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[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
[bookmark: _Ref129681832]During RAN1#112, the major conclusions/agreements and working assumptions reached among companies are related to the attributes/performance KPIs and their corresponding definitions to be collected by companies when report evaluation results. Those attributes/KPIs were thus captured in different templates as working assumptions. Different templates are to be used for different training types and separate evaluation templates are to be used to collect results without model generalization vs. results from model generalization cases.  
In this contribution, we mainly discuss some of the observations from our evaluation results and share our results using the templates from FL, focusing on CSI compression sub use case belonging to the following areas:
· Performance evaluation / comparison across various code size and quantization level combinations when applying vector quantization and scalar quantization techniques.
· Evaluation of model generalization across scenarios.
In the study, we use eigenvectors of the channel matrices as input to CSI generation part and as the output from the CSI reconstruction part.

Discussion on performance impact evaluation across code size and quantization level combinations
When we discuss minimizing the CSI feedback overhead at the UE side while maintaining decent CSI reconstruction performance at the BS side, there is typically a tradeoff between the air interface overhead and performance, e.g., measured by SGCS. 
Depending on the quantization method applied, the air interface overhead (in bits) is determined differently. When utilizing scalar quantization method, the number of overhead bits is determined based on the output size of the encoder part of the autoencoder model and the quantization level (e.g., number of bits per code or per output element). When utilizing vector quantization, the overhead is mainly determined by the quantization level or codebook size, e.g., 10 bits would be the overhead if the vector quantization codebook size is 1024. It is the combination of output size of the encoder part of the autoencoder and the quantization level that will jointly determine the reconstruction performance.   
To understand how the size of encoder output, referred to as code size in this contribution and the corresponding quantization level may impact the performance, we conducted studies across various combinations of different size of the encoder output (CSI generation part before quantization) and different quantization level that is applied to the encoder output. The purpose of the study is to understand whether there is a sweet spot that can help us decide the proper balance/tradeoff between overhead and performance.
Settings of the study
We study the performance impact by leveraging both scalar quantization method and vector quantization method and we discuss the results of the two methods separately.
For scalar quantization method, we use the settings/configurations as illustrated in Table 2.1-1.

Table 2.1-1: Code size and quantization level settings for Scalar Quantization method
	Code size
	8
	16
	32
	64

	Quantization level (bits per code)
	3 bits – 10 bits
	3 bits – 10 bits
	3 bits – 10 bits
	3 bits – 10 bits

	Total number of overhead bits after quantization
	24 bits – 80 bits
	48 bits – 160 bits
	96 bits – 320 bits
	192 bits – 640 bits



For vector quantization method, Table 2.1.-2 describes the settings/configurations.

Table 2.1-2: Code size and quantization level settings for Vector Quantization method
	Code size
	32
	64
	128

	Quantization level (bits per vector or encoder output)
	9 bits – 14 bits
	9 bits – 14 bits
	9 bits – 14 bits

	Total number of overhead bits after quantization
	9 bits – 14 bits
	9 bits – 14 bits
	9 bits – 14 bits



Results from the study
For scalar quantization, Table 2.2-1 describes the detailed SGCS performance across all the code size and quantization level combinations depicted in the previous section (Table 2.1-1).

Table 2.2-1: SGCS comparison across various code size and quantization level combinations when utilizing Scalar Quantization method
	Code size / Quantization level
	8
	16
	32
	64

	3 bits/code
	0.793346
	0.8692189
	0.9255881
	0.961385

	4 bits/code
	0.869523
	0.9306231
	0.9643229
	0.981690

	5 bits/code
	0.914717
	0.9544118
	0.9754388
	0.9870765

	6 bits/code
	0.931737
	0.9626237
	0.9783951
	0.9884781

	7 bits/code
	0.936774
	0.9648578
	0.9791557
	0.9888442

	8 bits/code
	0.938166
	0.9653921
	0.9793558
	0.9889379

	9 bits/code
	0.938463
	0.9655241
	0.9794007
	0.9889633

	10 bits/code
	0.938568
	0.9655632
	0.9794153
	0.9889687



To interpret the impact more easily, Figure 2.2-1 visualizes the performance numbers for Scalar Quantization.Figure 2.2-1: SGCS comparison across various code size and quantization level combinations for Scalar Quantization

