3GPP TSG-RAN WG1 Meeting #112bis-e	Tdoc R1-2302877
Online, April 17–26, 2023
Agenda Item:	9.2.1
Source:	Ericsson
Title:	Discussion on general aspects of AIML framework	
Document for:	Discussion, Decision
1	Introduction
The study item Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface was approved in RAN#94e [1]. The study item will explore 3GPP frameworks to enable AI/ML including, for example, AI/ML model characterization, various levels of collaboration between UE and network, data sets for training/validation/testing/inference, and life cycle management. The study should quantify the performance, robustness, complexity, and potential specification impact of AI/ML based solutions.
This contribution concerns agenda item 9.2.1, general aspects of AI/ML framework for AI on PHY.
[bookmark: _Ref178064866]2	Discussion on Various Stages of Model Operation
[bookmark: _Ref127515929]2.1	Functionality framework and model LCM
Numerous agreements have been made by RAN1 to study AI/ML for PHY model LCM aspects related to the high-level model LCM stages of data collection, model training, model deployment, model inference, and model monitoring. Furthermore, it has been agreed to study aspects/procedures related to e.g., model selection, model activation, model deactivation, model switching, model update, and model transfer. To study model LCM aspects, RAN1 could define a functional framework as shown in Figure 1 for anchoring discussions related to NW-UE collaborations in supporting AI/ML for PHY use cases with one- or two-sided models.
The outlined framework in Figure 1 is mainly applicable for model LCM assuming offline training, and it is expected that for online training several of the functionalities can be merged and some model LCM aspects captured in the figure may not be relevant. However, it is not clear what kind of specification impact is needed for online training for one-sided models. We expect that one-sided models can be part of an AI/ML functionality described more in subsequent sections, where such functionality should fulfill certain requirements. If such requirements are fulfilled by applying online training, it would anyway be specification transparent.
[bookmark: _Toc131701759]Adopt the functional framework in Figure 1 for anchoring discussions related to NW-UE collaborations.

[image: A picture containing text

Description automatically generated]
[bookmark: _Ref127432881]Figure 1. A functional framework for discussing model LCM aspects.
In case of one-sided models, the responsibility for model LCM is clearly on the side that implements functionality for making model inference, and NW-UE collaborations then basically refer to configuring transmissions and reports to assist in data collection for model training, inference, and monitoring. Such potential model LCM assistance from the NW should be studied and determined on a per use case basis.
[bookmark: _Toc131701760]For use cases with one-sided model, responsibility for model LCM is clearly on the side that implements functionality for making model inference. Study, on a per use case basis, the necessity of assistance for model LCM.
In case of two-sided models, model LCM needs to consider that a gNB serves multiple UEs simultaneously and that switching models in real-time, or running multiple models in parallel, at the gNB side is not realistic. Hence, the following is proposed as a requirement when studying two-sided model LCM:
[bookmark: _Toc131701761]Conclude that two-sided model LCM must enable a gNB to operate with a single gNB-side model that works with different UE-side models.

[bookmark: _Toc127434803][bookmark: _Ref127440061]2.2 	Model transfer/deployment
2.2.1	On the need for model transfer
In a use case with one-sided model deployed at the UE-side, transferring a model trained by the NW with data from a specific scenario can result in a highly customized and efficient model. The key idea is that when the UE enters a specific scenario in the network (e.g. a subway), then the corresponding model is transferred to the UE from the NW, to optimize the performance of the AI/ML in the UE. Since the model in the UE is trained for the specific scenario, this type of model can be of low complexity and can further be updated to reflect changes in the local environment. Another benefit can be achieved if using open-format models since these can be broadcasted, and this will reduce the DL overhead in comparison to proprietary model format transfer.
However, there are several significant disadvantages of transferring a model from NW to the UE.
· It likely needs on-device model compilation. Given that model compilation is a complex task, this poses a challenge to UE model implementation.
· The resulting binary/executable models are unlikely tailored to the specific hardware of an individual UE. It may also require the UE to use a generic hardware that can run a model provided by an entity (NW-side or neutral-side), which has no knowledge of individual UE’s hardware, and can only provide a one-size-fits-all model, which is not optimized by nature.
· Standardization effort of open-format model is excessive.
· Proprietary model information is disclosed across vendors when using open format, which is undesirable.

Thus far the use cases in the study item have not provided a strong motivation why model transfer is necessary to be standardized to achieve the benefits of each use case. For beam management and positioning, both use cases have feasible alternatives using one-sided models (either UE-sided or NW-sided) which does not need model transfer.
Similarly, the two-sided CSI use case is discussing training that does not require model transfer. It is proposed to first conclude the performance of such alternatives without model transfer prior to discussing any model transfer solution. For the two-sided model, our view is first to explore the alternative of training the model sequentially with NW first training.
[bookmark: _Toc131701754]For the considered use cases in this SI, there are attractive alternatives to model transfer. The alternatives can achieve similar performance without the deployment challenges associated with model transfer.
[bookmark: _Toc131701762]Model transfer is deprioritized for use cases using one-sided model.
[bookmark: _Toc131701763]For CSI with two-sided model, alternatives that do not require model transfer are prioritized in this SI.
Hence, for the use cases identified so far in this SI, we don’t see a need for specification support of model transfer to be further discussed as there are alternative solutions.
2.2.2	Analysis of the cases for model delivery/transfer
In RAN1#112, the following cases were agreed to facilitate the discussion of model delivery/transfer for UE-side or UE-part models.
	Agreement
To facilitate the discussion, consider at least the following Cases for model delivery/transfer to UE, training location, and model delivery/transfer format combinations for UE-side models and UE-part of two-sided models.

	Case
	Model delivery/transfer
	Model storage location
	Training location

	y
	model delivery (if needed) over-the-top
	Outside 3gpp Network
	UE-side / NW-side / neutral site

	z1
	model transfer in proprietary format
	3GPP Network
	UE-side / neutral site

	z2
	model transfer in proprietary format
	3GPP Network
	NW-side

	z3
	model transfer in open format
	3GPP Network
	UE-side / neutral site

	z4
	model transfer in open format of a known model structure at UE
	3GPP Network
	NW-side

	z5
	model transfer in open format of an unknown model structure at UE
	3GPP Network
	NW-side

Note: The Case definition is only for the purpose of facilitating discussion and does not imply applicability, feasibility, entity mapping, architecture, signalling nor any prioritization.
Note: The Case definition is NOT intended to introduce sub-levels of Level z.
Note: Other cases may be included further upon interest from companies.
FFS: Z4 and Z5 boundary

In our view, only case y should be explore further.
· For case y: The UE can obtain a model in a transparent manner to the NW. The UE vendor can train a model, converted it to a binary executable model file, and then have the model file delivered to its UE over-the-top. In this process, the UE vendor has full knowledge of the UE’s hardware, and the model can be designed and compiled such that it’s optimized for the UE’s hardware.

Cases z1-z5 should not be considered further in our view.
· For case z1: Case z1 is similar to case y, except that the UE model is stored in 3GPP network. In our view, there is no compelling reason to store a UE’s model in 3GPP network, rather than in the UE’s server. The 3GPP network cannot be used as a central node to distribute a model to a variety of UEs, since one UE vendor’s model cannot be shared with another UE vendor’s device; one type of UE chip’s model (e.g., advanced UE) cannot be shared with another type of UE (e.g., a low-cost UE). Additionally, it is a heavy burden to 3GPP network to store, register, maintain, retrieve, and transfer UE models, since a large number of different UE models are expected, considering factors like different UE vendors, different UE releases, different PHY functionalities, different deployment scenarios, etc. Compared to case z1, model delivery (case y) is an attractive alternative even if the UE need to obtain a model in real-time.
· For case z2:
· This is inappropriate since it requires the NW to train a model for the UE. As discussed earlier, the NW can only train a one-size-fits-all model, and no hardware optimization for the target UE is possible. One-size-fits-all implies that the network has to train the model for the least capable UE, thus sacrificing the performance and efficiency of more capable UEs. It may also force the UE to use a generic hardware. These are not compatible with the fundamental design principle of the UE chip, which needs to run as efficiently as possible, e.g., high throughput, low power consumption, small chip size, lower memory size.
· Also, ‘proprietary format’ of z2 refers to a source code model file, not a binary executable model file, since NW cannot know each UE’s hardware. Thus case z2 shares the same problem as case z3 in the difficulty of model compilation.
· For case z3: This is inappropriate since it requires model transfer in open format. That is, the transferred model is not in a compiled, binary, executable format. This implies on-device conversion of a source code model to an executable model. However, it is well known that model compilation is a complex process and requires several levels of optimization, for example, see Figure 4. Thus it is not feasible to transfer an open-format model to a UE in the field, where the UE expects to receive a model and run it right away.
· For case z4: This assumes that the NW can train and obtain open-format model parameters (weights and biases) for an a priori known model structure. On the UE side, as a first step, this requires the UE to quantize the model parameters before using them, i.e., Post-Training Quantization (PTQ). For PTQ to work, the UE need to obtain some calibration data so that the parameter quantization can be done properly, e.g., to determine proper clipping range and scaling factor for the quantizer. The calibration data is typically a small set of training data. In our understanding, there is no desire in RAN1/RAN2 discussion to send such calibration data from NW to UE to support model transfer. Thus Case z4 is undesirable. A lesser problem with Case z4 is, PTQ is less accurate than a model obtained with quantization aware training and requires more quantization bits (4 or more) to achieve adequate model accuracy.
· For case z5: it has all the problems of z2 (NW-side training), z3 (open-format source code model), and z4 (open-format model parameters).

