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1. Introduction 
In RAN#94e, the Rel-18 SID for Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface was approved [1], the objective of this study item is to study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact. In this SID, one specific use case for AI/ML is CSI feedback enhancement.
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels


In this contribution, we present our views on the evaluation methodology and KPI for AI/ML based CSI feedback enhancement and some initial evaluation results are also provided here.
2. [bookmark: _Hlk102038525]Evaluation methodology and preliminary results for CSI compression
[bookmark: _Hlk102052330]AI based CSI feedback enhancement is aimed at CSI reporting overhead reduction and accuracy improvement. In this section, we show our specific evaluation methodology, KPI and preliminary results for the sub use case of spatial-frequency domain CSI compression using two-sided AI model. 
[bookmark: _Hlk102033954]As shown in Fig.1, for the use case of AI based CSI enhancement, UE obtain the joint eigenvectors form the channel matrix H, and then compress the eigenvectors to a bitstream via encoder and quantization. After receiving the compressed bitstream, gNB will recover the feedback bits to the eigenvectors through dequantization and decoder. 



Fig.1 AI based CSI feedback framework

2.1 Data set for CSI compression
Statistical channels used in link-level simulation or system level simulation can be used to construct the data set for the evaluation of AI based CSI feedback. In this contribution, the UMA channel in TR 38.901 are both used to generate channel data. The eigenvectors of K subbands are used for model training, model validation and model testing.
The detailed evaluation assumptions are shown in Table 1:
Table 1. Simulation parameters for UMA channel
	Parameter
	Value

	Duplex, Waveform
	FDD (TDD is not precluded), OFDM

	Multiple access
	OFDMA

	Scenario
	Dense Urban (Macro only)
19 cells, 3 sectors for each cell

	Frequency Range
	2.1GHz

	Inter-BS distance
	200m

	Channel model
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (4,4,2,1,1,4,4), (dH,dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ


	BS Tx power
	41 dBm for 10MHz, 44dBm for 20MHz, 47dBm for 40MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Modulation
	Up to 256QAM

	Coding on PDSCH
	LDPC
Max code-block size=8448bit

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz

	Simulation bandwidth
	20MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	MIMO scheme
	SU-MIMO

	MIMO layers
	Rank 1

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	Channel estimation
	ideal channel estimation

	dataset
	150 drops, 1140UE/drop, 171k samples



2.2 Preliminary results for CSI compression
The EVCsiNet model based on [2] and a Transformer based model are used in AI model training. Besides, scalar quantization is used in the evaluation. The AI models apply SGCS as its loss function. Preliminary results for the use case of CSI compression are shown in this section.

2.2.1 1-on-1 joint training
[bookmark: _Hlk131448651]Based on the agreed template for CSI compression of 1-on-1 joint training without model generalization/scalability in previous meeting [6], the AI based method performance under different number of feedback bits in UMA scenario are shown below. In our contribution, we use the square of generalized cosine similarity (SGCS) between recovered eigenvectors and original eigenvectors as the only intermediate KPI. Besides, the SGCS for Type-I and enhanced Type-II codebook under approximate feedback bits are also given here for comparison.

Table 2. [bookmark: _Hlk131448374][bookmark: _Hlk131448343]Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, Max rank = 1
	CSI generation part
	AL/ML model backbone
	Transformer
	EVCsiNet
	Transformer
	EVCsiNet

	
	Pre-processing
	SVD
	SVD
	SVD
	SVD

	
	Post-processing
	SVD
	SVD
	SVD
	SVD

	
	FLOPs/M
	21.414
	4.69
	21.426
	4.76

	
	Number of parameters/M
	10.707
	2.34
	10.713
	2.38

	
	[Storage /Mbytes]
	
	
	
	

	CSI reconstruction part
	AL/ML model backbone
	Transformer
	EVCsiNet
	Transformer
	EVCsiNet

	
	[Pre-processing]
	
	
	
	

	
	[Post-processing]
	
	
	
	

	
	FLOPs/M
	21.416
	4.76
	21.426
	4.76

	
	Number of parameters/M
	10.708
	2.38
	10.713
	2.38

	
	[Storage /Mbytes]
	
	
	
	

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Rank/layer adaptation settings for rank>1
	Option 3-1: layer common and rank common
	Option 3-1: layer common and rank common
	Option 3-1: layer common and rank common
	Option 3-1: layer common and rank common

	Dataset description
	Train/k
	154
	154
	154
	154

	
	Test/k
	17
	17
	17
	17

	
	Ground-truth CSI quantization method (including scalar/codebook based quantization, and the parameters)
	Float32
	Float32
	Float32
	Float32

	
	Overhead reduction compared to Float32 if high resolution quantization of ground-truth CSI is applied
	
	
	
	

	Benchmark
	Type-I
	Type-I
	eType-II
	eType-II

	SGCS of benchmark (dB), layer 1
	CSI feedback payload 32
	0.626
	0.626
	
	

	
	CSI feedback payload 48
	
	
	0.685
	0.685

	
	CSI feedback payload 120
	
	
	0.81
	0.81

	Gain for SGCS (dB), layer 1
	CSI feedback payload 32
	0.274
	0.287
	
	

	
	CSI feedback payload 48
	
	
	0.158
	0.125

	
	CSI feedback payload 120
	
	
	0.215
	0.182



According the evaluation results above, it can be observed that:
· With the same or similar number of feedback bits, AI based approach could obtain 4%~40% performance gain over traditional codebook in the square of generalized cosine similarity; 
· With similar performance in the square of generalized cosine similarity, AI based approach could reduce 30%~60% feedback bits.
Observation 1: Compared with traditional codebook, AI/ML based CSI feedback schemes could improve the CSI accuracy with the same or similar number of feedback bits.
Observation 2: Compared with traditional codebook, AI/ML based CSI feedback schemes could reduce CSI feedback bits when achieving the same CSI or higher accuracy.