From Figure 2.2-1, we can easily observe that performance improvement is very little, or performance saturates when quantization level reaches 6 bits. This observation applies to all code sizes from 8 to 64. 
For vector quantization, Table 2.2-2 describes the detailed SGCS performance across all the code size and quantization level combinations depicted in the previous section (Table 2.1-2).
Figure 2.2-2 depicts the performance/SGCS impact when using different code size and codebook size combinations.
Table 2.2-2: SGCS comparison across various code size and quantization level combinations when utilizing Vector Quantization method
	Code size / Quantization level
	32
	64
	128

	9 overhead bits
	0.6120138
	0.6219793
	0.63725171

	10 overhead bits
	0.6743436
	0.6930799
	0.69752512

	11 overhead bits
	0.7350976
	0.751401
	0.76071956

	12 overhead bits
	0.7888944
	0.8098408
	0.82235104

	13 overhead bits
	0.8440014
	0.8645869
	0.88241305

	14 overhead bits
	0.8944034
	0.9128185
	0.92593642


Figure 2.2-2: SGCS comparison across various code size and quantization level combinations for Vector Quantization

From Figure 2.2-2, unlike scalar quantization, we observe that SGCS performance improves when quantization level increases when utilizing vector quantization. However, considerations like codebook sharing/transfer air interface overhead and storage space need to be investigated to determine the proper quantization level and code size to balance the tradeoff between performance and overhead. 
Observation 1: For CSI feedback compression sub use case, when utilizing scalar quantization (in quantization-aware training), SGCS performance improves with the number of quantization bits per code when lower number of bits are used (e.g., <= 6 bits per code observed in our study). However, SGCS performance saturates after quantization level reaches certain point and does not improve much beyond that point (e.g., around 6 bits per code observed in our study).
Observation 2: For CSI feedback compression sub use case, when utilizing scalar quantization (in quantization-aware training), SGCS performance improves when codesize (output size of the CSI generation part before quantization) increases; more noticeable gain is observed in smaller codesize region, e.g., from codesize 8 to codesize 16, particular when smaller number of quantization bits are used in our study, and the performance gain becomes smaller in larger codesize region, e.g., from codesize 32 to codesize 64, particular when larger number of quantization bits are used.
Observation 3: For CSI feedback compression sub use case, when utilizing vector quantization (in quantization-aware training), SGCS performance improves with the number of quantization bits per CSI output while the codesize (output size of the CSI generation part before quantization) increase does not impact performance significantly even though gradual improvement is observed. 
Proposal 1: For CSI feedback compression sub use case, when utilizing scalar quantization method to quantize each code in the output of the CSI generation part, determine the optimal quantization level, i.e., number of bits per code, based on the performance saturation point where performance improvement is no longer significant and the total number of overhead bits.
Proposal 2: For CSI feedback compression sub use case, when utilizing vector quantization method to quantize the entire output of the CSI generation part (i.e., a vector), determine the proper codesize and quantization level combination based on the balance/tradeoff between performance and overhead incurred in codebook storage and codebook transfer over the air interface.
Discussion on improving performance and robustness of vector quantization
Motivation and approach description
From the results discussed in the previous section by using a typical autoencoder-based CSI compression and reconstruction procedure as depicted in Figure 3-1, we observe utilizing vector quantization can more significantly reduce CSI overhead compared to scalar quantization-based approach, e.g., ~10 bits CSI overhead vs. > 100 bits CSI overhead. However, there is room for performance improvement as using the trained CSI generation part and the quantizer to directly predict which codebook entry to use as the CSI feedback may not always produce the optimal result in the situation that the new/unseen input (e.g., eigenvectors or channel matrix) falls in some region that is not well represented in the training dataset. In this section, we discuss mechanism to improve the performance of vector quantization, particular for low performance region.Figure 3-1: Typical autoencoder-based CSI compression and reconstruction