In summary, model delivery (case y) can be considered further, whereas model transfer (case z1-z5) is not justified.
[bookmark: _Toc131701764]For model delivery/transfer, consider only model delivery (case y). Model transfer (case z1-z5) are not supported.
2.3 Model and functionality identification
In RAN1#112, the following agreement was made for the discussion of functionality identification and model identification.
	Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI).
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID.
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact
FFS: detailed understanding on model

Agreement
· AI/ML-enabled Feature refers to a Feature where AI/ML may be used.
Agreement
· For functionality identification, there may be either one or more than one Functionalities defined within an AI/ML-enabled feature.

2.3.1 “Physical model” and “logical model”
Related to the discussion of functionality identification and model identification, there was a confusion about what exactly a ‘model’ refers to. RAN1 offline discussion indicates that the following should be understood as a background for the UE-side model, or the UE-part of a two-sided model.
· Physical model (This is what the group called “model” up until RAN1 #112.)
· A model that tangibly exists. A physical model can be either of the following.
· A model ready for hardware implementation. A binary model / executable model / converted model. The model has already been quantized (if needed) and compiled for the target device hardware.
· A model obtained during training. A source code model / non-executable model / raw model. The model is in model description format, and not yet quantized and compiled for a target device hardware.
· Logical model:
· A model that is identified and used in signaling.
· Note: A logical model may be implemented by one or multiple physical models, e.g. multiple versions of binary models (hardware implementation) for a given source code model, multiple physical models transparent to NW that are identified as a single logical model.
As marked above, a “model” has been understood as a “physical model” in RAN1 agreements thus far. We do not see any need to change this understanding. In this contribution, “model” refers to “physical model” unless stated otherwise.
The “logical model” concept is for the discussion purpose only of model identification and signalling. While “logical model” concept can be used to facilitate RAN1 discussion, it is not yet clear whether this concept is needed in the end.
2.3.2	Inter-workings of feature, functionality, model, identifications, applicable conditions, and LCM
Our view on the relation of functionalities and models are depicted in Figure 2. The UE is equipped with several models for a certain functionality, where, for example, a functionality might comprise of providing beam predictions. We, therefore, see the functionality as having a wider scope than a single “physical” model (that is, the UE may have several models that can be used to provide a functionality).UE capabilities
AI/ML Functionality 1
AI/ML Functionality 2

Model ID 1
Non-AI/ML Functionality 1
Model ID 2
Model ID 3
Model ID 1
Model ID 2
Model ID 3
Switching
Fallback

[bookmark: _Ref131604489]Figure 2 Assumption on relation of functionalities and model ID
2.3.3	AI/ML related UE capabilities
When entering discussions on functionalities, model identification and applicable conditions, it is important to highlight that existing UE capability reporting is not a frequent procedure. The existing report can be several Kbytes, and it is important that e.g. an updated model, or applicable condition is not causing a frequent capability report. Even though the UE capability information can change over time, UEs do not typically update this information frequently. In practice, the UE capability information is usually only updated when there is a significant change in the UE’s capabilities (e.g., new radio access technology is added or when the UE undergoes a major software or hardware upgrade).
[bookmark: _Toc131701765]Conclude that a possible frequent update of models or applicable conditions (if needed) does not imply frequent updates in UE capabilities within the existing capability framework.

2.3.3	On the need of (“physical”) model identification
One-sided model at UE-side.
When monitoring a one-sided UE model, the NW might detect that a certain “logical model”/functionality is not working in a certain scenario, and configures a deactivation of a certain “logical model” ID. It is however possible that UE-sided monitoring would also be able to identify a malfunctioning “physical model” and switch between “physical models” in a manner transparent to the NW, or request fallback to non-AI ML solution. In such cases, there is no need to define “physical model ID” for one-sided UE models.
After detecting a malfunctioning “physical model” and fallback to non-ML solution, the UE may update the “applicable condition” of the corresponding functionality. For one-sided UE models, a “logical model ID” can be represented via “functionality identification”, hence, we don’t see the need of defining “logical model ID” for one-sided UE model use cases. Identified on a per-use case basis.
[bookmark: _Toc131701766]Model identification (“physical model” ID or “logical model” ID) for a model trained and monitored at the UE-side is not needed.
Whether the NW can rely on such UE-autonomous monitoring for all use cases is not clear and should be discussed on a per-use case basis. NW might need to be aware of UE “logical model”/functionality performance to enable root-cause error analysis. For example, to identify whether a performance degradation of a feature is due to the failure of an AI/ML functionality (“logical model”) used at the UE. This can be done by using any of the model monitoring methods outlined in section 2.5. The functionality identification is sufficient for supporting “logical model”/functionality performance monitoring of UE-sided models. The needs and benefits of defining “physical model ID” for UE-side models is unclear, since the “physical models” are assumed to be transparent to the NW anyway.
[bookmark: _Toc131701767]Functionality identification is sufficient for a model trained at UE-side but monitored (if needed) at the NW-side. Model identification (“physical model” ID or “logical model” ID) is not needed.
Similar to the above one-sided UE models discussion, for two-sided model cases, if a UE has trained “multiple physical AI/ML encoder models” that are paired with a single decoder and these “physical models” are optimized for different scenarios/configurations, then, it is up to UE implementation to select which “physical model” to use, hence, switching between different “physical models” is transparent to the NW. Therefore, we don’t see the need of defining “physical model IDs” for two-sided model cases either. The definition of “logical model” for two-sided use case is unclear.
As discussed in the model training section (Section 2.4), for two-sided model cases, it is important to ensure that a gNB shall be able to operate with a single gNB part of the model (e.g., decoder for the CSI-compression use case), irrespectively of the vendor origins of the UE part of the model (e.g., encoder for the CSI-compression use case). A UE may need to support multiple UE-part of models to pair with different gNB-part of models that are trained by different network vendors. Hence, a solution is needed to support selecting a UE part of the model (e.g., an encoder) that is compatible with the gNB-part of the model (e.g., the decoder used in the connected gNB) of a specific NW vendor. Here, being compatible means that the encoder and decoder are trained together, and the encoder/decoder pair can pass the core performance test (if any) defined for this AI-based feature.
[bookmark: _Toc131701768]Methods for supporting pairing of compatible UE part and NW part of a two-sided model should be studied (e.g., for CSI-compression, selecting an encoder of a connected UE to pair with a decoder used by the serving gNB of a network vendor).
[bookmark: _Toc131701769]Model identification (“physical model” ID or “logical model” ID) is not needed for two-sided models. Study methods to support pairing of the UE-part and NW-part of a two-sided model.
2.3.4	On the need of applicable condition
There is a risk that defining applicable conditions might lead to models that only work in very narrow scenarios, the overhead in signalling applicable conditions and implementation overhead in configuring such models might not motivate the benefit of using the model. Therefore, it is important that a potential applicable condition can, like a feature, be used in a wide range of scenarios. However, applicable conditions could be used to describe a limited scenario of a feature, to avoid having to define a large set of AI/ML features.
It Is unclear what information should be part of the applicable condition and what can already be covered in existing capability framework. Since similar work is ongoing in RAN2, it would be preferred if RAN1 can focus on providing a set of requirements on the “applicable conditions” to RAN2 on a per-use case basis. For example, based on the ongoing generalization evaluations in each use case. Note that another method to applicable condition is that the UE checks and reports if its model(s) supporting the functionality is appropriate for the current UE configuration/site/scenario using RRC messages. This is a reactive approach not requiring any need for signalling an “applicable condition”. Considering such alternative approaches, applicable condition information is not strictly needed.
[bookmark: _Toc131701755]There are alternative solutions that might mitigate the need for applicable conditions.
[bookmark: _Toc131701770]RAN1 to outline the requirements to RAN2 on a use-case basis on potential applicable conditions. RAN2 to decide whether applicable condition needs to be explicitly defined and signalled, and if so, the best solution for indicating/reporting the applicable condition.
2.3.5	Functionality-based LCM
In this section, we address the inference and data collection stage for functionality-based LCM, and how it relates to the model LCM.
	· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM

2.3.5.1		Relation to UE-side model LCM
It is implicitly assumed that whenever a functionality is deactivated, the associated model is also deactivated. It is the feature that is activated and deactivated and not the AI/ML model. Taking beam prediction reporting as an example, similar to the legacy L1-RSRP report as of NR Rel-15, a UE can be configured to report beam prediction related information (e.g., L1-RSRP or/and SSBRI/CRI of the predicted beam(s)) most likely via an RRCReconfiguration message, this would then correspond to “activation” of the feature. “Deactivation” will be the opposite, i.e deconfiguring the report. When a functionality is activated, the UE can decide to switch model transparently to the NW.
[bookmark: _Toc131701771]For UE-side models, functionality activation/deactivation requires network-UE interaction, whereas individual model activation/deactivation/switching for an activated functionality is transparent to the NW.
For a one-sided AI/ML model on the UE side, fallback mechanisms can be achieved by the UE being configured by the non-AI/ML based features already existing in the specification. For beam predication, UE can in parallel be configured with a feature to measure instead of predicting if the NW deems it needed and can simply switch UEs into reporting mode instead. This will then be sufficient as a fallback method, switching to a non-AI/ML model-based operation will in this context mean switching back to the Rel-18 or previous release behaviour.
[bookmark: _Toc131701772]Conclude that for a one-sided AI/ML model on the UE side, fallback mechanisms can be achieved by the UE being configured by the non-AI/ML based features already existing in the specification for the applicable use case of the SI.
2.3.5.2	Relation to	data collection for UE-side training and monitoring
Regarding the AI/ML stages on training/monitoring and the relation to functionality-based LCM for UE-sided models. It is unclear whether such component should be part as a new functionality or capability, or if it should be handled via some other request from the UE. Since RAN2 are also discussing this, RAN1 should focus on outlining requirements on how frequent the UE needs to collect data for the purpose of training and monitoring. It is up to RAN2 on how to introduce this AI/ML stage in the functionality-based LCM given the RAN1 requirements.
[bookmark: _Toc131701773]RAN2 should determine how the data collection should be introduced within the functionality-based LCM framework. RAN1 should focus on potential requirements for such data collection.
2.3.6	Functionality-based identification
	· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.

