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1. Introduction
At the RAN#94-e meeting, a new SID [1] on “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface” was approved. This SID captures the objective of SI in terms of the evaluation on use cases as following.
For the use cases under consideration:
1) Evaluate performance benefits of AI/ML based algorithms for the agreed use cases in the final representative set:
· Methodology based on statistical models (from TR 38.901 and TR 38.857 [positioning]), for link and system level simulations. 
· Extensions of 3GPP evaluation methodology for better suitability to AI/ML based techniques should be considered as needed.
· Whether field data are optionally needed to further assess the performance and robustness in real-world environments should be discussed as part of the study. 
· Need for common assumptions in dataset construction for training, validation and test for the selected use cases. 
· Consider adequate model training strategy, collaboration levels and associated implications
· Consider agreed-upon base AI model(s) for calibration
· AI model description and training methodology used for evaluation should be reported for information and cross-checking purposes
· KPIs: Determine the common KPIs and corresponding requirements for the AI/ML operations. Determine the use-case specific KPIs and benchmarks of the selected use-cases.
· Performance, inference latency and computational complexity of AI/ML based algorithms should be compared to that of a state-of-the-art baseline
· Overhead, power consumption (including computational), memory storage, and hardware requirements (including for given processing delays) associated with enabling respective AI/ML scheme, as well as generalization capability should be considered.

In this contribution, we discuss the evaluation on AI/ML for beam management.
2. [bookmark: _Hlk101767974]Discussion on the evaluation on AI/ML for beam management
2.1. Sub use-cases description
At the RAN1#109-e meeting, the agreement supporting spatial domain beam prediction and temporal beam prediction for characterization and baseline performance evaluations was made as following [2]. 
Agreement
For AI/ML-based beam management, support BM-Case1 and BM-Case2 for characterization and baseline performance evaluations
· BM-Case1: Spatial-domain DL beam prediction for Set A of beams based on measurement results of Set B of beams
· BM-Case2: Temporal DL beam prediction for Set A of beams based on the historic measurement results of Set B of beams
· FFS: details of BM-Case1 and BM-Case2
· FFS: other sub use cases
Note: For BM-Case1 and BM-Case2, Beams in Set A and Set B can be in the same Frequency Range

For both spatial domain and temporal-domain beam prediction, the agreement was made regarding the general simulation approach for dataset construction and performance evaluation, as well as the evaluation metric such as the complexity of AI/ML model and the performance comparison between AI-based method and baseline method. The simulation results in this contribution were conducted based on the agreed assumptions. In the subsequent sections, we discuss the evaluation methodology and simulation results of BM-Case 1 and BM-Case 2.
2.2. Evaluation methodology
2.2.1. Spatial domain beam prediction (BM-Case 1)
In this section, we provide our view and the assumption on the evaluation methodology of intermediate performance and generalization performance.
2.2.1.1. Rx beam determination
At the RAN1 #112 meeting, following proposal was provided for the Rx beam(s) assumption for the evaluation on the performance of DL Tx beam prediction [3]. 
Proposal 3.2-1f
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
Case 0: the best Rx beam for the best Tx beam within Set B 
Case 1: the best Rx beam searched for one Tx beam within Set B 
Case 2: the best Rx beam for each Tx beam within Set B
Case 3: the best Rx beam among specific Rx beams for each Tx beam within Set B
Case 4: the best Rx beam among specific Rx beams for the best Tx beam within Set B
Case 5: the best Rx beam for the best Tx beam within Set A
Note: The best Rx beam may be based on measurements of always-on SSB, or CSI-RS for Set B
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Since different Rx beam(s) determination method leads to different performance even though the same configuration of Set B and Set A is assumed for Tx beam prediction, we think it is meaningful to study the different options to determine Rx beam(s) for the Set B measurement. Firstly, among the cases provided in Proposal 3.2-1f, we think case 5 is not necessary since it is not possible to obtain the best Rx beam for the best Tx beam within Set A during the inference. Secondly, since the performance varies a lot according to how one Tx beam is selected for the best Rx determination in case 1, we think further restriction or rule should be given for case 1. Otherwise, the performance from case 1 becomes diverse and hard to evaluate this Rx beam determination mechanism. Thirdly, (case 0, case4) and (case 2, case 3) are two pairs which have the clear boundary in the Rx beam determination, and the only difference of the two cases within each pair is the available Rx beam(s) to be used. Therefore, we think the following two alternatives should be categorized first.
・Alt.1: All Set B measurements are performed with the best Rx beam to the best Tx beam among Set B.
・Alt.2: Each Set B measurement is performed with the best Rx beam to each Tx beam among Set B.
Then, the available Rx beam can be sub categorized within each alternative, such as all Rx beams or the specific Rx beams.
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[bookmark: _Hlk127460333][bookmark: _Hlk131526279]Figure.1 The alternatives for Rx beam determination
Proposal 1: Study the Rx beam(s) determination methods for the Set B measurement for Tx beam prediction. At least the Rx beam determination method can be categorized into the following two types.
Alt.1: All Set B measurements are performed with the best Rx beam to the best Tx beam among Set B.
Alt.2: Each Set B measurement is performed with the best Rx beam to each Tx beam among Set B.
2.2.1.2  Predicted L1-RSRP difference
At previous meetings, the discussions were conducted on the necessity of introducing the predicted L1-RSRP difference as the additional KPI. At the RAN1 #112 meeting, the following agreement was made regarding this new KPI [4].
	Agreement
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.


