

3GPP TSG-RAN WG1 Meeting #112bis-e	  R1-2302362
[bookmark: _GoBack]e-Meeting, April 17 – 26, 2023

Agenda Item:	9.2.4.1
Source:	Huawei, HiSilicon
Title:	Evaluation on AI/ML for positioning accuracy enhancement
Document for:	Discussion and Decision

[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In the RAN1 #111 meeting, it was agreed in AI 9.2.4.2 that both direct AI/ML positioning and AI/ML assisted positioning are to be studied and evaluated by RAN1:
	Agreement
For AI/ML based positioning accuracy enhancement, direct AI/ML positioning and AI/ML assisted positioning are selected as representative sub-use cases.


Also in the RAN1 #111 and RAN1 #112 meetings, first observations were captured in AI 9.2.4.1 about the performance improvements that can be achieved with AI/ML based positioning:
	Observation (RAN1 #111)
Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
Observation (RAN1 #111)
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
Note: how to capture the observation(s) into TR is separate discussion.

Observation (RAN1 #112)
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.


In the remainder of this contribution, the above sub use cases are discussed and their evaluation methodology, KPIs, and also evaluation results are presented.
Evaluation methodology of the agreed use cases
[bookmark: _Ref110539387]Direct AI/ML positioning
Generic direct AI/ML positioning mechanism
Traditional positioning algorithms such as TDoA and AoA are based on LOS channels, and are no longer applicable in environments where NLOS paths dominate. In these scenarios, the number of gNBs that have LOS channels with the UE is relatively small. As a result, the precision of the traditional positioning algorithm cannot meet the requirements of high-accuracy positioning applications. At the same time, existing research shows that, based on a large amount of channel data, a mapping relationship between channel features and location coordinates can be established by using an AI/ML method. This method, namely direct AI/ML positioning, can achieve reliable accuracy under heavy NLOS conditions, where the positioning accuracy of traditional methods may be > 10m@90%. 
Figure 1 gives an overview about the direct AI/ML positioning process. It exploits that each UE position can be associated with a unique channel characteristic (i.e. the fingerprint). The AI/ML model can learn this relationship for a given environment and then use it to determine the UE coordinates based on the measured channel characteristics. 
	[image: ]


[bookmark: _Ref100767732]Figure 1 Direct AI/ML positioning process
[bookmark: _Ref131153188][bookmark: _Ref101865042]Baseline performance for comparison
As agreed in the RAN1 #109-e meeting:
	Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.


As baseline for performance evaluations of direct AI/ML positioning in NLOS dominated scenarios, we adopt the positioning accuracy achieved by the traditional UL-TDoA positioning method without LOS detection in Rel-17, as proposed in [1]. 
It should be noted that in the baseline method, the NLOS paths are not removed. In NLOS dominated scenarios, there are hardly at least three LOS paths available at the same time for calculation of the position. This will result in the issue that stronger NLOS paths are mistaken as LOS paths, which leads to poor accuracy. Even if NLOS paths would be identified and removed, then, since the evaluation is under heavy NLOS conditions, there may not be enough number of LOS paths available in most cases. Therefore, under heavy NLOS conditions, the positioning accuracy of the baseline is expected to be significantly low.
As shown in Table 1 under both heavy (with clutter parameters of {60%, 6m, 2m}) and moderate (with clutter parameters of {40%, 2m, 2m}) NLOS conditions with 4 receiving antennas, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 is more than 10 m. 
[bookmark: _Ref100767594]Table 1. Performance of UL-TDoA positioning
	BS receiving antennas
	Positioning
	Positioning Accuracy @90%

	Clutter parameters: 60%, 6m, 2m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m

	Clutter parameters: 40%, 2m, 2m

	4
	UL-TDoA in Rel-17 without LOS detection
	> 10 m


AI/ML-assisted positioning
AI/ML-based LOS/NLOS identification
2.2.1.1	Generic AI/ML-based LOS/NLOS identification mechanism
By tagging the measurements with LOS/NLOS indicators, the LMF would obtain additional information that can be exploited to improve the positioning accuracy, for example when utilizing the link with a higher LOS probability. NLOS identification has benefits from various aspects as described in [1]:
	NLOS detection is an important method to improve the positioning accuracy. By tagging the measurements with LOS/NLOS indicators, the LMF would have the knowledge of LOS/NLOS status of the measurements. By utilizing the LOS/NLOS measurements correctly, for example utilizing the LOS measurements with higher probability, the positioning accuracy can be improved. In addition, NLOS identification has various benefits from the following aspects:
· Useful for the reference device
· Useful for NLOS dominate scenario
· Useful for Computation complexity
· Useful for calculating the location uncertainty


LOS/NLOS identification is a typical binary classification problem in the AI/ML field and AI/ML models are well suited for extracting different channel characteristics of the LOS or NLOS paths. The Rel-17 mechanisms that have been established for LOS/NLOS identification can therefore be improved significantly with help of AI/ML-based techniques, and especially as shown in this contribution, for a small number of antennas. 
Figure 2 shows the TDoA positioning process based on AI/ML-based LOS/NLOS identification. The AI/ML-based LOS/NLOS identification is utilized to remove the NLOS paths from the TOA calculation. It uses the channel’s power delay profile (PDP) as the input and calculates a LOS probability. We use a neural network with a convolutional architecture to learn this relationship. This achieves a much better prediction accuracy than traditional methods, especially when the number of antennas is small, as will be observed from our evaluations results in Section 3.2.
[image: ]
[bookmark: _Ref100767696]Figure 2 Positioning process based on LOS/NLOS identification
The whole processing flow is illustrated in Figure 3 below. After the channel estimation procedure based on the reference signal, the frequency-domain channel is transformed with an IFFT into the time domain. The amplitude of the time-domain signal is then squared to obtain the PDPs which are then normalized on all antennas at the receiver side. The normalized PDPs are used as the input to the AI/ML model in which the LOS probability is inferred. Afterwards the NLOS components are removed and the LOS components are utilized to calculate the coordinates. The TDoA algorithm is then performed at the LMF which requires the identified LOS links from at least three gNBs.
[image: ]
[bookmark: _Ref100767705]Figure 3 Pre-processing and positioning based on AI/ML-based LOS/NLOS identification in TDoA positioning
2.2.1.2	Baseline performance for comparison
The baseline algorithm for performance comparison with AI/ML-based LOS/NLOS identification could be considered to be aligned across companies for comparison. We select the traditional algorithm as proposed in [2]:
	LOS/NLOS identification algorithm
Check the energy consistency of the first path across different antenna elements within a polarization.
Check the phase consistency of the first path across different antenna elements in both vertical and horizontal direction within a polarization.
If both energy and phase consistency meet the energy/phase consistency, it would be identified as a LOS path, otherwise, it would be identified as a NLOS path.
Different confidence level of LOS/NLOS label may additionally be reported depending on the degree of the consistency.


