, configuration, and evaluation). 
Observation 14: To enable and facilitate AI/ML for NR air interface, both AI/ML models and their enabled functions need to be managed.
For AI/ML functionality identification, the legacy 3GPP framework of UE features can be a starting point for discussion. For an AI/ML-enabled feature which refers to a feature where AI/ML may be used, there may be either one or more than one functionalities defined within an AI/ML-enabled feature. UE indicates supported functionalities/functionality for a given sub-use-case, and UE capability reporting can be taken as a starting point. For AI/ML model identification, models are identified by model ID at the Network, and UE indicates supported AI/ML models.
For UE-part/UE-side models, mechanisms for LCM procedures include functionality-based LCM procedure and model-ID-based LCM procedure. 
· For functionality-based LCM procedure, indication of activation, deactivation, switching, and fallback based on individual AI/ML functionality needs to be studied. In this case, network can indicate activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). Furthermore, AI/ML models may not be identified at the network, and UE may perform model-level LCM. A topic that requires further investigation is whether and how much awareness/interaction network should have about model-level LCM. 
· For model-ID-based LCM procedure, indication of model selection, activation, deactivation, switching, and fallback are based on individual model IDs. Specifically, models are identified at the network, and network or UE may activate/deactivate/select/switch individual AI/ML models via model ID.
The AI/ML model may be implemented and deployed as a software or in a different way/form. Although specific AI/ML algorithms and models may be studied for evaluation purposes, AI/ML algorithms and models are implementation specific and are not expected to be specified. The suitable mechanism for AI/ML model deployment needs to be investigated. It should be noted that SA5 is conducting a study on AI/ML management with the following objectives. It would be beneficial to coordinate with SA5 on AI/ML model life cycle management.
 (
To study the AI/ML management capabilities and management services to support/coordinate AI/ML in 5GS (3GPP management system, 5GC and NG-RAN) without disclosing or restricting the proprietary algorithm of AI/ML model, 
including
 
the use cases, potential requirements, and possible solutions for management of AI/ML capabilities for the AI/ML-enabled functions (e.g., MDA, RAN intelligence, 
NWDAF
, etc.) in 5GS, including but not limited to the following capabilities:
Validation of AI/ML model and AI/ML-enabled function
Testing of AI/ML model and AI/ML-enabled function (before deployment)
Deployment of AI/ML model (new or updated model) and AI/ML-enabled function
Configuration of AI/ML-enabled function
Performance evaluation of AI/ML-enabled function
investigation of coordination between the AI/ML management capabilities and the AI/ML capabilities in 
5GC;
relation between AI/ML management and other services/functions/entities (including 
MnSs
 and network functions/entities
);
investigation of deployment scenarios where the solutions are needed for AI/ML model training and each of the AI/ML model management capability mentioned in objective 1).
The study will also investigate whether there are available AI/ML management mechanisms developed outside of 3GPP can be considered.
Note: as a priority, the study will first focus on the objective 1), specifically addressing management capabilities for AI/ML model validation, testing and deployment to support the AI/ML in NG-RAN when AI/ML model training is in OAM and inference is in NG-RAN.
)
Proposal 8: Coordinate with SA5 on AI/ML model life cycle management.
AI/ML model training can occur at gNB or UE side or both sides. In either case, the training entity can benefit from assistance from the other entity for training data collection. Relevant areas for discussion include training data type/size, training data source determination, and assistance signalling and procedure for training data collection.
Besides model training, data collection may be performed for other purposes in LCM, e.g., model inference, model monitoring, model selection, model update, etc., each of which may be done with different requirements and potential specification impact.
Proposal 9: For AI/ML LCM, study potential specification impact related to data collection for different purposes, including model training, model inference, model monitoring, model selection, model update, etc.
Proposal 10: For AI/ML model training in each NR air interface enhancement, study potential specification impact related to training data type/size, training data source determination, and assistance signalling and procedure for training data collection.
Similar to many other functionalities in 3GPP systems, the usage of AI/ML model for a certain functionality should be under network control, if the functionality at one side cannot be made transparent to the other side. Therefore, assistance signalling and procedure for model configuration, model activation/deactivation, model recovery/termination, model selection, etc. should be investigated. 
