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1. Introduction
The study item on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface has been established in RAN plenary #94e meeting for Rel.18 [1]. The three use cases to be studied are respectively the enhanced CSI feedback, the beam management, and the positioning. They are further discussed in the RAN1 110b-e and RAN1 112 meeting. The sub use cases begin to shape up. The common aspects covering the three typical use cases are discussed. The general aspects on LCM are agreed to be studied., such as model ID and associated information. The following agreements have been achieved [2] [3].
In RAN1 110b-e meeting:
	Working Assumption
· Define Level y-z boundary based on whether model delivery is transparent to 3gpp signalling over the air interface or not.
· Note: other procedures than model transfer/delivery are decoupled with collaboration level y-z
· Clarifying note: Level y includes cases without model delivery.

Agreement 
Clarify Level x/y boundary as:
· Level x is implementation-based AI/ML operation without any dedicated AI/ML-specific enhancement (e.g., LCM related signalling, RS) collaboration between network and UE.
(Note: The AI/ML operation may rely on future specification not related to AI/ML collaboration. The AI/ML approaches can be used as baseline for performance evaluation for future releases.)

Agreement
For model selection, activation, deactivation, switching, and fallback at least for UE sided models and two-sided models, study the following mechanisms:
· Decision by the network 
· Network-initiated
· UE-initiated, requested to the network
· Decision by the UE
· Event-triggered as configured by the network, UE’s decision is reported to network
· UE-autonomous, UE’s decision is reported to the network
· UE-autonomous, UE’s decision is not reported to the network
FFS: for network sided models
FFS: other mechanisms

Conclusion 
Data collection may be performed for different purposes in LCM, e.g., model training, model inference, model monitoring, model selection, model update, etc. each may be done with different requirements and potential specification impact.
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study potential specification impact needed to enable the development of a set of specific models, e.g., scenario-/configuration-specific and site-specific models, as compared to unified models.
Note: User data privacy needs to be preserved. The provision of assistance information may need to consider feasibility of disclosing proprietary information to the other side.

Agreement
Study the specification impact to support multiple AI models for the same functionality, at least including the following aspects:
-	Procedure and assistance signaling for the AI model switching and/or selection
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study AI/ML model monitoring for at least the following purposes: model activation, deactivation, selection, switching, fallback, and update (including re-training).
FFS: Model selection refers to the selection of an AI/ML model among models for the same functionality. (Exact terminology to be discussed/defined)

Agreement
Study at least the following metrics/methods for AI/ML model monitoring in lifecycle management per use case:
0. Monitoring based on inference accuracy, including metrics related to intermediate KPIs
0. Monitoring based on system performance, including metrics related to system peformance KPIs
0. Other monitoring solutions, at least following 2 options.
2. Monitoring based on data distribution
0. Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or something simple like checking SNR, delay spread, etc.
0. Output-based: e.g., drift detection of output data
2. Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE

Agreement 
Study performance monitoring approaches, considering the following model monitoring KPIs as general guidance
· Accuracy and relevance (i.e., how well does the given monitoring metric/methods reflect the model and system performance)
· Overhead (e.g., signaling overhead associated with model monitoring)
· Complexity (e.g., computation and memory cost for model monitoring)
· Latency (i.e., timeliness of monitoring result, from model failure to action, given the purpose of model monitoring)
· FFS: Power consumption
· Other KPIs are not precluded.
Note: Relevant KPIs may vary across different model monitoring approaches.
FFS: Discussion of KPIs for other LCM procedures

Agreement 
Study various approaches for achieving good performance across different scenarios/configurations/sites, including
· Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
· Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
· [Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.]
· Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Agreement 
The following are additionally considered for the initial list of common KPIs (if applicable) for evaluating performance benefits of AI/ML
· Clarification on inference complexity
· Note: Inference complexity includes complexity for pre- and post-processing.
· LCM related complexity and storage overhead
· Storage/computation/latency for training data collection.
· Storage/computation/latency for training and model update
· Storage/computation/latency for model monitoring.
· Storage/computation/latency for other LCM procedures, e.g., model activation, deactivation, selection, switching, fallback operation.
· FFS: Power consumption, latency (e.g., Inference latency)

Conclusion 
This RAN1 study considers ML TOP/FLOP/MACs as KPIs for computational complexity for inference. However, there may be a disconnection between actual complexity and the complexity evaluated using these KPIs due to the platform- dependency and implementation (hardware and software) optimization solutions, which are out of the scope of 3GPP.




