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Introduction
The SID [1] of artificial intelligent (AI) and machine learning (ML) for NR air interface was agreed in RAN#94e meeting. The initial set of use cases including beam management was selected as followings
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1]
In this contribution, we present our evaluations on spatial and/or temporal domain beam prediction. 
Evaluations and discussions
Use case of beam management
According to the SID, the AI/ML beam management can be categorized into the following sub use cases, but not limited to
· Beam prediction in spatial domain for overhead/latency reduction
· Beam prediction in time domain for overhead/latency reduction
· Beam selection accuracy improvement
In this contribution, we evaluate the 1st two sub use cases, e.g. BM-Case1 and BM-Case2 as defined in RAN1#109e, with Top-K Tx-Rx beam pair(s) prediction. Moreover, the dense urban scenario with SLS has been agreed as the baseline in the agreements below. Additionally, we evaluate BM-Case1 for the indoor hotspot (InH) scenario as supplementary results in Appendix II. 
[bookmark: _Hlk110684705]Agreement
· For dataset construction and performance evaluation (if applicable) for the AI/ML in beam management, system level simulation approach is adopted as baseline
· Link level simulation is optionally adopted
Agreement
· At least for temporal beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.
· For spatial-domain beam prediction, Dense Urban (macro-layer only, TR 38.913) is the basic scenario for dataset generation and performance evaluation. 
· Other scenarios are not precluded.

Dense urban scenario for BM-Case1
Conventionally, NW broadcasts up to 64 SSBs periodically at FR2 for DL beam sweeping. Deployed with either single panel or multiple panels, UEs sweep all its Rx beams (typically 4 Rx beams) per panel to search the best DL beam pair(s). To fulfill the P1 procedure specified in Rel.15, large DL overhead and latency would be expected. 
Intuitively, both NW and UE apply DL Tx and Rx beams respectively with certain pattern. For instance, NW carries out analog beamforming in both vertical and horizontal direction, e.g. 8 beams in horizontal domain and 4 beams in vertical domain (depicted in Figure 2). The combinations of vertical beam and horizontal beam can be seen by UE as total 32 DL Tx beams. Then the number of DL beam pairs in Set A is 128 (32 Tx beams and 4 Rx beams) as illustrated in Figure 1. 
Assuming the beamforming pattern can be somehow learnt by neural network (NN), then only a limited number of DL measurement would be enough for NN to infer the quality of all DL beam pair links. The benefit comes from that a large portion of DL measurement of beam pairs can be replaced by beam prediction in spatial domain. This can be called as super-resolution problem. 
One may wonder how the Tx beams for UE to measure are selected, i.e. part of Set B selection. We show our selection on Tx beams in Figure 2 where the highlighted circles in both vertical and horizontal domain. They are the most “welcomed” Tx beams among UEs within a cell. The selected Tx beams represent a spatial pattern of beamforming which are widely adopted by UEs. Surely, other Tx beams selection can be applied as well with certain rules and probably with even better performance. We didn’t try all the possibilities, and the intention here is just to show that this typical selection is workable. 
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Figure 1 [bookmark: _Ref110687177]: DL beam sweeping procedure where for traditional beam sweeping 32 Tx beams and 4 Rx beams per panel and for AI/ML beam prediction 8 Tx beams and 4 Rx beams per panel


Figure 2 [bookmark: _Ref110687240]: Only a subset of DL beams measured among all DL beams
Dense urban scenario for BM-Case2
For temporal domain beam prediction, the basic assumption can be found in Figure 3, where UE measures DL beam pairs in K time instances and predict beam pairs for next F continuous instances. For example, K = 4 and F = 4. Different from BM-Case1, the time domain beam prediction can be applied when UE is with low/medium mobility, e.g. 30km/h as agreed as baseline. To increase the prediction accuracy for moving UE, spatial consistency should be modeled as well.  
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Figure 3 [bookmark: _Ref110688344]: Temporal domain beam prediction where K = 4 measurements instance and F = 4 prediction instance
AI/ML model training and inference
Data set generation
In our evaluation, the data set are generated by SLS as two parts. The 1st part is a subset of measured beam pairs (highlighted yellow in Figure 10) and the corresponding L1-RSRP. This can be used as input of the NN for training purpose. The 2nd part are the best (with highest L1-RSRP) beam pair index(es) among all the beam pairs and their L1-RSRP, which can be seen as labels to the NN model. 
With the labelled data, NN can see which beam pair(s) is/are the best one(s) and then learn the relation or pattern between the limited measurements (as input) and the best one(s) (as output). The limited measurement refers to Set B for both BM-Case1 and BM-Case2. In other words, the Tx and Rx beam pattern in time or space domain can be somehow educated to the NN. Then even with a small portion of actual measurement in time and/or space domain, NN is able to infer which beam pair(s) are most likely to be optimal with the highest L1-RSRP.
Neural network models 
For BM-Case1, we adopt two separate DNN (Deep Neural Network) models which are depicted in Figure 4. The inputs to both AI/ML models are the subset of DL measurements, i.e. L1-RSRP values of measured beam pairs in an order. Since the beam pair indexes of Set B is sequentially coupled with the model as inputs, the beam pair indexes can be implicitly captured by the NN models. 
Specifically, the AI/ML model 1 is to predict the Top-K beam pair index(es) and the DNN structure with 3 hidden layers is depicted in Figure 5. The AI/ML model 2 is to predict the best L1-RSRP(s). These two AI/ML models are trained separately and the prediction of both models may not be perfectly aligned. Note that the best L1-RSRP predicted by AI/ML model 2 may not always correspond to the Top-K beam pair(s) predicted by AI/ML model 1. There could be a case that the predicted beam pair index is not correct, but the predicted L1-RSRP is quite close to the actual L1-RSRP of the genie-aided beam pair.


Figure 4 [bookmark: _Ref101102950]: NN models to predict Top-K beam pair index(es) and corresponding K L1-RSRP(s) 


Figure 5 [bookmark: _Ref102126308]: Beam pair prediction (model 1) implementation by using DNN model
For BM-Case2, we adopt the concatenation of LSTM (Long-Short Term Memory) + DNN models to predict Top-K beam pair(s) in temporal domain. As one may know, the LSTM model is good at handling the inference in time domain, i.e. remembering key information and forgetting non-essential information. Since both LSTM + DNN are well known in ML field and to save space, we omit the details of LSTM + DNN implementations in this contribution. For the combination of BM-Case1 and BM-Case2, i.e. spatial and temporal beam prediction, we also apply the LSTM + DNN model. 
Beam pattern of Set B
In recent meetings, the fixed or variable Set B have been discussed and the following agreements on it were achieved. Option 2 was refined with sub-classes as Opt. A/B/C in RAN1#110bis-e and Opt.D was added in RAN1#112. In RAN1#111, it was also agreed for companies to report their implementations of Set B.
Agreement @ RAN1#110
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· FFS on the beams of Set B
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each report/measurement during training and/or inference) 
· FFS on fixed or variable number of beams (pairs)
· FFS on the details 
· Other options are not precluded. 
· FFS on the number of beams (pairs) in Set B
· Note: This does not preclude the alternative that Set B is different from Set A.

Agreement @ RAN1#110bis-e
· Study the following options on the selection of Set B of beams (pairs) 
· Option 1: Set B is fixed across training and inference
· Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), FFS:
· Opt A: Set B is changed following a set of pre-configured patterns 
· Opt B: Set B is randomly changed among pre-configured patterns 
· Opt C: Set B is randomly changed among Set A beams (pairs) 
· The number of beams(pairs) in Set B can be fixed or variable
· Note: BM-Case1 and BM-Case2 may be considered for different option. 
· Other options are not precluded. 

Agreement @ RAN1#112
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)

In this contribution, to simplify training and inference phase, we adopt Option 1 where Set B is fixed across training and inference phases. Compared with Option 2, fixed Set B may provide more stable performance on spatial and/or temporal beam prediction. Dynamically changing the input of model would require larger scale of training to adapt to variants of Set B. Moreover, there seems evaluation results demonstrating that variable Set (Option 2) can be outperformed by fixed Set B (Option 1). The rationale behind this observation may lie in the fact that inputting variable Set B to model implies insufficient knowledge for inference. For more detailed information on Set B implementation, one may see Figure 2 and corresponding explanation.
Hence, we would like to share our observation on the selection of Set B.
Observation 1: Fixed Set B across training and inference phases has the potential to provide more stable and accurate performance for beam prediction when compared with variable Set B.
Another key issue is how to feed the measurement as the AI/ML model input. Specifically, whether DL Tx and/or Rx beam ID should be implicitly, explicitly or even not inputted into the model. 
For variable Set B, the following agreement was made in RAN1#112. For explicit method, these beam IDs are used as model input, along with L1-RSRP. For implicit method, L1-RSRP are inputted into proper positions of a vector/matrix and leave those positions not in Set B as blank (e.g. default value 0). 
Agreement
· For the evaluation of Option 2: Set B is variable (e.g., different beams (pairs) patterns in each time instance/report/measurement during training and/or inference), further study the following options as AI/ML model inputs 
· Alt 2: Implicit information of Tx beam ID and/or Rx beam ID
· E.g., measurements of Set B of beams together with default values (e.g. 0) for the beams not in Set B are used as AI inputs in a certain order/ matrix/ vector. 
· Detailed assumption can be reported by companies.
· Alt 3: Tx beam ID and/or Rx beam ID is used as inputs of AI/ML explicitly 
· Note: Specification impact can be discussed separately.