To this end, model identification, which refers to a process/method of identifying an AI/ML model for the common understanding between the network and the UE, is needed.  One example is to associate an AI/ML model with a model ID with associated information and/or model functionality at least for some AI/ML operations such as model identification. Alternatively, one may use functionality identification, which refers to a process/method of identifying an AI/ML functionality for the common understanding between the network and the UE.
For model selection, activation, deactivation, switching, and fallback, the decision can be made by the network or the UE. For the decision made by the network, the procedure can be network-initiated or UE-initiated and feedback to the network. For the decision made by the UE, the procedure can be (1) event-triggered as configured by the network and with UE’s decision reported to network; (2) UE-autonomous with UE’s decision reported to the network; and (3) UE-autonomous with UE’s decision not reported to the network.
Proposal 11: For AI/ML based enhancements for NR air interface, study potential specification impact related to assistance signalling and procedure for model configuration, model activation/deactivation, model recovery/termination, and model selection.
[bookmark: _Hlk118192386]AI/ML models are data driving. They are trained to learn patterns from data. Ideally, it would be desirable to use one model that is generalizable to different scenarios/configurations/sites. However, this is difficult to achieve as there are so many different scenarios/configurations/sites in mobile communication systems. Besides, the environment of a mobile communication system is dynamic and changes over time, and thus the data also keeps changing. As the data from the environment changes, the AI/ML model performance may be degraded. Therefore, it is essential to monitor the AI/ML model performance and regularly update the model to maintain satisfactory model performance. In model update, the model structure or model parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. One model update example is model fine-tuning.
Instead of always attempting to develop unified models that are generalizable to different scenarios/configurations/sites, it would be preferable to develop a set of specific models, e.g., scenario-/configuration-specific and site-specific models. With a group of models where each model is for a particular scenario/configuration/site, we could utilize model switching for achieving good performance across different scenarios/configurations/sites.
AI/ML model performance monitoring is needed for model activation, deactivation, selection, switching, fallback, update (including re-training), etc. The monitoring may be based on inference accuracy (including metrics related to intermediate KPIs), system performance (including metrics related to system performance KPIs), applicable condition, and data distribution. For monitoring based on data distribution, it can be Input-based (e.g., monitoring the validity of the AI/ML input including out-of-distribution detection, drift detection of input data, SNR, delay spread, etc.) and output-based (e.g., drift detection of output data). The model monitoring metric calculation may be done at network or UE. 
The AI/ML model monitoring KPIs may include accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance), overhead (e.g., signaling overhead associated with model monitoring), complexity (e.g., computation and memory cost for model monitoring), latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring), etc.
Proposal 12: For AI/ML based enhancements for NR air interface, study potential specification impact related to assistance signalling and procedure for model performance monitoring, model update/tuning, and model selection/switching.
When it comes to AI/ML model inference input, report/feedback of model input for inference (e.g., UE feedback as input for network side model inference) may be needed. In general, the type of model input, and model input acquisition and pre-processing may have potential specification impact. Similarly, when it comes to AI/ML model inference output, outputs generated by an AI/ML model may need to be delivered from gNB to UE or from UE to gNB. The post-processing of AI/ML model inference output may have potential specification impact as well.
Proposal 13: For AI/ML based enhancements for NR air interface, study potential specification impact related to report/feedback of model input for inference, type of model input, and model input acquisition and pre-processing.
Proposal 14: For AI/ML based enhancements for NR air interface, study potential specification impact related to report/feedback of model inference output and post-processing.
Different UEs may have different capabilities when it comes to the support of AI/ML algorithms for NR air interface. Therefore, UE capability for AI/ML based enhancements for NR air interface including model training, model inference and model monitoring needs to be investigated and defined.
Proposal 15: For AI/ML based enhancements for NR air interface, study potential specification impact related to UE capability for AI/ML based beam prediction including model training, model inference and model monitoring.
Conclusion
In the previous sections, we discuss general aspects of AI/ML framework for NR air interface and make the following observations:
Observation 1: Running AI applications on 5G will bring the true vision of AI applications anytime, anywhere to reality.
Observation 2: Integrating AI techniques in 5G systems, including NR air interface, is crucial to further enhancing 5G performance.
Observation 3: Even if a new signaling (e.g., a new measurement reporting) is defined to facilitate AI/ML operation, it may also be applicable to non-AI/ML operation.