As shown in Table 2, when the number of base station receiving antenna ports is 32, the selected baseline LOS/NLOS identification solution has already achieved a good performance. But when the gNB is configured with a small number of antenna ports (which is reflected by 4 selected receiving ports in the evaluation), the baseline method provides a greatly degraded positioning accuracy error of more than 6m @90%. In contrast, the accuracy of the AI/ML-based LOS/NLOS identification solution with 4 gNB receiving ports can achieve 0.35m. The reason is that for a small number of antennas, the traditional method cannot provide enough resolution to correctly identify with a high probability whether a path is LOS or NLOS. Therefore, for the widely deployed commercial RF modules with a small number of antenna ports for indoor deployment, using AI/ML-based LOS/NLOS identification solution is meaningful.
[bookmark: _Ref115272100]Table 2. Performance of Rel-17 LOS/NLOS identification-based positioning
	BS receiving ports
	LOS ID method
	Positioning Accuracy @90%

	Clutter parameters: 40%, 2m, 2m

	32
	Baseline LOS ID
	0.484m

	4
	Baseline LOS ID
	6.447m


1.1.1 AI/ML-based TOA estimation
2.2.2.1	Generic AI/ML-based TOA estimation mechanism
Traditional TOA estimation algorithms are based on LOS channels, and are no longer applicable in environments where NLOS paths dominate. As a result, the precision of the traditional TOA estimation algorithm cannot meet the requirements of high-accuracy positioning applications. At the same time, existing research shows that, based on a large amount of channel data, a mapping relationship between channel features and TOA values between the transmitter and the receiver can be established by using an AI/ML method. Such an AI/ML-based method can achieve a reliable TOA estimation accuracy when the LOS path is hard to be identified among other NLOS paths or even in the absence of the LOS path. 
[bookmark: _Ref131095193][image: ]
[bookmark: _Ref131793509]Figure 4 Pre-processing and positioning based on AI/ML-based TOA estimation in TDoA positioning
Figure 4 above gives an overview of the TDoA positioning process based on AI/ML-based TOA estimation. After the channel estimation procedure based on the reference signal, the frequency-domain channel is transformed with an IFFT into the time domain CIRs. And the truncated CIRs are then used as the input to the AI/ML model in which the TOA value is inferred. The TDoA algorithm is then performed at the LMF which requires the TOA values from at least three gNBs. 
2.2.2.2	Baseline performance for comparison
The baseline algorithm for performance comparison with AI/ML-based TOA estimation could be considered to be aligned across companies for comparison. We select the same baseline as for the direct AI/ML positioning described in Section 2.1.2, the positioning accuracy achieved by the traditional UL-TDoA positioning method without LOS detection in Rel-17.
As shown in Table 1 under both heavy (with clutter parameters of {60%, 6m, 2m}) and moderate (with clutter parameters of {40%, 2m, 2m}) NLOS conditions with 4 receiving antennas, the positioning accuracy error @90% of the baseline UL-TDoA solution in Rel-17 is more than 10 m. 
Evaluation Results
[bookmark: _Ref102060291]Performance evaluations of direct AI/ML positioning
Simulation assumptions
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform according to the defined scenario assumptions in the Appendix A with FR1 settings. And the implementation details for our evaluation on direct AI/ML positioning are reported in tables with the format agreed in the RAN1 #110bis e-meeting. 
The model structure for our implementation is Residual-Network (ResNet) architecture. The inputs to the AI/ML model includes the Channel Impulse Responses (CIR) and the Power Delay Profile (PDP), and the output of model inference are the estimated UE coordinates. The label for training is the ground-truth UE coordinates. Accordingly, the pre-processing shown in Figure 1 is to obtain the CIR or PDP from the measured channel vector/matrix.
The dataset composition for direct AI/ML positioning is also respectively reported in the result tables in the following sections. It should be noted that spatial consistency is required for channel modelling to be used in direct AI/ML positioning. With spatial consistency, at the same drop of the simulation, two UEs with close locations will have similar channel characteristics. Spatial consistency also reflects the real channel characteristics in deployment, therefore it should be represented in channel modeling at large scale parameters, small scale parameters and absolute time of arrival for dataset generation. This is important for dataset generation used in direct AI/ML positioning under heavy NLOS conditions. The dataset used for evaluation is generated with spatial consistency modeling based on the 2D-filtering method described in Appendix B, and modeled at channel modeling parameters including large scale parameters, small scale parameters and the absolute time of arrival. 
The training dataset consists of different numbers of samples, where 1 sample denotes the CIR or PDP obtained at each of the NTRP gNBs from the SRS transmission by 1 UE, with Nport receiving ports for each gNB. And the number of time domain samples used for the evaluation is Nt, so the input dimensions are reported as NTRP * Nport * Nt.
1.1.2 [bookmark: _Ref102171111]Overhead reduction studies
In the RAN1 #112 meeting [3], it was agreed that the following aspects of the model generalization capability of the AI/ML based positioning are considered to be studied and evaluated by RAN1:
	Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.