We use training collaboration Type 1 as a starting point, in which the AI/ML model for CSI compression is trained on the NW side and maintain most of the procedures as shown in Figure3-1 with some modifications. 
During the training phase, the training entity, e.g., gNB generates a CSI generation part, the corresponding vector quantization codebook, and a CSI reconstruction part. The quantization codebook and the CSI reconstruction part are delivered to the UE side (e.g., via model transfer) after training/testing is finished vs. delivering the CSI generation part to UE side. At the UE side, once it receives the quantization codebook and the CSI reconstruction part, it derives a CSI codebook by using the vector quantization codebook entries as input to the CSI reconstruction part of the AI/ML model, which is referred as CSI look-up-table (LUT) later in the document.  
During the inference/testing phase, for each testing sample/input (e.g., eigenvectors of channel matrix), instead of using the CSI generation part and the quantizer to generate the CSI feedback at the UE side, UE selects an entry from the LUT (derived during the training phase described above) based on the estimated CSI and a selection criterion, e.g., SGCS used in our study. The LUT entry that has the highest SGCS will be selected as the CSI feedback, and the index of the selected LUT entry will be reported to gNB. gNB recovers the CSI/eigenvectors using the same quantization codebook and the CSI reconstruction part and perform precoding (and MIMO transmission) based on the reconstructed CSI, then UPT will be determined accordingly in the simulation case.
In the simulation environment, we conducted our study (including model training and inference) based on the above procedures with some adjustments. Figure 3-2 depicts the procedures at AI/ML model training phase and Figure 3-3 describes the procedures during the model inference/testing phase that utilize our proposed method to determine the CSI feedback (i.e., selecting the best entry from the CSI LUT based on SGCS).
 Figure 3-3: Functional flow during AI/ML model inference/testing phase
Figure 3-2: Functional flow during AI/ML model training phase

Result evaluation
To better understand how various approaches perform, we compare SGCS performance across the following approaches: 
· The new approach which determines the CSI feedback by selecting the best-match CSI LUT entry based on the estimated CSI and SGCS.
· Typical AI/ML model-based approach that predicts the CSI feedback using the CSI generation part and vector quantizer/vector quantization codebook.
· AI/ML model-based approach without quantization.
· Rel-16 Type II codebook.
Figure 3.2-1 is the CDF comparison plot for the 4 approaches described above. 
From Figure 3.2-1, we can clearly observe that the new approach outperforms typical AI/ML model-based approach that predicts the CSI feedback using the CSI generation part and vector quantizer, particularly in the low performance region. The new approach also outperforms Rel-16 Type II codebook-based approach for ~85% of the testing samples.
The above-described procedures are used in the subsequent performance evaluation sections where vector quantization method is utilized.
Observation 4: For CSI feedback compression sub use case, determining CSI feedback by using a CSI look-up-table constructed from the CSI reconstruction part and a vector quantization codebook shows promising result compared to both Rel-16 Type II codebook-based approach and typical AI/ML model-based approach that uses the CSI generation part and vector quantizer/vector quantization codebook to predict the CSI feedback. Figure 3.2-1: SGCS comparison CDF across various CSI feedback approaches 

Proposal 3: For CSI feedback compression sub use case, further study the robustness and feasibility of using a CSI look-up-table (constructed from the CSI reconstruction part and a vector quantization codebook) based approach to determine the CSI feedback.

Discussions on evaluation results for CSI compression sub use case
In this section, we discuss the results of CSI compression sub use case for model generalization performance evaluation. The following generalization case is evaluated:
· Deployment scenarios: UMa and UMi
Evaluation of model generalization between UMa and UMi scenarios
Simulation configurations for dataset generation and evaluation settings
Table 4.1.1-1 below specifies the simulation configurations for generating the UMa and UMi datasets that we used to evaluate model generalization and the results included in this document.