2.2.2 Separate Training 
In RAN1#110 meeting [3], for the AI/ML model training collaboration types, we have the following agreement:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded. 



Also, during RAN1#111 meeting [4], there was an agreement on the details of Type 3 training:
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models
· FFS: whether/how to report overhead of dataset

Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side) with sequential training, companies to report the set of information (e.g., dataset) shared in Step 2
· For NW-first training
· [bookmark: _Hlk127178828]Dataset construction, e.g., the set of information includes the input and output of the Network side CSI generation part, or includes the output of the Network side CSI generation part only, or other information if applicable.
· [bookmark: _Hlk127179033]Quantization behavior, e.g., whether the shared output of the Network side CSI generation part is before or after quantization.
· For UE-first training
· Dataset construction, e.g., the set of information includes the input and label of the UE side CSI reconstruction part, or includes the input of the UE side CSI reconstruction part only, or other information if applicable.
· Quantization behavior, e.g., whether the shared inputof the UE side CSI reconstruction part is before or after quantization.



In this section, the initial results of separate training (Type 3) based on NW-first training is provided for the use case of CSI compression in spatial and frequency domain. 
As for the dataset shared to UE side, since we only consider training between one NW part model and one UE part model, the dataset includes both the input and the output of the Network side CSI generation part. And the output of the Network side CSI generation part is generated before quantization.
In our simulation, joint training is adopted as the baseline and for joint training, 154K samples are used for training and 17K samples are used for testing. And the number of payloads in these simulation results is 120 bits.
Based on the agreed template for CSI compression of separate training without model generalization/scalability in previous meeting, the AI based method performance with separate training are shown below. We use the square of generalized cosine similarity (SGCS) between recovered eigenvectors and original eigenvectors as the only intermediate KPI. And the SGCS with 1-on-1 joint training are also given here for comparison.

Table 3. Evaluation results for CSI compression of separate training without model generalization/scalability-Part1
	
	
	1
	2
	3
	4
	5

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Shared output of CSI generation part/input of reconstruction part is before or after quantization
	Before
	Before
	Before
	Before
	Before

	Dataset description
	Test/k
	1.71
	1.71
	1.71
	1.71
	1.71

	
	Ground-truth CSI quantization method
	Float32
	Float32
	Float32
	Float32
	Float32

	[Benchmark: NW#1-UE#1 joint training]
	UE part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Network part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Training dataset size
	154k
	154k
	154k
	154k
	154k

	Case 1-NW first training
	NW part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	UE#1 part model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	UE#1 part training dataset description and size
	154k
	100k
	50k
	10k
	5k

	Intermediate KPI type (SGCS/NMSE)
	SGCS
	SGCS
	SGCS
	SGCS
	SGCS

	NW#1-UE#1 joint training: Intermediate KPI
	CSI feedback payload 120
	0.916
	0.916
	0.916
	0.916
	0.916

	Case 1-NW first training: Intermediate KPI
	CSI feedback payload 120,
NW-UE#1
	0.914
	0.914
	0.911
	0.899
	0.889



Table 4. Evaluation results for CSI compression of separate training without model generalization/scalability-Part2
	
	
	1
	2
	3
	4
	5

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Shared output of CSI generation part/input of reconstruction part is before or after quantization
	Before
	Before
	Before
	Before
	Before

	Dataset description
	Test/k
	1.71
	1.71
	1.71
	1.71
	1.71

	
	Ground-truth CSI quantization method
	Float32
	Float32
	Float32
	Float32
	Float32

	[Benchmark: NW#1-UE#1 joint training]
	UE part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Network part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Training dataset size
	154k
	154k
	154k
	154k
	154k

	Case 1-NW first training
	NW part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	UE#1 part model backbone/structure
	EVCsiNet
	EVCsiNet
	EVCsiNet
	EVCsiNet
	EVCsiNet

	
	UE#1 part training dataset description and size
	154k
	100k
	50k
	10k
	5k

	Intermediate KPI type (SGCS/NMSE)
	SGCS
	SGCS
	SGCS
	SGCS
	SGCS

	NW#1-UE#1 joint training: Intermediate KPI
	CSI feedback payload 120
	0.916
	0.916
	0.916
	0.916
	0.916

	Case 1-NW first training: Intermediate KPI
	CSI feedback payload 120,
NW-UE#1
	0.879
	0.874
	0.862
	0.840
	0.828



Table 5. Evaluation results for CSI compression of separate training without model generalization/scalability-Part3
	
