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1. Introduction
[bookmark: _Hlk30969022]As a promising technology, AI/ML based solutions have been widely used and has shown impressive performance in various areas, e.g., computer vision, speech recognition, natural language processing (NLP), language translation and so on. 
Motivated by the great success of AI/ML in the afore-mentioned areas, 3GPP also started study on AL/ML for wireless communications in SA2 and RAN3. On the basis of the existing study in 3GPP, RAN#94e meeting decided to start a new study item (SI) on AI/ML for NR air interface in Rel-18 [1]. According to the new SID, this study will focus on three typical use cases of physical layer in the first step: 
	Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
· Finalize representative sub use cases for each use case for characterization and baseline performance evaluations by RAN#98
· The AI/ML approaches for the selected sub use cases need to be diverse enough to support various requirements on the gNB-UE collaboration levels


In latest RAN1meetings, lots of agreements for the typical scenarios and evaluation assumptions were achieved for the AI/ML based positioning. Some achieved agreements are as below [3][4]:
	
Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.
Agreement
For reporting the model input dimension NTRP * Nport * Nt:
· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
· If the model input is PDP, then each input value of PDP is a real value.

Agreement
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP).

Agreement
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.

Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.

Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.

Agreement
For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
where  is the model complexity for one TRP and the same model is used for N TRPs.

	Single-TRP, N models for N TRPs
	
where  is the model complexity for the i-th AI/ML model.


Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of other LCM aspects.

Observation
Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method.
Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error

Conclusion
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.
Observation
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
Note: how to capture the observation(s) into TR is separate discussion.

Agreement
· For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary.
Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:
Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML.

Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.
Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.
Conclusion
· No dedicated evaluation is needed for the positioning accuracy performance of model switching
· It does not preclude future discussion on model switching related performance
Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]
Observation
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.



In this contribution, we will continue to discuss the evaluation of AI-based positioning accuracy enhancement, including the setting for generalization and assumption and so on. Moreover, we will present our evaluation results for some AI/ML-based schemes. 
Discussion
AI-based schemes
During the evolution of R16 NR, 3GPP developed multiple RAT-based positioning methods to provide high accuracy positioning for NR cellular system:
· DL-TDOA positioning
· UL-TDOA positioning
· DL-AoD positioning
· UL-AoA positioning
· Multi-RTT positioning
Theoretically, AI/ML can be introduced to work along with each of the above positioning schemes. In our initial evaluation, we focus on the combination / integration of DL-TDOA positioning and AI/ML. The same approach and evaluation methodologies can be directly extended to other NR positioning methods.
For the existing NR mechanism of DL-TDOA positioning method, UE will measure DL RSTD or estimate the location based on the reception of DL PRS.  Then, UE will report the DL RSTD measurements, optionally along with DL PRS RSRP, or the estimated location to LMF. For UE-assisted DL-TDOA positioning method, LMF will further calculate the location of the target UE based on the reported measurement results, by using traditional algorithm (e.g., CHAN algorithm). We refer to the traditional NR DL-TDOA as “DL-TDOA”.
Based on categories agreed in the previous RAN1 meeting, there will be two different categories of AI-based positioning schemes as below:
· Direct AI/ML positioning: The AI model will estimate the location of a given UE based on the measurement results of UE/TRP
· [image: ]AI/ML assisted positioning: The AI model will estimate some intermediate results based on the measurement results of UE/TRP and the LMF can use these intermediate results to calculate the location of the given UE by using non-AI method or a separate AI method. 
Fig.1: Illustration of different categories of AI-based schemes.
In order to evaluate the potential advantages of AI/ML based positioning over traditional positioning algorithm(s), we firstly consider some specific schemes for direct AI/ML positioning, which are based on the different assumptions on the type and acquisition of measurement results and will have different impacts on the system design and specifications.
The first AI-based scheme is based on LMF’s implementation:
· UE measures and reports the DL RSTD results via the existing mechanism. 
· Then, LMF uses a Neural Network (NN) to estimate the location. 
For this scheme, the whole air interface is the same as R16/17 positioning mechanism and it is totally up to LMF implementation.  In other words, the AI/ML operations are transparent to UE. Accordingly, the advantages of this scheme are no impact on specification and easier for the deployment of AI/ML. We refer to this scheme as “Direct: + DL-TDOA” in subsequent discussions.
Regarding TDOA, only partial information can be attracted from the reception of DL PRS. That is to say, some information, more or less, cannot be exploited at LMF side. Thus, another way is to measure and report the original channel information to LMF. In our evaluation, UE estimates the channel impulse response (CIR) and reports its normalized versions without quantization to LMF. LMF uses a NN to estimate the location. We refer to this method as “Direct: Normalized CIR”. For this scheme, a new type of measurements and reporting format will be needed.
Since the reported CIR is normalized, information regarding the received power of DL PRS is missing. UE can also report this information via DL PRS RSRP. We refer to it as “Direct: Normalized CIR + RSRP”.  Similarly, RSRP measurements can also be used for other AI-based schemes.
In summary, the following schemes are used in our initial evaluation:
· DL-TDOA: CHAN algorithm is used to estimate the location based on measurement results of DL RSTD
· Direct: DL-TDOA: A trained NN is used to estimate the location based on measurement results of DL RSTD
· Direct: DL-TDOA + RSRP: A trained NN is used to estimate the location based on measurement results of DL RSTD and associated RSRP
· Direct: Normalized CIR: A trained NN is used to estimate the location based on measurement results of normalized CIR
· Direct: Normalized CIR + RSRP: A trained NN is used to estimate the location based on measurement results of normalized CIR and associated RSRP
For AI/ML assisted positioning, two different schemes are investigated in our evaluations. The first one of AI/ML assisted positioning is as below (Indirect: Normalized CIR of all TRPs), i.e., multiple TRP construction
· Normalized CIR information corresponding to all TRPs are used for the input of AI/ML mode 
· The outputs of AI/ML model are the estimated TOAs corresponding to all TRPs. 
· For the AI model training, the TOAs calculated based on the distance between UE and TRPs are used as the labels.
The second scheme for AI/ML assisted positioning is as below (Indirect: Normalized CIR of single TRP), i.e., single TRP construction
· Normalized CIR information corresponding to single TRP are used for the input of AI/ML mode 
· The AI model is performed for each TRP and get the estimated TOA corresponding to each TRP. 
· For the AI model training, the TOAs calculated based on the distance between UE and TRPs are used as the labels.
Then, a traditional algorithm (i.e., CHAN algorithm) is used to estimate UE the location. 
For the above AI/ML assisted positioning, the estimated TOAs are the output of AI/ML models. There is another type of output: LOS/NLOS identification. The details are as below:
· Indirect: Normalized CIR of single TRP – LOS/NLOS identification (single TRP construction)
· Normalized CIR information corresponding to single TRP are used for the input of AI/ML mode 
· The AI model is performed for each TRP and get the estimated LOS/NLOS indicator corresponding to each TRP. 
· For the AI model training, the ideal LOS/NLOS indicator of the channel between between UE and TRPs are used as the labels.
Since additional information of RSRP have marginal impact on the performance, we only evaluate normalized CIR information as the input for the AL/ML assisted positioning. 
Scenarios setting
In our evaluation, different levels of spatial consistency were enabled to investigate their impacts on the performance of different AI schemes. To be specifically, two different settings of spatial consistency as below were used in our evaluations
· Setting 1 “w/ spatial consistency”: In this case, the following three models are enabled
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901 
· Setting 2 “w/o spatial consistency”: In this case, only the following two models are enabled
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901 
The difference between these two settings is whether the spatial consistency modeling of small scale parameters is enabled or not.
Generation of data sets 
In our evaluation, the data sets are generated by system-level simulator. The measurement samples are based on the reception of DL PRS within one slot. For each reception of DL PRS, UE will do the measurement corresponding to each scheme, e.g., DL-RSTD, CIR and RSRP. The label associated with each sample is the known location information of the target UE, or the TOA calculated based on the distance between UE and TRPs. 
For the evaluation of each AI/ML-based scheme, 80,000 or 800,000 samples are generated with associated labels. There are three different alternatives in our evaluation to general samples for each scheme:
· Alt.1: We simulate 80,000 drops, and only 1 UE is randomly dropped per drop. Compared to the second alternative, the data of UEs have less correlation among each other. 
· 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
· Alt.2: We simulate 1 drop and 80,000 UEs are dropped in this drop. As the number of UEs in a drop increases, the UEs are closed to each other. Thus, the data for close UEs are with higher correlations. 
· 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
· Alt.3: We simulate 10 drops and 80,000 UEs are dropped in this drop. Alt.3 is a middle ground between Alt.1 and Alt.2. For Alt.3, the total number of samples are 800,000. 
· For each drop, 2% of the samples are randomly selected for testing and the remaining 98% samples are used for training. 
Alt.2 can be regarded as a snapshot of a fixed scenario, while Alt.1 is reflecting a set of many similar scenarios with the same scenario and the same TRP deployment. Thus, in some sense, Alt.2 can be used to show some upper bound of AI-based solutions, but the corresponding trained AI modes may suffer from the generalization issue. Some other alternative(s) to generate the data sets are in the middle ground between Alt.1 and Alt.2, e.g., Alt.3.
NN models
For each sample of CIR, we use 256 time-domain complex values in our evaluation.  We use the three-dimensional matrix with the size of [M, 256, 2], which are generated from the CIRs corresponding to M TRPs, as the input of neural network.  Since the input size are relatively large, we can consider the input as an “image”. With this intuitive, we choose ResNet for our evaluation as ResNet is widely used for image classification tasks. 
[image: ]Fig.2 illustrates the basic structure of our AI model for direct AI/ML positioning. To be specific, based on ResNet backbone, the input is directly added to the output of a residual block (consisting of 9 Conv2D layers with 64 filters and 1 Conv2D layer with 2 filters, 3×3 kernels are used for these filters), then followed by 1 dense layer with 2 nodes to provide the NN output. The NN outputs are the estimated values of the location (x, y).  The AI model structure is applied to both CIR-based and RSRP-based schemes. The only difference between these two schemes are the different dimension of the AI model inputs.