For direct AI/ML based positioning, according to companies’ contributions from the previous meetings, both CIR and PDP are popular options for the AI/ML model inputs. Their detailed design has not been discussed yet and in our evaluations, we have used CIRs/PDPs from all 18 TRPs with a length of 256 samples. For these parameters it was found that sub-meter positioning accuracy can be achieved. For model complexity and potential signaling overhead reasons, it is important to further assess if and how much the initially assumed numbers can be reduced while still obtaining unique fingerprint characteristics that accurately can be mapped to locations. Note, that this is very different from the legacy approaches where always a sufficient number of available LOS paths should be generated.
Dimension 1: Different numbers of CIRs used as model input.
The AI/ML model is assumed to be located at the LMF and TRPs are providing CIRs as input to the model (one CIR per TRP). The positioning accuracy is evaluated for different numbers of TRPs: 
[bookmark: _Ref127199823]Table 3. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR
2*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.18K
	3.26M
	2.4

	CIR
1*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	7.11K
	1.63M
	5.16


From the results shown in the Table 3 above, we can make the following observation:
Observation 1 : For direct AI/ML positioning, when the AI/ML model input is CIR (one CIR per TRP) and different numbers of TRPs are evaluated,
· The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
· Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity is reduced by more than 50% and computational complexity about 75% when reducing the number of TRPs from 18 to 4.
Dimension 2: Different numbers of CIR samples used as model input.
Dimension 2 is intended to study the positioning accuracy for different numbers of samples per CIR that are used as model input. 
As agreed in the RAN1 #111 meeting, the dimension NTRP * Nport * Nt of the model input CIR should be reported:
	Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


We have investigated the positioning performance dependency on the CIR length for both using 4 and 18 TRPs as model input. The results are shown in Table 4 and Table 5 below:
[bookmark: _Ref127199917]Table 4. Evaluation results for AI/ML model deployed on network-side, ResNet, 18 TRPs, different CIR lengths
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
18*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	12.91M
	0.5

	CIR
18*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	6.52M
	0.64

	CIR
18*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	3.36M
	0.71


[bookmark: _Ref127199925][bookmark: _Ref115273351]Table 5. Evaluation results for AI/ML model deployed on network-side, ResNet, 4 TRPs, different CIR lengths
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	3.34M
	0.85

	CIR
4*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	1.68M
	0.85

	CIR
4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.19


From the results shown in the Table 4 and Table 5 above, we can make the following observations:
Observation 2 : For direct AI/ML positioning, when the model input is CIR and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short CIR lengths while the computational complexity can be reduced significantly.
· For 18 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 32. The computational complexity can be reduced from 25.81M to 3.36M accordingly.
· For 4 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 64. The computational complexity can be reduced from 6.52M to 1.68M accordingly.
In addition to the model and computational complexity also the signaling overhead could become important in further studies. It is therefore worthwhile making the following observation:
Observation 3 : For direct AI/ML positioning, when the model input is CIR, compared to the initial assumptions of 18 TRPs and 256 samples per CIR as model input, the signaling payload could be reduced to 1/18 when going down to 4 TRPs and 64 samples per CIR, while still maintaining sub-meter level accuracy.
Dimension 3: Different number of PDPs used as model input
The AI/ML model is assumed to be located at the LMF and TRPs are providing PDPs as input to the model (one PDP per TRP). The positioning accuracy is evaluated for different numbers of TRPs. 
[bookmark: _Ref127199949]Table 6. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different number of TRPs
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.56

	PDP
18*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	50.07K
	14.97M
	0.65

	PDP
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP
2*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	4.82K
	2.05M
	2.8

	PDP
1*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	4.76K
	1.03M
	5.79


[bookmark: _Ref127199955]From the results in Table 6 we can make the following observation: 
Observation 4 : For direct AI/ML positioning, when the AI/ML model input is PDP (one PDP per TRP) and different numbers of TRPs are evaluated,
· The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
· Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity and computation complexity are both reduced by more than 70% when reducing the number of TRPs from 18 to 4.
Dimension 4: Different number of PDP samples used as model input
Similar to the impact of different CIR lengths we have also studied the impact of different PDP lengths. The results are shown in Table 7 below.
[bookmark: _Ref127210818]Table 7. Evaluation results for AI/ML model deployed on network-side, ResNet, 4 TRPs, different PDP lengths 
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	2.14M
	0.81

	PDP
4*4*64
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	1.08M
	0.95

	PDP
4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	0.92


From the results shown in the Table 7 above, we can make the following observations:
Observation 5 : For direct AI/ML positioning, when the model input is PDP and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short PDP lengths while the computational complexity can be reduced significantly.
· For 4 PDPs as model input, sub-meter level accuracy is still kept when the number of PDP samples is reduced from 256 to 32. The computational complexity can be reduced from 4.11M to 0.623M accordingly.
In addition to the model and computational complexity also the signaling overhead could become important in further studies. It is therefore worthwhile making the following observation:
Observation 6 : For direct AI/ML positioning, when the model input is PDP, compared to the initial assumptions of 18 TRPs and 256 samples per PDP as model input, the signaling payload could be reduced to 1/36 when going down to 4 TRPs and 32 samples per PDP, while still maintaining sub-meter level accuracy.
Dimension 5: Performance under different channel conditions
We also evaluated the model performance when using the reduced measurement reports under different channel conditions. 
Table 10. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR 4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.97

	CIR 4*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	15.43K
	6.52M
	0.88

	CIR 4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.19

	CIR 4*4*32
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	15.43K
	925K
	1.52

	PDP 4*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	0.84

	PDP 4*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	13.08K
	4.11M
	1.04

	PDP 4*4*32
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	0.92

	PDP 4*4*32
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	13.08K
	623K
	1.68


From the results shown in the Table 9 above, we can make the following observations: 
Observation 7 : For direct AI/ML positioning, when the model input type is CIR, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.21 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
Observation 8 : For direct AI/ML positioning, when the model input type is PDP, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.12 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
From the observed evaluation results it can be concluded that for achieving a given accuracy target, the necessary measurements to be collected vary depending on the channel conditions. In some scenarios for example a relatively short CIR/PDP is sufficient whereas in other environments they need to be longer. In a heavier NLOS scenario, a relatively short channel fingerprint associated with a UE position could be unique enough for the AI/ML model to distinguish from another UE position, so that the positioning accuracy could be maintained with a relatively short report. In general, the required payload size will vary for different conditions. 
Proposal 1 : At least for direct positioning, since the required measurement payload size to achieve a given accuracy target varies depending on deployment scenario and channel conditions, measurement reporting with flexible payload size should be supported.
[bookmark: _Ref127200058]Generalization studies
In the RAN1 #110 meeting, it was agreed that the following aspects of the model generalization capability of the AI/ML based positioning are considered to be studied and evaluated by RAN1:
	Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(a) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(b) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(c) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE Tx TEG).