	
	1
	2
	3
	4
	5

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Shared output of CSI generation part/input of reconstruction part is before or after quantization
	Before
	Before
	Before
	Before
	Before

	Dataset description
	Test/k
	1.71
	1.71
	1.71
	1.71
	1.71

	
	Ground-truth CSI quantization method
	Float32
	Float32
	Float32
	Float32
	Float32

	[Benchmark: NW#1-UE#1 joint training]
	UE part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Network part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	Training dataset size
	154k
	154k
	154k
	154k
	154k

	Case 1-NW first training
	NW part AI/ML model backbone/structure
	Transformer
	Transformer
	Transformer
	Transformer
	Transformer

	
	UE#1 part model backbone/structure
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer

	
	UE#1 part training dataset description and size
	154k
	100k
	50k
	10k
	5k

	Intermediate KPI type (SGCS/NMSE)
	SGCS
	SGCS
	SGCS
	SGCS
	SGCS

	NW#1-UE#1 joint training: Intermediate KPI
	CSI feedback payload 120
	0.916
	0.916
	0.916
	0.916
	0.916

	Case 1-NW first training: Intermediate KPI
	CSI feedback payload 120,
NW-UE#1
	0.909
	0.907
	0.902
	0.858
	0.832



Based on the above 3 tables, we make the following table for comparison and analysis easily.
Table 6. The SGCS of joint training and separate training
	Model
	SGCS

	
	154K
	100K
	50K
	10K
	5K

	Case1: Joint Training
	0.916
	/
	/
	/
	/

	Case2: Separate Training: encoder1 + decoder
(Transformer + Transformer)
	0.914
	0.914
	0.911
	0.899
	0.889

	Case3: Separate Training: encoder2 + decoder
(EVCsiNet + Transformer)
	0.879
	0.874
	0.862
	0.840
	0.828

	Case4: Separate Training: encoder3 + decoder
(MLP-Mixer + Transformer)
	0.909
	0.907
	0.902
	0.858
	0.832


In our simulation, for case 1, the encoder and decoder are joint trained, and the AI algorithm is based on Transformer. For case 2, 3 and 4, the decoder part at network side is the same as that of case 1, and the encoder parts at the UE side are trained based on Transformer, EVCsiNet and MLP-Mixer [5] respectively using different number of dataset samples, i.e., 154K, 100K, 50K, 10K, 5K. And the SGCS performances in these cases are also shown above.
According the evaluation results above, it can be observed that:
· [bookmark: _Hlk115286186]With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training;
· When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease;
· [bookmark: _Hlk115450851][bookmark: _Hlk115452235]When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.
Observation 3: With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training.
Observation 4: When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease.
Observation 5: When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.

2.2.3 Generalization
In RAN1#110 and RAN1#111 meeting [3] [4], for the verification of generalization, we have the following agreement:
	Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.

Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification

Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.



[bookmark: _Hlk111044287]The generalization capability is to verify whether a model trained under a certain assumption can be applied well under different assumptions. The different assumptions may be different scenarios (e.g, Uma, Umi, InH), or different configurations (e.g., different bandwidth, different number of antenna ports). Different scenarios will not affect the size of the input/output data for training and testing/inference, while the dimension of input/output data in different configurations may be different.
In real communication system, UE might experience different scenarios and configurations due to UE’s mobility and gNB’s scheduling. Usually, training the configurations/scenarios specific AI model for each scenario can be considered as a method to achieve the upper bound performance of AI based approach. However, the UE complexity of handling and storing multiple AI models is also very challenging. Therefore, it is important to improve the AI/ML model generalization capability to adapt to different configurations/scenarios.
There might be two approaches to solve this problem. One method is to utilize a mixed dataset from different typical scenarios to train one model and apply this model to perform inference in different configurations/scenarios. The other way is to use transfer learning-based method. For example, a baseline auto-encoder model can be well trained with abundant samples under a certain configuration/scenario. To apply the baseline auto-encoder to new configurations/ scenarios, the baseline auto-encoder can be fine-tuned with a small number of data samples under the new configurations/scenarios. 
2.2.3.1 [bookmark: _Hlk131757301]Generalization over different scenarios
CSI is highly correlated to the varying physical radio environment (e.g. the distribution of multipath, SINR, intra- or inter-cell movement of UEs), which can be quite diversified for different scenarios, e.g., Uma/UMi/ Indoor, LOS/ NLOS etc. Consequently, the model of auto-encoder based CSI feedback trained in one scenario may suffer performance degradation in another scenario. 
In this section, for generalization across different scenario, we construct a synthetic dataset with samples from CDL-C-30 and CDL-C-300. A mixed dataset of 50K samples from CDL-C-30 and 50K samples from CDL-C-300 is generated as the training dataset. We additionally adopt the AI model trained with the samples only from CDL-C-30 for performance comparison. Both two models are used to perform inference over samples from CDL-C-30. The SGCS using Transformer based model is shown below:

Table 7. Evaluation results for CSI compression with model generalization/scalability over different scenarios
	
	
	1

	CSI generation part
	AL/ML model backbone
	Transformer

	
	Pre-processing
	

	
	Post-processing
	

	
	FLOPs/M
	21.414

	
	Number of parameters/M
	10.707

	
	[Storage /Mbytes]
	41.16

	CSI reconstruction part
	AL/ML model backbone
	Transformer

	
	[Pre-processing]
	

