[bookmark: _Hlk115358374][bookmark: _Hlk101525365]3GPP TSG RAN WG1 #112bis-e			R1-2303583
April 17th – 26th, 2023
	
Agenda item:	9.2.2.2
Source: 	Qualcomm Incorporated
Title: 	Other aspects on AI/ML for CSI feedback enhancement
Document for:		Discussion and Decision
Introduction
In this contribution, we discuss aspects related to data collection, model monitoring, the pros and cons of different training types, and potential specification impact for AI/ML-based CSI feedback enhancement.
Data collection
The following was agreed in RAN1#110 [1] regarding potential specification impact related to training data collection:
	Agreement
In CSI compression using two-sided model use case, further discuss at least the following aspects, including their necessity/feasibility/potential specification impact, for data collection for AI/ML model training/inference/update/monitoring:
· Assistance signaling for UE’s data collection
· Assistance signaling for gNB’s data collection
· Delivery of the datasets

The following agreement was reached in RAN1#112 [5]:
	Agreement
· In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact of UE side data collection enhancement including at least
· Enhancement of CSI-RS configuration to enable higher accuracy measurement.
· Assistance information for UE data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc.
· The provision of assistance information needs to consider feasibility of disclosing proprietary information to the other side.
· Signaling for triggering the data collection
· In CSI compression using two-sided model use case, further discuss the necessity, feasibility, and potential specification impact for NW side data collection including at least:
· Enhancement of SRS and/or CSI-RS measurement and/or CSI reporting to enable higher accuracy measurement.
· Contents of the ground-truth CSI including:
· Data sample type, e.g., precoding matrix, channel matrix etc.
· Data sample format: scaler quantization and/or codebook-based quantization (e.g., e-type II like).
· Assistance information (e.g., time stamps, and/or cell ID, Assistance information for Network data collection for categorizing the data in forms of ID for the purpose of differentiating characteristics of data due to specific configuration, scenarios, site etc., and data quality indicator)
· Latency requirement for data collection
· Signaling for triggering the data collection

Data collection mechanism
For data collection for the purpose of model training for the use-case of AI/ML-based CSI feedback using two-sided model, a UE may perform downlink measurements on configured resources (e.g., CSI-RS). Subsequently, the UE may record, process, and transmit the measurements to a data collection entity. The data collection entity may be a network entity or may be owned by a UE vendor, a chip vendor, a network vendor, a network operator, a service provider, or some other entity.
[bookmark: _Toc127527013][bookmark: _Toc131763058]For data collection for model training, RAN1 should focus on what data should be collected. Mechanism for training data collection needs architectural considerations and should be handled by other working groups.