Fig.2: Illustration of the ResNet model for direct AI/ML positioning
For the AI/ML assisted positioning, a similar ResNet model is used for the scheme “Indirect: Normalized CIR of all TRP” except the following two aspects:
· The module “Dense with 2 nodes” is replaced by a dense layer with 18 nodes, where the output of AI model are the estimated TOAs corresponding to the 18 TRPs.
· The input is only normalized CIR information whereas CIR and RSRP information are used for the input of direct AI/ML positioning.
The AI model for the scheme “Indirect: Normalized CIR of single TRP” is also similar to the ResNet model in Fig.2: 
· The module “Dense with 2 nodes” is replaced by a dense layer with 1 node, where the output of AI model are the estimated TOAs corresponding to a single TRP.
· The input is only normalized CIR information whereas CIR and RSRP information are used for the input of direct AI/ML positioning.
The AI model for the scheme “Indirect: Normalized CIR of single TRP – LOS/NLOS identification” is almost the same as “Indirect: Normalized CIR of single TRP” except the different output values. 
Evaluation results
Based on the above-mentioned data sets and AI models, we present some evaluation results in this section to show the positioning accuracy of each AI-based or non-AI-based scheme and the generalization performance of AI models as well. We use InF-DH scenario in the simulations, where clutter setting {clutter density, height, size} is set to be {0.6,6m,2m} or {0.4, 2m, 2m}. In order to reduce the workload for the evaluation, we assume no timing error except for the evaluation of generalization performance. 