In this section, the dataset composition and the performance results are presented for a series of robustness studies according to the above agreements for direct AI/ML positioning. 
Dimension 1: Different drops.
Dimension 1 is intended for the challenges brought by the loss of spatial consistency when inference happens in a new drop outside the training dataset. 
[bookmark: _Ref127199704]Table 8. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.62

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	52.42K
	25.81M
	0.45

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	25000
	5000
	34 K
	25.81M
	>10

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, 5 Drops mixed
	{60%, 6m, 2m}, Drop 2(outside of the trained Drops) 
	25000 (5000/drop)
	5000
	34 K
	25.81M
	8.04

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, 5 Drops mixed
	{60%, 6m, 2m}, Drop 1 (inside the trained Drops)
	25000 (5000/drop)
	5000
	34 K
	25.81M
	1.28

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1 & 2 mixed
	{60%, 6m, 2m}, Drop 1 (inside the trained Drops)
	25000 (12500/drop)
	5000
	34 K
	25.81M
	0.69


From the results shown in the Table 8 above, we can make the following observations: 
Observation 9 [bookmark: _Ref115430423]: When the inference dataset and the training dataset are from different drops, direct AI/ML positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 10 [bookmark: _Ref115430438]: For direct AI/ML positioning, enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 11 [bookmark: _Ref115430446]: For direct AI/ML positioning, the positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.
Dimension 2: Clutter parameters.
Dimension 2 is intended for the challenges brought by the loss of spatial consistency plus the unlearned channel characteristics when inference happens with a different distribution of obstacles than in the training dataset. 
[bookmark: _Ref127199732]Table 9. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{40%, 2m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	34 K
	25.81M
	>10

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m} & {40%, 2m, 2m} mixed, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000 (12500/ paras)
	5000
	34 K
	25.81M
	0.86

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m} & {40%, 2m, 2m} mixed, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000 (12500/ paras)
	5000
	34 K
	25.81M
	0.88


From the results shown in the Table 9 above, we can make the following observations: 
Observation 12 [bookmark: _Ref111140362][bookmark: _Ref115430457]: For direct AI/ML positioning, when the channel parameters of the inference dataset and the training dataset are different, direct AI/ML positioning model provides poor generalization performance.
Observation 13 [bookmark: _Ref111140395][bookmark: _Ref115430472]: For direct AI/ML positioning, when the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.
Dimension 3: Network synchronization error.
Dimension 3 is intended for the challenges brought by non-ideal conditions affecting the time-domain channel characteristics when a random synchronization error occurs in channel measurement. 
[bookmark: _Ref127199743]Table 11. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without network synchronization error
	With network synchronization error @50ns
	25000
	5000
	34 K
	25.81M
	>10

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	5000
	34 K
	25.81M
	3.02

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With network synchronization error @0&30&40&50ns
	With network synchronization error @0&30&40&50ns
	25000 (6250/ paras)
	5000 (1250/ paras)
	34 K
	25.81M
	2.51

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With network synchronization error @0&30&40&50ns
	With network synchronization error @50ns
	25000 (6250/ paras)
	5000 
	34 K
	25.81M
	4.28


From the results shown in the Table 11 above, we can make the following observations: 
Observation 14 [bookmark: _Ref115430481]: For direct AI/ML positioning, when the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, direct AI/ML positioning model provides poor generalization performance. 
Observation 15 [bookmark: _Ref115430489]: For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 16 [bookmark: _Ref115430502]: For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.
According to the evaluation results shown in the Table 11 above, the positioning performance of the AI model with CIR input will degrade when the network synchronization error exists. In order to improve the generalization performance of the AI model, we need to find solutions that can address the impact of the network synchronization error. Considering the PRU is deployed to obtain labels, the network synchronization error may be solved by using PRUs for calibration.
Dimension 4: UE timing error.
Dimension 4 is intended for the challenges brought by the non-ideal conditions affecting the time-domain channel characteristics when a random UE timing error occurs in channel measurement. 
[bookmark: _Ref127199796]Table 12. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without UE timing error
	With UE timing error @10ns
	25000
	5000
	34 K
	25.81M
	3.12

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With UE timing error @10ns
	With UE timing error @10ns
	25000
	5000
	34 K
	25.81M
	0.61

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With UE timing error @0&10&20&30ns
	With UE timing error @0&10&20&30ns
	25000 (6250/ paras)
	5000 (1250/ paras)
	34 K
	25.81M
	0.68

	CIR
18*4*256
	UE coordinates
	UE coordinates
	With UE timing error @0&10&20&30ns
	With UE timing error @30ns
	25000 (6250/ paras)
	5000
	34 K
	25.81M
	0.89


From the results shown in the Table 12 above, we can make the following observations: 
Observation 17 [bookmark: _Ref115430511]: For direct AI/ML positioning, when the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the direct AI/ML positioning model provides poor generalization performance. 
Observation 18 [bookmark: _Ref115430520]: For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 19 [bookmark: _Ref115430528]: For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.
1.1.3 Label reduction studies
Dimension 1: Different training dataset sizes.
In the RAN1 #111 meeting, it was agreed to study the impact of the size of the training dataset:
	Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.


[bookmark: _Ref127215129]We have carried out evaluations for 4 TRPs where both the CIR and PDP are used as model input. The results for training dataset sizes of 5000, 10000, 15000 and 25000 samples are compared and the results are shown in Table 13 and Table 14 below.
[bookmark: _Ref127212081]Table 13. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different sizes of training dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	15.43K
	3.34M
	0.85

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	15000
	5000
	15.43K
	3.34M
	1.14

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	10000
	5000
	15.43K
	3.34M
	1.3

	CIR
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	5000
	5000
	15.43K
	3.34M
	2.75


[bookmark: _Ref127215136][bookmark: _Ref101888779][bookmark: _Ref101897960]Table 14. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different sizes of training dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	25000
	5000
	13.08K
	2.14M
	0.81

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	15000
	5000
	13.08K
	2.14M
	0.99

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	10000
	5000
	13.08K
	2.14M
	1.11

	PDP
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	5000
	5000
	13.08K
	2.14M
	1.83