Using the existing 3GPP framework for AI/ML, the name of the feature group could then correspond to the functionality identification. The index for the feature group can be understood as the functionality identification. The UE will deliver predictions like the existing reports. How UE derives the predictions will not be known if 3GPP does not specify the actual AI/ML model (note that specifying an AI/ML model is out of scope of the SI). From an operational point of view, the NW needs to know that the UE supports a certain feature, and this information can be obtained via UE capability signalling. Exactly how to capture UE capabilities and features is a work item topic. Below we illustrate the details on the specific UE capability signalling, taking temporal and spatial beam prediction as an example.
[bookmark: _Toc131701756]Multiple functionalities can be listed under feature groups in TR 38.822.
	Features
	Index
(Functionality identification)
	Feature group
(Functionality)
	Components

	Note
	Mandatory/Optional

	X. AI/ML features
	X-1
	AI/ML based beam prediction in temporal domain
	1) UE can perform T (ms) prediction
2) Configuration of Set A is xxx and Set B beams are yyy.
	Component 1: candidate values for T = {10, 20} (ms)
	Optional with capability signaling

	X. AI/ML features
	X-2
	AI/ML based beam prediction in spatial domain
	…
	…
	…

Table 1 Example of feature group indicating model based on TR 38.822 (note some columns that should be in the column have been removed for easier illustration).
2.4 Model training
For one-sided models, the model training process for one side can be transparent to the other side and since without any standardization impact there are no reasons to discuss one sided model training.
For two-sided models, however, the model training process may require sharing of data from one side to the other since input and output reside within different vendor’s domain. This may thus have a standardization impact.
For two-sided model training, it can first be noticed that both joint training by a NW vendor with model transfer to UE (Type 1) and NW-sided model first in sequential training (Type 3 or Type 2 with frozen decoder) fulfil a requirement from gNB implementation that a gNB shall be able to operate with a single model in two-sided model use cases, irrespectively of the origin (vendor) of the UE side model.
However, as discussed in Section 2.2, model transfer has model deployment challenges, so NW-sided model first in sequential training shall be prioritized in further discussions on two-sided training. Note that we here preclude the less likely scenario that a NW vendor performs joint model training offline with multiple UE/chipset vendor models simultaneously, to obtain a single NW-sided model. We don’t see the need for this either as the UE can train a model for each network vendor independently and perform model switching when roaming (it is assumed that such switching of models in the UE will be very slow, based on hour timescales or much longer).
It is envisioning that initial two-sided model training with NW-sided model first in sequential training needs to be done outside 3GPP when training of the UE-sided model is done via a NW-vendor provided training API, used for exchanging forward propagations (UE-side to NW-side) and backward propagations (NW-side to UE-side). If such training API is NW-vendor specific, then there would not be any standardization impact related to the training process.
In a scenario where fine-tuning (small adjustments of model weights) of a deployed UE-sided model over-the-air could be considered, then the training API would need to be specified as part of the Uu. However, the benefits of fine-tuning a deployed UE-sided model are unclear since fine-tuning of two-sided models can alternatively and with lower complexity be done by re-training the NW-sided model only. This allows fine tuning of performance without standardization of a training API.
[bookmark: _Toc131701774]Deprioritize studies and discussion on over-the-air training between NW and UE.
2.5	Model monitoring
Model performance monitoring refers to monitoring drifts in data and model or monitoring performance metrics after the model has been deployed. This is often described as the problem of concept drift detection problem [ref “Learning under Concept Drift”].
	Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement
[bookmark: _Hlk126703773]Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

There are several methods for model monitoring. Monitoring based on inference accuracy requires collecting new ground-truth data similar/identical to the training data, which is very accurate but has a high cost due to the potentially large measurement/reporting overhead. Monitoring based on data distribution of input/output data does not require any additional signaling overhead but is less accurate than monitoring based on inference accuracy since one does not retrieve the ground truth. Similarly, monitoring based on system performance does not require any additional signalling overhead, however, it can be challenging to detect that the root-cause for bad system performance is due to an inaccurate model, and not due to some other malfunctioning procedure or hardware. Monitoring based on data distribution can in contrast identify a potential problem in the model by detecting that the dataset observed during inference is not same as during training. However, it is not-trivial to define conditions and measurable data-distribution based KPIs for sounding a model failure alarm with a good trade-off between model failure detection reliability and accuracy (e.g., low false alarm rate, low missed detection rate and low latency).

Our initial view on the outlined alternatives is described in the table below, using Rel-18 AI PHY use cases as examples:
Table 2 Overview of different performance metrics based monitoring alternatives and performance monitoring KPIs
	Performance metric
	 Examples
	Benefits
	Challenges

	
	Performance metric examples
	Required data samples for to derive the performance metric
	
	

	

Inference Accuracy
(Intermediate KPIs)

	For BM use cases: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy

	The measured L1-RSRP values of the predicted top-K/1 beam(s) + the ground truth (i.e., the measured RSRP value of the best beam in set A)
	Metric reflects the model performance very well
Expect to provide more reliable model failure detection

	Signalling overhead for collecting ground truth data at UE/NW (RS transmission and/or UE reporting)
Frequent monitoring degrades the usability of the model.
May not reflect the system performance very well (e.g., a higher prediction accuracy does not necessarily mean a better system KPI)

	
	For BM use cases:
The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP
	The predicted L1-RSRP values of the predicted top-K/1 beam(s) + the ground truth (i.e., the measured L1-RSRP values of these beams)
	
	

	
	For CSI-compression use case: SGCS between decoder output and target CSI
	Decoder output + target CSI
	
	

	
System/Link performance metric(s)

	For BM and CSI use cases:
Throughput

	Throughput values using AI/ML model. Reference throughput values for a non-AI/ML solution.
	Metric reflects the system performance very well
Low complexity and signalling overhead
Frequent system/link performance monitoring possible

	Challenging to identify that the degradation is due to an inaccurate model (inaccurate model monitoring)

	
	For BM use cases:
Number of beam failures or/and beam switches within a time window
	Number of beam failure instances, number of triggered beam failure recovery procedures, number of beam switches
	
	

	
Data distribution
	Input/output data distribution of AI/ML

	For BM use cases:
The input data can be the measured RSRP values for Set B, and the output data can be the AI/ML model output.

	No additional signalling overhead for obtaining input/output data
Shorter latency for obtaining data samples for model monitoring
Frequent monitoring possible
	May not reflect model performance as well as inference-accuracy-based methods
May not reflect system performance as well as system/link performance metric(s) based methods
To achieve reliable model failure detection, many samples may be required to calculate statistical metrics. This may lead to
· Potential high complexity (computation and memory cost)
· Potential long monitoring window, hence, increased latency from model failure occurs to detecting the failure

When implementing model monitoring, the monitoring method should be selected based on UE service requirements. For example, a UE with MBB I could start with a low-cost solution (e.g. system performance based), if problems are observed/predicted, then activate an inference accuracy method associated with a higher complexity. High-complexity and signaling overhead monitoring may be required for certain UE service requirements, such as for emergency localization use cases or UEs with URLLC connection.