Impact of spatial consistency and data set construction 
To investigate the impact of spatial consistency and different data set constructions on AI model performance, we evaluate the performance of direct AI/ML positioning for InF-DH with the clutter setting {0.6, 6m, 2m} and with the following different configurations:
· Whether spatial consistency of small-scale parameters is enabled or not
· Different alternatives for data set construction
The evaluation results for the scheme “Direct: Normalized CIR + RSRP” are shown in Fig.3, Fig.4 and Table 1. Fig. 3 illustrates the evaluation results of the positioning accuracy for the data set generated by {1 drop, 80,000 UEs per drop}, whereas Fig. 4 illustrates the performance for the data set generated by {10 drops, 80,000 UEs per drop}.  Table 1 also shows the positioning accuracy achieved for 90% UE with different configurations. 
For the AI/ML assisted positioning, the evaluation results of the scheme “Indirect: Normalized CIR of all TRP” are shown in Fig.5 and Table.2. Fig. 5 and Table 2 illustrate the evaluation results of the positioning accuracy for InF-DH with clutter setting {60%, 6m, 2m}.
Based on the evaluation results shown in Fig. 3-5 and Table 1-2, we can get the following observation:
Observation 1: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, if the data set is generated by modeling the spatial consistency of small-scale parameters, some performance gain can be observed compared to the configuration that the spatial consistency of small-scale parameters is not modeled.
· The performance gain is quite limited

In the following sections, the spatial consistency of small-scale parameters is always enabled in our evaluations unless explicit stated “without spatial consistency”. 
[image: ]Fig. 3: CDF of positioning error for “Direct: Normalized CIR + RSRP” and 
data set based on {1 drop, 80,000 UEs per drop}
[image: ]
Fig. 4: CDF of positioning error for “Direct: Normalized CIR + RSRP” and
data set based on {10 drop, 80,000 UEs per drop}

Table 1: Positioning accuracy achieved for direct AI/ML positioning (“Direct: Normalized CIR + RSRP”)
AI model deployed at UE or LMF, without model generalization, ResNet model, UE distribution area = [120x60 m]
	Accuracy achieved @90% (m)
	w/ spatial consistency
	w/o spatial consistency

	1 drop,  80,000 UEs per drop
	0.33
	0.40

	10 drop,  80,000 UEs per drop
	0.52
	0.86

	80,000 drop,  1 UE per drop
	4.35
	4.35


[image: ] Fig. 5: CDF of positioning error for AI/ML assisted positioning (“Indirect: Normalized CIR of all TRPs”)

Table 2: Positioning accuracy for AI/ML assisted positioning (“Indirect: Normalized CIR of all TRPs”) 
AI model deployed at UE, without model generalization, ResNet model, UE distribution area = [120x60 m]
	
	Accuracy  achieved @90% (m)

	1 drop, 80000 UEs per drop, 
w/ spatial consistency
	0.52

	1 drop, 80000 UEs per drop, 
w/o spatial consistency
	0.72

	10 drops, 80000 UEs per drop, 
w/ spatial consistency
	1.03

	80000 drops, 1 UEs per drop, 
w/ spatial consistency
	5.78



By comparing the simulation results based on different data sets, we can also notice that performance gap is quite large for different alternatives of data set construction.  
Observation 2: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, no matter the data set is generated by modeling the spatial consistency of small scale parameters or not, the performance gaps are quite large for different alternatives of data set construction.
· The number of drops has larger impact than the enabling/disabling of spatial consistency for small scale parameters on the AI/ML performance
· When the number of drops increased, the achieved accuracy become worse
Therefore, in order to keep the consistency among companies and ensure the results from different sources are comparable, companies are encouraged to report the following parameters regarding the data set construction:
· X drops
· Y UEs per drop
· FFS: values of X, Y

Comparison of two schemes for AI/ML assisted positioning
As we discussed, there are two different schemes for AI/ML assisted positioning:
· Indirect: Normalized CIR of all TRPs
· Indirect: Normalized CIR of single TRP
In this section, we will do evaluations to illustrate and compare the performance of these two schemes based on the TOA output. In these evaluations, the spatial consistency of small-scale parameters is enabled and the clutter setting is {60%, 6, 2}.  Fig.6, Fig.7 and Fig.8 show the CDF of positioning accuracy for different AI/ML assisted positioning schemes for different data set constructions.  Table 3 summarizes the results of these two schemes and the traditional non-AI method (i.e., “DL-TDOA”) as well.
[image: ]
Fig. 6: Performance comparison of different schemes for AI/ML assisted positioning
[image: ]Fig. 7: Performance comparison of different schemes for AI/ML assisted positioning
[image: ]
Fig. 8: Performance comparison of different schemes for AI/ML assisted positioning

Table 3: Performance comparison of different schemes for AI/ML assisted positioning
	Accuracy achieved @90% (m)
	Scheme 1:
Indirect: Normalized CIR of all TRPs
	Scheme 2:
Indirect: Normalized CIR of single TRP
	Non-AI method on the drop(s)

	1 drop, 80000 UEs per drop

	0.52
	2.42
	8.2

	10 drops, 80000 UEs per drop
	1.03
	7.17
	10.16

	80000 drops, 1 UEs per drop
	5.78
	14.47
	10.55


From Fig.6-8 and Table 3, we can see that the scheme “Indirect: Normalized CIR of single TRP” has much worse performance than the scheme “Indirect: Normalized CIR of all TRPs”. Meanwhile, the traditional non-AI scheme achieves comparable performance with the scheme “Indirect: Normalized CIR of single TRP”. 
Observation 3: For AI/ML assisted positioning
· The performance of “Indirect: Normalized CIR of single TRP” is much worse than “Indirect: Normalized CIR of all TRPs”
· The performance of “Indirect: Normalized CIR of single TRP” is comparable to the traditional non-AI scheme
As the scheme “Indirect: Normalized CIR of single TRP” for AI/ML assisted positioning cannot get satisfying performance, we will only consider “Indirect: Normalized CIR of all TRPs” in later sections.
Proposal 1: For AI/ML assisted positioning, if the output of AI model is timing-based result (e.g., TOA), prioritize the scheme where the measurement results corresponding to all TRPs are used as the input of AI model
· the scheme where the measurement results corresponding to single TRP are used as the input of AI model is deprioritized. 
There is another scheme: Indirect: Normalized CIR of single TRP – LOS/NLOS identification. The following tables summarize the evaluation results for this scheme, where the clutter setting is {40%, 2, 2}:

 Table 4: Performance comparison of Indirect: Normalized CIR of single TRP – LOS/NLOS identification
	
	Accuracy of LOS/NLOS identification
	Accuracy achieved @90% (m)

	1 drop, 80000 UEs per drop

	0.998
	0.35



Summary of evaluation results without generalization consideration
In Section 2.5.1 and 2.5.2, the evaluations are performed without generalization considerations. Thus, there results are reflecting the performance upper-bound in some sense. In this table, we also include the results for the 1 drop with different UE densities (i.e., the different size of training data). 