For fixed Set B, it is obvious that the Tx beam ID and/or Rx beam ID are not necessary. The AI/ML model could be trained and carry out inference with fixed order of L1-RSRP measurement as input. From this sense, the model is element-wise sensitive. In other words, each beam measurement from Set B should be put into the right position of the input order/vector/matrix.
Observation 2: For fixed Set B, the Tx beam ID and/or Rx beam ID seems not necessary as model input. 
Observation 3: For fixed Set B, the L1-RSRPs of Tx and/or Rx beams in Set B as AI/ML model input are element-wise sensitive.
For fixed Set B, one may argue the input of L1-RSRP measurements of Set B should be categorized as Alt.1, e.g. no information of Tx beam ID and/or Rx beam ID. The other may interpret that as implicit Tx beam and/or Rx beam input, since each position of a vector/matrix corresponds to beam ID in Set B. But given the example under Alt.2 for variable Set B, we slightly intend to create Alt 1 for fixed Set B. To make it clear, an example could be added for better understanding, e.g. the measurements of Set B of beams are used as AI inputs in a certain order/ matrix/vector.
Proposal 1: For fixed Set B, the L1-RSRP measurement of Set B in a certain order/matrix/vector can be inputted to AI/ML model.
KPIs of AI/ML models
In legacy (prior to Rel.18) beam management, L1-RSRP has been widely-used as beam selection metric. With its features of simplicity and computation-friendly, it would be proper to serve as the metric for AI/ML-based beam prediction as well. Beam prediction accuracy based on L1-RSRP was established as a metric to be compared with baseline scheme. In system level, CDF of throughput can be evaluated as a final check on performance. Moreover, overhead/latency reduction (main purpose of beam prediction) can be straightforwardly calculated.
Beam prediction accuracy
However, there are different options on how to measure the beam prediction accuracy. In RAN1#110bis-e, the following agreement was made to list three different metrics.
Agreement
· The options to evaluate beam prediction accuracy (%):
· Top-1 (%): the percentage of “the Top-1 genie-aided beam is Top-1 predicted beam”
· Top-K/1 (%): the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
· Top-1/K (%) (Optional): the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
· Where K >1 and values can be reported by companies.

In our evaluation, Top-K beam pair(s) can be predicted which may or may not include the genie-aided best beam(s). If the genie-aided best beam is within the predicted Top-K beam(s), then a simple beam sweeping (among Top-K predicted beams) procedure can be triggered to find the best actual beam. In addition, for Top-K/1 (%) if K = 1, then Top-K/1 (%) can be degraded as to Top-1 (%) where the Top one predicted beam is the genie-aided one. As for the 3rd metric, i.e. Top-1/K (%), only the Top-1 predicted beam is evaluated, leaving the other (K-1) predicted beam(s) unevaluated. We think the main target of collecting beam prediction accuracy is to evaluate whether the predicted Top-K beam(s) as a whole are accurate or not.
Hence, we tend to apply Top-K/1 (%) in above agreement to evaluate the beam prediction accuracy.
Proposal 2: For beam prediction accuracy, adopt the metric of Top-K/1 (%).
In RAN1#112, the following agreement was achieved to refine the genie-aided Tx beam and Tx-Rx beam pair respectively. Since both genie-aided Tx beam and genie-aided Tx-Rx beam pair matters in the calculation of beam prediction accuracy (%),we use Option A as baseline to determine genie-aided beam for each type of beam prediction. 
Agreement
· For DL Tx beam prediction, the definition of Top-1 genie-aided Tx beam is defined as
· Option A (baseline): the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx and Rx beams
· Option B(optional), the Top-1 genie-aided Tx beam is the Tx beam that results in the largest L1-RSRP over all Tx beams with specific Rx beam(s)
· FFS on specific Rx beam(s)
· Note: specific Rx beams are subset of all Rx beams
· For DL Tx-Rx beam pair prediction, the definition of Top-1 genie-aided Tx-Rx beam pair is defined as
· Option A: The Tx-Rx beam pair that results in the largest L1-RSRP over all Tx and Rx beams
· Other options are not precluded and can be reported by companies. 
· Note: This is only for evaluation discussion

Regarding L1-RSRP difference, it was defined in RAN1#109 that the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. In RAN1#112, the following agreement was made to define another type of L1-RSRP difference. That’s the difference between the predicted L1-RSRP of predicted beam and the ideal L1-RSRP of the same beam. By evaluating the L1-RSRP difference, RAN1 may decide whether to allow UE to report the predicted L1-RSRP to NW. 
Observation 4: By evaluating the metrics of L1-RSRP difference, it can be helpful to decide whether predicted L1-RSRP of Top-K predicted beam(s) should be reported by UE.
Agreement @ RAN1#109
       To evaluate the performance of AI/ML in beam management, further study the following KPI options:
o   Beam prediction accuracy related KPIs, may include the following options:
  Average L1-RSRP difference of Top-1 predicted beam
  Beam prediction accuracy (%) for Top-1 and/or Top-K beams, FFS the definition:
       Option 1: The beam prediction accuracy (%) is the percentage of “the Top-1 predicted beam is one of the Top-K genie-aided beams”
       Option 2: The beam prediction accuracy (%) is the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”
  CDF of L1-RSRP difference for Top-1 predicted beam
  Beam prediction accuracy (%) with 1dB margin for Top-1 beam
       The beam prediction accuracy (%) with 1dB margin is the percentage of the Top-1 predicted beam “whose ideal L1-RSRP is within 1dB of the ideal L1-RSRP of the Top-1 genie-aided beam”
  The definition of L1-RSRP difference of Top-1 predicted beam:
       the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam
  Other beam prediction accuracy related KPIs are not precluded and can be reported by companies.

Agreement @ RAN1#112
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.

Given the above three L1-RSRPs, there could be another (the 3rd type of) definition of L1-RSRP difference. That is the predicted L1-RSRP of Top-1[/K] predicted beam(s) and the ideal L1-RSRP of the Top-1[/K] genie-aided beam(s). This performance metric reflects the gap between the reported (predicted) L1-RSRP and the best L1-RSRP which can be achieved by UE measurement and reporting. However, this L1-RSRP difference (not defined in RAN1) can somehow be reflected by the agreed two counterparts. To have a better illustration, one may see Figure 6. 


Figure 6 [bookmark: _Ref130810720]: the three types of L1-RSRP differences where the 3rd L1-RSRP difference refers to the gap between predicted L1-RSRP of predicted beam and ideal L1-RSRP of genie-aided beam
Observation 5: The agreed L1-RSRP difference and predicted L1-RSRP difference can somehow reflect the 3rd type of L1-RSRP difference between predicted L1-RSRP of predicted beam and ideal L1-RSRP of genie-aided beam. 
Overhead and latency reduction
In RAN1#111, the progress of down selection on RS overhead reduction [%] for BM-Case1 was achieved as in the following agreement. 
Agreement
· For the evaluation of the overhead for BM-Case1, adoption the following metrics:
· RS overhead reduction, 
· Option 1: 
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML
· where M is the total number of beams (pairs) to be predicted 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Companies report the assumption on additional measurements





For RS overhead reduction, the percentage of reduction should be evaluated with proper calculation. The basic rule to calculate the overhead reduction at least for BM-Case1 in above agreement is as 1-N/M, where N is the number of beams (with reference signal (SSB and/or CSI-RS)) required for measurement, i.e. the size of Set B; and M is the total number of beams to be predicted, i.e. the size of Set A. 
Apparently, the formula 1-N/M can somehow capture a rough evaluation on how much overhead can be saved by beam prediction in spatial domain. Considering the 1/4 or 1/8 overhead reduction ratio, that seems very likely that the predicted Top-K beam pair(s) is (are) not within Set B (the measurement set), but within Set A (the prediction set). This cannot be pre-determined before beam prediction by AI/ML model. Assume K = 4 (maximal reported beam numbers per beam reporting instance), the size of Set B and Set A (32 and 128), additional beam sweeping for predicted Top-K beams may only contribute 4/128 = 3.125% more effort. 
In our understanding, the additional effort seems marginal when compared with the benefits introduced by spatial domain beam prediction.
Proposal 3: For RS overhead reduction [%] of BM-Case1, adopt 1-N/M (Option 1) to briefly reflect the overhead reduction.
As for BM-Case2, the temporal domain factor should be added based on that of spatial domain beam prediction. According the following agreement made in RAN1#109e, the overhead reduction should consider the T1 duration (measurement on Set B) and T2 duration (prediction among Set A). In RAN1#111, the following agreement was made to reflect the overhead reduction in time domain. 
Agreement @ RAN1#109e
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.  