Table 4.1.1-1: Simulation parameters for UMa/UMi dataset generation
	Parameter
	Value

	Duplex, Waveform 
	FDD, OFDM 

	Scenario
	Dense Urban (Macro/Micro only)

	Frequency Range
	FR1 only, 4GHz.

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ 

	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ for (rank 1)

	BS Tx power 
	44dBm for 20MHz

	Numerology: SCS
	30kHz for 4GHz

	UE distribution
	100% outdoor (3km/h) 



In RAN#110 [3], companies reached agreement on the following generalization evaluation cases.Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· 



Case 1 is scenario-based solution and can be considered as the baseline whose performance is the upper bound for the target scenario. In our study, we consider the source scenario is either UMa or UMi and the target scenario is also either UMi or UMa. The following settings are considered in our study:
· Case 1: AI/ML model is trained using dataset generated directly from the target scenario and the trained AI/ML model performs inference/test on a separate dataset also from the same scenario. For example, in the case that UMa is the target scenario, the AI/ML model is training using dataset generated from UMa and the testing dataset is generated also from UMa. 
· Case 2: AI/ML model is trained using dataset generated from the source, i.e., UMa scenario and the trained AI/ML model performs inference/test directly on a dataset generated from the target, which is a different scenario than the source, i.e., UMi scenario.
· Case 3: AI/ML model is trained using mixed datasets from the source, i.e., UMa scenario as well as the target, i.e., UMi scenario and the trained AI/ML model performs inference/test on a dataset generated from one of the 2 scenarios.
In the following sub sections, we discuss our study results at high level. The detailed results of our study for model generalization between UMa and UMi scenarios are available in the accompanied Excel file (under Tab “Deployment scenarios, rank=1”). Please refer to the Excel for the assumptions and other configuration details. 
Evaluation results
In our study of the model generalization, we use vector quantization method as it typically can reduce the CSI feedback much more than the scalar quantization method.  
Generalization Case 1
Table 4.1.2-1 summarizes the results and comparison among Case 1 (which is considered as baseline for the target scenario, i.e., UMa or UMi). For detailed results and assumptions, please refer to the accompanied Excel file.
Table 4.1.2-1: Generalization Case 1 performance for UMa and UMi scenarios
	Training scenario
	Testing scenario
	Dataset size
	CSI overhead (bits)
	SGCS

	
	
	Train
	Test
	
	

	UMa 4GHz
	UMa 4GHz
	47168
	9112
	13
	0.919497080

	UMi 4GHz
	UMi 4GHz
	47168
	9112
	13
	0.935937172



Generalization Case 2
For model generalization Case 2, the following 2 sub cases are evaluated:
a) The AI/ML model is trained using training dataset from UMa scenario and the trained AI/ML model performs inference/test on a dataset generated from UMi scenario
b) The AI/ML model is trained using training dataset from UMi scenario and the trained AI/ML model performs inference/test on a dataset generated from UMa scenario
Table 4.1.2-2 summarizes SGCS performance for the above 2 sub cases of generalization Case 2.

Table 4.1.2-2: Generalization Case 2 performance for “UMa to UMi” and “UMi to UMa” sub cases
	Training scenario
	Testing scenario
	Dataset size
	CSI overhead (bits)
	SGCS

	
	
	Train
	Test
	
	