One of the benefits of introducing this new KPI is for performance monitoring. This KPI could help the performance monitoring without additional measurements of the predicted beams, if it could precisely reflect AI/ML model performance. The reason is, the UE only need to measure and report the L1-RSRP of the predicted top-1/K beam (pair) instead of L1-RSRPs of all the beams(pairs) aiming to search out the Top-1 genie-aided beam.
However, the issue is whether the predicted L1-RSRP difference could really reflect the model performance variation correctly. In this contribution, we evaluate the correlation between this new KPI with other intermediate KPIs, i.e., L1-RSRP difference and beam prediction accuracy, to observe the validity of the new KPI. As shown in Figure 2 and Table 2, if the tendency of the predicted L1-RSRP difference and existing KPIs across generalization Case 1, Case 2 and Case 3 is aligned, it can be said that the new KPI is valid for performance monitoring. Otherwise, the effectiveness of it as the KPI for performance monitoring would be questionable. In Table 2, X->Y denotes that the AI/ML model is trained with the dataset in Scenario X and used for inference in Scenario Y.
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Figure 2. Scenario A and Scenario B
Table 2. GC performance for predicted L1-RSRP difference and existing KPIs
	[bookmark: _Hlk131520094]Metrics
	GC 1(A->A or B->B)
	GC 2(B->A or A->B)
	GC3(A+B->A or A+B->B)

	Average predicted L1-RSRP difference of predicted Top-1 beam (dB)
	Low
	High
	Medium

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	Low
	High
	Medium

	Beam prediction accuracy (%) for Top-1 beam
	High
	Low
	Medium



2.2.1.3  Impact of measurement error
At the RAN1#112 meeting, the following agreement was made regarding the impact of measurement and quantization error on the beam prediction accuracy [4]. 
	Agreement
Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy.