Agreement @ RAN1#111
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.


On Option 3 under FFS, we somehow did not fully understand its meaning by going through the definition of the ratio L. It should be further clarified at least on the interpretation of the so-called “long” and “short” periods to correctly calculate the overhead reduction [%]. 
Proposal 4: For BM-Case2, clarify Option 3 on the definition of L to correctly calculate the overhead reduction [%], if needed.
If we could put the potential 2nd stage beam sweeping procedure aside, then the basic rule to calculate overhead reduction can be 1 - (T1*N)/((T1+T2)*M), where T1 and T1+T2 represent the duration of measurement and duration of measurement plus prediction respectively. If the size of Set B equals to that of Set A, i.e. N = M, then this rule can be further simplified as 1 – T1/(T1+T2). Note that for simplicity, we assume for each instance of measurement and prediction, the size of Set B and Set A remain the same. 
Proposal 5: For BM-Case2, support the formula 1 - (T1*N)/((T1+T2)*M) to reflect the overhead reduction [%].
Baseline schemes
For the selection of baseline schemes, in RAN1#109e, the following agreements were reached for both spatial domain and temporal domain beam prediction. In our understanding, one of the key benefits of beam prediction is to significantly reduce overhead/latency. Hence, we think it’s fine to choose the baseline with best performance in the sense of beam selection.
 Agreement
· For spatial-domain beam prediction, further study the following options as baseline performance
· Option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)  
· FFS CSI-RS/SSB as the RS resources
· Option 2: Select the best beam within Set A of beams based on the measurement of RS resources from Set B of beams
· FFS: Set B is a subset of Set A and/or Set A consists of narrow beams and Set B consists of wide beams
· FFS: how conventional scheme to obtain performance KPIs
· FFS: how to determine the subset of RS resources is reported by companies
· Other options are not precluded.

Agreement
· For temporal beam prediction, further study the following options as baseline performance
· Option 1a: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2 
· Option 2: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1 
· Companies explain the detail on how to select the best beam for T2 from Set A based on the measurements in T1
· Where T2 is the time duration for the best beam selection, and T1 is a time duration to obtain the measurements of all the RS resource from Set B of beams.
· T1 and T2 are aligned with those for AI/ML based methods
· Whether Set A and Set B are the same or different depend on the sub-use case
· Other options are not precluded.

Proposal 6: For spatial domain beam prediction, select the best beam within Set A via exhaustive beam sweeping (Option 1) as baseline.
Proposal 7: For temporal domain beam prediction, select the best beam for T2 within Set A via exhaustive beam sweeping (Option 1a) as baseline.
[bookmark: _Ref101171309]Evaluation results
Company results
In RAN1#110bis-e, the table for collecting evaluation results from companies was forged as working assumption. In this contribution, firstly we would like to input our evaluation conditions and results to the table as listed below. It can also be viewed as a summary of our evaluation effort. For more evaluation details, one may find in the following sections.
Table 1  Evaluation results without model generalization for Tx-Rx beam pair prediction
	
	BM-Case1: beam pair
	BM-Case1: Tx beam
	BM-Case2: beam pair
	BM-Case2:   Tx beam

	Assumptions
	Number of [beams/beam pairs] in Set A
	128 Tx-Rx beam pairs
	32 Tx beams
	128 Tx-Rx beam pairs
	32 Tx beams

	
	Number of [beams/beam pairs] in Set B
	32 Tx-Rx beam pairs
	8 Tx beams
	128 Tx-Rx beam pairs
	32 Tx beams

	
	Baseline scheme
	Best beam pair(s) within Set A via exhaustive beam pair search (Option 1)
	Best Tx beam(s) within Set A via exhaustive beam search (Option 1) assuming best Rx beam
	Best beam pair (s) within Set A via exhaustive beam pair search for T2 period (Option 1a)
	Best Tx beam(s) within Set A via exhaustive Tx beam search for T2 period (Option 1a) assuming best Rx beam

	AI/ML model
input/output
	Model input
	L1-RSRPs with proper tensor order
	L1-RSRPs with proper tensor order
	L1-RSRPs with proper tensor order of T1 period
	L1-RSRPs with proper tensor order of T1 period

	
	Model output
	Top-K Tx-Rx beam pair(s) and corresponding K L1-RSRP(s)
	Top-K Tx beam(s) and corresponding K L1-RSRP(s)
	Top-K Tx-Rx beam pair(s) and corresponding K L1-RSRP(s) of T2 period
	Top-K Tx beam(s) and corresponding K L1-RSRP(s) of T2 period

	Data Size
	Training
	40k
	40k
	100k
	100k

	
	Testing
	2k
	2k
	5k
	5k

	AI/ML model
	[Short model description]
	DNN
	DNN
	LSTM + DNN
	LSTM + DNN

	
	Model complexity
	0.07M trainable parameters 
	0.05M trainable parameters
	1.74M trainable parameters
	1.62M trainable parameters

	
	Computational complexity
	0.22M FLOPs
	0.10M FLOPs
	5.05M FLOPs
	4.80M FLOPs

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	[KPI A]
	KPI: Top-K/1
79.15% Top-1/1
92.45% Top-2/1
95.90% Top-3/1
97.95% Top-4/1
	KPI: Top-K/1
92.6% Top-1/1
98.6% Top-2/1
99.6% Top-3/1
99.8% Top-4/1
	KPI: Top-K/1
4 measurements in T1 period and 4 prediction in T2 period
81.0% Top-1/1
95.0% Top-2/1
98.0% Top-3/1
98.9% Top-4/1
	KPI: Top-K/1
4 measurements in T1 period and 4 prediction in T2 period
77.1% Top-1/1
93.7% Top-2/1
97.3% Top-3/1
98.8% Top-4/1

	
	
	[KPI B]
…
	
	
	
	

	
	[L1-RSRP Diff]
	[Average L1-RSRP diff]
…
	KPI: Top-K/1
0.41dB Top-1/1
0.15dB Top-2/1
0.07dB Top-3/1
0.04dB Top-4/1
	KPI: Top-K/1
0.14dB Top-1/1
0.05dB Top-2/1
0.02dB Top-3/1
0.01dB Top-4/1
	KPI: Top-K/1
0.49dB Top-1/1
0.13dB Top-2/1
0.03dB Top-3/1
0.02dB Top-4/1
	KPI: Top-K/1
0.25dB Top-1/1
0.04dB Top-2/1
0.02dB Top-3/1
0.01dB Top-4/1

	
	[System performance]
	[RS overhead Reduction (%)/
RS overhead]
	KPI: 1-N/M
75% = 1-32/128
	KPI: 1-N/M
75% = 1-8/32
	KPI: 1-(T1*N) / ((T1+T2)*M)
50% = 1-(4*128)/((4+4)*128)
	KPI: 1-(T1*N) / ((T1+T2)*M)
50% = 1-(4*32)/((4+4)*32)

	
	
	[UCI report]
	
	
	
	

	
	
	[UPT]
…
	Spectrum efficiency
Baseline: 1.534bits/s/Hz
Bandwidth: 80MHz
1.500bits/s/Hz Top-1/1
1.519bits/s/Hz Top-2/1
1.529bits/s/Hz Top-3/1
1.534bits/s/Hz Top-4/1
	
	
	