[bookmark: _Toc131701757]Method selection for model monitoring can be based on UE service requirements and can be a stepwise procedure among the different methods based on the performance monitoring KPIs.
For model monitoring KPIs, the existing agreement did not include two important metrics: false alarm rate (FAR) and missed detection rate (MDR). However, both metrics have large impact to the model monitoring efficiency. For example, high false alarm rate causes incorrect and expensive reaction to deactivate, modify, or retrain the model. On the other hand, high missed detection rate would cause the system performance to deteriorate beyond the designed performance level. Thus we propose the following:
[bookmark: _Toc131701775]Add the following as model monitoring KPIs: false alarm rate (FAR) and missed detection rate (MDR).
2.5.1 Model monitoring for one-sided models at the NW side
For one sided models at the NW-side, the model performance monitoring is performed at the NW side. If an alarm is triggered based on the performance metrics, the NW node reacts to rectify the model drift problem, e.g., fallback to a default feature/model, deactivate this model, switching to another reporting configuration, etc.
The system/link performance-based monitoring methods can be used by the NW to detect/predict feature performance degradation, thereby, triggering model LCM actions (e.g., model fallback) or/and perform error cause analysis if needed (e.g., whether performance the feature degradation is caused by the AI/ML model or other issues). The system/link performance based monitoring method has low complexity and low signalling overhead, and it can be considered as a first step for detecting potential AI/ML model failure.
When detecting/predicting a potential system/link performance degradation, the NW can perform further error cause analysis by e.g., request UE to include other measurements or transmit reference signals so that the NW can use these measurements/signals to estimate the UE’s radio link condition and determine if the error was introduced due to bad wireless link qualities. The network can also trigger inference-accuracy-based model monitoring to check if the NW-sided model is functioning properly, or trigger data-distribution based model monitoring to check if there is data drift.
Inference-accuracy-based model monitoring methods require the NW to collect ground truth (e.g., the best beam in set A for spatial beam prediction use case) so that the NW can calculate the inference-accuracy based performance metric(s) (e.g., beam prediction accuracy or/and the RSRP difference for beam prediction use cases). Hence, for AI PHY use cases where the AI/ML model on the NW side needs to be trained using downlink L1 measurements performed by UEs, standard should support UE reporting radio measurements for inference-accuracy-based model monitoring at the NW side. To collect sufficient monitoring data for obtaining the inference accuracy metric statistics for model monitoring, the data collection framework discussed in section 2.6.3 can be used. A time window for monitoring data collection needs to be configured, and the length of the time window depends on how many monitoring data samples are needed to enable a reliable model monitoring result. To reduce the monitoring data collection overhead, it is expected that the inference-accuracy based model monitoring should be performed either periodically with a large periodicity, or it can be event triggered, e.g., when predicting/detecting a potential system performance drop. The requirements in terms of signaling overhead and latency for model monitoring are use case dependent, hence, in section 2.6.3, we’ve discussed two approaches (L1 fast CSI reporting based and L3 RRC message based) for model minoring data collection, depending on the use case requirements.
[bookmark: _Toc131701776]One-sided models at the NW-side are monitored by the NW. Study data collection mechanisms to support inference-accuracy based model monitoring for NW-sided models if needed for a given use case.
2.5.2 Model monitoring for one-sided models at the UE side
For one-sided AI/ML model use cases, the performance of a UE-sided model is expected to be monitored at the UE-side.
A UE can monitor its system/link level performance of its AI-based feature (e.g., BLER for the CSI and beam management use cases, number of beam failures and number of beam switches for the beam management use cases). By comparing the system/link level performance statistics to a target system KPI(s), the UE can detect or predict potential system/link performance degradation, thereby, triggering model LCM actions or error cause analysis if needed. Mechanisms for supporting UE to perform model fallback based on pre-defined/pre-configured conditions and UE behaviours, UE indicating the need of NW assistance with its model fallback, UE indicating the need of NW assistance with new training data collection, or UE indicating the need of NW assistance with its error cause analysis can be studied.
The NW may also monitor the system/link performance of the users running an AI/ML model. Taking UE-sided spatial beam prediction as an example, the NW can monitor the number of beam switches, the number of beam failures and/or the UE throughput of a UE-sided AI/ML-model based spatial domain beam prediction feature. By collecting the AI/ML model performance related information reported from users in the network, and checking the system/link performance of this AI/ML-based feature, the NW can detect if the feature at the UE is functioning or not. Mechanisms for supporting a UE to fallback to a non-ML based scheme when detecting model/feature performance issues should be studied. The model/feature performance issues may be detected by the UE or the NW or both. However, the decision of UE-side beam prediction model fallback must be made by the NW, if NW needs to configure the UE with a different UE reporting configuration.
[bookmark: _Toc131701777]Study triggering conditions/events/signalling for UE-sided model fallback per use case.
While it is possible for the NW to monitor the inference-accuracy or data-distribution based performance metric(s) of UE-side models (e.g., for UE-sided CSI prediction use case, UE-sided spatial domain beam prediction use case, UE-sided temporal beam prediction use case, or for positioning, Case 2a: UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning), the burden is too high considering that the NW node has to support all the UEs connected to it. Furthermore, each UE may have different configurations, different capabilities, and different inference accuracy targets. Thus it is more reasonable that the task is distributed to each UE individually, i.e., each UE performs its own model monitoring for UE-side models according to its needs and capabilities.
[bookmark: _Toc131701778]One-sided models at the UE-side are monitored by the UE.
2.5.3 Model monitoring for two-sided models
Different from one-sided model use cases, a two-sided model is divided into two parts, i.e., UE-part of the two-sided model and NW-part of the two-sided model, which implies that the input and output of the two-sided model reside on different ends of the Uu interfaces. For two-sided model use cases (e.g., CSI compression), as stated in Section 2.2, to enable a gNB serving multiple UEs simultaneously and to keep implementation efficiency, cost, and complexity feasible at the NW side, it is required that a single model is operated at the gNB side, regardless of the models operated in different UEs with different vendor versions and/or chipset versions. Any new models to be deployed at the UE-side must be trained, validated, and properly tested together with the single model at the NW-side before being deployed at the UEs. These testing aspects should be studied in RAN4.
The performance monitoring of a two-sided model is expected to be performed at the NW side. The model inference-accuracy performance metric together with the feature-related system/link-performance KPIs can be used by the NW to monitor the two-sided model performance.
Similar to monitoring of one-sided models, the system/link-performance (e.g., statistic or per UE SNR/throughput) based monitoring methods can be used by the NW to detect/predict feature performance degradation, thereby, triggering model LCM actions (e.g., model fallback) or/and perform error cause analysis if needed (e.g., whether performance the feature degradation is caused by the AI/ML model or other issues). The system/link-performance based monitoring method has low complexity and low signalling overhead. The NW can perform frequency monitoring of feature-related system/link-performance KPIs and use it as a first step for detecting potential AI/ML model failure.
When detecting/predicting potential model failure, the NW can trigger inference-accuracy-based model monitoring, or the NW can configure periodic inference-accuracy-based model monitoring to monitor the two-side model performance periodically. Inference-accuracy-based model monitoring for a two-sided model at the NW-side require the NW to collect ground-truth and the output of the UE part of the two-sided model. Using these data together with the associated output of the NW part of the two-sided model, the NW side can then asses the inference-accuracy performance metric(s). Taking CSI-compression use case as an example, the NW needs to collect the target CSI (ground-truth) and the encoder output (the output of the UE part of the two-sided CSI-compression model). The NW feeds the encoder output into its decoder model and generates the reconstructed CSI (the output of the gNB-part of the two-sided CSI-compression model), and then the NW compares the reconstructed CSI with the associated target CSI to calculate the inference-accuracy related performance metric(s). For this use case, one type of inference-accuracy based KPIs (intermediate KPIs) can be the SGCS between reconstructed CSI and target CSI, another type of inference-accuracy based KPIs can be a decoder reconstruction error metric(s) defined by a loss function used for training at the NW-side and this loss function is unknown to the UE side. Hence, standard should support UE reporting the ground-truth together with the UE-part model output for inference-accuracy-based model monitoring at the NW side. and the standard should support both periodic and event-triggered inference-accuracy based model monitoring for two-sided use cases.
[bookmark: _Toc131701779]The performance monitoring of two-sided models is performed at the NW side. Study mechanisms to support inference-accuracy based model monitoring for two-sided models at the NW side, including UE reporting ground-truth together with UE-part model output to NW, periodic and event-triggered model monitoring procedures.

2.6 Data Collection

	Conclusion
Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)
Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.