From Table 13 and Table 14 above, we can make the following observation:
Observation 20 : For direct AI/ML positioning, when the model input is PDP or CIR, over different dataset sizes for training, the performance of AI/ML-based fingerprint positioning decreases when the training dataset becomes smaller. In general, less complex models converge faster and need less labels to achieve a given accuracy, e.g.,
· 4 TRPs with length-128 PDP-based fingerprinting can provide sub-meter accuracy with training 15,000 samples, whereas the more complex CIR based model requires up to 25,000 samples for the same input dimensions.
Dimension 2: Pre-trained model with model updating
In addition to mixing the datasets in the generalization studies in Section 3.1.3, performance gain brought by fine-tuning is also studied in this paper. And the evaluation results of fine-tuning for direct AI/ML positioning are presented in below15.
[bookmark: _Ref127215180]Table 15. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	1000
	5000
	52.42K
	25.81M
	2.86

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	1000
	5000
	52.42K
	25.81M
	3.1

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without network synchronization error
	With network synchronization error @50ns
	With network synchronization error @50ns
	25000
	5000
	5000
	52.42K
	25.81M
	8.47

	CIR
18*4*256
	UE coordinates
	UE coordinates
	Without UE timing error
	With UE timing error@20ns
	With UE timing error@20ns
	25000
	5000
	5000
	52.42K
	25.81M
	1.13


As for the evaluated aspect in the generalization studies - Different Drops, the model trained with 25000 samples in Drop 1 with {60%, 6m, 2m} setting is fine-tuned with 1000 samples in Drop 2 with {60%, 6m, 2m} setting. And then the fine-tuned model is inferred in the inference dataset in Drop 2 with {60%, 6m, 2m} setting. From the results shown in the15 above, we can make the following observation: 
Observation 21 [bookmark: _Ref115430539]: From the model updating evaluation results of the above aspect - Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance.
As for the evaluated aspect in the generalization studies - Clutter parameters, the model trained with 25000 samples in Drop 1 with {40%, 2m, 2m} setting is fine-tuned with 1000 samples in Drop 1 with {60%, 6m, 2m} setting. And then the fine-tuned model is inferred in the inference dataset in Drop 1 with {60%, 6m, 2m} setting. From the results shown in the 15 above, we can make the following observation:
Observation 22 [bookmark: _Ref115430547]: From the model updating evaluation results of the above aspect - Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance.
As for the evaluated aspect in the generalization studies - Network synchronization error, the model trained with 25000 samples without network synchronization error is fine-tuned with 5000 samples with network synchronization error @50ns. And then the fine-tuned model is inferred in the inference dataset with network synchronization error @50ns. From the results shown in the 15 above, we can make the following observation:
Observation 23 [bookmark: _Ref115430571]: From the model updating evaluation results of the above aspect - Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.
And for the evaluated aspect in the generalization studies - UE timing error, the model trained with 25000 samples without UE timing error is fine-tuned with 5000 samples with UE timing error@20ns. And then the fine-tuned model is inferred in the inference dataset with UE timing error@20ns. From the results shown in the 15 above, we can make the following observation:
Observation 24 [bookmark: _Ref115430581]: From the model updating evaluation results of the above aspect - UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance.
According to the evaluation results of the above evaluated scenarios for model updating, the positioning performance of the AI model is improved significantly except for the presence of a network synchronization error. Considering the PRU is deployed to obtain labels, the network synchronization error may be solved by using PRU to calibrate.
We therefore make the following proposal: 
Proposal 2 [bookmark: _Ref115430300]: Model updating should be supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings.
In the RAN1 #111 meeting, it was agreed to study the impact of the amount of fine-tuning data:
	Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.


And the evaluation results of using different sizes of fine-tuning dataset for direct AI/ML positioning with CIR as the model input are presented in Table 16.
[bookmark: _Ref127215835]Table 16. Evaluation results for AI/ML model deployed on network-side, ResNet, CIR, different sizes of fine-tuning dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000
	1000
	5000
	52.42K
	25.81M
	2.86

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	3000
	5000
	52.42K
	25.81M
	1.35

	CIR
18*4*256
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	5000
	52.42K
	25.81M
	0.83


From the results shown in the Table 16 above, we can make the following observation:
Observation 25 : For direct AI/ML positioning, when the model input is CIR, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain sub-meter level accuracy.
And the evaluation results of using different sizes of fine-tuning dataset for direct AI/ML positioning with PDP as the model input are presented in Table 17.
[bookmark: _Ref127293936]Table 17. Evaluation results for AI/ML model deployed on network-side, ResNet, PDP, different sizes of fine-tuning dataset
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	PDP 
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	1000
	5000
	13.08K
	2.14M
	4.3

	PDP 
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	3000
	5000
	13.08K
	2.14M
	2.12

	PDP 
4*4*128
	UE coordinates
	UE coordinates
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	25000
	5000
	5000
	13.08K
	2.14M
	1.5


From the results shown in the Table 17 above, we can make the following observation:
Observation 26 : For direct AI/ML positioning, when the model input is PDP, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain meter level accuracy.
[bookmark: _Ref115277470]Performance evaluations of AI/ML-based LOS/NLOS identification
Simulation assumptions
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform for the AI/ML-based LOS/NLOS identification sub use case according to the defined scenario assumptions in the Appendix A with FR1 settings and the evaluation is conducted under clutter parameters of {40%, 2m, 2m}. The implementation details for our evaluation on AI/ML-based LOS/NLOS identification are reported in tables with the format agreed in RAN1 #110bis e-meeting.
The model structure for our implementation is CNN. The normalized PDP is selected to be the model input for both training and inference, and the label for training are ideal LOS/NLOS identifications and the output of model inference are LOS/NLOS probabilities. Accordingly, the pre-processing is to obtain the PDP from the measured channel vector/matrix. And the dataset composition for AI/ML-based LOS/NLOS identification is also reported in Table 18. Note that only a relatively small training dataset size is needed for the AI/ML model applied for this sub use case. 
The training dataset consists of different numbers of samples, where 1 sample denotes the PDP obtained at each of the 1 gNBs from the SRS transmission by 1 UE, with Nport receiving ports for each gNB. And the number of time domain samples used for the evaluation is Nt, so the input dimensions are reported as 1 * Nport * Nt.
As shown in Table 18, the accuracy of the AI/ML-based LOS/NLOS identification solution with 4 gNB receiving ports can achieve 0.353m, while the baseline method provides positioning accuracy error of more than 6m @90%. The reason is that for a small number of antennas, the traditional method cannot provide enough resolution to correctly identify with a high probability on whether a path is LOS or NLOS. Therefore, for the widely deployed commercial RF modules with small antenna ports for indoor deployment, using AI/ML-based LOS/NLOS identification solution is meaningful. 
[bookmark: _Ref118371437]Table 18. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(Single-TRP, same model for N TRPs)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%) 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	18000
	9000
	582
	192K
	0.353