Table 5. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, without generalization consideration, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 40,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	39,200
	800
	2.66M
	5.32 MFLOPs
	0.38


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 20,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	19,600
	400
	2.66M
	5.32 MFLOPs
	0.51


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 10,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	9,800
	200
	2.66M
	5.32 MFLOPs
	0.67


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 5,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	4,900
	100
	2.66M
	5.32 MFLOPs
	0.95


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	10 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drops 
	784,000
	16,000
	2.66M
	5.32 MFLOPs
	0.52


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	80,000 drops, 1 UE per drop 

{60%, 6, 2}

	Same drops 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	4.35


	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Same drop 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	0.52

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Same drops 
	784,000
	16,000
	1.48M
	2.96 MFLOPs
	1.03

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 

{60%, 6, 2}

Multi-TRP construction

	Same drops 
	78,400
	1,600
	1.48M
	2.96 MFLOPs
	5.78

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}

Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	2.42

	Normalized CIR
	TOA
	Ideal TOA
	10 drop, 80,000 UEs per drop 

{60%, 6, 2}

Single-TRP construction
	Same drops 
	784,000
	16,000
	0.33M
	0.66 MFLOPs
	7.17

	Normalized CIR
	TOA
	Ideal TOA
	80,000 drops, 1 UE per drop 

{60%, 6, 2}

Single-TRP construction
	Same drops 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	14.47

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS (0,1)
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}

Single-TRP construction
	Same drop 
	78,400
	1,600
	0.33M
	0.66 MFLOPs
	0.35





Generalization: training and testing data sets are generated from different drops
In this section, we will investigate the generalization performance from the perspective of different data setting are used for training and testing, i.e., the training and testing data set are generated from different drops. To be specifically, two different settings are used in our evaluations
· Data setting D-1: 2 drops, 80000 UEs per drop
· All samples from 1 drop are used for training
· All samples from another drop are used for testing
· Data setting D-2: 10 drops, 80000 UEs per drop
· All samples from 5 drops are used for training
· All samples from another 5 drops are used for testing
In these evaluations, the spatial consistency of small-scale parameters is enabled and the clutter setting is {60%, 6, 2}.  Fig. 9 and Fig.10 show the performance for data setting D-1 and D-2, respectively. The performance of the traditional non-AI method (i.e., “DL-TDOA”) for the same drop(s) is also provided for comparison. Table 6 /Table 7 summarize their performance and the performance with the same data setting as well. 

[image: ][image: ]Fig. 9: Generalization performance: 1 drop for training and another drop for testing
Fig. 10: Generalization performance: 5 drops for training and another 5 drops for testing

Table 6: Generalization performance: training and testing data sets are generated from different drops
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/o generalization
	1 drop for both training and testing
	8.20
	0.48
	0.33
	0.52

	w/
generalization
	1 drop for training 
Another drop for testing
	9.92
	10.53
	10.11
	11.29

	w/o generalization
	10 drops for both training and testing
	10.16
	0.46
	0.52
	1.03

	w/
generalization
	5 drops for training 
Another 5 drops for testing
	10.2
	9.3
	6.55
	7.4



Table 7. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different drops , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.53


	RSTD + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	9.3


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	10.11


	Normalized CIR + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	6.55


	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
Multi-TRP construction

	Another drop 

{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	11.29

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
Multi-TRP construction

	Another 5 drops 

{60%, 6, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	7.4

	Normalized CIR
	LOS/NLOS indicator
	Ideal LOS/NLOS indicator (0,1)
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}

Single-TRP construction
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	0.33M
	0.66 MFLOPs
	5.25



Based on the results showed in Fig.8-10 and Table 6, we can get the following observation: 
Observation 4: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated from different drops, there will be large performance degradation for AI-based positioning. 

Generalization: training and testing data sets are generated with different clutter settings
In this section, we will investigate the generalization performance by using different clutter settings for the data set generalizations of training and testing. That’s is to say, the clutter setting for training and testing data sets are mismatched.  To be specifically, four different settings are used in our evaluations
· Data setting C-1: 2 drops, 80000 UEs per drop, {60%,6,2} for training, {40%,2,2} for testing
· All samples from 1 drop with the clutter setting {60%,6,2} are used for training
· All samples from another drop with the clutter setting {40%,2,2}  are used for testing
· Data setting C-2: 2 drops, 80000 UEs per drop, {40%,2,2} for training, {60%,6,2}for testing
· All samples from 1 drop with the clutter setting {40%,2,2}  are used for training
· All samples from another drop with the clutter setting {60%,6,2}  are used for testing
· Data setting C-3: 10 drops, 80000 UEs per drop, {60%,6,2} for training, {40%,2,2} for testing
· All samples from 5 drops with the clutter setting {60%,6,2} are used for training
· All samples from another 5 drops with the clutter setting {40%,2,2} are used for testing
· Data setting C-4: 80000 drops, 1 UE per drop, {60%,6,2} for training, {40%,2,2} for testing
· All samples from 78400 drops with the clutter setting {60%,6,2} are used for training
· All samples from another 1600 drops with the clutter setting {40%,2,2} are used for testing
Fig.11, Fig.12, Fig.13 and Fig.14 show the performance for data setting C-1, C-2, C-3 and C-4, respectively. The performance of the traditional non-AI method (i.e., “DL-TDOA”) for the same drop(s) is also provided for reference. Table 8 and Table 9 summarize the results corresponding to the positioning accuracy achieved at 90%. 