	UMa 4GHz
	UMi 4GHz
	47168
	9112
	13
	0.76252299

	UMi 4GHz
	UMa 4GHz
	47168
	9112
	13
	0.78882595



Comparing the baseline performance, i.e., generalization Case 1 (as illustrated in Table 4.1.2-1) and the results from generalization Case 2 (as shown in Table 4.1.2-2), significant performance degradation is observed when using the AI/ML model trained with dataset generated from UMa scenario to directly perform inference on dataset generated from UMi scenario. Significant performance degradation is also observed when using the AI/ML model trained with dataset generated from UMi scenario to directly perform inference on dataset generated from UMa scenario.
Generalization Case 3
For model generalization Case 3, a mixed dataset containing data samples generated from both UMa scenario and UMi scenario is used to train the AI/ML model. After the training, the AI/ML model is used to perform inference on either a dataset generated from UMa scenario, or a dataset generated from UMi scenario. The performance is evaluated for the 2 sub cases separately.
Table 4.1.2-3 summarizes SGCS performance for the above 2 sub cases of generalization Case 3.

Table 4.1.2-3: Generalization Case 3 performance for using mixed-dataset-model to perform inference on UMa and UMi scenarios separately
	Training scenario
	Testing scenario
	Dataset size
	CSI overhead (bits)
	SGCS

	
	
	Train
	Test
	
	

	UMa 4GHz + UMi 4GHz
	UMa 4GHz
	94336
	9112
	13
	0.93695240

	
	UMi 4GHz
	94336
	9112
	13
	0.93017115



Comparing the results from generalization Case 2 (as illustrated in Table 4.1.2-2) and the results from generalization Case 3 (as shown in Table 4.1.2-3), it is evident that using mixed dataset from source scenario and target scenario (i.e., UMa and UMi scenarios in our study) has better performance during model inference phase than naively transfer the model trained using dataset from the source scenario to perform inference on the target scenario directly (i.e., when either the source scenario is UMa and the target scenario is UMi, or the source scenario is UMi and the target scenario is UMa). 
To understand more details of the performance, we plotted CDFs to compare the SGCS distributions among generalization Case1 (baseline for scenario-based model, i.e., training dataset is from UMa and testing dataset is also from UMa, or training dataset is from UMi and testing dataset is also from UMi), generalization Case2 (naïve model transfer, i.e., training dataset is from UMi and testing dataset is from UMa, or training dataset is from UMa and testing dataset is from UMi), and generalization Case3 (mixed dataset, i.e., training dataset is from both UMa and UMi and testing data is from UMa, or UMi).
Figure 4.1.2-1 depicts the SGCS CDF comparison among different generalization cases when the target scenario is UMa (meaning AI/ML model is to be used for this scenario):
· Case1: UMa model to predict testing samples from UMa scenario
· Case2: UMi model to predict testing samples from UMa scenario
· Case3: mixed dataset model to predict testing samples from UMa scenarioFigure 4.1.2-1: CDF for SGCS distribution comparison among UMa to UMa (Case1), UMi to UMa (Case2) and mixed dataset model to UMa (Case3)

From Figure 4.1.2-1 and the summarized performance results specified in Table 4.1.2-1, Table 4.1.2-2 and Table 4.1.2-3, we can observe that the SGCS performance for Case1, which is considered as the baseline for scenario-based model, is very decent with average SGCS of 0.92. Compared to Case1, the performance of Case 2, in which the AI/ML model trained using data from UMi is naively transferred to perform inference on data generated from UMa, is significantly degraded. For generalization Case 3, in which the AI/ML is trained using mixed datasets from UMa and UMi, then the trained model is used to perform inference on dataset from UMa, the performance is almost the same as the baseline result from scenario-based model with average SGCS of 0.94. 
Figure 4.1.2-2 depicts the SGCS distribution comparison among different generalization cases when the target scenario is UMi (meaning AI/ML model is to be used for this scenario):
· Case1: UMi model to predict testing samples from UMi scenario
· Case2: UMa model to predict testing samples from UMi scenario
· Case3: mixed dataset model to predict testing samples from UMi scenarioFigure 4.1.2-2: CDF for SGCS distribution comparison among UMi to UMi (Case1), UMa to UMi (Case2) and mixed dataset model to UMi (Case3)