[bookmark: _Ref101791089]From the results shown in the Table 18 above, we can make the following observation:
Observation 27 [bookmark: _Ref111140436]: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
The complexity of the AI/ML model for 4 BS receiving antennas applied is also shown in Table 18. It can be seen that AI/ML model only needs very few parameters and does not require a large number of FLOPs compared to the models used in other use cases, e.g., direct AI/ML positioning as given in Table 8. However, still the performance improvement compared to the baseline is significant.
Observation 28 [bookmark: _Ref102171329]: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
1.1.4 Generalization studies
In this section, the dataset composition and the performance results of AI/ML-based LOS/NLOS identification for a series of generalization studies according to the agreements referred in Section 3.1.2 are presented. Also in the RAN1 #110bis e-meeting, it was agreed that the following aspects of the model generalization capability of the AI/ML based positioning are considered to be studied and evaluated by RAN1:
	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)


The generalization studies of AI/ML-based LOS/NLOS identification just focus on these two aspects: Clutter parameters and InF scenarios. That is because the dataset used for the AI/ML-based LOS/NLOS identification use case is not generated with spatial consistency, so the challenge brought by the different drops exist already in the baseline evaluation results shown in the Table 18. Meanwhile, since the model input of the AI/ML-based LOS/NLOS identification use case is a single-TRP construction, the network synchronization error and the UE timing error does no longer affect the model.
For AI/ML-based LOS/NLOS identification, the identification rate is defined to be the intermediate performance metric to evaluate the model’s generalization performance:
Identification rate  = 
Where  is the LOS percentage, while  is the NLOS percentage.
In this section, the dataset composition and the performance results for a series of robustness studies according to the generalization capability agreements for AI/ML-based positioning are presented.
Dimension 1: Clutter parameters.
Dimension 1 is intended for the challenges brought by the unlearned channel characteristics when inference happens with a different distribution of obstacles than in the training dataset. 
[bookmark: _Ref127216278]Table 19. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity (Single-TRP, same model for N TRPs)
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.2%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {60%, 6m, 2m}
	18000
	9000
	582
	192K
	98.6%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-DH {40%, 3m, 5m}
	18000
	9000
	582
	192K
	97.7%


From the results shown in the Table 19 above, we can make the following observation: 
Observation 29 [bookmark: _Ref115430633]: When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Dimension 2: InF scenarios.
Dimension 2 is intended for the challenges brought by the unlearned channel characteristics when inference happens in an unseen-distributed environment different from the training dataset.
[bookmark: _Ref127216288]Table 20. Evaluation results for AI/ML model deployed on network-side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity(Single-TRP, same model for N TRPs)
	Identification rate

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-SH {20%, 2m, 10m}
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	95.1%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	78%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-SH {20%, 2m, 10m}
	18000
	9000
	582
	192K
	97.8%

	PDP 1*4*256
	LOS probability
	Ideal LOS/NLOS identification (LOS probability=0% or 100%)
	InF-DH {40%, 2m, 2m}& InF-SH {20%, 2m, 10m} mixed
	InF-DH {40%, 2m, 2m}
	18000
	9000
	582
	192K
	97.3%


From the results shown in the Table 20 above, we can make the following observation:
Observation 30 : When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Observation 31 : When the mixed training dataset of InF-DH and InF-SH consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS identification rate is improved under both scenarios’ inference.
1.2 Performance evaluations of AI/ML-based TOA estimation
1.2.1 Simulation assumptions
As agreed in the RAN1 #109-e meeting, the dataset is generated from the simulation platform according to the defined scenario assumptions in the Appendix A with FR1 settings. And the implementation details for our evaluation on AI/ML-based TOA estimation are reported in tables with the format agreed in the RAN1 #110bis e-meeting. 
The model structure for our implementation is ResNet architecture. The inputs to the AI/ML model is the Channel Impulse Responses (CIR) and the output of model inference are the estimated TOA. The labels for training are the ground-truth TOA values. 
The dataset composition for AI/ML-based TOA estimation is also respectively reported in the result tables in the following sections. It should be noted that spatial consistency is required for channel modelling to be used in AI/ML-based TOA estimation, which is the same as for the direct AI/ML positioning. The dataset used for evaluation is generated with spatial consistency modeling based on the 2D-filtering method described in Appendix B, and modeled at channel modeling parameters including large scale parameters, small scale parameters and the absolute time of arrival. 
The training dataset consists of different numbers of samples, where 1 sample denotes the CIR obtained at each of the NTRP gNBs from the SRS transmission by 1 UE, with Nport receiving ports for each gNB. And the number of time domain samples used for the evaluation is Nt, so the input dimensions are reported as NTRP * Nport * Nt. It is worth noting that AI/ML-based TOA estimation can be utilized based on the CIR associated with single TRP, and also performed based on CIRs from Multi-TRP. For the former construction, we utilized N models with same structure to estimate TOAs of N TRPs. While for the latter one, a single centralized model uses the CIR of multiple TRPs as the input, and outputs the multiple TOAs of multiple TRPs. 
As shown in Table 21, the accuracy of the AI/ML-based TOA estimation solution with 1 gNB receiving port can respectively achieve positioning accuracy of 1.25m and 1.43m under {60%, 6m, 2m} and {40%, 2m, 2m} settings when using Multi-TRP construction with one centralized model. And it can respectively achieve positioning accuracy of 0.72m and 0.81m under {60%, 6m, 2m} and {40%, 2m, 2m} settings when using Single-TRP with N models for N TRPs setting.