[image: ]Fig. 11: Generalization performance with different clutter settings (Data setting C-1)
[image: ]
Fig. 12: Generalization performance with different clutter settings (Data setting C-2)









[image: ][image: ]Fig. 13: Generalization performance with different clutter settings (Data setting C-3)
Fig. 14: Generalization performance with different clutter settings (Data setting C-4)

Table 8: Generalization performance: training and testing data sets are with different clutter settings
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	Data setting C-1
	3.86
	8.05
	15.75
	16.09

	Data setting C-2
	10.45
	10.8
	8.61
	8.88

	Data setting C-3
	3.74
	7.78
	8.67
	8.49

	Data setting C-4
	3.84
	4.86
	6.82
	6.66




Table 9. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Different clutter settings , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	8.05

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	0.24M
	0.47 MFLOPs
	10.8

	RSTD + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	0.24M
	0.47 MFLOPs
	7.78

	RSTD + RSRP
	UE coordination
	UE coordination
	70,000  drops, 1  UE per drop 

{60%, 6, 2}
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	0.24M
	0.47 MFLOPs
	4.86

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	15.75

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	2.66M
	5.32 MFLOPs
	8.61

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	2.66M
	5.32 MFLOPs
	8.67

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	70,000  drops, 1  UE per drop 

{60%, 6, 2}
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	2.66M
	5.32 MFLOPs
	6.82

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Another drop 

{40%, 2, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	16.09

	Normalized CIR
	TOA
	Ideal TOA
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}

Multi-TRP construction
	Another 1 drop 

{60%, 6, 2}
	80,000
	80,000
	1.48M
	2.96 MFLOPs
	8.88

	Normalized CIR
	TOA
	Ideal TOA
	5 drops, 80,000 UEs per drop 

{60%, 6, 2}

Multi-TRP construction
	Another 5 drops 

{40%, 2, 2}
	400,000
	400,000
	1.48M
	2.96 MFLOPs
	8.49

	Normalized CIR
	TOA
	Ideal TOA
	70,000  drops, 1  UE per drop 

{60%, 6, 2}

Multi-TRP construction
	Another 10,000  drops, 1  UE per drop 


{40%, 2, 2}
	70,000
	10,000
	1.48M
	2.96 MFLOPs
	6.66




Based on the results showed in Fig.11-14 and Table 8, we can get the following observation: 
Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning. 

Generalization: mixed data set for training
In this section, we continue to investigate the generalization performance for AI/ML model trained by mixed data set. To be specifically, the following data settings are used in our evaluations
· Data setting M-1: 1 drop with {60%,6,2} + 1 drop with {40%,2,2}  for training, {40%,2,2} for testing
· Data setting M-2: 1 drop with {60%,6,2} + 1 drop with {40%,2,2}  for training, {60%,6,2} for testing

[image: ]Fig.15 and Fig.16 show the performance for data setting M-1 and M-2, respectively. Table 10 and Table 11 summarize their performance and the performance with the same data setting as well. 
Fig. 15: Generalization performance with mixed data set for training (Data setting M-1)


[image: ]Fig. 16: Generalization performance with mixed data set for training (Data setting M-2)

Table 10: Generalization performance: AI model training based on mixed data sets
	
	Accuracy achieved @90% (m)
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting M-1
Mixed for training
{40%,2,2} for testing
	0.44
	0.38
	0.55

	w/
generalization
	Data setting M-2
Mixed for training
{60%,6,2} for testing
	0.78
	0.46
	0.66

	w/o
generalization
	{60%,6,2} for training
{60%,6,2} for testing
	0.48
	0.33
	0.52



Table 11. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: Mixed data sets , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

	The same drop with
{40%, 2, 2}
	158,400
	1,600
	0.24M
	0.47 MFLOPs
	0.44

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

	The same drop with
{60%, 6, 2}
	158,400
	1,600
	0.24M
	0.47 MFLOPs
	0.78

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

	The same drop with
{40%, 2, 2}
	158,400
	1,600
	2.66M
	5.32 MFLOPs
	0.38

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

	The same drop with
{60%, 6, 2}
	158,400
	1,600
	2.66M
	5.32 MFLOPs
	0.46

	Normalized CIR
	TOA
	Ideal TOA
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

Multi-TRP construction

	The same drop with
{40%, 2, 2}
	158,400
	1,600
	1.48M
	2.96 MFLOPs
	0.55

	Normalized CIR
	TOA
	Ideal TOA
	1 drop with {60%, 6, 2}
+ 
1 drop with {40%, 2, 2}

80,000 UEs per drop 

Multi-TRP construction


	The same drop with
{60%, 6, 2}
	158,400
	1,600
	1.48M
	2.96 MFLOPs
	0.66




Based on the results showed in Fig.15-16 and Table 10, we can have the following observation: 
Observation 6: For the InF-DH scenario, by training AI model based on the mixed data set with different clutter settings, the performance of AI model inference for the data set with one of these clutter settings can be improved. 

Generalization: training data set w/o NW synchronization error, testing data set w/ NW synchronization error
In this section, we continue to investigate the generalization performance by considering the impact of NW synchronization error. To be specifically, the following settings are used in our evaluations
· Data setting S-1: 1 drop w/o NW synchronization error for training, another 1 drop w/ NW synchronization error for testing
· Data setting S-2: 10 drops w/o NW synchronization error for training, another 10 drops w/ NW synchronization error for testing
In these evaluations, the spatial consistency of small-scale parameters is enabled and the clutter setting is {60%, 6, 2}. The model of a truncated Gaussian distribution as captured in TR 38.857 [2] is adopt to generate NW synchronization error where the value of RMS T1 is set to 50ns.  
· The synchronization error generation for each TRP is independent of other TRPs
· The signals from the same TRP to different UEs will use the same synchronization error
In order to avoid the impact of different UE locations on the generalization performance, the UE locations are also kept the same for the corresponding drops with/without NW synchronization errors in the evaluations. For example, if drop 1-10 and drop 11-20 are without and with NW synchronization errors, respectively, then UE locations are the same for drop k and drop k+10 (k=1,…,10) 
[image: ]Fig.17 and Fig.18 show the performance for data setting S-1 and S-2, respectively. Table 12 and Table 13 summarize their performance and the performance with the same data setting as well.
Fig. 17: Generalization performance with NW synchronization error (Data setting S-1)