BM-Case1: Spatial domain beam pair prediction
In Table 2, we summarize the evaluation results from Top-1 to Top-4 spatial domain beam pair prediction. It is obvious that the more beam pair predicted, the higher probability that Top-K predicted beam pairs include the genie-aided best beam pair. For this evaluation, from Top-1 to Top-4, the beam pair prediction accuracy increases from 79.15% to 97.95%. In addition, the gap between ideal L1-RSRP of predicted beam pair and that of genie-aided best beam pair is quite narrow, i.e. smaller than 0.5dB. In terms of SE, the SE of UE with Top-1 predicted beam pair is very close to the baseline scheme which is based exhaustive search to find the best beam pair. 
Since there are total 128 beam pairs and UEs only measure 32 beam pairs for spatial domain beam prediction, the rough overhead reduction or latency reduction can be up to (1 – 32 beams / 128 beams) = 75%.
Table 2 [bookmark: _Ref111111345]BM-Case1 beam pair prediction performance
	[bookmark: _Hlk130808391]
	Baseline
	Top-1
	Top-2
	Top-3
	Top-4

	Beam pair prediction accuracy
	
	79.15%
	92.45%
	95.90%
	97.95%

	Avg. L1-RSRP estimate error
	
	0.41dB
	0.15dB
	0.07dB
	0.04dB

	Spectrum efficiency (bits/s/Hz)
	1.534 
	1.500
	1.519
	1.529
	1.534


Observation 6: Spatial domain beam pair prediction can yield beam prediction accuracy (at least 80%) while overhead/latency reduction rate is 75%. 
Observation 7: The system level metric, i.e. spectrum efficiency or throughput, is not sensitive to the L1-RSRP difference introduced by spatial domain beam pair prediction. 
Moreover, we turn the UE orientation on in two independent angles, i.e. ΩUT,α (bearing angle) with uniformly distribution in [0, 2*pi] and ΩUT,β (downtilt angle) with uniformly distribution in [0, 2*pi]. The purpose is to evaluate whether the random UE orientation would heavily impact the performance of Tx-Rx beam pair prediction. Given the high prediction accuracy, it seems the AI/ML model can be trained to learn the relations/knowledge among Rx beams. Even though UE can be randomly oriented in two independent angles, the measurement of Set B (inputted to model) can somehow reflect which best Rx beam(s) correspond to its best Tx beam(s). 
Observation 8: The UE random orientation cannot heavily impact the beam prediction accuracy of the Tx-Rx beam pair prediction. 
In addition, we also evaluate the performance of down sampling of Rx beam, e.g. from 4 Rx beams to 2 Rx beams. Hence, the size of Set B is reduced to 16 beam pairs (8 Tx beams and 2 Rx beams). In Table 3, the beam predication accuracy and L1-RSRP difference are provided for comparison. As expected, down-sampling of Rx beams would bring additional and slight performance degradation. But in our assessment, the performance can be boosted up when Top-K increases from 1 to 4. 
Table 3 [bookmark: _Ref130808754]BM-Case1 beam pair prediction accuracy when comparing the Set B (8Tx-4Rx) and another Set B (8Tx-2Rx)
	
	Top-1
	Top-2
	Top-3
	Top-4

	Beam pair prediction accuracy (4 Rx beams)
	79.15%
	92.45%
	95.90%
	97.95%

	Avg. L1-RSRP estimate error (4 Rx beams)
	0.41dB
	0.15dB
	0.07dB
	0.04dB

	Beam pair prediction accuracy (2 Rx beams)
	63.40%
	77.25%
	84.55%
	90.00%

	Avg. L1-RSRP estimate error (2 Rx beams)
	1.71dB
	0.84dB
	0.41dB
	0.21dB


Observation 9: Down-sampling of Rx beams (e.g. from 4 Rx beams to 2 Rx beams) slightly degrades the performance of prediction accuracy and L1-RSRP difference. 
Next, one may see the CDF of L1-RSRP gap of the Top-1 predicted beam as in Figure 7. To have a clear view on the CDF, we only count the L1-RSRP with wrong beam pair prediction.  
[image: ]
Figure 7 [bookmark: _Ref110695713]: CDF of the L1-RSRP gap for the Top-1 predicted beam pair
Observation 10: For 80% of the incorrect spatial domain beam pair prediction cases, the L1-RSRP difference can be kept within 2dB.  
Finally, let’s provide the CDF of spectrum efficiency (S.E. in bits/s/Hz) as system level performance for BM-Case1. In Figure 8, the spectrum efficiency of baseline scheme and Top-1 to Top-4 beam pair prediction are shown and one may find the performance are quite close. 
We also note that as for scenario of dense urban (macro-layer only) with 200m ISD @FR2, a portion of UEs located close to cell edge (around 35%) are not well served due to high pathloss, and their S.E. are nearly zero.
[image: ]
Figure 8 [bookmark: _Ref111107495][bookmark: _Ref111111452]: S.E. CDF of baseline (upper bound) and Top-1 to Top-4
Moreover, since the beam pair predication accuracy is promising as shown in Table 2 (at least 80%) and L1-RSRP error is very marginal (lower than 1dB), the performance on S.E. of Top-1 to Top-4 are very closed to that of the upper bound baseline in Figure 8. We find the hint that if both beam pair prediction accuracy and L1-RSRP error are good, the comparison on system-level results, i.e. S.E. or throughput may only provide neglectable insight. So, it is reasonable for us to focus on the KPI directly related to L1-RSRP.
Observation 11: When beam pair prediction accuracy is high (at least 80%) and L1-RSRP difference is small (within 1 dB), the system-level performance, i.e. spectrum efficiency or throughput, may only provide non-essential insight, therefore focusing on L1-RSRP difference and beam prediction accuracy would be enough. 
[bookmark: _Ref127202734]BM-Case1: Spatial domain Tx beam prediction
Along with beam pair prediction, we also evaluate the performance of Tx beam prediction when the corresponding best Rx beam is selected. In RAN1#111, the following agreement was made to determine Rx beam for Tx beam prediction. In our evaluations, we pick the “best” Rx beam for each Tx beam. Since each Rx panel implements 4 Rx beams, and 2 panels deployed per UE, the exhaustive beam sweeping seems acceptable during the phase of data collection. The data set can be easily generated from that of beam pair training and prediction.
Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.

Proposal 8: For DL Tx beam prediction, adopt the “best” Rx beam (Option 1) with exhaustive beam sweeping for each model input sample.
In Table 4, one may see that the Tx beam prediction accuracy is as high as 92.6% for Top-1 predicted Tx beam. In addition, its L1-RSRP difference gap is quite small, i.e. 0.136dB for the same case. When we compare the Tx beam prediction with beam pair prediction, it is clear that Tx beam prediction achieves even higher beam prediction accuracy. It may come from the fact that beam pair prediction is classic classification problem with 128 Tx-Rx beam pair in total, whereas Tx beam prediction only has 32 Tx beams to select. Apparently, the latter is easier classification problem than the former.
Table 4 [bookmark: _Ref127199097]BM-Case1 Tx beam prediction performance
	
	Top-1
	Top-2
	Top-3
	Top-4

	Tx beam prediction accuracy
	92.6%
	98.6%
	99.6%
	99.8%

	Avg. L1-RSRP estimate error
	0.136dB   
	0.054dB
	0.021dB
	0.011dB


Observation 12: The accuracy of Tx beam prediction is as high as 92.6% and the L1-RSRP difference of it is as small as 0.13dB. Tx beam prediction can achieve even better prediction performance than that of beam pair prediction.
BM-Case2: Temporal domain beam pair prediction
As for BM-Case2, the evaluation assumption can be found in appendix Table 22. The UE measures K = 4 continuous time instances from Set B which is the same as Set A, and predicts Top-K (from Top-1 to Top-4) in the upcoming F = 1/2/4 time instances. Apparently, from Table 5, one may find that given Top-K predicted beam pair(s), the beam pair prediction accuracy decreases from F = 1 to F = 4. The reason lies in the fact that the higher the time gap between measurement and prediction, the higher probability that the prediction is not accurate. Similar observation can be found in Table 6 for L1-RSRP prediction error. But anyway, the performance seems promising (higher than 90.0%) from Top-2 to Top-4 prediction. 
Table 5 [bookmark: _Ref110702238]Beam pair prediction accuracy for BM-Case2
	Beam pair prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	89.1%
	97.8%
	99.0%
	99.4%

	F = 2
	86.6%
	97.1%
	98.6%
	99.2%

	F = 4
	81.0%
	95.0%
	98.0%
	98.9%


Table 6 [bookmark: _Ref110702413]L1-RSRP prediction error for BM-Case2
	Avg. RSRP prediction error (dB)
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	0.168
	0.055
	0.028
	0.021