	
	[Post-processing]
	

	
	FLOPs/M
	21.426

	
	Number of parameters/M
	10.713

	
	[Storage /Mbytes]
	41.17

	Common description
	Input type
	Eigenvectors

	
	Output type
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	No

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	No

	Dataset description
	Ground-truth CSI quantization method
	Float32

	Generalization Case 1
	Train (setting#A, size/k)
	CDL-C-30, 100

	
	Test (setting#A, size/k)
	CDL-C-30, 1

	SGCS, layer 1
	CSI feedback payload 32
	0.919

	
	CSI feedback payload 48
	0.948

	
	CSI feedback payload 120
	0.977

	Generalization Case 3
	Train (setting#A+#B, size/k)
	CDL-C-30 + CDL-C-300，100

	
	Test (setting#A/#B, size/k)
	CDL-C-30, 1

	SGCS, layer 1
	CSI feedback payload 32
	0.882

	
	CSI feedback payload 48
	0.923

	
	CSI feedback payload 120
	0.965



Observation 6: The AI model trained with mixed dataset across various scenarios might have some performance loss comparing with dedicated model.

2.2.3.2 Generalization/scalability over different configurations
In RAN1#111 meeting [4], for evaluating the generalization/scalability over various configurations, we have the following agreement:
	Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases

Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



[bookmark: _Hlk118221396]Considering verifying the generalization/scalability capability over different configurations, in this section, we evaluate the generalization of applying AI model to different number of subbands and different number of feedback bits. And the dataset for training and testing is generated based on the assumption in Table 1.
2.2.3.2.1 Generalization over number of subbands
For generalization across different number of subbands, there might be three potential solutions:
1) Padding and truncation: the input of CSI generation part is designed based on the maximum number of subbands. If the actual configured input of generation part is larger than the designed maximum subbands, the actual input of generation part is truncated from the tail to generate encoder input; padding zero will be performed at the end of each sample to make sure the dimensions of input data are the same as the designed number of subands if the actual configured input of generation part is smaller than the designed maximum subbands.
2) Adaptation layer: additional adaptation layers are added to the AI models to adjust the dimensions of CSI input/output of CSI generation part and the corresponding CSI reconstruction part, and separate adaptation layers are corresponding to separate number of input/output dimensions.
3) LSTM based AI model: LSTM based AI model can naturally adapt to different dimensions of input and output.
[bookmark: _Hlk127187472][bookmark: _Hlk118225017]All the above three potential solutions are adopted in this contribution, Table 5 shows the scalability over different number of subbands when using truncation and zero padding. We train AI model with the samples composed of the eigenvectors of 12 subbands and apply this AI model to test the samples composed of the eigenvectors of 8 subbands. The adopted AI model backbone here is Transformer.
[bookmark: _Hlk118225206]To achieve better generalization performance, we will pre-process the samples composed of the eigenvectors of 8 subbands before inputting these samples into generation part, i.e., we will perform padding zero at the end of each sample to make sure the dimensions of input data for inference are the same as those of input data of training phase (12 subbands).
Table 8. Evaluation results for CSI compression with generalization over numbers of subbands using zero padding.
	
	
	1

	CSI generation part
	AL/ML model backbone
	Transformer

	
	Pre-processing
	Zero padding

	
	Post-processing
	No

	
	FLOPs/M
	21.414

	
	Number of parameters/M
	10.707

	
	[Storage /Mbytes]
	41.16

	CSI reconstruction part
	AL/ML model backbone
	Transformer

	
	[Pre-processing]
	No

	
	[Post-processing]
	No

	
	FLOPs/M
	21.426

	
	Number of parameters/M
	10.713

	
	[Storage /Mbytes]
	41.17

	Common description
	Input type
	Eigenvectors

	
	Output type
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	Zero padding

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	

	Dataset description
	Ground-truth CSI quantization method
	Float32

	Generalization Case 1
	Train (setting#A, size/k)
	12 subbands, 100

	
	Test (setting#A, size/k)
	12 subbands, 1

	SGCS, layer 1
	CSI feedback payload 32
	0.919

	
	CSI feedback payload 48
	0.948

	
	CSI feedback payload 120
	0.977

	Generalization Case 2
	Train (setting#A, size/k)
	12 subbands, 100

	
	Test (setting#B, size/k)
	8 subbands, 1

	SGCS, layer 1
	CSI feedback payload 32
	0.891

	
	CSI feedback payload 48
	0.885

	
	CSI feedback payload 120
	0.928



According to the evaluation result, when applying the model trained by the data set composed of 12 subbands to compression for 8 subbands, the SGCS performance will be degraded.
Observation 7: The AI model trained under one number of subbands might have some performance loss when performing interference on CSI compression of a different number of subbands.

Another possible method for scalability over different subbands is using additional adaptation layer and the basic model structure is shown in Fig.2. 