[image: ]Fig. 18: Generalization performance with NW synchronization error (Data setting S-2)

Table 12: Generalization performance: Training w/o NW syn error, Test w/ NW syn error
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting S-1
1 drop w/o NW sync error for training, 
1 drop w/ NW sync error for testing
	29.05
	5.29
	6.54
	27.85

	w/o
generalization
	1 drop w/o NW sync error for training and testing
	8.2
	0.48
	0.33
	0.52

	w/
generalization
	Data setting S-2
10 drops w/o NW sync error for training, 
10 drops w/ NW sync error for testing
	36.91
	7.11
	11.77
	33.62

	w/o
generalization
	10 drops w/o NW sync error for training and testing
	10.16
	0.46
	0.52
	1.03



Table 13. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: NW synchronization error, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	1 drop w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	0.24M
	0.47 MFLOPs
	5.29

	RSTD + RSRP
	UE coordination
	UE coordination
	10 drops w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	10 drops w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	0.24M
	0.47 MFLOPs
	7.11

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	1 drop w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	2.66M
	5.32 MFLOPs
	6.54

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	10 drops w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	10 drops w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	2.66M
	5.32 MFLOPs
	11.77

	Normalized CIR
	TOA
	Ideal TOA
	1 drop w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

Multi-TRP construction

	1 drop w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	1.48M
	2.96 MFLOPs
	27.85

	Normalized CIR
	TOA
	Ideal TOA
	10 drops w/o NW sync error

{60%, 6, 2}

80,000 UEs per drop 

Multi-TRP construction

	10 drops w/ NW sync error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	1.48M
	2.96 MFLOPs
	33.62




Based on the results showed in Fig.17-18 and Table 12, we can have the following observation: 
Observation 7: For the InF-DH scenario, if the training data set of AI model is generated without NW synchronization error, the AI model performance for the case with NW synchronization error will suffer larger performance loss
· In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” achieves similar performance as the traditional non-AI based scheme. 

Generalization: training data set w/o UE timing error, testing data set w/ UE timing error
In this section, we continue to investigate the generalization performance by considering timing error at UE side. To be specifically, the following settings are used in our evaluations
· Data setting T-1: 1 drop w/o UE timing error for training, another 1 drop w/ UE timing error for testing
· Data setting T-2: 10 drops w/o UE timing error for training, another 10 drops w/ UE timing error for testing
In these evaluations, the spatial consistency of small-scale parameters is enabled and the clutter setting is {60%, 6, 2}. The model of a truncated Gaussian distribution captured in TR 38.857 [2] is adopt to generate UE timing error where the RMS value T1 is set to 10ns. 
[image: ]In order to avoid the impact of different UE locations on the generalization performance, the UE locations are also kept the same for the corresponding drops with/without UE timing errors in the evaluations.  Fig.19 and Fig.20 show the performance for data setting T-1 and T-2, respectively. Table 14 and Table 15 summarizes their performance and the performance with the same data setting as well.
Fig. 19: Generalization performance with UE timing error (Data setting T-1)


[image: ]
Fig. 20: Generalization performance with UE timing error (Data setting T-2)

Table 14: Generalization performance: Training w/o UE timing error, Test w/ UE timing error
	
	Accuracy achieved @90% (m)
	DL-TDOA
	Direct: DL-TDOA+RSRP
	Direct: Normalized CIR + RSRP
	Indirect: Normalized CIR for all TRPs

	w/
generalization
	Data setting T-1
1 drop w/o UE timing error for training, 
1 drop w/ UE timing error for testing
	8.38
	0.48
	6.18
	26.79

	w/o
generalization
	1 drop w/o UE timing error for training and testing
	8.2
	0.48
	0.33
	0.52

	w/
generalization
	Data setting T-2
10 drops w/o UE timing error for training, 
10 drops w/ UE timing error for testing
	10.28
	0.456
	12.393
	39.73

	w/o
generalization
	10 drops w/o UE timing for training and testing
	10.16
	0.46
	0.52
	1.03



Table 15. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Generalization: UE timing error , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	RSTD + RSRP
	UE coordination
	UE coordination
	1 drop w/o UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	1 drop w/ UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	0.24M
	0.47 MFLOPs
	0.48

	RSTD + RSRP
	UE coordination
	UE coordination
	10 drops w/o UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	10 drops w/ UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	0.24M
	0.47 MFLOPs
	0.456

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop w/o UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	1 drop w/ UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	2.66M
	5.32 MFLOPs
	6.18

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	10 drops w/o UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	10 drops w/ UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	2.66M
	5.32 MFLOPs
	12.393

	Normalized CIR
	TOA
	Ideal TOA
	1 drop w/o NW UE timing

{60%, 6, 2}

80,000 UEs per drop 

Multi-TRP construction

	1 drop w/ NW UE timing

{60%, 6, 2}

80,000 UEs per drop 

	80,000
	80,000
	1.48M
	2.96 MFLOPs
	26.79

	Normalized CIR
	TOA
	Ideal TOA
	10 drops w/o UE timing error

{60%, 6, 2}

80,000 UEs per drop 

Multi-TRP construction

	10 drops w/ UE timing error

{60%, 6, 2}

80,000 UEs per drop 

	800,000
	800,000
	1.48M
	2.96 MFLOPs
	39.73




Based on the results showed in Fig.19-20 and Table 14, we can have the following observation: 
Observation 8: For the InF-DH scenario, if the training data set of AI model is generated without UE timing error, the AI model inference performance for the case with UE timing error will suffer larger performance loss
· In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” is more sensitive to the UE timing error, e.g., its performance is even worse than the traditional non-AI based scheme 
 
Based on the above results showed in Section 2.5, we can get the following observation for the performance of direct AI/ML positioning and AI/ML assisted positioning: 
Observation 9: For performance of direct AI/ML positioning and AI/ML assisted positioning in the InF-DH scenario, 
· If the training and testing data sets are with the same configuration/setting, the direct AI/ML positioning have better performance than AI/ML assisted positioning.
· Regarding the generalization performance, the direct AI/ML positioning achieves similar performance with AI/ML assisted positioning in some cases, and achieves much better performance in some other cases
· E.g., for the case where the training data set of AI model is generated without timing error (e.g., UE timing error, NW synchronization error) and the AI model inference is done for the data with timing error, the direct AI/ML positioning have better performance than AI/ML assisted positioning.