	F = 2
	0.273
	0.078
	0.033
	0.024

	F = 4
	0.490
	0.130
	0.037
	0.026


Observation 13: Temporal domain beam pair prediction can provide prediction accuracy (e.g. 81%) while overhead/latency reduction is as large as 50% (for the case of K = 4 and F = 4).
Observation 14: Beam pair predication accuracy slightly decreases from 89.1% to 81% (the case of Top-1) when F increases from 1 to 4, but strongly increases from 81% to 98.9% (the case of F = 4) when the number of predicted beam pair increases from Top-1 to Top-4.
In Figure 9, the CDF of L1-RSRP difference is presented. Even for the worst case (Top-1, F = 4), 80% of L1-RSRP prediction error is lower than 3.5dB. Note here we only calculate the L1-RSRP for the case when beam pair prediction in time domain is incorrect. 
[image: ]
Figure 9 [bookmark: _Ref110702798]: CDF of L1-RSRP gap of Top-1 predicted beam in 1/2/4 time instance(s)
Observation 15: For 80% of the incorrect temporal domain beam pair prediction cases, the L1-RSRP difference is lower than 3.5dB.
BM-Case2: Temporal domain Tx beam prediction
In Table 7 and Table 8, the Tx beam prediction and its L1-RSRP difference are provided respectively. Once again, we compare its performance in the sense of prediction accuracy with that of beam pair prediction in temporal domain. Obviously, Tx beam prediction can achieve slightly better performance in prediction accuracy and L1-RSRP difference. For instance, for the case of F = 4 and Top-1, the prediction accuracy is 88.3% in Table 7 and 81.0% in Table 5 for the same reason as we mentioned in Section 2.4.3.
Table 7 [bookmark: _Ref127202319]Tx beam prediction accuracy for BM-Case2
	Tx beam prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F=1
	93.9%
	99.4%
	99.8%
	99.9%

	F=2
	92.0%
	99.1%
	99.8%
	99.9%

	F=4
	88.3%
	98.1%
	99.6%
	99.8%



Table 8 [bookmark: _Ref127202320]L1-RSRP difference for BM-Case2 Tx beam prediction
	L1-RSRP difference
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	0.075
	0.025
	0.013
	0.006

	F = 2
	0.126
	0.038
	0.016
	0.011

	F = 4
	0.253
	0.049
	0.022
	0.010



Observation 16: For BM-Case2, the case of Tx beam prediction can slightly outperform that of beam pair prediction in terms of prediction accuracy and L1-RSRP difference.
Combination of spatial and temporal domain beam prediction
In this section, we evaluation the use case of spatial and temporal domain beam prediction by taking the model of BM-Case2 as basis. Accordingly, we shrank the size of Set B (previously equal to that of Set A in BM-Case2, i.e. 128 beam pairs) to that of BM-Case1 (i.e. 32 beam pairs) to obtain the beam prediction functions in both spatial and temporal domain. 
For K = 4 measurement instances, the beam prediction accuracy and L1-RSRP prediction error can be found in Table 9 and Table 10, respectively. The overhead reduction for the case of K = 4 and F = 4 can be calculated as 1 – (32 beam pairs * 4 measurement instances) / (128 beam pairs * (4 measurement instances + 4 prediction instances)) = 87.5%. 
Table 9 [bookmark: _Ref114582395]Beam prediction accuracy for combined BM-Case1 and BM-Case2 (when K = 4 measurement instances)
	Beam prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	85.7%
	97.0%
	98.4%
	99.5%

	F = 2
	82.8%
	95.7%
	98.1%
	99.3%

	F = 4
	74.4%
	93.1%
	97.0%
	98.8%


Table 10 [bookmark: _Ref114582396]L1-RSRP prediction error for combined BM-Case1 and BM-Case2 (when K = 4 measurement instances)
	Avg. RSRP prediction error in dB
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	0.200
	0.057
	0.030
	0.021

	F = 2
	0.316
	0.077
	0.042
	0.023

	F = 4
	0.731
	0.15
	0.062
	0.030


Observation 17: Spatial and temporal domain beam prediction can provide beam prediction accuracy (at least 74.4%) while overhead/latency reduction can be up to 87.5% (for the case of K = 4, F = 4 and Set B = 32 beam pairs, Set A = 128 beam pairs).
Moreover, when compared with that of BM-Case2 with same setting but different Set B, the beam prediction accuracy and avg. L1-RSRP error of combined spatial and temporal domain beam prediction only slightly decrease. 
For K = 8 measurement instances, the beam prediction accuracy and L1-RSRP prediction error can be found in Table 11 and Table 12, respectively. Similarly, the overhead reduction for the case of K = 8 and F = 8 can be calculated as 1 – (32 beam pairs * 8 measurement instances) / (128 beam pairs * (8 measurement instances + 8 prediction instances)) = 87.5% which is the same as the case of K = 4 and F = 4.
Table 11 [bookmark: _Ref114582543]Beam prediction accuracy for combined BM-Case1 and BM-Case2 (when K = 8 measurement instances)
	Beam prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	84.4%
	96.7%
	98.8%
	99.7%

	F = 2
	80.6%
	95.8%
	98.3%
	99.3%

	F = 4
	74.4%
	92.3%
	96.0%
	98.4%

	F = 8
	64.5%
	84.4%
	92.9%
	96.2%


Table 12 [bookmark: _Ref114582544]L1-RSRP prediction error for combined BM-Case1 and BM-Case2 (when K = 8 measurement instances)
	Avg. RSRP prediction error in dB
	Top-1
	Top-2
	Top-3
	Top-4

	F = 1
	0.192
	0.036
	0.011
	0.006

	F = 2
	0.353
	0.067
	0.024
	0.014

	F = 4
	0.675
	0.174
	0.081
	0.034

	F = 8
	1.697
	0.512
	0.145
	0.078


Observation 18: Spatial and temporal domain beam prediction can provide beam prediction accuracy (at least 64.5%) while overhead/latency reduction can be up to 87.5% (for the case of K = 8, F = 8 and Set B = 32 beam pairs, Set A = 128 beam pairs).
Observation 19: For spatial and temporal domain beam prediction, the longer beam prediction period (e.g. F = 8 prediction instances), the deeper performance loss can be observed given the same measurement period (e.g. K = 8 measurement instances).
Generalization performance
In RAN1#111, the following agreement on the evaluation of generalization was updated. In addition, various Set B of beam (pairs) was considered as one factor which may impact the generalization performance. 
Agreement
· For generalization performance verification, consider the following
· Scenarios
· Various deployment scenarios,
· e.g., UMa, UMi and others,
· e.g., 200m ISD or 500m ISD and others
· e.g., same deployment, different cells with different configuration/assumption
· e.g., gNB height and UE height
· FFS: e.g., Carrier frequencies
· Various outdoor/indoor UE distributions, e.g., 100%/0%, 20%/80%, and others
· Various UE mobility, 
· e.g., 3km/h, 30km/h, 60km/h and others
· Configurations (parameters and settings)
· Various UE parameters, e.g., number of UE Rx beams (including number of panels and UE antenna array dimensions)
· Various gNB settings, e.g., DL Tx beam codebook (including various Set A of beam(pairs) and gNB antenna array dimensions)
· Various Set B of beam (pairs)
· T1 for measurement /T2 for prediction for BM-Case2
· Other scenarios/configurations(parameters and settings) are not precluded and can be reported by companies.

Agreement
For BM Case-1 and BM Case 2, to verify the generalization performance of an AI/ML model over various scenarios/configurations, additionally considering
· Various Set B of beam(pairs)


Spatial domain beam pair prediction (BM-Case1)
In this section, we evaluate the property of model generalization for BM-Case1. Specifically, under UMa scenario, we assume the beam prediction model is trained with Set B (32 beam pairs (8T4R)) and Set A (128 beam pairs (32T4R)). Next, the inference was carried for 3 different testing sets. We evaluate the generalization performance of 4 different cases. Note that each case of these 4 cases represent a different combination of scenario and configuration.
For Case 1, we use it as a baseline scheme where the training set and testing set are the same type, i.e. both are UMa scenario with 128 beam pairs (32T4R) as Set A and 32 beam pairs (8T4R) as Set B;  For Case 2, we only change the scenario of testing set from UMa to UMi while keeping other factors the same; For Case 3, Set A of testing set is modified with half number of Rx beams (i.e. from 4 to 2); For Case 4, Set A of testing set is changed with a quarter number of that of training set (i.e. 32T4R to 16T2R). We have to note that only for the last 2 cases, where Set A of testing set is with 32T2R or 16T2R, the corresponding Set B (subset of Set A in our evaluations) should be cut accordingly. In Case 3 and Case 4, Set B of testing set is composed of 16 beam pairs (i.e. 8T2R). 
In Table 13 and Table 14, from Case 1 through Case 4, the beam prediction accuracy and avg. L1-RSRP difference are shown, respectively. One may find that by comparing Case 1 and Case 2, changing environment (training from UMa and inferencing for UMi) would not deteriorate the performance of beam prediction. One of the explanations would be that the model trained under UMa scenario is more adaptable to UMi scenario. For Case 3 (a half number of Rx beams) and Case 4 (a half number of Tx beams and a half number of Rx beams), we observe slight performance loss due to the generalization issue. The more dramatic change from training set to testing set, the more performance loss can be observed. But when the number of Top-K predicted beams increases to 4, the beam prediction accuracy can be higher than 95% associated with neglectable RSRP difference. 
In addition, we would like to mention that to make the AI/ML model workable between training phase and inference phase, simple pre-processing and post-processing techniques could be applied. For example, at the input end of the model, if the size of Set B is changed from 8T4R (training phase) to 8T2R (inference phase), then zero-padding or 1-on-1 replica can be added on 8T2R to fill the input of 8T4R. That’s the pre-processing part. At the output end of the model, if the size of Set A is changed from 32T4R (training phase) to 16T2R (inference phase), post-processing, such as grouping, should be applied to determine rough beam pair prediction (16T2R) from the inference of fine beam pair(s) (32T4R).
Table 13 [bookmark: _Ref114665763]Beam prediction accuracy where the Set B/Set A of training set are UMa_8T4R/UMa_32T4R
	Beam prediction accuracy
	Testing Set (Set B)
	Testing Set (Set A)
	Top-1
	Top-2
	Top-3
	Top-4