[bookmark: _Ref131097705]Table 21. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(For Single-TRP, N models for N TRPs; For Multi-TRP, one centralized model)
	ToA estimation accuracy at CDF=90% (m)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	AI/ML

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.88
	1.25

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	0.84
	1.43

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}
	{60%, 6m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.45
	0.72

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}
	{40%, 2m, 2m}
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	0.55
	0.81


From the results shown in the Table 21 above, we can make the following observation:
Observation 32 : From the evaluation results, it is observed that AI/ML-based TOA estimation could significantly improve the positioning accuracy in NLOS environments both in Multi-TRP and Single-TRP construction.
Generalization studies
In the RAN1 #110 meeting, it was agreed that the following aspects of the model generalization capability of the AI/ML based positioning are considered to be studied and evaluated by RAN1:
	Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
(d) Different drops
· Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
(e) Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
(f) Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
· UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE Tx TEG).


In this section, the dataset composition and the performance results are presented for different drops and different clutter parameters robustness studies according to the above agreements for direct AI/ML positioning. 
Dimension 1: Different drops.
Dimension 1 is intended for the challenges brought by the loss of spatial consistency when inference happens in a new drop outside the training dataset. 
[bookmark: _Ref131100379]Table 22. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(For Single-TRP, N models for N TRPs; For Multi-TRP, one centralized model)
	ToA estimation accuracy at CDF=90% (m)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	AI/ML

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	>10
	>10

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 2
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	>10
	>10

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 2
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	>10
	>10

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 2
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	>10
	>10


From the results shown in the Table 22 above, we can make the following observations: 
Observation 33 : When the inference dataset and the training dataset are from different drops, AI/ML-based TOA estimation model provides poor generalization performance.
Dimension 2: Clutter parameters.
Dimension 2 is intended for the challenges brought by the unlearned channel characteristics when inference happens with a different distribution of obstacles than in the training dataset.
[bookmark: _Ref131149746]Table 23. Evaluation results for AI/ML model deployed on network-side, ResNet
	Model input(NTRP * Nport * Nt)
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity 
(For Single-TRP, N models for N TRPs; For Multi-TRP, one centralized model)
	ToA estimation accuracy at CDF=90% (m)
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML
	AI/ML

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	>10
	>10

	CIR 18*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	24000
	5000
	176.5K, one centralized model
	45.19M, one centralized model
	>10
	>10

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{60%, 6m, 2m}, Drop 1
	{40%, 2m, 2m}, Drop 1
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	>10
	>10

	CIR 1*1*256
	TOA
	Ideal LOS TOA 
	{40%, 2m, 2m}, Drop 1
	{60%, 6m, 2m}, Drop 1
	24000
	5000
	175.4K, N models for N TRPs
	7.98M, N models for N TRPs
	>10
	>10