Fine-tuning: different drops
In theory, fine-tuning can be used to improve the generalization performance. But there are still some issues needed to be addressed for practical deployment:
· The available data for fine-tuning
· Validation/justification of the diversity of the data in order to avoid the over-fitting. 
· Latency of the data collection
· Cost/Latency of the fine-tuning 
· Feasibility/efficiency of the deployment of an updated AI/ML model 
In this section and the consequent sections, we don’t consider the above issues and focus on the potential performance gains of fine-tuning for different cases. The direct AI/ML positioning based on the inputs of CIR are evaluated with the clutter setting {60%, 6, 2}.  The following table summarizes the evaluation results for different drops.

 
Table 16. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different drops, UE distribution area = [120x60 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}


	1000 samples from the 2nd drop

{60%, 6, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	1.233

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}


	5000 samples from the 2nd drop

{60%, 6, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.688



The total complexity of fine-tuning is also impacted by the number of epochs. The following table showed the positioning accuracy performance 

Table 16-A. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different drops (Data size for fine-tuning: 1K) , UE distribution area = [120x60 m]

	No. of epochs
	Horizontal pos. accuracy at CDF=90% (m)

	30
	3.93

	60
	2.75

	120
	1.91

	240
	1.50

	480
	1.26

	960
	1.15




Fine-tuning: different clutter settings
In this section, the direct AI/ML positioning based on the inputs of CIR are evaluated with different the clutter settings.
 
Table 17. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: Different clutter settings, UE distribution area = [120x60 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}


	1000 samples from the 2nd drop

{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	2.712

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 

{60%, 6, 2}


	5000 samples from the 2nd drop

{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	1.282



Fine-tuning: NW synchronization error
In this section, the direct AI/ML positioning based on the inputs of CIR are evaluated with the clutter setting {60%, 6, 2}.  The following table summarizes the evaluation results for different assumptions of NW synchronization error.
 
Table 18. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: NW synchronization error, UE distribution area = [120x60 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o NW sync error

{60%, 6, 2}


	1000 samples from the 2nd drop

w/ NW sync error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	0.841

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

w/o NW sync error

 

{60%, 6, 2}


	5000 samples from the 2nd drop

w/ NW sync error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.563



Fine-tuning: UE timing error
In this section, the direct AI/ML positioning based on the inputs of CIR are evaluated with the clutter setting {60%, 6, 2}.  The following table summarizes the evaluation results for different assumptions of UE timing error.
  
Table 19. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Fine-tuning: UE timing error, UE distribution area = [120x60 m]

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 
 
w/o UE timing error

{60%, 6, 2}


	1000 samples from the 2nd drop

w/ UE timing error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	1,000
	79,900
	2.66M
	5.32 MFLOPs
	0.814

	Normalized CIR + RSRP
	UE coordination
	UE coordination
	1 drop, 80,000 UEs per drop 

w/o UE timing error

 

{60%, 6, 2}


	5000 samples from the 2nd drop

w/ UE timing error


{40%, 2, 2}

	Remaining samples of the 2nd drop
	80,000
	5,000
	75,000
	2.66M
	5.32 MFLOPs
	0.567



Impact of noisy labels based on NR positioning 
In RAN1#111 meetings, regarding the data collection for AI/ML model training, there was an agreement to study the alternative that UE generates location based on non-NR and/or NR RAT-dependent positioning methods. 
In this section, the direct AI/ML positioning based on the inputs of CIR are evaluated with the clutter setting {60%, 6, 2}. In order to investigate the impact of noisy labels on the positioning accuracy, we consider different ratio of noisy labels in the evaluation:
· Option 1: The labels for all the training data are obtained by existing NR DL-TDOA scheme
· Option 2: The labels for 50% training data are obtained by existing NR DL-TDOA scheme and the labels for the other 50% training data are ideal

  Table 20. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on NR positioning, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	7.82

	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop , 20,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	19,600
	400
	2.66M
	5.32 MFLOPs
	7.76

	Normalized CIR + RSRP
	UE coordination
	50% Ideal UE coordination
50% Obtained by existing DL-TDOA scheme
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	4.63



The corresponding positioning accuracy for the same evaluation setting is 8.38m for the traditional NR DL-TDOA scheme. 

The performance of AI based positioning were also evaluated with the clutter setting {40%, 2, 2}. The labels for all the training data are obtained by existing NR DL-TDOA scheme. The evaluation results are included in Table 21. The corresponding positioning accuracy for the same evaluation setting is 3.7m for the traditional NR DL-TDOA scheme (i.e., CHAN algorithm). 


  Table 21. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on NR positioning, UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.39


	Normalized CIR + RSRP
	UE coordination
	Obtained by existing DL-TDOA scheme
	1 drop, 80,000 UEs per drop 

{40%,2, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	3.55




Based on the results showed in Table 20 and Table 21, we can have the following observation: 
Observation 10: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
· Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case. 