Fig.2 AI model structure with adaptation layers
Two common Transformer based AI/ML models are deployed at encoder part (EN block) and encoder part (DE block), and fully connected layers are used for linear pre-transforming (LPT-x block) and linear transforming (LT-x block). Besides, a pair of down-sampling (DS-x block) and up-sampling (US-x block) is corresponding to one number of subbands while the EN block and the DE block are shared among all the configured subband numbers. So that the dimensions of input and output of CSI generation and reconstruction part can be unified. The loss function during training is designed as the average SGCS over all the configured subband numbers and only one branch corresponding to one configured subband number will be activated during inference phase.
We train the AI model with a mixed data, which compose of the eigenvectors of 10 subbands, 6 subbands and 4 subbands, and apply this unified AI model to test the samples with different number of subbands, respectively. Table 6 shows the scalability over different number of subbands when using adaptation layers.
Table 9. Evaluation results for CSI compression with generalization over numbers of subbands using adaptation layers.
	
	
	1
	2
	3

	CSI generation part
	AL/ML model backbone
	Transformer with adaption layer
	Transformer with adaption layer
	Transformer with adaption layer

	
	Pre-processing
	No
	No
	No

	
	Post-processing
	No
	No
	No

	
	FLOPs/M
	23.210
	23.210
	23.210

	
	Number of parameters/M
	11.605
	11.605
	11.605

	
	[Storage /Mbytes]
	44.46
	44.46
	44.46

	CSI reconstruction part
	AL/ML model backbone
	Transformer with adaption layer
	Transformer with adaption layer
	Transformer with adaption layer

	
	[Pre-processing]
	No
	No
	No

	
	[Post-processing]
	No
	No
	No

	
	FLOPs/M
	23.224
	23.224
	23.224

	
	Number of parameters/M
	11.612
	11.612
	11.612

	
	[Storage /Mbytes]
	44.29
	44.29
	44.29

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	Adaptation layer
	Adaptation layer
	Adaptation layer

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	
	
	

	Dataset description
	Ground-truth CSI quantization method
	Float32
	Float32
	Float32

	[Other assumptions/settings agreed to be reported]
	
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	4 subbands, 100
	6 subbands, 100
	10 subbands, 100

	
	Test (setting#A, size/k)
	4 subbands, 1
	6 subbands, 1
	10 subbands, 1

	SGCS, layer 1
	CSI feedback payload 48
	0.909
	
	

	
	CSI feedback payload 72
	
	0.908
	

	
	CSI feedback payload 120
	
	
	0.909

	Generalization Case 3
	Train (setting#A+#B, size/k)
	10 subbands + 
6 subbands + 
4 subbands, 100
	10 subbands + 
6 subbands + 
4 subbands 100
	10 subbands + 
6 subbands + 
4 subbands 100

	
	Test (setting#A/#B, size/k)
	4 subbands, 1
	6 subbands, 1
	10 subbands, 1

	SGCS, layer 1
	CSI feedback payload 48
	0.884
	
	

	
	CSI feedback payload 72
	
	0.886
	

	
	CSI feedback payload 120
	
	
	0.885



[bookmark: _Hlk127282100][bookmark: _Hlk127282108]According to the evaluation result, when applying the scalable model with adaptation layers, the SGCS performance will suffer a little degradation compared with subband number-specific model.
Observation 8: For scalability over different number of subbands, the AI model with adaptation layers only suffers a little SGCS performance degradation compared with subband number-specific model.

To further evaluate the generalization over number of subbands, another AI model is applied in this contribution, which is based on LSTM backbone. The general model structure is shown below. 


Fig.3 AI model structure based on LSTM
This LSTM based model is trained with 30W samples composed of the eigenvectors of 13 subbands and the feedback bits are set to 208. For the inference phase, we apply this AI model to test the samples composed of the eigenvectors of 9 and 6 subbands, respectively. And when the input sample is composed of 9 subbands or 6 subbands, the feedback bits are configured with 144 or 96, respectively.
Before inputting these samples into generation part, we will perform padding zero at the end of each sample to make sure the dimensions of input data for inference are the same as those of input data during training phase (12 subbands). And after the CSI information is outputted from generation part, the part of output bits (also zeros) corresponding to padded zeros is truncated accordingly, to make sure the number of feedbacks is adapted to the number of subands. As for the reconstruction part, the truncated zeros will be padded at the tail of received CSI information, so that the input dimension of CSI reconstruction part is the same as the configured number.
Besides, we also adopt subband number-specific LSTM based model as a baseline, where the training data and the inference data is composed with the same number of subbands. Also, to further improve the generalization over different subband numbers, we trained a unified model using a mixed data composing of samples with 13 subbands, 9 suabbands and 6 subbands. The SGCS performance is shown below:
Table 10. Evaluation results for CSI compression with generalization over numbers of subbands using LSTM
	
	
	1
	2
	3

	CSI generation part
	AL/ML model backbone
	LSTM
	LSTM
	LSTM

	
	Pre-processing
	Zero padding
	Zero padding
	Zero padding

	
	Post-processing
	No
	No
	No

	
	FLOPs/M
	6.826
	6.826
	6.826

	
	Number of parameters/M
	3.413
	3.413
	3.413

	
	[Storage /Mbytes]
	38.58
	38.58
	38.58

	CSI reconstruction part
	AL/ML model backbone
	LSTM
	LSTM
	LSTM

	
	[Pre-processing]
	No
	No
	No

	
	[Post-processing]
	No
	No
	No

	
	FLOPs/M
	6.826
	6.826
	6.826

	
	Number of parameters/M
	3.413
	3.413
	3.413

	
	[Storage /Mbytes]
	38.58
	38.58
	38.58

	Common description
	Input type
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization
	Scalar quantization