In this contribution, we try to provide the initial simulation results of the impact from measurement error. For simplicity, the additive noise is assumed on top of the L1-RSRP measurement results. In the simulation, the different uniformly distributed random noise values are used as captured in Table 1. The effect of additive noise is checked in both Tx beam prediction and Tx-Rx beam pair prediction i.e., Scenario A and Scenario C conducted as shown in Figure 3.
Table 3. The different additive noise values for simulation
	Noise value (dB)
	0 dB (no measurement error)
	1 dB
	2 dB
	4 dB
	6 dB
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Figure 3. Scenario A and Scenario C
2.2.1.4  Impact of measurement sensitivity
At the RAN1#112 meeting, the issue of measurement sensitivity is raised [5], which means that the UE may not be able to measure L1-RSRP when the SNR is lower than -3 dB. It was also shown that the performance of AI/ML-based beam prediction degrades due to low SNR caused by the thermal noise [5].
In this contribution, the simulation considering the receiving SNR is also conducted. We found that the performance degradation is mainly caused by the unavailable L1-RSRP values. To cope with the degradation issues, we apply several techniques to filter out the performance drop from unavailable L1-RSRP. The simulation cases are described in Table 4 and Fig. 4. Case 0 corresponds to the case without the measurement sensitivity issue, while the measurement sensitivity is taken into consideration in Case 1 and Case 2. The main difference between Case 1 and Case 2 is how to handle the unavailable L1-RSRP values. 
In Case 1, although the L1-RSRP values are not obtained correctly or unavailable when the SNR is lower than -3 dB due to the measurement sensitivity, they are replaced with the default low value (-256 dBm) and still taken as the inputs/labels of the AI/ML model in training and inference phase. In other words, the normalization of all input samples including the unavailable L1-RSRP values is conducted during the training and inference phase. Also, the normalization of all the label samples including the unavailable L1-RSRP values is conducted and is taken into account in the loss function during the training phase. 
However, in Case 2, since it may not be good idea to consider the incorrect values which would bias the AI/ML model performance, the unavailable L1-RSRP values are filtered out from inputs/labels before being used. Consequently, the normalization of the input samples is conducted only across the Top-4 L1-RSRP values and the position corresponding to others are replaced with dummy value (0) during the training and inference phase. Also, the unavailable L1-RSRP values are ignored in the label samples during the normalization, and they are excluded in the loss function during the training phase.
It is worth noting that different Set B selection are conducted in Case 0, Case 1, and Case 2, as shown in Fig. 4. Since some values are anyway unavailable, sampling the largest L1-RSRP measurements may not affect the overall performance. With this in mind, we adapt the variable Set B in Case 2, where only the top-4 L1-RSRP measurements are fed into the models.
Table 4. Case 0-Case2 for measurement sensitivity
	Cases
	Training
	Inference

	
	Input
	Label
	Input

	W/O meas. sensitivity issue
	Case 0: Fixed Set B
	All L1-RSRP values are available
	All L1-RSRP values are available
	All L1-RSRP values are available

	W/ meas. sensitivity issue
	Case 1: Fixed Set B
	Unavailable L1-RSRP values are set to -256 dBm, and normalized together with available L1-RSRP values
	Unavailable L1-RSRP values are set to -256 dBm, normalized together with available L1-RSRP values, and considered in the calculation of loss function
	Unavailable L1-RSRP values are set to -256 dBm, and normalized together with available L1-RSRP values

	
	Case 2: Variable Set B (Top-4)
	Top-4 L1-RSRP values are selected and normalized
	Unavailable L1-RSRP values are NOT considered in the calculation of loss function
	Top-4 L1-RSRP values are selected and normalized
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Figure 4. Simulation cases
 
2.2.1.5  Simulation assumption
In this contribution, the simulation assumption for the dataset generation in BM-Case1 follows the agreed evaluation methodology, and the detailed information is listed in Table 5.
Table 5. Simulation parameters for dataset generation in BM-Case1
	Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz, SCS: 120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)

	Channel mode
	Uma with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	3km/h

	UE distribution
	80% indoor ,20% outdoor as in TR 38.901

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	(M, N, P, Mg, Ng, Mp, Np), = (4, 8, 2, 1, 1, 1, 1), (dV, dH) = (0.5, 0.5) λ
64 downlink Tx beams(H(16)*V(4)) at NW side

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	(M, N, P, Mg, Ng, Mp, Np), = (1, 4, 2, 1, 2, 1, 1), 2 panels (left, right)
4 downlink Rx beams(H(4)) per UE panel at UE side