We observe consistent behavior when the target scenario is UMi in our study. From Figure 4.1.2-2 and the summarized performance results specified in Table 4.1.2-1, Table 4.1.2-2 and Table 4.1.2-3, we can observe that the SGCS performance for Case1, which is considered as the baseline for scenario-based model (for UMi in this case), is also very decent with average SGCS of 0.94. Compared to Case1, the performance of Case 2, in which the AI/ML model trained using data from UMa is naively transferred to perform inference on data generated from UMi, is significantly degraded (average SGCS only reached 0.76). For generalization Case 3, in which the AI/ML is trained using mixed datasets from UMa and UMi, then the trained model is used to perform inference on dataset from UMi, the performance is almost the same as the baseline result for UMi (Case1) with average SGCS of 0.93.
Observation 5: For generalization Case 1, when the AI/ML model is trained using dataset generated from one scenario then performs inference on a dataset generated from the same scenario, performance (as measured by SGCS) is very decent, at least for UMa to UMa and UMi to UMi cases. 
Observation 6: For generalization Case 2, when the AI/ML model is trained using dataset generated from one scenario then performs inference on a dataset generated from another scenario, significant performance degradation is observed compared to the baseline performance (generalization Case 1), at least for UMa to UMi and UMi to UMa cases. 
Observation 7: For generalization Case 3, when the AI/ML model is trained using training dataset constructed by mixing datasets from multiple scenarios, then performs inference on one of the scenarios, the SGCS performance is comparable to the baselines (generalization Case 1), at least between UMa and UMi scenarios.
Proposal 4: For CSI feedback compression sub use case, if the goal is to use the AI/ML model to perform inference in multiple target scenarios, then using a mixed training dataset that is constructed from multiple scenarios, i.e., from those target scenarios, can be considered to improve performance.
System level performance evaluation results
In this section, we present our SLS result. The key system level simulation configuration parameters are the same as those used for dataset generation as specified in Table 4.1.1-1. All UEs are limited with rank 1 feedbacks and transmissions. The ML model’s input is based on ideal channel. 
During RAN1#112 meetings, companies reached agreement on using the following working assumption to group CSI feedback payloads into X, Y and Z ranges to facilitate discussion and result comparisons. The working assumption is captured below. Working Assumption
For the initial template for AI/ML-based CSI compression without generalization/scalability verification achieved in the working assumption in the RAN1#111 meeting, X, Y and Z are determined as:
· X is <=80bits
· Y is 100bits-140bits
· Z is >=230bits

Based on the above categorization of CSI feedback overhead, we constructed our study in the following areas:
· Rel-16 Type II codebook-based approach
· For each overhead range (X, Y and Z), select a configuration combination that generates CSI feedback overhead bits in that range.
· Calculate average UPT and 5% UPT based on system level simulation.
· AI/ML based approach
· For each overhead range (X, Y and Z), identify a combination of code size (output size of the encoder in the CSI generation part) and quantization level that generates CSI feedback overhead bits in that range.
· Based on the identified combination, train the AI/ML model (including the CSI generation part and CSI reconstruction part) and the quantizer/quantization codebook accordingly.
· Integrate the trained AI/ML model into system level simulation environment to perform scheduling and MCS selection and calculate average UPT and 5% UPT based on the system level simulation result. 
In our study, we adopt either vector quantization method or scalar quantization method depending on the identified CSI feedback overhead bits. For very small CSI overhead bits, e.g., < 14 bits, we use vector quantization method and for larger CSI overhead bits we use scalar quantization method to generate similar number of overheads as Rel-16 Type II codebook-based approach.
Table 5-1 describes the identified CSI overhead bits we use in our study in each of the X, Y and Z category.
Table 5-1: mapping between CSI overhead bits and X, Y, Z categories in our study
	Approach
	X (<= 80 bits)
	Y (100 – 140 bits)
	Z (>= 230 bits)