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	
	
	

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	
	
	

	Dataset description
	Ground-truth CSI quantization method
	Float32
	Float32
	Float32

	[Other assumptions/settings agreed to be reported]
	
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	6 subbands, 100
	9 subbands, 100
	13 subbands, 100

	
	Test (setting#A, size/k)
	6 subbands, 1
	9 subbands, 1
	13 subbands, 1

	SGCS, layer 1
	CSI feedback payload 96
	0.825
	
	

	
	CSI feedback payload 144
	
	0.830
	

	
	CSI feedback payload 208
	
	
	0.853

	…
	
	
	
	

	Generalization Case 2
	Train (setting#A, size/k)
	13 subbands, 100
	13 subbands, 100
	

	
	Test (setting#B, size/k)
	6 subbands, 1
	9 subbands, 1
	

	SGCS, layer 1
	CSI feedback payload 96
	0.643
	
	

	
	CSI feedback payload 144
	
	0.724
	

	
	CSI feedback payload 208
	
	
	

	Generalization Case 3
	Train (setting#A+#B, size/k)
	6 subbands + 
9 subbands + 
13 subbands, 
100
	6 subbands + 
9 subbands + 
13 subbands, 
100
	6 subbands + 
9 subbands + 
13 subbands, 
100

	
	Test (setting#A/#B, size/k)
	6 subbands, 1
	9 subbands, 1
	13 subbands, 1

	SGCS, layer 1
	CSI feedback payload 96
	0.817
	
	

	
	CSI feedback payload 144
	0.823
	0.823
	

	
	CSI feedback payload 208
	
	
	0.832



[bookmark: _Hlk127288899]According to the evaluation result, when applying the scalable model with LSTM backbone, the SGCS performance will suffer great degradation compared with subband number-specific model; however, when using mixed data to train a unified LSTM based AI model, it could achieve similar SGCS performance as subband number-specific model.
Observation 9: For scalability over different numbers of subbands, the LSTM based AI model will suffer great SGCS performance degradation compared with subband number-specific model; however, when using mixed data to train a unified LSTM based AI model, it could achieve similar SGCS performance as subband number-specific model.

2.2.3.2.2 Generalization over number of feedback bits
In NR systems, different number of feedback bits can be configured for CSI reporting. For generalization across different number of feedback bits, we train a common encoder which can be applied to different numbers of feedback bits to avoid the management of many models at the UE side.
For each number of feedback bits, one common encoder and the specific decoder are used. To achieve better generalization performance, we adopt post-processing on the output of generation part. The dimensions of the output of generation part is designed based on the maximum feedback bits, and before outputting from the generation part, some extra bits will be dropped, so that the output of generation part can adjust different numbers of feedback bits to facilitate the corresponding specific reconstruction part. Also, the loss function need optimization to facilitate different combinations of feedback bits.
We choose 3 different number of feedback bits for performance evaluation and the performance of the dedicated model for each number of feedback bits is given as baseline.
Baseline: dedicated models of which the number of feedback bits are 32, 48 and 120 bits.
Case 1 (unified model): one joint encoder and 2 separate decoders of which the number of feedback bits are 32 and 48 bits.
Case 2 (unified model): one joint encoder and 3 separate decoders of which the number of feedback bits are 32, 48 and 120 bits.
The SGCS performance for each case is shown below:
Table 11. Evaluation results for CSI compression with generalization over numbers of feedback bits
	
	
	Case 1
	Case 2

	CSI generation part
	AL/ML model backbone
	Transformer
	Transformer

	
	Pre-processing
	No
	No

	
	Post-processing
	 Truncation
	 Truncation

	
	FLOPs/M
	21.414
	21.414

	
	Number of parameters/M
	10.707
	10.707

	
	[Storage /Mbytes]
	41.16
	41.16

	CSI reconstruction part
	AL/ML model backbone
	Transformers with different feedback bits
	Transformers with different feedback bits

	
	[Pre-processing]
	No
	No

	
	[Post-processing]
	No
	No

	
	FLOPs/M
	64.303
	64.303

	
	Number of parameters/M
	32.151
	32.151

	
	[Storage /Mbytes]
	123.49
	123.49

	Common description
	Input type
	Eigenvectors
	Eigenvectors

	
	Output type
	Eigenvectors
	Eigenvectors

	
	Quantization /dequantization method
	Scalar quantization
	Scalar quantization

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	Truncation
	Truncation

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	2 NW part models to 1 UE part model
	3 NW part models to 1 UE part model

	Dataset description
	Ground-truth CSI quantization method
	Float32
	Float32

	[Other assumptions/settings agreed to be reported]
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	99
	99

	
	Test (setting#A, size/k)
	1
	1

	SGCS, layer 1
	CSI feedback payload 32
	0.874
	0.874

	
	CSI feedback payload 48
	0.882
	0.882

	
	CSI feedback payload 120
	
	0.916

	Generalization Case 2
	Train (setting#A, size/k)
	99
	99

	
	Test (setting#B, size/k)
	1
	1

	SGCS, layer 1
	CSI feedback payload 32
	0.874
	0.872

	
	CSI feedback payload 48
	0.880
	0.884

	
	CSI feedback payload 120
	
	0.906



According to the evaluation result, the unified model of one common encoder and multiple specific decoders has similar performance on SGCS as dedicated model under various number of feedback bits.
[bookmark: _Hlk111215365]Observation 10:  The unified AI model of one common encoder and multiple specific decoders performs well across different number of feedback bits.