	Case 1
	UMa_8T4R
	UMa_32T4R
	79.2%
	92.5%
	95.9%
	98.0%

	Case 2
	UMa_8T4R
	UMi_32T4R
	80.7%
	94.5%
	97.4%
	98.6%

	Case 3
	UMa_8T2R
	UMa_32T2R
	76.9%
	91.8%
	96.2%
	97.9%

	Case 4
	UMa_8T2R
	UMa_16T2R
	64.8%
	85.1%
	91.9%
	95.1%



Table 14 [bookmark: _Ref114665765]Avg. L1-RSRP difference in dB where the Set B/Set A of training set are UMa_8T4R/UMa_32T4R
	Avg. L1-RSRP difference in dB
	Testing Set (Set B)
	Testing Set (Set A)
	Top-1
	Top-2
	Top-3
	Top-4

	Case 1
	UMa_8T4R
	UMa_32T4R
	0.411
	0.155
	0.071
	0.041

	Case 2
	UMa_8T4R
	UMi_32T4R
	0.236
	0.055
	0.022
	0.016

	Case 3
	UMa_8T2R
	UMa_32T2R
	0.608
	0.201
	0.079
	0.043

	Case 4
	UMa_8T2R
	UMa_16T2R
	2.014
	0.706
	0.308
	0.184


Observation 20: Thanks to generalization capability of well-trained AI/ML model, changing scenario from UMa to UMi may not necessarily deteriorate the beam prediction performance.
Observation 21: Changing beam pair configuration on Set B and Set A from training phase to inference phase would slightly lower the beam prediction performance. 
Observation 22: When more predicted beam pairs are provided by AI/ML model, e.g. Top-K = 4, the beam selection accuracy can be up to 95% and avg. L1-RSRP difference can be lower than 1dB. 
Proposal 9: Study the techniques of pre-processing at model input and post-processing at model output to enable the generalization capability of AI/ML model.
Temporal domain beam prediction (BM-Case2)
We evaluate the inference performance with training at UE speed 30km/h and inference at different UE speed, ranging from 30km/h through 120km/h. Other evaluation aspects are the same as we provide in our company results. 
In Table 15 and Table 16, the model is trained with UE speed at 30km/h. To see the generalization performance, the inference/testing set ranges from 30km/h (as a baseline performance), 60km/h, 90km/h and 120km/h. A clear observation is that when UE speeds up higher than 60km/h, the beam prediction accuracy drops as we expected. Similar observation also holds for the avg. L1-RSRP difference. 
Table 15 [bookmark: _Ref118378832] Beam prediction accuracy where UE speed increases from 30km/h to 120km/h
	Training set with UE speed 30km/h, testing set with 30km/h

	Beam prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F=1
	89.1%
	97.8%
	99.0%
	99.4%

	F=2
	86.6%
	97.1%
	98.6%
	99.2%

	F=4
	81.0%
	95.0%
	98.0%
	98.9%

	Training set with UE speed 30km/h, testing set with 60km/h

	F=1
	68.2%
	78.2%
	80.6%
	81.6%

	F=2
	63.4%
	75.7%
	79.0%
	80.6%

	F=4
	57.0%
	71.3%
	76.4%
	79.0%

	Training set with UE speed 30km/h, testing set with 90km/h

	F=1
	58.9%
	69.7%
	72.3%
	73.6%

	F=2
	54.7%
	66.4%
	69.8%
	71.6%

	F=4
	46.8%
	60.7%
	65.7%
	68.7%

	Training set with UE speed 30km/h, testing set with 120km/h

	F=1
	50.5%
	61.3%
	64.5%
	66.2%

	F=2
	46.6%
	57.2%
	61.0%
	63.5%

	F=4
	37.9%
	50.2%
	55.7%
	59.2%


Table 16 [bookmark: _Ref118379192]Avg. L1-RSRP difference in dB where UE speed increases from 30km/h to 120km/h
	Training set with UE speed 30km/h, testing set with 30km/h

	Avg. L1-RSRP difference
	Top-1
	Top-2
	Top-3
	Top-4

	F=1
	0.168
	0.055
	0.028
	0.021

	F=2
	0.273
	0.078
	0.033
	0.024

	F=4
	0.490
	0.130
	0.037
	0.026

	Training set with UE speed 30km/h, testing set with 60km/h

	F=1
	2.721
	2.066
	1.812
	1.708

	F=2
	3.142
	2.453
	2.193
	2.048

	F=4
	3.519
	2.601
	2.252
	2.080

	Training set with UE speed 30km/h, testing set with 90km/h

	F=1
	3.862
	2.872
	2.569
	2.441

	F=2
	4.323
	3.449
	3.101
	2.900

	F=4
	5.105
	3.828
	3.283
	2.955

	Training set with UE speed 30km/h, testing set with 120km/h

	F=1
	5.276
	3.949
	3.576
	3.395

	F=2
	6.063
	4.739
	4.204
	3.969

	F=4
	6.942
	5.361
	4.631
	4.204


Observation 23: For AI/ML model trained with UE speed 30km/h and tested with UE speed higher than 60km/h, the generalization performance on beam prediction accuracy and avg. L1-RSRP difference drops accordingly.
To evaluate the generalization performance (Case 3), we have generated a mix the data set with ¼ data from 30km/h data, ¼ data from 60km/h data and so on. Then we trained the AI/ML model and evaluate its performance of beam pair prediction accuracy and L1-RSRP difference as in Table 17 and Table 18 respectively. From the aspects of prediction accuracy, the generalized performance on prediction accuracy can be kept between 60% and 90% which is obviously better than the case trained with single UE speed. 
Table 17 [bookmark: _Ref127204270]Beam pair prediction accuracy where UE speed increases from 30km/h to 120km/h
	Training set with mix speed, testing set with mix speed

	Beam pair prediction accuracy
	Top-1
	Top-2
	Top-3
	Top-4

	F=1
	87.1%
	97.5%
	99.1%
	99.5%

	F=2
	82.5%
	96.1%
	98.4%
	99.1%

	F=4
	74.8%
	91.2%
	96.0%
	97.9%

	Training set with mix speed, testing set with 30km/h

	F=1
	85.7%
	96.8%
	98.4%
	99.0%

	F=2
	81.9%
	95.2%
	97.7%
	98.6%

	F=4
	74.1%
	90.8%
	95.6%
	97.5%

	Training set with mix speed, testing set with 60km/h

	F=1
	81.3%
	94.4%
	97.1%
	98.1%

	F=2
	76.3%
	91.0%
	95.1%
	96.8%

	F=4
	67.9%
	85.0%
	91.2%
	94.4%

	Training set with mix speed, testing set with 90km/h

	F=1
	80.2%
	94.7%
	97.5%
	98.6%

	F=2
	75.6%
	91.6%
	95.8%
	97.5%

	F=4
	65.2%
	83.7%
	91.2%
	94.7%

	Training set with mix speed, testing set with 120km/h

	F=1
	78.6%
	92.9%
	96.5%
	97.8%

	F=2
	73.6%
	89.7%
	94.5%
	96.4%

	F=4
	62.2%
	80.9%
	88.8%
	92.9%



Table 18 [bookmark: _Ref127204272]Avg. L1-RSRP difference in dB where UE speed increases from 30km/h to 120km/h
	Table 19 Training set with mix speed, testing set with mix speed