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	No beam correspondence

	BS Tx Power
	40 dBm

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


2.2.2 Temporal beam prediction (BM-Case 2)
2.2.2.1. Pattern A and Pattern B
At the RAN1#111meeting, the agreement on the evaluation of the overhead for BM-Case 2 was made as follows. 
	Agreement
· For the evaluation of the overhead for BM-Case2, adoption the following metrics:
· RS overhead reduction, 
· Option 2: 
· where N is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML, including the beams (pairs) required for additional measurements before/after the prediction if applicable
· Where M is the total number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for baseline scheme
· Companies report the assumption on additional measurements
· FFS: Option 3:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each time instance
· where M is the total number of beams (pairs) to be predicted for each time instance
· where L is ratio of periodicity of time instance for measurements to periodicity of time instance for prediction
· Companies report the assumption on T1 and T2 patterns
· Other options are not precluded and can be reported by companies.
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Figure 5. T1 and T2 patterns in temporal beam prediction. (a) prediction of beam quality between each measurement/reporting (b) prediction of beam quality instead of measurement/reporting.
In temporal beam prediction, there are two patterns for T1 and T2 as shown in Figure 5: prediction of beam quality between each measurement/reporting (pattern A) and prediction of beam quality instead of measurement/reporting (pattern B). In case of pattern A, the time sequence of inputs for AI/ML model in T1 has different periodicity from one of outputs in T2. Since the beam prediction can be used to interpolate the beam quality between each measurement, the periodicity of beam measurement/reporting can be configured to be large compared to one without the beam prediction. On the other hand, the time sequence of inputs for AI/ML model has the same periodicity from one of outputs in pattern B. In this pattern, beam measurement/reporting can be skipped after certain number of measurements, because the beam prediction can compensate them based on the historical beam measurements. Thus, even though both patterns can reduce the overhead of measurement/reporting, one approach can lead to the large periodicity of measurement/reporting, while the other approach could enable skipping of measurement/reporting for a while. As both approaches bring the practical gain and the desired pattern can be different according to NW operation, it is beneficial to study both patterns for T1 and T2. 
Proposal 2: Consider both Pattern A and Pattern B for temporal beam prediction.
2.2.2.2. Generalization performance
For the generalization performance of BM-Case2, we investigate the various scenarios on UE mobility, i.e., 30km/h, 60km/h and 90km/h. For each Pattern A and Pattern B beam prediction, the generalization cases 1-3 are conducted under different assumptions of UE mobility. In this generalization performance, we adopted ‘average L1-RSRP difference of Top-1 predicted beam’ as the KPI for the simplicity.
Table 6. Generalization cases (GC) for Pattern A/B
	Generalization case (GC)
	Training dataset
	Testing/inference dataset

	
	
	30km/h
	30km/h
	30km/h

	GC1/2
	30km/h
	GC1
	GC2
	GC2

	
	60km/h
	GC2
	GC1
	GC2

	
	90km/h
	GC2
	GC2
	GC1

	GC 3
	30km/h:60km/h:90km/h=1:1:1
	GC3
	GC3
	GC3



2.2.2.3. Simulation assumption
On top of the simulation assumption in Section 2.2.1.5, the additional assumption for dataset generation in BM-Case 2 follows the agreed evaluation methodology and the detailed simulation parameters are listed in Table.7-9.
Table 7. Simulation parameters for dataset generation in BM-Case2
	Parameters
	Values

	UE Speed
	30Km/h, 60Km/h, 90Km/h

	UE distribution
	100% outdoor as in TR 38.901

	Spatial consistency
	Procedure A in TR38.901

	UE trajectory
	Random direction straight-line trajectories (Option 4)