[bookmark: _Ref127516028]Data Collection is a stage that collects and provides input data (raw data or pre-processed data) to the Model training stage (e.g., for model training) and the Model inference in deployment stage (e.g., for model inference and model performance monitoring). AI/ML algorithm specific data preparation (e.g., data ingestion and data refinement) is not carried out in the Data Collection stage. For example, for the CSI use case, raw data is the output from the channel estimation/filtering algorithm implemented at the data collection functionality and the algorithm is kept proprietary. As the requirements on data collection can be different for different purposes in LCM, in the following, we discuss the data collection for model training, model inference and model monitoring separately. And we focus on the cases where the AI/ML models are trained at the NW side.
2.6.1 Data collection for NW side model training
The period of performing model training or retraining is in general long, hence, data collection for model training does not need to be performed frequently relative to L1 timescales. The latency requirement for NW to obtain training data can be relaxed as compared to model inference.
If an AI/ML model only requires legacy uplink gNB radio measurements (e.g., UL-SRS-based measurements), then the NW-side can collect and label data via existing 3GPP procedures or using proprietary non-3GPP methods. In such settings, the training data collection problem is a proprietary NW-side issue, which is outside the scope of 3GPP.
For cases where the AI/ML model on the NW side needs to be trained using downlink L1 measurements performed by UEs, it is important to standardize appropriate data collection mechanisms for the UE’s measurements to be signaled to the NW over the air interface. This is to ensure that the NW side can collect unified data format from different UE/chipset vendors, which is essential for reducing the complexity and data processing cost of the AI/ML model design. In addition, the training data quality can be determined by 3GPP standard.
In addition, in case of “localized” data collection to enable training of site specific or area specific NW side AI/ML models, there is a need to trigger collection of data from a specific site of group of sites, or at a certain point of the day or week. In this case, the NW side needs to be in control of triggering data collection procedure in the UE. Hence, a standardized data collection procedure in the UE for NW side training purpose is beneficial.
As the time of measurements and the time of reporting the collected measurements back to the NW are decoupled (these can be two different events separated by e.g. hours), a UE can log/store its radio/non-radio measurements together with the meta information (e.g., time stamps, cell ID, and/or UE location) for multiple measurement occasions. The meta information can be seen as “tagging” the measurements with information on where/when the data was collected. After performing the radio measurements and logging the data, the UE can be triggered to report the accumulated data to the NW over the 3GPP air-interface for subsequent off-line proprietary AI/ML model training at the NW side.
This UE reporting over the 3GPP air-interface based training data collection has standard impact and it should be studied in this SI.
[bookmark: _Toc131701780]Study 3GPP data collection mechanisms to support UE performing data logging/collection and reporting the collected data to NW over the air-interface for model training.
To aim for designing a general framework to enable NW collecting training data for different AI on PHY use cases, it is important that the following aspects are considered.
The data collection framework design consists of:
· Definition of Data types
The data types to be measurement and logged by the UE are use case dependent. However, in general, they can be divided into two types: radio measurement data and non-radio-measurement data. For example
· Beam management use cases: Radio measurement data can consist of UE L1-RSRP measurements of all beams in set A (prediction set of beams) and set B (measurement set of beams), at one- or multiple measurement occasions. Non-radio-measurement data can consist of cell-IDs, area IDs, UE RX beam IDs, time stamps, UE locations, and possibly also measurement accuracy.
· CSI feedback enhancement use cases: Radio measurement data can consist of UE CSI-RS measurements to be used as target CSI (e.g., measured channel H or eigenvectors per layer). Non-radio-measurement data can include cell-IDs, area IDs, UE antenna configurations, time stamps, UE locations, and possibly also measurement accuracy.
· Positioning use cases: DL-PRS-based L1-measurements (e.g., CIR measured at UE and reported to the LMF for UE assisted LMF-based positioning with LMF-sided model, Case 2b in 3GPP AI-positioning discussions). Non-radio-measurement data contains at least UE location to be used as ground truth label for model training.
· Study of Data sizes
The collection of training data is expected to be distributed over many UEs from one or multiple cells. Hence, data collection may be localized to a specific area (or time span) or more general, non-localized spread across cells in the entire network.
A UE can log/store its radio measurements performed on these multiple time instances together with other types of data (e.g., meta data or assistance information). The UE is configured or triggered to report accumulated data to the NW-side at a suitable point in time, e.g. when network load is low. Hence, the overhead of training data collection might not impose significant UL overhead. The data sample size for AI model training is use case dependent as further discussed below:
· Beam management: The number of bits needed for a UE to report its L1-RSRP measurements depends on how many beams the UE is configured to measure and report. Based on the current standard, 7 or 4 bits are used for reporting a L1-RSRP value. Therefore, the payload size per UE report for the beam management use cases is not expected to be too large (e.g., around 259 bits for L1-RSRP measurements of 64 beams). Non-radio-measurement data may or may not need to be reported, depending on the type of information and whether UE mobility is supported in combination with data collection or not.
· CSI feedback enhancement: The number of bits needed for reporting a single CSI-RS measurement depends on how the target CSI is represented (the data format and pre-processing/quantization method). For example, if raw channel measurements are reported, then, a UE may need to feedback multiple complex values in the order of (number of Rx virtual antenna ports * number of CSI-RS ports* number of subcarriers, e.g., 4*32*52) for one channel measurement per time instance. Depending on the required quantization bits used to quantize each complex value (phase and amplitude), the data size per UE report can be very large for this CSI use case. Non-radio-measurement data may or may not need to be reported, depending on the type of information and whether UE mobility is supported in combination with data collection or not.
· Positioning: Among the considered positioning use cases, collecting UE measurements is only needed for UE assisted LMF-based positioning with LMF-sided model (i.e., Case 2b in 3GPP discussions). The number of bits needed for reporting a single UE measurement report depends on the type of measurements the UE should report, how the measurement (e.g., CIR) is represented, and how many TRPs are involved. For example, the CIR data size for a single UE location may have a size of 18 (#TRPs)*2 (#antenna ports)*256 (#sample in time domain) = 9216 complex values. Depending on the number of quantization bits used to quantize each complex value, the data size per UE report can be very large. For this use case, the NW-sided model is at the LMF node and the L1 measurements need to be reported from UE to LMF over LPP. In addition, the UE locations (non-radio-measurement type of data used as ground truth labels) need to be either reported from UE to LMF over LPP or obtained at LMF via other solutions.
· Latency and periodicity
The period of performing AI model training/retraining can be relatively long (e.g., months) and the data collection for model training is not required to be performed very frequently. Therefore, the latency requirement for collecting training data is much relaxed as compared to that for model inference.
· Configuration-related requirements
The configuration-related requirements for training data collection are also use case dependent. However, in general, the following aspects should be considered:
· Study need to assess whether it requires periodic or semi-persistent data collection or event-triggered (aperiodic) data collection or possibly support for multiple of these?
· It should be possible to configure a UE to store measurements on multiple measurement occasions and then report the accumulated data to the NW.
· Depending on the use cases, a measurement occasion may consist of a single RS resource set (e.g., for spatial beam prediction or CSI compression use case) or a burst of multiple RS resource sets at different time instances (e.g., for temporal beam prediction use case).
· For the spatial beam prediction use case, a measurement occasion can consist of a set of CSI-RS/SSB resources that are corresponding to the union of Set A and Set B beams.
· For the temporal beam prediction use case, a measurement occasion can consist of multiple sets of CSI-RS/SSB resources, with each resource set corresponding to the union of set A and set B beams transmitted at a given time instance. For this type of use cases, it is also important that the time instances configured in a measurement occasion should cover both the observation time instances (related to model input) and the prediction time instances (related to model output).Measurement occasion interval or logging interval
· The time duration between two neighboring measurement occasions. UE performs measurements on each measurement occasion and stores/logs the data. In this case, the data logging interval is equal to the measurement occasion interval, and it is the periodicity for a UE to store measurement results and associated non-radio-measurement data.
· Typical data collection duration or logging duration in case of periodic or semi-persistent data collection.
· Conditions for a UE to log/store its L1-measurements (e.g., under RRC IDLE, RRC INACTIVE or/and RRC CONNECTED states)
· Conditions for a UE to report its L1-measurements to the NW (e.g., at off-peak times, at configured time occasions, etc.)
· Conditions for a UE to discard the measurements.
· Measurement data pre-processing or data format configuration (e.g., the format of target CSI for the CSI-compression use case, absolute or differential L1-RSRP values for beam prediction use cases, or only report L1-RSRP for the top-K beams, etc.).
· Data logging triggers
· The events and conditions that triggers a UE to start performing radio measurements and data logging. For instance, a UE can start performing radio measurements and data logging after receiving a data collection related measurement configuration message from the NW. The data collection can also be event-based triggered. The events and conditions for triggering radio measurements and data logging at UE should be studied per use case.
· Data reporting triggers
· Whether a UE reporting the logged data is event triggered or the logged data is periodically reported from the UE to the NW. The events and conditions that triggers a UE to perform data reporting should also be studied per use case.

Different methods can be considered for supporting UE performing data logging/collection and reporting the accumulated data to NW for model training. Comparing to the layer-1 CSI reporting method (UCI on PUSCH), the RRC message-based data collection solution can enable the NW to collect large amount of measurement data from a UE with reduced signaling overhead and radio resource consumption.
[bookmark: _Toc126848916][bookmark: _Toc126849024][bookmark: _Toc126849822][bookmark: _Toc131701781]Recommend RAN2 to study specific details of an RRC-message based data collection framework to support UE performing data logging/collection and reporting the collected data to NW for model training.

[bookmark: _Ref127516036]2.6.2 Data collection for NW side model inference
For AI on PHY use cases, the data collected for NW side model inference is mainly about collecting model input, which will likely require fast L1 feedback from the UE, hence, it is expected that the L1 CSI reporting framework or SRS framework will be reused/enhanced to support data collection (at least for collecting radio measurement related data) for model inference.
For use cases where NW-side model inference takes UL-RS radio measurements as model input, there is no need of UE reporting L1-measurement data for NW-sided model inference. For example, for the NG-RAN node assisted positioning use case with gNB-sided model (i.e., Case 3a in 3GPP AI positioning use case discussions), it is expected that the SRS framework will be reused/enhanced to support UE transmitting SRS so that the gNB can perform radio measurements for collecting its model input.
If model inference at the NW-side requires DL-RS based UE L1-measurements or UCI type of data, then, collecting data for NW-sided model inference will require fast L1 UE reporting. The data collected for model inference are use case dependent: Depending on the use cases, the following aspects should be studied
· Methods to configure UE reporting measurement-based and non-measurement-based data for network-sided model inference.
· Tighter UE radio measurement accuracy requirements for AI/ML-based features.
· Methods to signalling DL/UL-RS resource configurations for UE performing radio measurement or UL-RS transmissions.
It should be noted that whether there is a need for standard enhancements needs to be studied per use case in RAN1. For example, for the NW-sided spatial domain beam prediction sub use case, the data collection for model inference should support a UE to report measurements related to the set B of beams. For the NW-sided temporary beam prediction sub use case, the data collection for model inference should support a UE to report measurement related to set B of beams over multiple measurement time instances (e.g., within observation time window T1). Tighter L1-RSRP measurement accuracy requirement and methods to reduce the CSI reporting overhead can be studied for both sub use cases. For the two-sided CSI compression use case, the data collection for model inference should support a UE to transmit the output of the model at the UE side, e.g., as a new type of UCI on PUSCH/PUCCH. For NG-RAN node assisted positioning with gNB-side model, AI/ML assisted positioning sub use case, the data collection for model inference should support a UE to transmit SRS so that the gNB can perform radio measurements for its model input.
[bookmark: _Toc131701782] Study in RAN1 the requirements of data collection for model inference per AI on PHY use case.