	Rel-16 Type II codebook
	49 bits
	130 bits
	242 bits

	AI/ML based
	13 bits (vector quantization) and 48 bits (scalar quantization)
	108 bits and 128 bits (scalar quantization)
	240 bits (scalar quantization)



In the following sub sections, we discuss our study results at high level. The detailed results of our study are available in the accompanied Excel file (under Tab “FTP, Max rank = 1”). Please refer to the Excel for assumptions, configuration, and result details. 
Figure 5-1 depicts the Mean UPT performance comparison between the baseline, i.e., Rel-16 Type II codebook-based approach and AI/ML based approach, Figure 5-2 shows the corresponding 5% UPT performance comparison, and Figure 5-3 shows the corresponding SGCS performance comparison. 
In the figures, orange dots are Rel-16 Type II codebook-based performance and blue dots represent the performance of AI/ML based approach using scalar quantization method across various CSI overhead bits selected based on CSI overhead categories X, Y and Z as agreed in RAN1#112 as described in Table 5-1. The green dot represents the performance of AI/ML based approach using vector quantization method (see Table 5-1). The dashed lines are used to connect the points together directly and the dotted lines are the corresponding polynomial fittings.Figure 5-2: 5% UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach
Figure 5-1: Mean UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach







Figure 5-3: SGCS comparison between Rel-16 Type II codebook-based approach and AI/ML based approach

From the above figures, we can observe noticeable performance gains in AI/ML based CSI compression compared to Rel-16 Type II codebook-based approach.
When using scalar quantization, Table 5-2 summarizes the Mean UPT comparison between AI/ML based CSI compression and Rel-16 Type II codebook-based baseline approach. Table 5-3 summarizes the 5% UPT comparison between AI/ML based CSI compression and Rel-16 Type II codebook-based baseline approach (with some interpolation). From both tables, the throughput gains from AI/ML-based CSI compression are more significant when number of overhead bits is low. For example, when CSI feedback is 50 bits, AI/ML based approach achieved 21.4% gain in Mean UPT gain and 54.5% gain in 5% UPT.

Table 5-2: Mean UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach for overhead category X, Y and Z
	Category
	Overhead bits
	Mean UPT (AI/ML)
	Mean UPT (Rel-16 Type II)
	Gain

	X
	50 bits
	~51
	~42
	21.4%

	Y
	130 bits
	~56
	51.4
	8.9%

	Z
	240 bits
	56.62
	~52
	8.9%

	Average
	
	13.1%




Table 5-3: 5% UPT comparison between Rel-16 Type II codebook-based approach and AI/ML based approach for overhead category X, Y and Z 
	Category
	Overhead bits
	5% UPT (AI/ML)
	5% UPT (Rel-16 Type II)
	Gain

	X
	50 bits
	~15
	~9.71
	54.5%

	Y
	130 bits
	~18.2
	14.65
	24.2%

	Z
	240 bits
	18.56
	~15.15
	22.5%

	Average
	
	33.7%



When using vector quantization method with only 13 CSI overhead bits, AI/ML-based approach achieves better Mean UPT and 5% UPT than Rel-16 Type II codebook-based baseline with 242 overhead bits.
Observation 8: For CSI feedback compression sub use case, when using scalar quantization AI/ML-based approach outperforms Rel-16 Type II codebook-based approach in all 3 overhead categories, X, Y and Z with ~13.1% average Mean UPT gain and ~33.7% average 5% UPT gain.
Observation 9: For CSI feedback compression sub use case, when using vector quantization, AI/ML-based approach with 13 CSI overhead bits achieves better Mean UPT and 5% UPT than Rel-16 Type II codebook-based approach with 10 times more overhead bits, e.g., 130 or 242 CSI bits. 