	UE orientation
	Randomly per-UE chosen for UE orientation initially and is fixed

	UE rotation speed
	0


Table 8. Time domain parameters for Pattern A
	Parameters
	Values

	
	30km/h
	60km/h
	90km/h

	Periodicity of time instances for each measurement in T1
	960ms
	640ms

	Number of time instances for measurement in T1
	5

	Periodicity of time instances for prediction in T2
	10ms

	Number of time instances for prediction in T2
	95
	63


Table 9. Time domain parameters for Pattern B
	Parameters
	Values

	
	30km/h
	60km/h
	90km/h

	Periodicity of time instances for each measurement in T1
	160ms

	Number of time instances for measurement in T1
	5

	Periodicity of time instances for prediction in T2
	160ms

	Number of time instances for prediction in T2
	5



2.3. Performance evaluation results
2.3.1. Spatial domain beam prediction (BM-Case 1)
The simulation in this section follows the assumption described in Section 2.2.1. 
2.3.1.1 Predicted L1-RSRP difference
In this sub-section, the effectiveness of the predicted L1-RSRP difference is to be verified based on the assumptions described in section 2.2.1.2. In Table 9, when the AI/ML model trained under Scenario A is used for inference in Scenario B, the performance of average L1-RSRP difference and beam prediction accuracy degrades which means that the model in use may need to be deactivated/fallback/updated. The average predicted L1-RSRP difference indicates the same tendency. When the AI/ML model is re-trained with additional data from Scenario B, the performance of average L1-RSRP difference and beam prediction accuracy improves a bit but not better than AI/ML model solely trained with data from Scenario A. However, although the average predicted L1-RSRP difference shows the same tendency in the same case, the absolute value of it indicates better performance than AI/ML model solely trained with data from Scenario A.
In Table 10, the similar simulation is conducted for the AI/ML model trained under Scenario B. When the model inference is performed in Scenario A, the performance of average L1-RSRP difference and beam prediction accuracy improves. It means that the model in use is good enough although it is trained with a dataset featured differently. However, the performance of average predicted L1-RSRP difference has totally different indication, since it shows that the model is not working well and may need deactivation/fallback/update. 
According to above observations, it is not safe to rely solely on the average predicted L1-RSRP difference as the KPI for performance monitoring, and some better way of using it needs to be clarified if predicted L1-RSRP difference is used for performance monitoring.
Table 10.  Effectiveness of Predicted L1-RSRP differences (AI/Model trained under Scenario A)
	Metrics
	GC 1(A->A)
	GC 2(A->B)
	GC3(A+B->B)

	Average predicted L1-RSRP difference of predicted Top-1 beam　(dB)
	3.35
	3.49
	3.32

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.38
	1.75
	1.74

	Beam prediction accuracy (%) for Top-1 beam
	49.4
	43.2
	43.5



Table 11. Effectiveness of Predicted L1-RSRP differences (AI/Model trained under Scenario B)
	Metrics
	GC 1(B->B)
	GC 2(B->A)
	GC3(A+B->A)

	Average predicted L1-RSRP difference of predicted Top-1 beam　(dB)
	3.89
	3.95
	3.16

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.72
	1.41
	1.39

	Beam prediction accuracy (%) for Top-1 beam
	43.5
	49.2
	49.6



[bookmark: _Hlk131526460]Observation 1: The large correlation between predicted L1-RSRP difference and other intermediate KPI (e.g., L1-RSRP difference and beam accuracy) is not observed.
Observation 2: The predicted L1-RSRP difference cannot be used solely for performance monitoring.
[bookmark: _Hlk131526433]Proposal 3: Further study the usage of predicted L1-RSRP difference as the KPI for performance monitoring.
2.3.1.2 Impact of measurement error
In this sub-section, the impact of measurement error on AI/ML-based beam prediction is evaluated based on the assumption described in section 2.2.1.3. In Table 12 and Table 13, it is observed that the performance of both average L1-RSRP difference and beam prediction accuracy degrades as the measurement error increases. The degradation of Scenario A (Tx beam prediction) is more obvious than Scenario B (Tx-Rx beam pair prediction). The cause of performance gap between Scenario A and B is not clear. One possible explanation could be that the measurement error leads to the wrong Rx beam determination in the Tx beam prediction.
Although the simulation results are based on the simplified noise model which may not be practical, it could indeed show the tendency. It is worthwhile to figure out more practical modeling method to investigate the impact of measurement error. Also, it would be beneficial to identify whether finer quantization granularity for L1-RSRP reporting could help to improve the performance even when the measurement error is large.
Table 12. Impact of measurement error in Scenario A
	Metrics
	0 dB 
	1 dB 
	2 dB 
	4 dB 
	6 dB 