2.6.3 Data collection for monitoring of NW-sided models
For AI for PHY use cases, different performance metrics can be considered for AI/ML model performance monitoring. Examples of performance metrics include inference accuracy (also called as intermediate KPIs, like L1-RSRP accuracy for beam prediction use cases, SGCS for CSI feedback compression use cases, and positioning accuracy for direct AI-positioning use cases), system performance KPIs (e.g., throughput, BLER, NACK-ACK, etc.), input data distribution. Hence, depending on the model monitoring methods/performance-metrics, monitoring data collection can be needed for
•	obtaining the ground truth labels or/and measurements to calculate the inference accuracy (intermediate KPIs), and/or
•	obtaining the measurements to calculate the input data distributions/statistics to detect data drifts, and/or
•	obtaining the system performance KPI related information
Depending on the use case requirements, e.g., whether it is time critical to identify an AI/ML model performance issue or not, the latency requirement for collecting data for model monitoring can be different. This can also impact the data types/content, and the frequency/periodicity of data collection for model monitoring purpose.
For NW-sided models, it is expected that the model monitoring is performed at the NW-side. Based on the use case requirements, the NW configures the frequency of model monitoring (e.g., periodically, or event-triggered), collects monitoring data from UEs or based on its own radio measurements, and calculates the performance metrics (e.g., inference accuracy, system performance KPIs, input data distribution, etc.). Based on the performance metrics, the NW performs actions, e.g., fallback to a default feature/model or switch to another ML model.
For the AI on PHY use cases where the L1-measurements required for model monitoring can be obtained based on legacy radio measurements performed at gNBs (e.g., UL-SRS-based measurements) and the NW-side can collect label data either via existing 3GPP signalling or via non-3GPP method, it is expected that the data collecting for model monitoring can be performed at the NW-side proprietarily.

For the use cases where at least L1 UE measurements need to be collected at the NW-side for model monitoring, two options can be considered for data collection for model monitoring of NW-side models:
· Option 1: RRC-message based data collection for model monitoring
· Option 2: L1 fast CSI reporting-based data collection for model monitoring
For option 1, the methods and requirements of data collection for model monitoring can be similar to the ones that have be discussed in Section 2.7.1 on the data collection for model training. Consider NW-sided beam prediction as an example, the NW can monitor its model performance by comparing predicted values with the corresponding measurement values reported from UE. To collect sufficient data for obtaining the performance metrics for model monitoring, e.g., the statistic info about the input data distribution and the distribution of prediction error, the RRC-message based data collection framework discussed in Section 2.7.1 can be reused here.
If the NW requires a fast check of its model performance, then, Option 2 can be used. For option 2, the methods and requirements of data collection for model monitoring can be similar to the ones that have been discussed in Section 2.7.2 on the data collection for model inference, with the difference that, for some use cases, the UE should report not only the data related to model input but also the data related to model output or ground truth. For example, for spatial beam prediction use case, the data collection for model monitoring should support the UE to report measurements for beams in both set A (prediction set of beams) and set B (measurement set of beams). For CSI compression use case, the data collection for model monitoring should support the UE to report both the model output of the UE-sided model but also the target CSI (e.g., high-resolution channel H or eigenvectors of the channel transmit covariance). It should be highlighted that multiple data samples are needed to enable a reliable model monitoring results, hence, multiple L1 based reports may be needed for monitoring data collection.
[bookmark: _Hlk118303388][bookmark: _Toc131701783]Recommend both an RRC-message based (slower) and L1 (i.e., similar to aperiodic CSI reporting) based (faster) data collection methods for NW side model monitoring, if L1 UE measurement is needed.
[bookmark: _Toc131701784]RAN1 to study specific requirements on RRC-message based data collection method for NW side model monitoring, if L1 UE measurement is needed. When conclusions are reached on the requirements, RAN1 would indicate that to RAN2 so that RAN2 can study the corresponding RAN2 aspects.
[bookmark: _Toc131701785]RAN1 to study specific requirements and specification impacts of an L1 based (i.e., CSI reporting) data collection method for NW side model monitoring, if L1 UE measurement is needed.

3 Model and computational complexity reporting
During the RAN1 #111 AI 9.2.4.1 discussion, it was identified that the computational complexity values reported by different companies may not be mutually comparable since some of them are deviating from general observed trend by two orders of magnitude or more, see Figure 3.
· Since each parameter of a model should be used at least once, we can use the number of parameters as a lower bound for the computational complexity (shown as lower bound 1 in the figure).
· For both dense and convolutional layers, the number of multiplicative parameters dominates the total number of parameters. The number of parameters can be used as an approximate lower bound on the number of MACs (multiply-accumulate). Hence, a second approximate lower bound on the computational complexity FLOPs can be obtained as two times the number of parameters (shown as lower bound 2 in the figure).
· Due to its nature of weight sharing, convolutional neural networks tend to exhibit much higher FLOPs-to-parameters ratios than these lower bounds.
· Two regression lines are fitted to the reported model vs computational complexity values. The first regression excludes one source below the lower bounds. The second regression excludes five sources near or below the lower bounds.
· It can be observed that most reported model and computational complexity values are near or at least within an order of magnitude of the regression lines. However, there are some outliers that deviate substantially from these general observed model vs computational complexity trend.
[image:]
[bookmark: _Ref126834708]Figure 3: Model complexity vs computational complexity for direct positioning models as reported in RAN1 #111 except for six updated Ericsson’s reported values from [10]

To assist this discussion, we consider a simple example where the computational complexity can be exactly calculated by hand.
Example:
Given a BHiWiCi =132323 input tensor to a convolutional layer with
· Batch size B = 1
· Kernel size: HkWk =33
· Stride: 11
· Padding: “VALID”, i.e., without padding
· Number of input channels Ci=3
· Number of output channels: Co =16
The shape of the output tensor becomes BHoWoCo =1303016. That is, Co =16 output channels each with size HoWo =3030.

The convolutional layer will need
· HkWkCiCo =33316 = 432 parameters for the kernel
· Co =16 parameters for the bias
TensorFlow/PyTorch tools report the total number of parameters as 448 as expected, i.e., the same as the calculation above.

In this simple example, one can calculate the nominal computational complexity by hand:
· The number of MACs (multiply-accumulate) using the convolutional kernel can be calculated as (HkWkCi) (HoWoCo) =(333) (303016)=388,800.
· The number of ADDs (addition) using the bias can be calculated as HoWoCo =303016 = 14,400.
· The total number of FLOPs is given by 2MACs + ADDs = 792,000.

On a CPU platform, TensorFlow/PyTorch tools report the same number of FLOPs as hand calculated above.
On a GPU or TPU platform, some TensorFlow/PyTorch tools may report a number of FLOPs that can be one, two or even more orders of magnitude lower. It is assumed these lower FLOP numbers are accelerator-optimized computational complexity for the underlying GPU/TPU.

It can be observed from the above example that
· Nominal computational complexity is a general characterization of a model’s algorithmic complexity that can be compared across different sources. To a first degree, this complexity can even by calculated by hand.
· The accelerator-optimized complexity is specific to a particular device and its computational capability.
· Since it’s unlikely to deploy a full-blown data-center class GPU/TPU in a UE or even a gNB, these GPU/TPU optimized complexity values do not provide useful information to the discussion in 3GPP.
· No explanation on what these accelerator-optimized complexity values mean was given by these software tools, either. Taking one of our large centralized model with 11.2 M presented in our positioning use case paper [10] as an example. While the nominal complexity is 410 M FLOPs, the reported accelerator-optimized complexity for a GPU is given as 4.3 M FLOPs, which is well below the lower bounds. Since all those MACs cannot just disappear simply because the model is executed on a GPU, these accelerator-optimized complexity values seem more related to clock cycles of the GPU than the algorithmic complexity of the model.
· Furthermore, given different sources will have different ML-optimized implementations, such type of computational complexity numbers is not comparable across sources.

The discussion above echoes the Conclusions that RAN1 has made:

	Conclusion (RAN1#110bis)
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.

Conclusion (RAN1#111)
Companies describe how their computational complexity values are obtained.
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.

[bookmark: _Hlk130291957]Since different companies use different deep learning frameworks, it was identified in RAN1 #112 that a common reference point for computing the nominal computational complexity values is needed. Toward this end, we point to the toolchain envisioned by the OpenXLA project (https://github.com/openxla). According to its documentation,
· The OpenXLA project is co-developed by AI/ML industry leaders including Alibaba, Amazon Web Services, AMD, Apple, Arm, Cerebras, Google, Graphcore, Hugging Face, Intel, Meta, and NVIDIA.
· It enables developers to compile and optimize models from all leading ML frameworks for efficient training and serving on a wide variety of hardware.
· OpenXLA eliminates barriers for ML developers via a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations.
As copied in Figure 4, OpenXLA provides a modular toolchain that is supported by all leading frameworks through a common compiler interface, leverages standardized model representations that are portable, and provides a domain-specific compiler with powerful target-independent and hardware-specific optimizations. This toolchain includes XLA, StableHLO, and IREE, all of which leverage MLIR: a compiler infrastructure that enables machine learning models to be consistently represented, optimized and executed on hardware.
For the purpose of the nominal computational complexity reporting, we identify the portable StableHLO layer as the appropriate target of nominal computational complexity computing. As observed in Figure 4, StableHLO is the OpenXLA input, and does not consider any target-independent optimization nor any hardware-dependent optimization. According to its documentation, StableHLO, a portability layer between ML frameworks and ML compilers, is an operation set for high-level operations (HLO) that supports dynamism, quantization, and sparsity. Furthermore, it can be serialized into MLIR bytecode to provide compatibility guarantees. All major ML frameworks (JAX, PyTorch, TensorFlow) can produce StableHLO.