3. Evaluation methodology and preliminary results for CSI prediction
In this section, AI based CSI prediction in time domain is discussed, including the model description and preliminary results.
3.1 Model description for CSI prediction
The AI based CSI prediction is to predict future CSI(s) in prediction window, based on the historic CSI(s) in the measurement window. So, the input of AI model can be some historic CSI(s) and the output can be the future CSI(s). In addition, according the agreement achieved in RAN1#111 meeting [4], only one-sided model deployed at UE side is selected.
	Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer futher till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



In this contribution, we use 15 historic CSI samples to predict the 16th and 17th CSI in time domain. Therefore, the measurement window length in time intervals is 15 and the prediction window length in time intervals is 1 or 2.
The time interval between two CSIs is 5ms and the CSI information is the full channel in one RB. A full connected based AI model is applied here, and the parameter N in this AI model equals to 128. The detailed model description is shown below:


Fig.4 AI model structure for CSI prediction
3.2 Preliminary results for CSI prediction
In this evaluation, the nearest historic CSI is used as the baseline. The NMSE of full channel data sample is calculated between the predicted CSI(s) and the ground-truth CSI for AI based CSI prediction, while the NMSE between the nearest historic CSI and the ground-truth CSI is used for non-prediction baseline.
In the last meeting, a working assumption for initial template was made to facilitate companies reporting evaluation results. The preliminary results when the prediction window equals to 1 are shown below.
In our evaluation, the UE speed is set as 10, 20, 30 and 60km/h. The training dataset and the test dataset are generated with the same UE speed. 
It can be observed that:
1) The AI based CSI prediction can achieve very high prediction accuracy compared with baseline non-prediction. There are about 10~40 dB prediction accuracy gains over baseline non-prediction in terms of NMSE. 
2) The performance of both baseline and AI based CSI prediction will decrease when UE moves faster. 
Table 12. Evaluation results for CSI prediction without model generalization/scalability when the prediction window = 1
	
	
	Case 1
	Case 2
	Case 3
	Case 4

	AI/ML model description
	AL/ML model backbone
	Full connection block

	
	[Pre-processing]
	
	
	
	

	
	[Post-processing]
	
	
	
	

	
	FLOPs/M
	1.589

	
	Parameters/M
	0.797

	
	[Storage /Mbytes]
	
	
	
	

	
	Input type
	Full channel in one RB

	
	Output type
	Full channel in one RB

	Assumption
	UE speed
(km/h)
	10
	20
	30
	60

	
	CSI feedback periodicity
	5ms
	5ms
	5ms
	5ms

	
	Observation window (number/distance)
	15/5ms

	
	Prediction window (number/distance)
	1/5ms

	
	Whether/how to adopt spatial consistency
	No

	Dataset size
	Train/k
	156.46

	
	Test/k
	10

	Benchmark 1
	Nearest historical CSI w/o prediction

	NMSE of Benchmark 1 (dB)
	
	-7.873
	-2.133
	0.913
	4.290

	Gain for NMSE over Benchmark 1 (dB)
	
	-34.949
	-36.274
	-29.339
	-13.326



Besides, the preliminary results when the prediction window equals to 2 are also shown here:

Table 13. Evaluation results for CSI prediction without model generalization/scalability when the prediction window = 2
	
	
	Case 1

	AI/ML model description
	AL/ML model backbone
	Full connection block

	
	[Pre-processing]
	

	
	[Post-processing]
	

	
	FLOPs/M
	1.589

	
	Parameters/M
	0.797

	
	[Storage /Mbytes]
	

	
	Input type
	Full channel in one RB

	
	Output type
	Full channel in one RB

	Assumption
	UE speed
(km/h)
	30

	
	CSI feedback periodicity
	5ms

	
	Observation window (number/distance)
	15/5ms

	
	Prediction window (number/distance)
	2/5ms

	
	Whether/how to adopt spatial consistency
	No

	Dataset size
	Train/k
	156.46

	
	Test/k
	10

	Benchmark 1
	Nearest historical CSI w/o prediction

	NMSE of Benchmark 1 (dB), 1st predicted CSI
	
	-11.08

	Gain for NMSE over Benchmark 1 (dB), 1st predicted CSI
	
	-41.45

	Intermediate KPI #2 of Benchmark 1 (dB), 2nd predicted CSI
	
	-5.22

	Gain for intermediate KPI#2 over Benchmark 1 (dB), 2nd predicted CSI
	
	-37.53



Observation 11: AI/ML based CSI prediction can achieve very high prediction accuracy compared with baseline non-prediction in terms of NMSE.
Observation 12: The performance of both baseline and AI based CSI prediction will decrease when UE moves faster.