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.38
	1.57
	1.56
	1.77
	2.09

	Beam prediction accuracy (%) for Top-1 beam
	49.4
	47.7
	47.0
	43.1
	37.3


Table 13. Impact of measurement error in Scenario C
	Metrics
	0 dB 
	1 dB 
	2 dB 
	4 dB 
	6 dB 

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	5.15
	5.82
	5.83
	6.07
	6.37

	Beam prediction accuracy (%) for Top-1 beam
	16.3
	14.1
	13.6
	12.4
	10.8



[bookmark: _Hlk131526484]Observation 3: With the additive noise model, it is observed that measurement error leads to obvious performance degradation.
Observation 4: The performance degradation due to the measurement error is more obvious for Tx beam prediction than Tx-Rx beam pair prediction.
Proposal 4: Further study the impact of measurement error and the effectiveness of finer quantization granularity to improve the performance.
2.3.1.3 Impact of measurement sensitivity
In this sub-section, the impact of measurement sensitivity and the possible solution for the improvement is evaluated based on the assumption described in section 2.2.1.4. Comparing case 0 and case 1 in Table 13, it is observed that the performance degrades obviously due to the unavailable L1-RSRP values caused by low SNR from the case where no measurement sensitivity issue exists. However, the performance of Case 2 is much better than Case 1. This performance improvement could be because only the available L1-RSRP values are taken into account in the calculation of loss function in the training of Case 2. On the other hand, all RSRP values are used in the training for Case 1, the weight update is affected by the default values. Thus. if the Set B and label for training is adjusted according to the availability of L1-RSRP values, the performance could be improved a lot.
[bookmark: _Hlk131525270]Table 13. Impact of measurement sensitivity for Scenario A
	
	Scenario A

	
	Case 0
	Case 1
	Case 2

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.38
	4.09
	2.07

	Beam prediction accuracy (%) for Top-1 beam
	49.4
	19.8
	39.8


Table 14. Impact of measurement sensitivity for Scenario B
	
	Scenario B

	
	Case 0
	Case 1
	Case 2

	Average L1-RSRP difference of Top-1 predicted beam (dB)
	1.72
	4.47
	2.60

	Beam prediction accuracy (%) for Top-1 beam
	43.5
	16.4
	33.7


Observation 5: Considering the measurement sensitivity, the performance of AI/ML model degrades obviously if there is no additional treatment on the inputs and labels on the AI/ML model.
Observation 6: If variable Set B is used as the input of AI/ML model, and the label for training is pre-processed, the degradation of performance due to measurement sensitivity could be largely alleviated.
Proposal 5:  Study the candidate methods to alleviate the performance degradation caused by measurement sensitivity.
2.3.2. Temporal beam prediction (BM-Case 2)
The simulation in this section follows the assumption described in Section 2.2.2. ‘Average L1-RSRP difference of Top-1 predicted beam’ is adopted as the KPI for the simplicity.
2.3.2.1 Generalization performance
In this sub-section, for the time domain prediction Pattern A and Pattern B, the performance of GC1, GC2 and GC3 are provided respectively.
	Table 16. Evaluation results of GC1, GC2 and GC3 for Pattern A
	Testing/inference dataset
Training dataset
	30km/h
	60km/h
	90km/h

	L1-RSRP Diff.
	Baseline (Option 2)
	3.1
	8.0
	8.0

	
	GC1  GC2
	30km/h
	3.52 (Case1)
	5.71
	6.04

	
	
	60km/h
	11.45 
	2.93 (Case1)
	3.09

	
	