Impact of noisy labels based on truncated Gaussian modeling 
In RAN1#112 meeting, a modeling of ground-truth labels was agreed as below:
The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range.  In this section, various evaluations are carried out for different values of L and different clutter settings. The corresponding results are summarized in the following table:
  Table 22. Evaluation results for AI/ML model deployed on UE or network side, AI model:  ResNet, Impact of noisy labels based on truncated Gaussian modeling , UE distribution area = [120x60 m]
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 

{60%, 6, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.33


	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=0.5
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.583

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=1
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.924

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=2
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.649

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=4
	1 drop , 80,000 UEs per drop 

{60%, 6, 2}

	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	2.253

	Normalized CIR + RSRP
	UE coordination
	Ideal UE coordination
	1 drop, 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.39


	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=0.5
	1 drop , 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	0.714

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=1
	1 drop , 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.12

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=2
	1 drop , 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	1.71

	Normalized CIR + RSRP
	UE coordination
	Obtained by truncated Gaussian modeling
L=4
	1 drop , 80,000 UEs per drop 

{40%, 2, 2}
	Same drop 
	78,400
	1,600
	2.66M
	5.32 MFLOPs
	2.75


Based on the results showed in Table 22, we can have the following observation: 
Observation 11: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance for the case will degrade as the value of L increases

For the noisy labels based on NR positioning, the estimation error can also be approximated by Gaussian distribution. However, the performance are quite different for the AI models trained by noisy labels based on NR positioning and truncated Gaussian modelling, respectively. The main reason is that the estimation errors of NR positioning are correlated for the close UEs due to the spatial consistency, whereas the error of truncated Gaussian modelling are independent even for collocated UEs.  
 Observation 12: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance cannot reflect that of a practical AI model (e.g., an AI model trained by labels based on NR positioning
· The estimation errors of NR positioning are correlated for the close UEs due to the spatial consistency, whereas the error of truncated Gaussian modelling are independent even for collocated UEs.  


Complexity of AI models
 In our initial assessment on the complexity of different AI models, FLOP and the number of trainable parameters are used as the basic metrics. The corresponding complexity of the AI modes used in our evaluations are summarized in Table 9.
Table 20: Complexity of AI/ML modes used in our evaluations 
	
	Direct (RSTD-based scheme)
	Direct (CIR-based scheme)
	Assisted (All TRPs for Input)
	Assisted (Single TRP for Input)

	MFLOPs
	~ 0.47
	~ 5.32
	~ 2.96
	~ 0.66

	No. of trainable parameters
	~ 0.24
	~ 2.66M
	~ 1.48M
	~ 0.33M


Both CIR and RSRP information are used as the input for direct AI/ML positioning, whereas only CSI information is used as the input for the AI/ML positioning. Thus, the AI model for direct AI/ML positioning has a larger number of trainable parameters and needs more FLOPS. 
3. Conclusions
In this contribution, we discussed AI based positioning accuracy enhancement from the different aspects including AI-based schemes, generation of data sets, AI modes used in evaluation. We also present our initial evaluations on the positioning accuracy of AI-based methods and complexity of different AI approaches as well. Based on the discussion and evaluation results, we have the following observations, proposals and evaluation results. 
Observation 1: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, if the data set is generated by modeling the spatial consistency of small-scale parameters, some performance gain can be observed compared to the configuration that the spatial consistency of small-scale parameters is not modeled.
· The performance gain is quite limited
Observation 2: For InF-DH scenario with clutter setting {0.6, 6m, 2m}, no matter the data set is generated by modeling the spatial consistency of small scale parameters or not, the performance gaps are quite large for different alternatives of data set construction.
· The number of drops has larger impact than the enabling/disabling of spatial consistency for small scale parameters on the AI/ML performance
· When the number of drops increased, the achieved accuracy become worse
Observation 3: For AI/ML assisted positioning
· The performance of “Indirect: Normalized CIR of single TRP” is much worse than “Indirect: Normalized CIR of all TRPs”
· The performance of “Indirect: Normalized CIR of single TRP” is comparable to the traditional non-AI scheme
Observation 4: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated from different drops, there will be large performance degradation for AI-based positioning. 
Observation 5: For the InF-DH scenario, if the training and testing data sets for AI model training and testing are generated with different clutter settings, there will be large performance degradation for AI-based positioning. 
Observation 6: For the InF-DH scenario, by training AI model based on the mixed data set with different clutter settings, the performance of AI model inference for the data set with one of these clutter settings can be improved. 
Observation 7: For the InF-DH scenario, if the training data set of AI model is generated without NW synchronization error, the AI model performance for the case with NW synchronization error will suffer larger performance loss
· In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” achieves similar performance as the traditional non-AI based scheme. 
Observation 8: For the InF-DH scenario, if the training data set of AI model is generated without UE timing error, the AI model inference performance for the case with UE timing error will suffer larger performance loss
· In this case, the AI/ML assisted positioning scheme “Indirect: Normalized CIR for all TRPs” is more sensitive to the UE timing error, e.g., its performance is even worse than the traditional non-AI based scheme 
Observation 9: For performance of direct AI/ML positioning and AI/ML assisted positioning in the InF-DH scenario, 
· If the training and testing data sets are with the same configuration/setting, the direct AI/ML positioning have better performance than AI/ML assisted positioning.
· Regarding the generalization performance, the direct AI/ML positioning achieves similar performance with AI/ML assisted positioning in some cases, and achieves much better performance in some other cases
· E.g., for the case where the training data set of AI model is generated without timing error (e.g., UE timing error, NW synchronization error) and the AI model inference is done for the data with timing error, the direct AI/ML positioning have better performance than AI/ML assisted positioning.
Observation 10: For the InF-DH scenario, if the label for the training data set of AI model is obtained by traditional NR DL-TDOA scheme, the AI model inference performance for the case will suffer larger performance loss
· Compared to the traditional NR DL-TDOA scheme, the AI model doesn’t show obvious performance gain in this case. 
Observation 11: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance for the case will degrade as the value of L increases
Observation 12: For the InF-DH scenario, if the label for the training data set of AI model is obtained by truncated Gaussian modeling, the AI model inference performance cannot reflect that of a practical AI model (e.g., an AI model trained by labels based on NR positioning
· The estimation errors of NR positioning are correlated for the close UEs due to the spatial consistency, whereas the error of truncated Gaussian modelling are independent even for collocated UEs.  
[bookmark: _GoBack]
Proposal 1: For AI/ML assisted positioning, if the output of AI model is timing-based result (e.g., TOA), prioritize the scheme where the measurement results corresponding to all TRPs are used as the input of AI model
· the scheme where the measurement results corresponding to single TRP are used as the input of AI model is deprioritized. 
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