In RAN1 112 meeting:
	Agreement
For UE-side models and UE-part of two-sided models:
· For AI/ML functionality identification
· Reuse legacy 3GPP framework of Features as a starting point for discussion.
· UE indicates supported functionalities/functionality for a given sub-use-case.
· UE capability reporting is taken as starting point.
· For AI/ML model identification 
· Models are identified by model ID at the Network. UE indicates supported AI/ML models.
· In functionality-based LCM
· Network indicates activation/deactivation/fallback/switching of AI/ML functionality via 3GPP signaling (e.g., RRC, MAC-CE, DCI). 
· Models may not be identified at the Network, and UE may perform model-level LCM.
· Study whether and how much awareness/interaction NW should have about model-level LCM
· In model-ID-based LCM, models are identified at the Network, and Network/UE may activate/deactivate/select/switch individual AI/ML models via model ID. 
FFS: Relationship between functionality identification and model identification
FFS: Performance monitoring and RAN4 impact 
FFS: detailed understanding on model 



In this contribution, we will provide our views on the common aspects of AI/ML framework.  Especially, the functional framework, the model generalization, the quantization, the model complexity, and the model life cycle management will be discussed. 
2. Discussions
2.1 Functional Framework
[bookmark: OLE_LINK563][bookmark: OLE_LINK562][bookmark: OLE_LINK560][bookmark: OLE_LINK561][bookmark: OLE_LINK571][bookmark: OLE_LINK570]A functional framework for RAN intelligence is proposed in RAN3, which is a starting point for RAN1 study. In our view, as the discussion of RAN1 goes on, some requirements are becoming clear, in order to match the characteristics of AI/ML for NR air interface, the related modifications of RAN3 functional framework are needed. Besides, to be future-proof, the new framework should be general to contain various features of these three use cases. Hence, it is better to study a new common functional framework of AI/ML for NR air-interface.
[bookmark: OLE_LINK702][bookmark: OLE_LINK701][bookmark: OLE_LINK673][bookmark: OLE_LINK674]Proposal 1: A new common functional framework of AI/ML for air-interface need to be studied.
[bookmark: OLE_LINK670][bookmark: OLE_LINK669]Therefore, we provide a new common functional framework of AI/ML for air-interface in this contribution, it may include the functions such as, data collection, model training. model inference, model performance and actor, which are shown in Fig.1.
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Fig.1. Common functional framework of AI/ML for NR air-interface
· [bookmark: OLE_LINK680][bookmark: OLE_LINK679]Data collection
[bookmark: OLE_LINK676][bookmark: OLE_LINK675][bookmark: OLE_LINK677][bookmark: OLE_LINK678]In data collection, the collected data can be divided into three categories for other AI/ML function to meet the different requirements. One is used for model training to produce trained AI/ML model, the other is used for model inference to produce a set of output, another is used for model monitoring to evaluate the output of inference. Besides, the collected data can be real data or synthetic data.  

· Model training 
[bookmark: OLE_LINK691][bookmark: OLE_LINK692]For the model training block, it is a whole process for an AI/ML model generation. The block of model training may include the model training, validation, test, and finally produce a trained model.

· Model inference  
[bookmark: OLE_LINK694][bookmark: OLE_LINK693]The model inference block is responsible for producing the inference output of AI/ML models. Regarding the data from data collection as input, using the trained AI/ML model given by model training function to provide a set of inference output. According to output of model monitoring, it can trigger a set of AI/ML model actions and also can be an input for model monitoring function.

· [bookmark: OLE_LINK681][bookmark: OLE_LINK682][bookmark: OLE_LINK683][bookmark: OLE_LINK684]Model monitoring   
[bookmark: OLE_LINK688][bookmark: OLE_LINK687][bookmark: OLE_LINK689][bookmark: OLE_LINK690][bookmark: OLE_LINK696][bookmark: OLE_LINK695][bookmark: OLE_LINK697][bookmark: OLE_LINK698]Model monitoring is used to evaluate the inference performance of model inference. Due to the uncertainty of the collected data, it had better monitor whether the trained AI/ML model works properly. This task is completed by model monitoring. The output of model monitoring will trigger a set of actions.