Target CSI associated with training data
In the legacy CSI framework, the method used to derive the target CSI from the downlink measurements is left to UE implementation. This allows the UE implementation to optimize the tradeoff between complexity and performance. For AI/ML-based CSI feedback, such a framework should be preserved – i.e., during inference operation, the procedure used to process the downlink measurements and derive the input to the UE-side model should be left to UE implementation.
[bookmark: _Toc115432185][bookmark: _Toc115432460][bookmark: _Toc115432730][bookmark: _Toc115432778][bookmark: _Toc115432792][bookmark: _Toc118462581][bookmark: _Toc118487698][bookmark: _Toc118487756][bookmark: _Toc127527014][bookmark: _Toc131763059]For AI/ML-based CSI feedback using two-sided model, the procedure used to process the downlink measurements and derive the input to the UE-side model during inference should be left to UE implementation.
The implication of the above discussion is that during the generation of the training dataset also, the target CSI should be derived by the UE side in a manner that is matched with the UE implementation used during inference operation. Otherwise, the target CSI used as ground truth for training will not be aligned with the processing applied to the downlink measurements by the UE during the inference operation.
For example, consider the case where the target CSI is the precoder. The precoder can be derived by performing SVD operation on the channel matrix for each frequency unit (e.g., RB). Due to the phase ambiguity associated with the SVD operation, the phases of the precoders on different RBs may vary in an arbitrary manner that is dependent on the exact implementation of the SVD operation. If the training dataset is generated based on one implementation, and the UE uses a different implementation during inference, then there could me a mismatch in the distribution of the training dataset and the data seen during inference. Similarly, other discrepancies in implementation aspects (e.g., fixed point processing aspects) could result in a similar mismatch. This could affect the performance of the CSI feedback scheme. To avoid such issues, it would be best to generate the target CSI for the training dataset in a manner that is aligned with the inference processing of the UEs. In [2], we present evaluation results that show that the performance of the AI/ML model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.
[bookmark: _Toc115432175][bookmark: _Toc115432186][bookmark: _Toc115432187][bookmark: _Toc115432461][bookmark: _Toc115432731][bookmark: _Toc115432779][bookmark: _Toc115432793][bookmark: _Toc118462582][bookmark: _Toc118487699][bookmark: _Toc118487757][bookmark: _Toc127527015][bookmark: _Toc131763060]While generating the training dataset, the target CSI corresponding to a downlink measurement should be derived by the UE side to reflect the UE processing during inference (e.g., channel estimation, eigen-vector derivation, etc.).
Assistance signaling for UE’s data collection
When data is collected in a proprietary manner as described above, it would be useful to identify the scenario in which the data is being collected. In CSI-RS transmission, the antenna layout, antenna elements to TxRU mapping, and digital/analog beamforming are dependent on the gNB implementation. With a different setting of these configurations, a given CSI-RS port would present different channel distributions observed at UE.
Being able to categorize the data that is collected based on the scenario or configuration may prove useful during the development of machine learning models. For example, different ML models can be developed in a manner customized to each scenario or groups of scenarios. This may allow a better tradeoff between the accuracy of CSI feedback and the feedback overhead.
To facilitate such categorization of the collected data, it would be beneficial for the network to provide assistance signaling to identify the scenario or configuration in which the data is being collected. For example, the network may indicate a zone identifier (zone ID), a scenario ID, or a configuration ID.
[bookmark: _Toc115432188][bookmark: _Toc115432462][bookmark: _Toc115432732][bookmark: _Toc115432780][bookmark: _Toc115432794][bookmark: _Toc118462583][bookmark: _Toc118487700][bookmark: _Toc118487758][bookmark: _Toc127527016][bookmark: _Toc131763061] Study assistance signalling for UE’s data collection in the form of a zone ID, scenario ID, and configuration ID.
[bookmark: _Ref127455853]Considerations related to model development and training
In this section, we discuss the considerations related to model development and training that would be useful to study the pros and cons of different training options.
Device-specific optimization
The use of AI/ML models on a device for inference for CSI feedback enhancement use case would require offline target-specific development, optimization, and testing. Due to this consideration, the device vendor must be involved in the development of the model that the device needs to use for inference. As an example, the UE-side vendor should be involved in developing the UE-side model that the UE must run, and the NW-side vendor should be involved in developing the NW-side model that the gNB must run.
The model structure should be decided taking into account the capability of the device that will implement the model. Otherwise, the device may not be able to use the model. Besides, if a model is transferred from one node to another node (for example, from the NW to the UE) and if the model was not optimized for the receiving node, then running inference using this model may require advanced capability of in-device model compilation at run-time.
[bookmark: _Toc127526847][bookmark: _Toc131762879]For the AI/ML-based CSI feedback enhancement use case, the use of an AI/ML model for inference within a device would require prior offline device-specific optimization and testing.
[bookmark: _Toc127527017][bookmark: _Toc131763062]Model development and training options should consider the need for the UE-part of two-sided AI/ML models to be designed based on the UE capabilities and optimized in a device-specific manner.
Backward compatibility considerations
In the context of two-sided models, there may be a need to develop a new UE-side model, for example, when a new device or chipset is released. The dataset associated with the new device or chipset may have unique characteristics related to the device hardware or implementation aspects. A UE-side model that was trained earlier with datasets from other device types may not be suited for use with the new device because the discrepancy in the data distribution may result in sub-optimal performance. In [2], we present evaluation results that show that the performance of the AI/ML model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.
In a similar manner, a new NW-side model may need to be developed, for example, when a new cell-site is deployed or when an existing cell-site is upgraded.
Consider an example where a NW-side vendor uses a common NW-side model with multiple UE-side models. Now, if the development of a new UE-side model requires an update to the NW-side model, then that could result in a need to update the UE-side model of other vendors also. For scalability reasons, the engineering effort required related to the development of a new UE-side model should be confined to that UE-side vendor to the extent possible. If the development of a new UE-side model necessitates a large effort for the network-side vendors and other UE-side vendors, such an approach is not scalable in practice. Similarly, an update to the NW-side model should not result in a large engineering effort for UE-side vendors.
[bookmark: _Toc127527018][bookmark: _Toc131763063]Model development and training options should strive for the principle of engineering isolation, i.e., confining engineering effort needed for a new chipset/UE development to the given chipset/UE vendor.