Observation 4: In order to define level x-y boundary precisely, there needs to be some particular signaling that is applicable to AI/ML operation and is not applicable to non-AI/ML operation. 
Observation 5: Model delivery in level z is not transparent to 3GPP signalling, while level y includes cases without model delivery and with model delivery transparent to 3GPP signaling.
Observation 6: It is challenging to sort the order of the levels with two different dimensions: one in the dimension of with/without model transfer and another in the dimension of one-sided model/two-sided model, because multiple ordering options exist and the order depends on many factors such as use case, deployment scenarios, network/UE capabilities (current and future), etc.
Observation 7: Identifying existing sets of real data and/or building up new sets of real data will be of high value as it is anticipated that AI/ML will become increasingly more integrated into the 3GPP family of technologies from 5G Advanced to 6G.
Observation 8: Synthetic data reflects real-world data. It is less expensive compared to real-world data while being effective for AI/ML development when generated properly.
Observation 9: Developers of AI/ML models increasingly use synthetic data to train their models.
Observation 10: 3GPP has established simulation methodology, which can be used to generate synthetic data.
Observation 11: Digital twins can help generate synthetic data that are closer to real-world data, compared to the traditional 3GPP statistical simulation methodology.
Observation 12: Key characteristics of a 5G digital twin include (1) Physically Accurate Replica, (2) Perfectly Synchronized, and (3) AI-Enabling, AI-Enabled.
Observation 13: Increasing hardware performance can support successively more complex AI/ML models. For example, GPU inference performance has improved by 317x in 8 years (2012-2020), more than doubling each year.
Observation 14: To enable and facilitate AI/ML for NR air interface, both AI/ML models and their enabled functions need to be managed.

Based on the discussion in the previous sections we propose the following:
Proposal 1: The defining stages of AI/ML related algorithms, including the model generation, e.g., model training (including input/output, pre-/post-process, online/offline, etc.), model validation, model testing, the model inference operation, e.g., input/output, pre-/post-process, and the associated complexity, need to be analysed case by case.
Proposal 2: RAN1 to further clarify the meaning of “dedicated AI/ML-specific enhancement.” 
· For example, if RAN1 introduced the feature that “UE to report the measurement results of more than 4 beams in one reporting instance” for AI/ML based beam management, would the feature be qualified as “dedicated AI/ML-specific enhancement”?
Proposal 3: Companies are encouraged to contribute real data to the 3GPP Rel-18 AI/ML study for NR air interface to help start to build up sets of real data in 3GPP.
Proposal 4: AI/ML model complexity and computational complexity should not be regarded as a roadblock to the adoption of AI/ML based algorithms for NR air interface.
Proposal 5: From a common framework’s perspective, introduce “in-distribution generalization” and “out-of-distribution generalization” in the terminology list and leave the details of generalization types to the discussion of each use case.
Proposal 6: In-distribution generalization: training and test data have the same distribution.
Proposal 7: Out-of-distribution generalization: training and test data do not have the same distribution.
Proposal 8: Coordinate with SA5 on AI/ML model life cycle management.
Proposal 9: For AI/ML LCM, study potential specification impact related to data collection for different purposes, including model training, model inference, model monitoring, model selection, model update, etc.
Proposal 10: For AI/ML model training in each NR air interface enhancement, study potential specification impact related to training data type/size, training data source determination, and assistance signalling and procedure for training data collection.
Proposal 11: For AI/ML based enhancements for NR air interface, study potential specification impact related to assistance signalling and procedure for model configuration, model activation/deactivation, model recovery/termination, and model selection.
Proposal 12: For AI/ML based enhancements for NR air interface, study potential specification impact related to assistance signalling and procedure for model performance monitoring, model update/tuning, and model selection/switching.
Proposal 13: For AI/ML based enhancements for NR air interface, study potential specification impact related to report/feedback of model input for inference, type of model input, and model input acquisition and pre-processing.
Proposal 14: For AI/ML based enhancements for NR air interface, study potential specification impact related to report/feedback of model inference output and post-processing.
Proposal 15: For AI/ML based enhancements for NR air interface, study potential specification impact related to UE capability for AI/ML based beam prediction including model training, model inference and model monitoring.
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