· Actor
The actor receives the output from model inference or model monitoring. It performs the corresponding actions, such as model updating, model activation, model deactivation fallback and so on. Meanwhile, it will send the feedback to data collection. For an example, according the output of model monitoring, the actor triggers the action of model updating.
Proposal 2: A common functional framework of AI/ML over air-interface may include the following functions: data collection, model training. model inference, model monitoring and actor.
2.2 Generalization
The generalization of an ML model is a problem that is needed to be discussed. It relates to various actions, such as model deployment, and model switching. Besides, the state of a generalized model is needed to be aligned between a UE and a gNB for them to have a consensus of the generalized model. 
For model deployment, a generalized model has to decide its working scenario/setting. The following work assumption is provided in 9.2.3.1 for beam management [2]. Several cases are decided for performance evaluation. This assumption can be extended to other use cases to study the generalization problem.
	Working Assumption
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g., 
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.



The above assumptions can be the beginning point for deciding the applicable scenarios/settings of a generalized AI/ML model. A scenario/configuration can span a range of parameters. The range is usually continuous, and the parameters makes a set. How to partition the range and how to form the set are needed to be studied.
                                                                                                                                                                                                                                                                                                                                                                                                                         Another aspect is model switching. How to choose a model between a set of specific models/non-generalized models and a few generalized models is a problem that is needed to be studied. The specific model is usually with low complexity. It works well only in a specific setting. Whereas a unified model or a generalized model is more complicated. It can work in multiple settings with a balanced performance. Thus, the following factors are involved for model switching. 
· Performance requirement. If strict performance is required, the specific model is recommended, since specific model is usually with better performance in a specific setting.
· Model complexity. A unified model/generalized model is usually more complex than a specific model. That means more processing time latency and higher power consumption for a unified model/generalized model. If there are strict performance requirements on processing latency and power consumptions, the specific model is preferred.
· UE capability. As mentioned above, a unified model is usually more complicated, a UE should be capable of supporting it.
· The dynamics of wireless environments. If the wireless environment is much complicated and dynamic, the deployment of a specific model will trigger frequency model switching and model monitoring. That would waste lots of resources. In this case, a unified model/generalized model is preferred.
The model monitoring will determine whether an ML model works properly in a setting. Consider a generalized model works in both setting A and setting B. If in setting A, a generalized model is reported malfunction by model monitoring, it has to be replaced by another AI/ML model or fall back to non-AI method. Thus, if this outcome is produced by a gNB, it has to align this result to a UE. Such that, in setting A, this UE will adjust its behavior for another AI/ML model or works in non-AI method. In setting B, the UE still follows the configuration for the generalized model. When there are multiple applicable settings for a generalized model, the merits of alignment will become notable, especially, when a UE works adaptively across these settings.
Proposal 3: The generalization of an ML model is needed to be discussed, according to model deployment, model switching, and alignment of applicable settings.
2.3 Quantization 
For an ML model, ground truth data is needed either for model training or model monitoring. The ground truth data has to be collected. The collection of ground truth data can be completed either by a UE or a gNB.
· The data collection is completed by a UE. The ground truth data is processed, if needed, and reported to a gNB or a third node. 
· The data collection is completed by a gNB. The ground truth data is processed, and reported to a third node, if needed. 
Nevertheless, the ground truth is reported, after quantization. The quantization is an indispensable step before the delivery of the ground truth. At one hand, the quantization of ground truth should be with high precision, in order to faithfully reflect the truth without losing critical features. On the other hand, the reporting or the delivery of ground truth is resource consuming. It is an overhead to the involved UE or the gNB. Thus, the quantization should be properly designed and the quantization bits should be kept less. This problem needs to be studied. According to the RAN1 110b-e meeting, data collection can has done with different requirements for different purposes. The quantization as a step of data collection should be performed differently for different tasks.