Level of personalization: common vs. personalized models
For the CSI feedback enhancement use case, the same two-sided model is likely to be used across a large number of devices. Some level of customization based on scenarios may be justified. However, developing models for individual devices could result in a lot of complexity in the life-cycle management, and the benefit of such personalization needs to be carefully justified.
This aspect has direct implication on the specification impact related to model development and deployment. As an example, if the model is common to a large group of UEs, then it would be efficient to develop the model offline once in a common way at a training server and then distribute the model to the UEs.
[bookmark: _Toc127527019][bookmark: _Toc131763064]Model development and training options need to consider whether the model is developed for common use across a group of UEs or is developed for an individual UE.

Information exchange across vendors
When models are developed and trained, depending on the training type, different types of data and information may need to be exchanged across UE and network vendors. Preserving proprietary design is important to promote innovation and vendor differentiation. The feasibility of information disclosure and exchange needs to be considered when designing model development mechanisms.
[bookmark: _Toc127527020][bookmark: _Toc131763065]Model development and training options need to consider feasibility of disclosing proprietary model information to the other side.

To summarize, there are a few main aspects to consider when comparing the different training types:
· Was the capability of the device that will use the model taken into account when developing the model structure? Was the model structure optimized for the device?
· Otherwise, the device may not be able to use the model.
· Was the model compiled for the device that will use the model?
· Otherwise, the device would need to support on-device compilation before it can use the model.
· Does the training dataset capture the data variations specific to the type of the device that will use the model?
· Otherwise, the performance may be impacted due to the data distribution mismatch.
· Is the training method applicable for training a model compatible with previously trained models of the other side? (For example, if the model is a UE-side model, then is it backward compatible with previously trained NW-side models?)
· Otherwise, the other side would also have to switch to a new compatible model.
Discussion on the pros and cons of different training types
In RAN1#110 [1], the following was agreed regarding AI/ML model training:
	Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
Other collaboration types are not excluded.

In this section, we discuss the pros and cons of the different training types. While the agreement above describes which entities perform the training operation, there could be many variations to each type. For example, the training operations could happen online over the air-interface, or offline without involving the air-interface.
In RAN1#111 [4], the following conclusion was reached regarding type 2 training:
	Conclusion

In CSI compression using two-sided model use case, training collaboration type 2 over the air interface for model training (not including model update) is deprioritized in R18 SI.

The trained model could be transferred over the air-interface or delivered without involving the air-interface. Also, the training may be performed entirely on one side, for example, by a NW-side or UE-side vendor, or it may be performed through a collaboration between one or more NW-side and UE-side vendors. We discuss the pros and cons of the different training types and their variations next.