	L1-RSRP difference (dB)
	Top-1
	Top-2
	Top-3
	Top-4

	F=1
	0.202
	0.052
	0.021
	0.015

	F=2
	0.455
	0.098
	0.042
	0.020

	F=4
	1.107
	0.317
	0.133
	0.060

	Training set with mix speed, testing set with 30km/h

	F=1
	0.299
	0.121
	0.094
	0.084

	F=2
	0.429
	0.164
	0.118
	0.098

	F=4
	0.906
	0.275
	0.148
	0.106

	Training set with mix speed, testing set with 60km/h

	F=1
	0.327
	0.106
	0.061
	0.047

	F=2
	0.562
	0.188
	0.093
	0.059

	F=4
	1.216
	0.418
	0.215
	0.127

	Training set with mix speed, testing set with 90km/h

	F=1
	0.333
	0.089
	0.049
	0.029

	F=2
	0.680
	0.206
	0.087
	0.052

	F=4
	1.574
	0.570
	0.238
	0.132

	Training set with mix speed, testing set with 120km/h

	F=1
	0.468
	0.140
	0.074
	0.050

	F=1
	0.817
	0.270
	0.135
	0.085

	F=4
	1.953
	0.724
	0.339
	0.204


Observation 24: For AI/ML model trained with mixed UE speed (e.g. from 30km/h to 120km/h) and tested with different UE speed, the generalization performance on beam prediction accuracy and avg. L1-RSRP difference outperform the one trained with single UE speed.
Conclusion
In this section, allow us to repeat our observations and proposals
Observation 1: Fixed Set B across training and inference phases has the potential to provide more stable and accurate performance for beam prediction when compared with variable Set B.
Observation 2: For fixed Set B, the Tx beam ID and/or Rx beam ID seems not necessary as model input. 
Observation 3: For fixed Set B, the L1-RSRPs of Tx and/or Rx beams in Set B as AI/ML model input are element-wise sensitive.
Observation 4: By evaluating the metrics of L1-RSRP difference, it can be helpful to decide whether predicted L1-RSRP of Top-K predicted beam(s) should be reported by UE.
Observation 5: The agreed L1-RSRP difference and predicted L1-RSRP difference can somehow reflect the 3rd type of L1-RSRP difference between predicted L1-RSRP of predicted beam and ideal L1-RSRP of genie-aided beam. 
Observation 6: Spatial domain beam pair prediction can yield beam prediction accuracy (at least 80%) while overhead/latency reduction rate is 75%. 
Observation 7: The system level metric, i.e. spectrum efficiency or throughput, is not sensitive to the L1-RSRP difference introduced by spatial domain beam pair prediction. 
Observation 8: The UE random orientation cannot heavily impact the beam prediction accuracy of the Tx-Rx beam pair prediction. 
Observation 9: Down-sampling of Rx beams (e.g. from 4 Rx beams to 2 Rx beams) slightly degrades the performance of prediction accuracy and L1-RSRP difference. 
Observation 10: For 80% of the incorrect spatial domain beam pair prediction cases, the L1-RSRP difference can be kept within 2dB.  
Observation 11: When beam pair prediction accuracy is high (at least 80%) and L1-RSRP difference is small (within 1 dB), the system-level performance, i.e. spectrum efficiency or throughput, may only provide non-essential insight, therefore focusing on L1-RSRP difference and beam prediction accuracy would be enough. 
Observation 12: The accuracy of Tx beam prediction is as high as 92.6% and the L1-RSRP difference of it is as small as 0.13dB. Tx beam prediction can achieve even better prediction performance than that of beam pair prediction.
Observation 13: Temporal domain beam pair prediction can provide prediction accuracy (e.g. 81%) while overhead/latency reduction is as large as 50% (for the case of K = 4 and F = 4).
Observation 14: Beam pair predication accuracy slightly decreases from 89.1% to 81% (the case of Top-1) when F increases from 1 to 4, but strongly increases from 81% to 98.9% (the case of F = 4) when the number of predicted beam pair increases from Top-1 to Top-4.
Observation 15: For 80% of the incorrect temporal domain beam pair prediction cases, the L1-RSRP difference is lower than 3.5dB.
Observation 16: For BM-Case2, the case of Tx beam prediction can slightly outperform that of beam pair prediction in terms of prediction accuracy and L1-RSRP difference.
Observation 17: Spatial and temporal domain beam prediction can provide beam prediction accuracy (at least 74.4%) while overhead/latency reduction can be up to 87.5% (for the case of K = 4, F = 4 and Set B = 32 beam pairs, Set A = 128 beam pairs).
Observation 18: Spatial and temporal domain beam prediction can provide beam prediction accuracy (at least 64.5%) while overhead/latency reduction can be up to 87.5% (for the case of K = 8, F = 8 and Set B = 32 beam pairs, Set A = 128 beam pairs).
Observation 19: For spatial and temporal domain beam prediction, the longer beam prediction period (e.g. F = 8 prediction instances), the deeper performance loss can be observed given the same measurement period (e.g. K = 8 measurement instances).
Observation 20: Thanks to generalization capability of well-trained AI/ML model, changing scenario from UMa to UMi may not necessarily deteriorate the beam prediction performance.
Observation 21: Changing beam pair configuration on Set B and Set A from training phase to inference phase would slightly lower the beam prediction performance. 
Observation 22: When more predicted beam pairs are provided by AI/ML model, e.g. Top-K = 4, the beam selection accuracy can be up to 95% and avg. L1-RSRP difference can be lower than 1dB. 
Observation 23: For AI/ML model trained with UE speed 30km/h and tested with UE speed higher than 60km/h, the generalization performance on beam prediction accuracy and avg. L1-RSRP difference drops accordingly.
Observation 24: For AI/ML model trained with mixed UE speed (e.g. from 30km/h to 120km/h) and tested with different UE speed, the generalization performance on beam prediction accuracy and avg. L1-RSRP difference outperform the one trained with single UE speed.

Proposal 1: For fixed Set B, the L1-RSRP measurement of Set B in a certain order/matrix/vector can be inputted to AI/ML model.
Proposal 2: For beam prediction accuracy, adopt the metric of Top-K/1 (%).
Proposal 3: For RS overhead reduction [%] of BM-Case1, adopt 1-N/M (Option 1) to briefly reflect the overhead reduction.
Proposal 4: For BM-Case2, clarify Option 3 on the definition of L to correctly calculate the overhead reduction [%], if needed.
Proposal 5: For BM-Case2, support the formula 1 - (T1*N)/((T1+T2)*M) to reflect the overhead reduction [%].
Proposal 6: For spatial domain beam prediction, select the best beam within Set A via exhaustive beam sweeping (Option 1) as baseline.
Proposal 7: For temporal domain beam prediction, select the best beam for T2 within Set A via exhaustive beam sweeping (Option 1a) as baseline.
Proposal 8: For DL Tx beam prediction, adopt the “best” Rx beam (Option 1) with exhaustive beam sweeping for each model input sample.
Proposal 9: [bookmark: _GoBack]Study the techniques of pre-processing at model input and post-processing at model output to enable the generalization capability of AI/ML model.
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Appendix I: evaluation assumptions
Table 20 Evaluation assumptions for dense urban (both BM-Case1 and BM-Case2)
	Parameter
	Value

	Scenario
	Dense urban (macro layer only), 21 cells

	Frequency setting
	30GHz carrier & 120kHz SCS & 80MHz BW

	BS antenna config
	[Mg Ng M N P] = [1 1 4 8 2] baseline

	UE antenna config
	[Mg Ng M N P] = [1 2 1 4 2] baseline

	BS beamforming
	32 Tx beams (8 horizontal & 4 vertical)
Azimuth angle = [-3*pi/8, -2*pi/8, …, 0, …, 3*pi/8, 4*pi/8]
Zenith angle = [8*pi/16, 9*pi/16, 10*pi/16, 11*pi/16]

	UE beamforming
	4 Rx beams per panel (4 horizontal & 1 vertical), 2 panels
Azimuth angle = [-3*pi/8, -1*pi/8, 1*pi/8, 3*pi/8]
Zenith angle = [pi/2] 

	UE orientation
	ΩUT,α (UT bearing angle): uniformly distributed in [0, 2*pi]; ΩUT,β (UT downtilt angle): uniformly distributed in [0, 2*pi];
ΩUT,γ (UT slant angle): fixed as 0 degree;

	UE rotation
	OFF

	Beam selection metric
	L1-RSRP

	Traffic model
	Full buffer

	Performance metric
	

	L1-RSRP
	Top-K beam pairs with maximum L1-RSRPs

	Spectrum efficiency 
	Final output of SLS



Table 21 Evaluation assumptions for BM-Case1 (dense urban)
	Model parameter
	Values

	Model selection
	DNN with 3 hidden layers

	Input
	32 beam pairs (8 Tx beams and 4 Rx beams)

	Output
	Predicted Top-K beam pairs (K = 1, 2, 3, 4)

	Training set and mode
	40000, offline

	Spatial domain specific
	Values

	UE speed
	3km/h

	UE mobility
	OFF

	Spatial consistency
	OFF


Table 22 [bookmark: _Ref111126828]Evaluation assumptions for BM-Case2 (dense urban)
	Model parameter
	Values

	Model selection
	LSTM + full connection

	Input
	128 beam pairs (32 Tx beams and 4 Rx beams)
K = 4 measurement instance

	Output
	Predicted Top-K beam pairs (K = 1, 2, 3, 4) in F time instances (F = 1, 2, 4). Each time instance is with granularity 100ms.