[bookmark: _Toc131701786]For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations before optimization (i.e., not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.

[image: Flow chart depicting high-level OpenXLA compilation flow and architecture showing depicted optimizations, frameworks and hardware targets]
[bookmark: _Ref130292051]Figure 4: Modular toolchain architecture of OpenXLA is supported by all leading framework (https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html).

To further 3GPP discussion and preparation of observations/conclusions for the technical report, we propose three model size classes based on the reported model and computational complexity values. The model size classes can be defined per use case. Table 3 shows an example of proposed model size classes for the positioning use cases.

[bookmark: _Ref126917195]Table 3 Proposed model size classes for positioning use cases.
	Model class
	Model complexity in millions [# of parameters]
	Computational complexity in millions [FLOPs]
	Number of sources as reported in RAN1 #111 for direct positioning

	Small models
	< 1 M
	< [60] M
	4

	Medium-size models
	1 – 8 M
	[60 – 300] M
	8

	Large models
	> 8 M
	> [300] M
	5

[bookmark: _Toc127122456][bookmark: _Toc131701787]To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined per use case, as follows:
- Small models (e.g., < 1 M model parameters for positioning use cases)
- Medium-size models (e.g., 1 – 8 M model parameters for positioning use cases)
- Large models (e.g., > 8 M model parameters for positioning use cases)

4 On requirement setting, performance testing, validation and UE capability

ML model-based feature implementation leads to new challenges and a possible need for changes in functional and performance requirement setting and testing framework. Some topics in this area are discussed below.

At a high level, there is a need to understand the relevance of conformance testing and how to ensure performance when the UE-side model is updated in the field, e.g., downloaded over-the-top, switched, or fine-tuned. If the traditional approach to 3GPP conformance testing is retained, then a device would be tested once during conformance testing with whatever model(s) were used at that time. In this case, it is not clear whether, if a model is updated in the field, the device remains compliant. Further, the performance of a model, after it is compiled and lowered to a particular device hardware may differ depending on the hardware and compiler. Thus, model performance on a target hardware and continuing compliance cannot be guaranteed without checking the final, compiled model.

The issue raised here has some relation to the model monitoring and model switching parts of the lifecycle. There is a need to clarify the inter-relationship between model monitoring, model switching and RAN4 requirements and testing.

Generalization of models for meeting RAN4 core requirements and testing is also unclear. In principle, an AI/ML model could be trained to meet the RAN4 requirements as conventionally defined. The ability of AI/ML models to generalize to other conditions than those in which requirements are specified could, however, be significantly different as compared to deterministic algorithms. For example, AI/ML models trained to obtain UE position using finger-printing method is sensitive to the deployment environment, i.e., its generalization property is substantially different from the conventional algorithms.

Another potential problem is that an AI/ML model may be intentionally trained for specific scenarios, for example a specific cell or deployment. When trained for a specific scenario, it may be detrimental or even impossible to apply generic requirements. It may also not be feasible to derive multiple sets of requirements for all foreseeable specific scenarios but it could be problematic to not have any relevant RAN4 requirement or test, as predictability of UE behaviour towards the network could be lost.

Model switching or operational mode switching (e.g. fallback to legacy algorithms) may be needed if, for example a UE needs to switch models when moving between different cells or environments. If the UE is responsible for switching, then RAN4 requirements may be considered for ensuring performance of the algorithms in the UE for deciding and implementing switching between models. The absence of requirements could lead to unpredictable UE behaviour. Another consideration for switching is that requirements may be needed relating to timing; for example activation time or time periods during which transmission or reception are not possible. Such requirements could be essential to ensure that the network can properly manage the UEs.

AI PHY solutions employing two-sided models cause numerous additional challenges due to distributing the processing in the UE and the gNB. Performance of a two-sided model that is jointly trained thus depends on both the UE and the gNB. Even if the complete model is trained in one place, since performance depends on the compiler and specific hardware, dependency on both sides will remain. It is likely pretty impractical to place responsibility for meeting requirements jointly on BS and UE, in particular considering the impractically large number of BS-UE combinations. Thus, for two sided models, some means of specifying requirements that apply to each side separately but still remain relevant would be needed. It is not possible to define RAN4 requirements and tests jointly over BS and UE, which is why an approach for ensuring performance of two sided models needs further consideration.

There may also be new aspects of behaviour that today are not subject to requirements because they are straightforward and deterministic, but with AI become more related to performance. For example, with AI-based CSI encoding, the encoding itself may impact performance, in addition to the conventional prediction impact. There is thus a need to carefully consider whether AI may necessitate new kinds of requirements to regulate new behaviours. When new AI models are introduced (or when considering potential for AI models that do not need RAN1-3 specification), consequences on functionality should be considered.

Finally, model monitoring in the LCM phase may contain inter-relations with RAN4 specifications. There is a need to understand the relationship between the model monitoring phase and RAN4 requirements, to avoid redundancies while ensuring robust performance in all intended scenarios.

RAN1 should be aware of the above issues when e.g. defining solution architectures and LCM procedures for different use cases. However, feasibility analysis and decisions regarding requirements and testing should remain RAN4 responsibility.

[bookmark: _Toc131701788]RAN1 should consider requirement setting and testing feasibility of proposed AI PHY solutions but any requirement- and testing-related decisions should be taken by RAN4.
To inform the NW about supporting ML-based functionality, the UE capability framework may be used. Since, at a high level, a support of an ML-based feature is not conceptually different from e.g. supporting specific TX or RX processing, it can be included in the current capability framework. However, UE capability should not be updated frequently even if the related model changes. The UE capability should be viewed as static while further ML configuration aspects may be dynamic. Model details (IDs, version, API, training data, etc.) should thus not be included in the UE capability reporting info. To assist ML model monitoring and aggregating reporting from UEs with the same model and/or chipset, it is preferable to include a UE chipset ID in the capability reporting.

[bookmark: _Toc131701789]Support of ML model-based functionalities, but not related model details, may be reported using the UE capability framework.
It should be a starting assumption that introducing new ML-based functions will not compromise executing conventional NR functionalities due to processing resource conflicts. If necessary, capability reporting solutions may be studied where UEs indicate ML model support depending on other functionality, conventional or ML-based, executed in parallel.

[bookmark: _Ref115449837][bookmark: _Toc131701758]Enabling of ML-based capabilities/operations should not impede operations and behaviours per existing NR specs.
[bookmark: _Ref101869786]In terms of UE and gNB processing, the discussion within the use case has not yet come long enough to be able to make a conclusion on what UE or gNB processing is required. Going forward, to ensure efficient and technically relevant discussions, timely confirmation or feedback on feasibility of other UE processing constraints should also be ensured, where RAN1 may obtain additional input from RAN4. RAN4 may be able to confirm whether RAN1 assumptions or estimates are reasonable for UE and gNB implementations, or to provide improved estimates or corrected assumptions.

5 Conclusions
In the previous sections we made the following observations:
Observation 1	For the considered use cases in this SI, there are attractive alternatives to model transfer. The alternatives can achieve similar performance without the deployment challenges associated with model transfer.
Observation 2	There are alternative solutions that might mitigate the need for applicable conditions.
Observation 3	Multiple functionalities can be listed under feature groups in TR 38.822.
Observation 4	Method selection for model monitoring can be based on UE service requirements and can be a stepwise procedure among the different methods based on the performance monitoring KPIs.
Observation 5	Enabling of ML-based capabilities/operations should not impede operations and behaviours per existing NR specs.