Conclusions
In this contribution, we summarized the evaluation results of CSI feedback compression sub use case when using eigenvectors as input/output of AI/ML model(s) and discussed our study on performance impact of both vector quantization and scalar quantization when quantization level changes across various encoder output sizes.  We also discussed our system level performance results and comparisons between using Rel-16 Type II codebook (baseline) and AI/ML based approaches. Our observations and proposals are as follows.
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Proposal 1: For CSI feedback compression sub use case, when utilizing scalar quantization method to quantize each code in the output of the CSI generation part, determine the optimal quantization level, i.e., number of bits per code, based on the performance saturation point where performance improvement is no longer significant and the total number of overhead bits.
Proposal 2: For CSI feedback compression sub use case, when utilizing vector quantization method to quantize the entire output the CSI generation part (i.e., a vector), determine the proper codesize and quantization level combination based on the balance/tradeoff between performance and overhead incurred in codebook storage and codebook transfer over the air interface.
Proposal 3: For CSI feedback compression sub use case, further study the robustness and feasibility of using a CSI look-up-table (constructed from the CSI reconstruction part and a vector quantization codebook) based approach to determine the CSI feedback.
Proposal 4: For CSI feedback compression sub use case, if the goal is to use the AI/ML model to perform inference in multiple target scenarios, then using a mixed training dataset that is constructed from multiple scenarios, i.e., from those target scenarios, can be considered to improve performance.
Observation 1: For CSI feedback compression sub use case, when utilizing scalar quantization (in quantization-aware training), SGCS performance improves with the number of quantization bits per code when lower number of bits are used (e.g., <= 6 bits per code observed in our study). However, SGCS performance saturates after quantization level reaches certain point and does not improve much beyond that point (e.g., around 6 bits per code observed in our study).
Observation 2: For CSI feedback compression sub use case, when utilizing scalar quantization (in quantization-aware training), SGCS performance improves when codesize (output size of the CSI generation part before quantization) increases; more noticeable gain is observed in smaller codesize region, e.g., from codesize 8 to codesize 16, particular when smaller number of quantization bits are used in our study, and the performance gain becomes smaller in larger codesize region, e.g., from codesize 32 to codesize 64, particular when larger number of quantization bits are used.
Observation 3: For CSI feedback compression sub use case, when utilizing vector quantization (in quantization-aware training), SGCS performance improves with the number of quantization bits per CSI output while the codesize (output size of the CSI generation part before quantization) increase does not impact performance significantly even though gradual improvement is observed. 
Observation 4: For CSI feedback compression sub use case, determining CSI feedback by using a CSI look-up-table constructed from the CSI reconstruction part and a vector quantization codebook shows promising result compared to both Rel-16 Type II codebook-based approach and typical AI/ML model-based approach that uses the CSI generation part and vector quantizer/vector quantization codebook to predict the CSI feedback. 
Observation 5: For generalization Case 1, when the AI/ML model is trained using dataset generated from one scenario then performs inference on a dataset generated from the same scenario, performance (as measured by SGCS) is very decent, at least for UMa to UMa and UMi to UMi cases. 
Observation 6: For generalization Case 2, when the AI/ML model is trained using dataset generated from one scenario then performs inference on a dataset generated from another scenario, significant performance degradation is observed compared to the baseline performance (generalization Case 1), at least for UMa to UMi and UMi to UMa cases. 
Observation 7: For generalization Case 3, when the AI/ML model is trained using training dataset constructed by mixing datasets from multiple scenarios, then performs inference on one of the scenarios, the SGCS performance is comparable to the baselines (generalization Case 1), at least between UMa and UMi scenarios.
Observation 8: For CSI feedback compression sub use case, when using scalar quantization AI/ML-based approach outperforms Rel-16 Type II codebook-based approach in all 3 overhead categories, X, Y and Z with ~13.1% average Mean UPT gain and ~33.7% average 5% UPT gain.
Observation 9: For CSI feedback compression sub use case, when using vector quantization, AI/ML-based approach with 13 CSI overhead bits achieves better Mean UPT and 5% UPT than Rel-16 Type II codebook-based approach with 10 times more overhead bits, e.g., 130 or 242 CSI bits. 
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