	90km/h
	12.26
	3.34
	3.04 (Case1)

	
	GC3
	30:60:90km/h=1:1:1:1:1:1
	3.79
	3.05
	3.07


As shown in Table.16 for Pattern A, the AI/ML model trained with low speed data could still perform better than baseline even when it is applied to make prediction with higher speed data under the same time parameters. For example, the AI/ML model trained with data generated with UE speed 30km/h achieves the average L1-RSRP difference 5.71 dB when it is applied to data generated with UE speed 60km/h, which is still 8.0 dB smaller than baseline. However, it is not the applied vice versa; model inference of low speed UE via the model trained with high speed UE. The reason is the data generated with high UE speed may have some information loss, which is difficult for AI/ML model to predict the low UE speed. However, if the AI/ML is trained with mixed data from different UE speed, the performance is still acceptable.
Table 17. Evaluation results of GC1, GC2 and GC3 for Pattern B
	Testing/inference dataset
Training dataset
	30km/h
	60km/h
	90km/h

	L1-RSRP Diff.
	Baseline (Option 2)
	1.1
	3.8
	7.0

	
	GC1  GC2
	30km/h
	3.63 (Case1)
	4.95
	6.96

	
	
	60km/h
	4.05
	3.77 (Case1)
	5.01

	
	
	90km/h
	5.82
	4.06
	3.10 (Case1)

	
	GC3
	30:60:90km/h=1:1:1:1:1:1
	3.62
	3.79
	4.11


As shown in Table.17 for Pattern B, the similar tendency could be observed. For example, the AI/ML model trained with data generated with UE speed 60km/h achieves the average L1-RSRP difference 6.96dB when it is applied to data generated with UE speed 90km/h, which is still 7.0dB smaller than baseline. Also, the AI/ML trained with the mixed data from different UE speed provides the acceptable performance.
[bookmark: _Hlk131526579]Observation 7: For temporal beam prediction Pattern A and Pattern B:
· The AI/ML model trained with mixed data from different UE speed could provide acceptable generalization performance.
· The AI/ML model trained with data from low speed UE could still provide better performance than baseline method, when it is applied to the data from high speed UE with the same time parameters.
3. Conclusion
In this contribution, we discussed evaluation on AI/ML for beam management. Based on the discussion we made the following observations and proposals.
Observation 1: The correlation between predicted L1-RSRP difference and existing KPIs is not tightly bounded.
Observation 2: The predicted L1-RSRP difference cannot be used solely for model monitoring.
Observation 3: With the additive noise model, it is observed that measurement error leads to obvious performance degradation.
Observation 4: The performance degradation due to measurement error is more obvious for Tx beam prediction than Tx-Rx beam pair prediction.
Observation 5: Considering the measurement sensitivity, the performance of AI/ML model degrades obviously if there is no additional treatment on the inputs and labels on the AI/ML model.
Observation 6: If variable Set B is used as the input of AI/ML model, and the label for training is pre-processed, the degradation of performance due to measurement sensitivity could be largely alleviated.
Observation 7: For temporal beam prediction Pattern A and Pattern B:
· The AI/ML model trained with mixed data from different UE speed could provide acceptable generalization performance.
· The AI/ML model trained with data from low speed UE could still provide better performance than baseline method, when it is applied to the data from high speed UE with the same time parameters.
Proposal 1: Study the Rx beam(s) determination methods for the Set B measurement for Tx beam prediction.
Alt.1: All Set B measurements are performed with the best Rx beam to the best Tx beam among Set B.
Alt.2: Each Set B measurement is performed with the best Rx beam to each Tx beam among Set B.
Proposal 2: Consider both Pattern A and Pattern B for temporal beam prediction.
Proposal 3: Study the usage of predicted L1-RSRP difference as the KPI for model monitoring.
Proposal 4: Further study the impact of measurement error and the effectiveness of finer quantization granularity to improve the performance.
Proposal 5:  Study the candidate methods to alleviate the performance degradation caused by measurement sensitivity.
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