Based on the discussion in the previous sections we propose the following:
Proposal 1	Adopt the functional framework in Figure 1 for anchoring discussions related to NW-UE collaborations.
Proposal 2	For use cases with one-sided model, responsibility for model LCM is clearly on the side that implements functionality for making model inference. Study, on a per use case basis, the necessity of assistance for model LCM.
Proposal 3	Conclude that two-sided model LCM must enable a gNB to operate with a single gNB-side model that works with different UE-side models.
Proposal 4	Model transfer is deprioritized for use cases using one-sided model.
Proposal 5	For CSI with two-sided model, alternatives that do not require model transfer are prioritized in this SI.
Proposal 6	For model delivery/transfer, consider only model delivery (case y). Model transfer (case z1-z5) are not supported.
Proposal 7	Conclude that a possible frequent update of models or applicable conditions (if needed) does not imply frequent updates in UE capabilities within the existing capability framework.
Proposal 8	Model identification (“physical model” ID or “logical model” ID) for a model trained and monitored at the UE-side is not needed.
Proposal 9	Functionality identification is sufficient for a model trained at UE-side but monitored (if needed) at the NW-side. Model identification (“physical model” ID or “logical model” ID) is not needed.
Proposal 10	Methods for supporting pairing of compatible UE part and NW part of a two-sided model should be studied (e.g., for CSI-compression, selecting an encoder of a connected UE to pair with a decoder used by the serving gNB of a network vendor).
Proposal 11	Model identification (“physical model” ID or “logical model” ID) is not needed for two-sided models. Study methods to support pairing of the UE-part and NW-part of a two-sided model.
Proposal 12	RAN1 to outline the requirements to RAN2 on a use-case basis on potential applicable conditions. RAN2 to decide whether applicable condition needs to be explicitly defined and signalled, and if so, the best solution for indicating/reporting the applicable condition.
Proposal 13	For UE-side models, functionality activation/deactivation requires network-UE interaction, whereas individual model activation/deactivation/switching for an activated functionality is transparent to the NW.
Proposal 14	Conclude that for a one-sided AI/ML model on the UE side, fallback mechanisms can be achieved by the UE being configured by the non-AI/ML based features already existing in the specification for the applicable use case of the SI.
Proposal 15	RAN2 should determine how the data collection should be introduced within the functionality-based LCM framework. RAN1 should focus on potential requirements for such data collection.
Proposal 16	Deprioritize studies and discussion on over-the-air training between NW and UE.
Proposal 17	Add the following as model monitoring KPIs: false alarm rate (FAR) and missed detection rate (MDR).
Proposal 18	One-sided models at the NW-side are monitored by the NW. Study data collection mechanisms to support inference-accuracy based model monitoring for NW-sided models if needed for a given use case.
Proposal 19	Study triggering conditions/events/signalling for UE-sided model fallback per use case.
Proposal 20	One-sided models at the UE-side are monitored by the UE.
Proposal 21	The performance monitoring of two-sided models is performed at the NW side. Study mechanisms to support inference-accuracy based model monitoring for two-sided models at the NW side, including UE reporting ground-truth together with UE-part model output to NW, periodic and event-triggered model monitoring procedures.
Proposal 22	Study 3GPP data collection mechanisms to support UE performing data logging/collection and reporting the collected data to NW over the air-interface for model training.
Proposal 23	Recommend RAN2 to study specific details of an RRC-message based data collection framework to support UE performing data logging/collection and reporting the collected data to NW for model training.
Proposal 24	Study in RAN1 the requirements of data collection for model inference per AI on PHY use case.
Proposal 25	Recommend both an RRC-message based (slower) and L1 (i.e., similar to aperiodic CSI reporting) based (faster) data collection methods for NW side model monitoring, if L1 UE measurement is needed.
Proposal 26	RAN1 to study specific requirements on RRC-message based data collection method for NW side model monitoring, if L1 UE measurement is needed. When conclusions are reached on the requirements, RAN1 would indicate that to RAN2 so that RAN2 can study the corresponding RAN2 aspects.
Proposal 27	RAN1 to study specific requirements and specification impacts of an L1 based (i.e., CSI reporting) data collection method for NW side model monitoring, if L1 UE measurement is needed.
Proposal 28	For 3GPP AI/ML for PHY SI discussion, companies shall report nominal computational complexity values based on HLO representations before optimization (i.e., not accelerator-optimized computational complexity values). Otherwise, the reported computation complexity value cannot be included for a fair cross-company comparison.
Proposal 29	To further 3GPP discussion and preparation of observations/conclusions for the technical report, three model size classes are defined per use case, as follows: - Small models (e.g., < 1 M model parameters for positioning use cases) - Medium-size models (e.g., 1 – 8 M model parameters for positioning use cases) - Large models (e.g., > 8 M model parameters for positioning use cases)
Proposal 30	RAN1 should consider requirement setting and testing feasibility of proposed AI PHY solutions but any requirement- and testing-related decisions should be taken by RAN4.
Proposal 31	Support of ML model-based functionalities, but not related model details, may be reported using the UE capability framework.
References
1. RP-213599, Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, Qualcomm, 3GPP TSG RAN Meeting #94e, Electronic Meeting, Dec. 6 - 17, 2021.
1. [bookmark: _Ref102052907]3GPP TR 37.817, Study on enhancement for Data Collection for NR and EN-DC (Release 17), RAN3, V17.0.0, 2022-04.
1. [bookmark: _Ref118454633][bookmark: _Ref102145744]R1-2300154 Evaluation of AI-CSI, Ericsson, February 2023
1. RP-180524, Summary of calibration results for IMT-2020 self evaluation, Huawei, 3GPP TSG RAN Meeting #79, Mar. 19-22, 2018.
1. [bookmark: _Ref102147070]TR 38.843, Study on Artificial Intelligence (AI) / Machine Learning (ML) for NR Air Interface.
1. [bookmark: _Ref102147027]TR 38.901, Study on channel model for frequencies from 0.5 to 100 GHz.
1. [bookmark: _Ref102147216]TR 38.857, Study on NR positioning enhancements
1. R1-2302878, Evaluations of AIML for beam management, Ericsson, 3GPP TSG-RAN WG1 Meeting 112-bis-e, April 17–26, 2023 .
1. R1-2206885 Discussion on general aspects of AI-ML framework, Ericsson, 3GPP TSG-RAN WG1 Meeting 110, August, 2022.
1. [bookmark: _Ref127516299]R1-2302335	Evaluation of AI/ML for Positioning Accuracy Enhancement, Ericsson, 3GPP TSG-RAN WG1 Meeting 112b, April 17th – April 26th, 2023.
Appendix A
Table: Working list of terminologies
	Terminology
	Description

	Data collection
	A process of collecting data by the network nodes, management entity, or UE for the purpose of AI/ML model training, data analytics and inference

	AI/ML Model
	A data driven algorithm that applies AI/ML techniques to generate a set of outputs based on a set of inputs.

	AI/ML model training
	A process to train an AI/ML Model [by learning the input/output relationship] in a data driven manner and obtain the trained AI/ML Model for inference

	AI/ML model Inference
	A process of using a trained AI/ML model to produce a set of outputs based on a set of inputs

	AI/ML model validation
	A subprocess of training, to evaluate the quality of an AI/ML model using a dataset different from one used for model training, that helps selecting model parameters that generalize beyond the dataset used for model training.

	AI/ML model testing
	A subprocess of training, to evaluate the performance of a final AI/ML model using a dataset different from one used for model training and validation. Differently from AI/ML model validation, testing does not assume subsequent tuning of the model.

	UE-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the UE

	Network-side (AI/ML) model
	An AI/ML Model whose inference is performed entirely at the network

	One-sided (AI/ML) model
	A UE-side (AI/ML) model or a Network-side (AI/ML) model

	Two-sided (AI/ML) model
	A paired AI/ML Model(s) over which joint inference is performed, where joint inference comprises AI/ML Inference whose inference is performed jointly across the UE and the network, i.e, the first part of inference is firstly performed by UE and then the remaining part is performed by gNB, or vice versa.

	AI/ML model transfer
	Delivery of an AI/ML model over the air interface, either parameters of a model structure known at the receiving end or a new model with parameters. Delivery may contain a full model or a partial model.

	Model download
	Model transfer from the network to UE

	Model upload
	Model transfer from UE to the network

	Federated learning / federated training
	A machine learning technique that trains an AI/ML model across multiple decentralized edge nodes (e.g., UEs, gNBs) each performing local model training using local data samples. The technique requires multiple interactions of the model, but no exchange of local data samples.

	Offline field data
	The data collected from field and used for offline training of the AI/ML model

	Online field data
	The data collected from field and used for online training of the AI/ML model

	Model monitoring
	A procedure that monitors the inference performance of the AI/ML model

	Supervised learning
	A process of training a model from input and its corresponding labels.

	Unsupervised learning
	A process of training a model without labelled data.

	Semi-supervised learning
	A process of training a model with a mix of labelled data and unlabelled data

	Reinforcement Learning (RL)
	A process of training an AI/ML model from input (a.k.a. state) and a feedback signal (a.k.a. reward) resulting from the model’s output (a.k.a. action) in an environment the model is interacting with.

	Model activation
	enable an AI/ML model for a specific function

	Model deactivation
	disable an AI/ML model for a specific function

	Model switching
	Deactivating a currently active AI/ML model and activating a different AI/ML model for a specific function

image1.png
Model
LCM

Data collection configuration

Model training configuration

Model deploy/update, transfer

A 4

Model training

O

Model selection, activation, deactivation

A 4

Model deployment

25

Model switching, fallback operation

Model monitoring configuration

\ 4

Model inference

A 4

KPIs, statistics

\ 4

Model monitoring

A

Data
collection

image2.emf
10

-2

10

-1

10

0

10

1

10

2

10

3

Model complexity [M parameters]

10

0

10

1

10

2

10

3

10

4

C

o

m

p

u

t

a

t

i

o

n

a

l

c

o

m

p

l

e

x

i

t

y

[

M

F

L

O

P

S

]

Reported complexity for direct positioning models

as reported

regression (ex 5 sources)

regression (ex 1 source)

lower bound 2

lower bound 1

image3.png
v

Target-independent Optimizer

Algebraic Optimizations

Op/Kernel Fusion
Weight Update Sharding
Full-Graph Layout Propagation
Scheduling
SPMD

Hardware Optimizations & Targets

Aws Trainiym Cerebras WSE
& Inferentia

Google TPU Graphcore IPU NVIDIA GPU x86 CPU