	Training set and mode
	20000 (in case of K=4 and F=1), offline

	Time domain specific
	Values

	UE speed
	30km/h

	UE trajectory
	Option 2: linear trajectory with random direction change, and bounce back when hitting cell boundary

	Spatial consistency
	Procedure A in TR 38.901



Appendix II: evaluation for indoor hotspot scenario
Assumption for BM-Case1
In our initial evaluation (before RAN1#109e), we focused on the sub use case of beam prediction in spatial domain for overhead and latency reduction.
The illustration on traditional beam selection and AI/ML beam prediction in spatial domain can be found in Figure 10. For traditional beam sweeping, there are 64 Tx beams, 4 Rx beams, and then the total number of beam pairs, i.e. Set A, to measure can be up to 256. For AI/ML beam prediction, only a subset of all beam pairs (e.g. 8 Tx beams highlighted as yellow) are actually measured by UE with all Rx beams as Set B. Then the measurement number can be calculated as 32 beam pairs (8 Tx beam * 4 Rx beam). Correspondingly, the overhead and latency can be significantly compressed as 1/8 (32 beam pairs / 256 beam pairs).


Figure 10 [bookmark: _Ref101099536][bookmark: _Ref101173382]: DL beam sweeping procedure where for traditional beam sweeping 64 Tx beams at NW and 4 Rx beams per panel and for AI/ML beam prediction 8 Tx beams and 4 Rx beams per panel 


Figure 11 [bookmark: _Ref101169651]: Only a subset of DL beams measured among all DL beams
Table 23  Indoor hotspot scenario
	Parameter
	Value

	Scenario
	TR38.901: Indoor hotspot, 12 sites, 3 cells per site

	SCS
	120kHz

	Bandwidth
	40MHz

	Carrier Frequency 
	30GHz

	Tx power
	20dBm

	BS antenna config
	[Mg Ng M N P] = [1 1 4 16 2]

	UE antenna config
	[Mg Ng M N P] = [1 1 1 4 2]

	BS Tx beam pattern
	64 Tx = 16 horizontal * 4 vertical
Azimuth angle = [-16*pi/32, -14*pi/32, …, 0, …, 12*pi/32, 14*pi/32]
Zenith angle = [0*pi/8, 1*pi/8, 2*pi/8, 3*pi/8]
(azimuth, zenith) = (0, pi/2) is the direction perpendicular to the array

	BS mech. tilting
	20 degree

	BS height
	3m

	UE Rx beam pattern
	4 Rx per panel = 4 horizontal * 1 vertical
UE panels deployment [-90, 0, 90], assumed the best panel is selected
Azimuth angle = [-3*pi/8, 1*pi/8, pi/8, 3*pi/8]
Zenith angle = [pi/2]

	UE velocity 
	3km/h

	UE height
	1.5m

	Beam selection method
	L1-RSRP

	Training set
	39600 samples = 12 sites * 3 cells per site * 100 UE per cell * 11 drops


Evaluations for BM-Case1
Given the previously introduced data set and NN model setting, we would like to share our initial evaluation results in Table 24. In this table, we compare the AI/ML based prediction with traditional beam selection, where the latter applies no interpolation, but just select the best measured beam pair with highest L1-RSRP among the actual measurements.
In the 2nd column of Table 24, we compare the best beam selection/prediction rate for both AI/ML beam prediction and traditional beam selection. One may see that the correct best beam pair prediction rate of AI/ML could be around 80% and the traditional beam selection has a smaller chance, i.e. round 24% to find the best beam pair.
In the 3rd and 4th column of Table 24, two performance metrics on L1-RSRP error are calculated. L1-RSRP prediction error is the difference between actual (real) L1-RSRP of the best beam pair and the predicted L1-RSRP. L1-RSRP selection error is the difference between actual (real) L1-RSRP of the best beam pair and the actual (real) RSRP of the selected beam pair. 
When the best beam pair is predicted right by the NN model, its L1-RSRP prediction error is 1.02dB. That is very close to the quantization step for L1-RSRP beam reporting (e.g. 1dB step size) in TS 38.214 [3]. Note that when the best beam pair is correctly selected, then the L1-RSRP selection error (between the actual L1-RSRP of the best beam pair and the actual R1-RSRP of selected best beam) is 0dB, since in this case, they are of the same beam pair. 
The false beam pair selection rate of AI/ML based prediction is round 20%, and the L1-RSRP prediction error is around 2.5dB. Intuitively, if the NN cannot predict the right beam pair, then it would be harder to predict the best L1-RSRP within very small error. Moreover, in the cases of false beam prediction, the L1-RSRP selection error is more than 5dB, which reflects the difference between the actual (real) L1-RSRP of best beam pair and actual (real) L1-RSRP of the predicted beam pair.
As for traditional beam selection, since there is no interpolation/prediction, the L1-RSRP prediction error is not applicable. Hence, we only average the L1-RSRP selection error of traditional beam selection which could be up to 11dB. The reason of such huge gap lies in the fact that UE can only pick up the best beam within 1/8 beam pair of all candidate beam pairs. 
Table 24 [bookmark: _Ref101103363]Performance based on L1-RSRP
	
	Correct beam prediction rate
	Mean of L1-RSRP prediction error
	Mean of L1-RSRP selection error

	AI/ML-Right selection
	80.35%
	1.02dB
	0dB

	AI/ML-False selection
	19.65%
	2.47dB
	5.49dB

	Traditional-Right selection
	23.94%
	/
	0dB

	Traditional-False selection
	76.06%
	/
	11.16dB


With above analysis on performance, we would like to share our observations.
Observation 1: For InH scenario, AI/ML beam prediction in spatial domain can yield relatively high correct prediction rate (around 80%) while using only a small portion (1/8) of DL measurement. 
Observation 2: For InH scenario, when AI/ML beam prediction is correct, the L1-RSRP prediction error is acceptably small (around 1dB); otherwise (AI/ML beam prediction incorrect), the L1-RSRP prediction error would increase slightly (up to 2.5dB).
In Figure 12, we show the CDF of both predicted L1-RSRP and actual (real) L1-RSRP when the AI/ML beam prediction is correct. Statistically speaking, thanks to the technique of AI/ML, these CDFs are closed to each other. It aligns well with average L1-RSRP prediction error (1.02dB as shown in Table 24).
In Figure 13, we show the CDFs when false beam pair selection/prediction happens. When AI/ML model 1 (introduced in Figure 4) predicts an incorrect best beam pair, the CDF of its predicted L1-RSRP (generated by AI/ML model 2 separately) stays not far away from that of actual (real) L1-RSRP of the best beam pair. This curve is marked as “AI-predicted L1-RSRP”. 
As for the curve marked as “AI-selected L1-RSRP”, it refers to the actual (real) L1-RSRP of the wrongly-predicted best beam pair. This gap between actual L1-RSRP of AI/ML prediction and actual L1-RSRP of the best beam pair is around 5dB. This performance also matters, since it reflects actual L1-RSRP performance gap of the best beam predicted wrongly by NN. 
As we explained previously, the traditional sub-set beam selection scheme has a large gap when compared with the best beam. The reason lies in the fact that the traditional beam selection only has partial beam pair candidates. Note that in this contribution, we only select the very basic traditional beam selection scheme. To make more meaningful comparison, we may need to study more advanced traditional scheme, e.g. beam selection with linear interpolation.
[image: ]
Figure 12 [bookmark: _Ref101106720]: CDF of actual (real) L1-RSRP and predicted L1-RSRP when the beam prediction is correct
[image: ]
Figure 13 [bookmark: _Ref101106861]: CDF of actual (real)/selected/predicted L1-RSRP when the beam prediction is incorrect
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