Proposal 4: As a step of data collection, the quantization can be done with different requirements for different purposes.
2.4 Model Complexity
The AI/ML model complexity can be described by various factors, such as the FLOPs, the number of parameters of the AI/ML model, the AI/ML model size, the memory size etc. They are related to either AI/ML attributes, or the UE hardware, even both. 
An AI/ML model can be very complex or less complex, since the AI/ML models are with diverse structure and parameter size. To describe an AI/ML model complexity, several factors can be considered, such as FLOPs and model size. A rule is need to roughly classify the model complexities, so that UE or the gNB does not have to deal the low level parameters, such as the bus bandwidth. Deciding how the model with different complexities is supported by either a UE or a gNB becomes simple. The signallings between the gNB and UE is thereby simplified.
Proposal 5: To reduce the signaling overhead between the UE and the gNB, a rule is needed to roughly classify the model complexity.
Besides, the complexity of an AI/ML model is not fixed and unchanged. The AI/ML model can be post-processed after model training, or before model deployment. That would decide various aspects of the model, such as the model size, the number of parameters, model performance, and finally lead to complexity change. Thus the model complexity is related to post-processing. In a way, the post-processing can reshape the ML model. The complexity of the AI/ML model can be controlled within the supporting range of the UE capability by post-processing. 
One problem about the post-processing of an AI/ML model is that an oversimplified model may be obtained from the post-processing, such that the AI/ML model performance is excessively degraded. The rise of this problem is due to that the post-processing is tackling the balance between the model complexity and ML model performance. If one end is emphasized too much without considering the other, problem occurs. Some constraints have to be added on the post-processing. As an example, some AI/ML models is not allowed to be post-processed after training.
Proposal 6: Some constraints shall be added on the post-processing, in order to avoid obtaining an oversimplified low-performance model from post-processing.
2.5 Model Life Cycle Management
The model life cycle management covers model training, inference and model monitoring. There are several stages and operations involved. 
· Model training: An AI/ML model is generated from training, which can be taken in an online or offline manner. 
· Preprocessing and post-processing: There are pre-processing and post-processing of an ML model. The role of pre-processing is feature engineering, which can ease the training of an ML model. The post-processing can decide the complexity of an AI/ML model. It usually strikes and balance between complexity and ML model performance. 
· Model deployment: The AI/ML model can be deployed after post-processing or fine tuning. 
· Model inference: After the deployment, the AI/ML model is activated. The inference stage begins. 
· Model monitoring: During the inference stage, the AI/ML model should be monitored to check whether it works properly. 
If the AI/ML model malfunctions during model monitoring, the AI/ML model should be deactivated and re-trained. The AI/ML model can be replaced by a backup AI/ML model. If there is more than one-back up model, the UE or gNB can select a model randomly. Or they can select a backup model according to the preference of the UE or the gNB. Furthermore, if there is no such backup AI/ML model, the node has to fall back to the non-ML working way. 
Proposal 7: At the inference stage, the AI/ML model has to be monitored. If the AI/ML model does not work properly, it can be replaced by a backup AI/ML model or fall back to the non-ML working way.
Proposal 8: During model switching, a backup model can be randomly selected, or according to the preference of UE or gNB. 

3. Conclusions
In this contribution the following proposals been proposed:
Proposal 1: A new common functional framework of AI/ML for air-interface need to be studied.
Proposal 2: A common functional framework of AI/ML over air-interface may include the following functions: data collection, model training. model inference, model monitoring and actor.
Proposal 3: The generalization of an AI/ML model is needed to be discussed, according to model deployment, model switching, and alignment of applicable settings.
Proposal 4: As a step of data collection, the quantization can be done with different requirements for different purposes.
Proposal 5: To reduce the signaling overhead between the UE and the gNB, a rule is needed to roughly classify the model complexity.
Proposal 6: Some constraints shall be added on the post-processing, in order to avoid obtaining an oversimplified low-performance model from post-processing.
Proposal 7: At the inference stage, the AI/ML model has to be monitored. If the AI/ML model does not work properly, it can be replaced by a backup AI/ML model or fall back to the non-ML working way.
Proposal 8: During model switching, a backup model can be randomly selected, or according to the preference of UE or gNB.
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