From the results shown in the Table 23 above, we can make the following observations:
Observation 34 : When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based TOA estimation model provides poor generalization performance.
Conclusion
The contribution mainly discusses evaluations on each potential enhancement for positioning accuracy improvements, based on which the following proposals and observations are made:
Proposal 1: At least for direct positioning, since the required measurement payload size to achieve a given accuracy target varies depending on deployment scenario and channel conditions, measurement reporting with flexible payload size should be supported. 
Proposal 2: Model updating should be supported to improve the performance under the presence of UE timing errors and for the occurrence of the unlearned channel characteristics, including unseen drops and clutter settings.
Observation 1: For direct AI/ML positioning, when the AI/ML model input is CIR (one CIR per TRP) and different numbers of TRPs are evaluated,
· The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
· Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity is reduced by more than 50% and computational complexity about 75% when reducing the number of TRPs from 18 to 4.
Observation 2: For direct AI/ML positioning, when the model input is CIR and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short CIR lengths while the computational complexity can be reduced significantly.
· For 18 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 32. The computational complexity can be reduced from 25.81M to 3.36M accordingly.
· For 4 CIRs as model input, sub-meter level accuracy is still kept when the number of CIR samples is reduced from 256 to 64. The computational complexity can be reduced from 6.52M to 1.68M accordingly.
Observation 3: For direct AI/ML positioning, when the model input is CIR, compared to the initial assumptions of 18 TRPs and 256 samples per CIR as model input, the signaling payload could be reduced to 1/18 when going down to 4 TRPs and 64 samples per CIR, while still maintaining sub-meter level accuracy.
Observation 4: For direct AI/ML positioning, when the AI/ML model input is PDP (one PDP per TRP) and different numbers of TRPs are evaluated,
· The positioning accuracy decreases slightly when the number of TRPs is reduced from 18 to 4. But to maintain sub-meter level accuracy, the number of TRPs should be at least 4.
· Model and computational complexity decrease significantly with a smaller number of TRPs. The model complexity and computation complexity are both reduced by more than 70% when reducing the number of TRPs from 18 to 4.
Observation 5: For direct AI/ML positioning, when the model input is PDP and consists of different numbers of time domain samples, sub-meter level accuracy can be maintained with short PDP lengths while the computational complexity can be reduced significantly.
· For 4 PDPs as model input, sub-meter level accuracy is still kept when the number of PDP samples is reduced from 256 to 32. The computational complexity can be reduced from 4.11M to 0.623M accordingly.
Observation 6: For direct AI/ML positioning, when the model input is PDP, compared to the initial assumptions of 18 TRPs and 256 samples per PDP as model input, the signaling payload could be reduced to 1/36 when going down to 4 TRPs and 32 samples per PDP, while still maintaining sub-meter level accuracy.
Observation 7: For direct AI/ML positioning, when the model input type is CIR, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.21 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32. 
Observation 8: For direct AI/ML positioning, when the model input type is PDP, the positioning accuracy for the scenario setting {60%, 6m, 2m} decreases by 0.12 meters when the number of input time domain points is reduced from 256 to 32. While the positioning accuracy for the scenario setting {40%, 2m, 2m} decreases by 0.64 meters when the number of input time domain points is reduced from 256 to 32.
Observation 9: When the inference dataset and the training dataset are from different drops, direct AI/ML positioning model provides poor generalization performance. But when the mixed training dataset consists of samples from the same drop as the inference dataset, the generalization performance is improved.
Observation 10: For direct AI/ML positioning, enriching the composition of the mixed training dataset can improve unseen drop’s positioning accuracy.
Observation 11: For direct AI/ML positioning, the positioning performance for a seen drop improves when the amount/ratio of data samples from that drop in the mixed training dataset increases.
Observation 12: For direct AI/ML positioning, when the channel parameters of the inference dataset and the training dataset are different, direct AI/ML positioning model provides poor generalization performance.
Observation 13: For direct AI/ML positioning, when the mixed training dataset consists of samples with the same channel parameters as the inference dataset, the positioning performance is improved and reaches the sub-meter level.
Observation 14: For direct AI/ML positioning, when the model is trained without network synchronization error but inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, direct AI/ML positioning model provides poor generalization performance. 
Observation 15: For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with the standard deviation value T_1 = 50ns, the positioning performance is improved compared with trained without error. 
Observation 16: For direct AI/ML positioning, when the model is both trained and inferred with the added network synchronization error randomly distributed with mixed T_1 = 0&30&40&50ns, the positioning performance is improved compared with trained without error. The larger synchronization error the network have, the poorer positioning performance they will have.
Observation 17: For direct AI/ML positioning, when the model is trained without UE timing error but inferred with the added UE timing error randomly distributed with the standard deviation value T_1 = 10ns, the direct AI/ML positioning model provides poor generalization performance. 
Observation 18: For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with T_1 = 10ns, the positioning performance is improved compared with trained without error. 
Observation 19: For direct AI/ML positioning, when the model is both trained and inferred with the added UE timing error randomly distributed with mixed T_1 = 0&10&20&30ns, the positioning performance is improved compared to when trained without error.
Observation 20: For direct AI/ML positioning, when the model input is PDP or CIR, over different dataset sizes for training, the performance of AI/ML-based fingerprint positioning decreases when the training dataset becomes smaller. In general, less complex models converge faster and need less labels to achieve a given accuracy, e.g.,
· 4 TRPs with length-128 PDP-based fingerprinting can provide sub-meter accuracy with training 15,000 samples, whereas the more complex CIR based model requires up to 25,000 samples for the same input dimensions.
Observation 21: From the model updating evaluation results of the above aspect - Different Drops, on top of the dataset with large amount of samples from a different drop, fine-tuned with a relatively small amount of samples from the same drop as the inference dataset will be helpful to improve the generalization performance.
Observation 22: From the model updating evaluation results of the above aspect - Clutter parameters, on top of the dataset with large amount of samples from a different clutter setting, fine-tuned with a relatively small amount of samples from the same clutter setting as the inference dataset will be helpful to improve the generalization performance.
Observation 23: From the model updating evaluation results of the above aspect - Network synchronization error, on top of the dataset with large amount of samples without network synchronization error, fine-tuned with a relatively small amount of samples with the same added network synchronization error randomly distributed as the inference dataset will be helpful to improve the generalization performance but the performance is still poor. Fine-tuning helps less in solving the network synchronization error.
Observation 24: From the model updating evaluation results of the above aspect - UE timing error, on top of the dataset with large amount of samples without UE timing error, fine-tuned with a relatively small amount of samples with the same added UE timing error randomly distributed as the inference dataset will be helpful a lot to improve the generalization performance.
Observation 25: For direct AI/ML positioning, when the model input is CIR, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain sub-meter level accuracy.
Observation 26: For direct AI/ML positioning, when the model input is PDP, over different dataset sizes for fine-tuning, the positioning accuracy increases when the size of fine-tuning dataset increases. At least 5000 samples are needed for fine-tuning to maintain meter level accuracy.
Observation 27: From the evaluation results, it is observed that for a small number of gNB antennas, AI/ML-based LOS/NLOS identification could significantly improve the positioning accuracy.
Observation 28: For AI/ML-based LOS/NLOS identification evaluation, the applied model only needs very small number of parameters and does not require tremendous FLOPs.
Observation 29: When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Observation 30: When the model is trained under the InF-DH scenario but inferred under the InF-SH scenario, the performance deteriorates significantly. But when trained under the InF-SH scenario and inferred under the InF-DH scenario, the AI/ML-based LOS/NLOS identification model provides great generalization performance of the intermediate LOS/NLOS Identification rate.
Observation 31: When the mixed training dataset of InF-DH and InF-SH consists of samples with the same scenarios as the inference dataset, the performance of the intermediate LOS/NLOS identification rate is improved under both scenarios’ inference.
Observation 32: From the evaluation results, it is observed that AI/ML-based TOA estimation could significantly improve the positioning accuracy in NLOS environments both in Multi-TRP and Single-TRP construction.
Observation 33: When the inference dataset and the training dataset are from different drops, AI/ML-based TOA estimation model provides poor generalization performance.
Observation 34: When the channel parameters of the inference dataset and the training dataset are different, AI/ML-based TOA estimation model provides poor generalization performance.
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[bookmark: _Ref110539202][bookmark: _Ref101883423]Simulation assumptions for the evaluated sub use cases:
	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m
[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}

	Note 1:	According to Table A.2.1-7 in TR 38.802



[bookmark: _Ref118491585]Appendix B
Spatial consistency modeling for the direct AI/ML positioning sub use case:
	For modeling the spatial consistency, we adopt 2D-filtering method described as illustrated in Figure 5.
[image: ]
[bookmark: _Ref118491074]Figure 5 2D-filtering spatial consistency modelling according to 3GPP TR 38.901
In 3GPP, a spatial correlation of the small scale fading is introduced in the channel generation. Its procedure is given in TR 38.901, where cluster-specific random variables are simulated spatially consistently for drop-based simulations. To generate spatially consistent random variables at specific coordinates (x, y) using the 2D-filtering method, the following steps are taken:
· Step 1: Divide the simulation area into correlated grids of custom length and width (usually set to be smaller than correlation distances);
· Step 2: Generate independent and identically distributed random variables for each vertex of one correlated grid; 
· Step 3: Deliver the generated random variables to the exponential decaying filter in the two dimensional horizontal plane, which is used for spatially consistent LSP (Large Scale Parameters) generation in current 3GPP 3D channel model. Then the random variables at each grid are correlated following the exponential function with respect to correlation distances in the two dimensional horizontal plane.
· Step 4: Determine which grid the UE coordinate (x, y) belongs to, and generate the UE’s channel with the random variables of this grid. 
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