3.3 Generalization
To study the model generalization over different UE speeds, we use a unified model trained with dataset containing samples with various speeds (10, 20, 30, 60 km/h), and during inference phase, this unified model is applied to separate test dataset with different UE speed.
The preliminary results are shown below where the prediction window equals to 1. It can be observed that even with unified model, AI based CSI prediction can achieve significant accuracy gain (10~15dB), although the accuracy gain is smaller than separate AI model trained with separate dataset.

Table 14. Evaluation results for CSI prediction with model generalization over different UE speeds
	
	
	1
	2
	3
	4

	AI/ML model description
	AL/ML model description (e.g., backbone, structure)
	Full connection block
	Full connection block
	Full connection block
	Full connection block

	
	[Pre-processing]
	No
	No
	No
	No

	
	[Post-processing]
	No
	No
	No
	No

	
	FLOPs/M
	1.589
	1.589
	1.589
	1.589

	
	Parameters/M
	0.797
	0.797
	0.797
	0.797

	
	[Storage /Mbytes]
	3.04
	3.04
	3.04
	3.04

	
	Input type
	Full channel in one RB
	Full channel in one RB
	Full channel in one RB
	Full channel in one RB

	
	Output type
	Full channel in one RB
	Full channel in one RB
	Full channel in one RB
	Full channel in one RB

	Assumption
	CSI feedback periodicity
	5ms
	5ms
	5ms
	5ms

	
	Observation window (number/distance)
	15/5ms
	15/5ms
	15/5ms
	15/5ms

	
	Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	1/5ms/5ms
	1/5ms/5ms
	1/5ms/5ms
	1/5ms/5ms

	
	Whether/how to adopt spatial consistency
	No
	No
	No
	No

	Generalization Case 1
	Train (setting#A, size/k)
	10km/h, 156.46
	20km/h, 156.46
	30km/h, 156.46
	60km/h, 156.46

	
	Test (setting#A, size/k)
	10km/h, 10
	20km/h, 10
	30km/h, 10
	60km/h, 10

	
	SGCS (1,…N, N is number of prediction instances)
	
	
	
	

	
	NMSE (1,…N, N is number of prediction instances)
	-42.822
	-38.047
	-28.426
	-9.036

	Generalization Case 3
	Train (setting#A+#B, size/k)
	10km/h + 20km/h + 30km/h + 60km/h, 156.46
	10km/h + 20km/h + 30km/h + 60km/h, 156.46
	10km/h + 20km/h + 30km/h + 60km/h, 156.46
	10km/h + 20km/h + 30km/h + 60km/h, 156.46

	
	Test (setting#A/#B, size/k)
	10km/h, 10
	20km/h, 10
	30km/h, 10
	60km/h, 10

	
	SGCS (1,…N, N is number of prediction instances)
	
	
	
	

	
	NMSE (1,…N, N is number of prediction instances)
	-18.525
	-17.839
	-15.956
	-7.055



Observation 13:  The unified AI model trained with mixed dataset achieve good generalization performance over different UE speeds for CSI prediction.

4. Conclusion
In this contribution, we share our views on the evaluation methodology and KPI for AI based CSI compression and CSI prediction, the preliminary evaluation results are also provided here. The observations are summarized below:
Observation 1: Compared with traditional codebook, AI/ML based CSI feedback schemes could improve the CSI accuracy with the same or similar number of feedback bits.
Observation 2: Compared with traditional codebook, AI/ML based CSI feedback schemes could reduce CSI feedback bits when achieving the same CSI or higher accuracy.
Observation 3: With large enough dataset samples at UE side, separate training could achieve similar SGCS as joint training.
Observation 4: When the number of dataset samples at UE side decreases, the SGCS of separate training will also decrease.
Observation 5: When the generation part at UE side and the reconstruction part at network side have the same AI algorithms or model structures, to ensure separate training achieve similar SGCS as joint training, the requirement of number of dataset samples at UE side is much lower than the requirement when the AI algorithm or model structure is different between UE side and network side.
Observation 6: The AI model trained with mixed dataset across various scenarios might have some performance loss comparing with dedicated model.
Observation 7: The AI model trained under one number of subbands might have some performance loss when performing interference on CSI compression of a different number of subbands.
Observation 8: For scalability over different number of subbands, the AI model with adaptation layers only suffers a little SGCS performance degradation compared with subband number-specific model.
Observation 9: For scalability over different numbers of subbands, the LSTM based AI model will suffer great SGCS performance degradation compared with subband number-specific model; however, when using mixed data to train a unified LSTM based AI model, it could achieve similar SGCS performance as subband number-specific model.
Observation 10:  The unified AI model of one common encoder and multiple specific decoders performs well across different number of feedback bits.
Observation 11: AI/ML based CSI prediction can achieve very high prediction accuracy compared with baseline non-prediction in terms of NMSE.
Observation 12: The performance of both baseline and AI based CSI prediction will decrease when UE moves faster.
Observation 13:  The unified AI model trained with mixed dataset achieve good generalization performance over different UE speeds for CSI prediction.
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