Online vs. offline training
For the CSI feedback enhancement use case, the same two-sided model is likely to be used across many UEs and the benefit of personalizing the model to individual UEs is not clear. For this scenario, training the model offline at a training entity such as a server would be more efficient than training the same model repeatedly at each device. Specifically, online training over the air-interface may result in significant air-interface resource overhead to exchange model parameters and gradients multiple times during the training process.
Moreover, online training of an on-device model over the air-interface would require the advanced capability of in-device model compilation at run-time as the model cannot be optimized and tested ahead of time. Considering these aspects, the benefit of online over-the-air training of AI/ML models for CSI feedback enhancement use case is not clear.
Based on this discussion, we have the following proposal:
[bookmark: _Toc127527021][bookmark: _Toc131763066]For AI/ML-based CSI feedback enhancement use-case, take offline training as a starting point.
Type 1 training
Here, the UE-side and NW-side model are trained by a single entity, for example, the UE-side vendor, the gNB-side vendor, or third-party.
[image: Diagram

Description automatically generated]
Figure 1: Two-sided CSI compression model development via Type 1 training

Type 1 training has the benefit that the UE-side and NW-side models will work well together as they are trained jointly. However, it also has some implications for deploying and managing the models in practice. Consider Type 1 training on the network-side. There are two possible approaches – training with or without involvement of the UE-side vendors.
Type 1 training with device-agnostic encoder
Type 1 training with device-agnostic encoder makes it difficult to accommodate a UE-side vendor that was not involved in the type 1 joint training process. The following issues may arise:
· The use of the UE-side model for inference within the UE would require prior offline device-specific optimization and testing, which is not possible if the training is device-agnostic and the UE-side vendor is not involved.
· The training process may develop a UE-side model assuming a structure and input format that may not be suited to the UE implementation and capabilities
· If the input is assumed to be the target CSI, that restricts the implementation of the UE-side and limits the room for differentiation. Even in legacy CSI, the input and pre-processing used on the UE-side to derive the CSI feedback is left to UE implementation.
· The training entity may use a dataset for training the model based on other devices, and that may not capture the unique aspects of the UE-vendor’s device characteristics and implementation. The resulting discrepancy in data distribution may cause sub-optimal model performance. In [2], we present evaluation results that show that the performance of the AI/ML model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.
The same concerns apply to the release of a new device or a new UE-side vendor that has to develop a model after the Type 1 training has completed.
[bookmark: _Toc127526848][bookmark: _Toc131762880]Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device,
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.

[bookmark: _Toc127527022][bookmark: _Toc131763067]Deprioritize Type 1 training with device-agnostic encoder in the R18 study.

Type 1 training with device-specific encoder
In this flavor, the encoder is developed specific to the device that will use it for inference. Since the training happens within a single entity, there is a need for coordination between the UE-side and NW-side to ensure that the trained models will be suitable for inference operation at the device for which the model is being developed. As an example, the UE-side and NW-side have to coordinate and provide information such as the model structure, input pre-processing, output post-processing, and training dataset (including the target CSI) to the training entity.
Type 1 training on the network side would require UE-side vendor to disclose the model information which may be proprietary.
[bookmark: _Toc127526849][bookmark: _Toc131762881]Type 1 training performed on the NW-side with involvement of the UE-side vendor requires the UE-side to provide information (such as model structure, pre-processing, post-processing, datasets and ground truth) to the training entity to ensure that the trained models are suitable for inference.
Consider the case where the NW-side vendor uses a common NW-side model with multiple UE-side models. Then NW-side type 1 training with UE-side involvement will first of all require coordination across multiple UE vendors. Moreover, if a new UE device type is released, it would trigger the joint retraining involving the NW-side vendor and multiple UE-side vendors. This could result in a large engineering effort across multiple vendors.
[bookmark: _Toc127526850][bookmark: _Toc131762882]For NW-side type 1 training with UE-side involvement, developing a new model for a new UE device type or vendor can result in a large engineering effort across multiple vendors.

Type 2 training
Here, the UE-side and NW-side models are trained concurrently as in the Type 1 training case. However, unlike in Type 1, the training is not done by a single entity but in a distributed manner. For example, the UE-side vendor may train the UE-side model, while the NW-side vendor may train the NW-side model. To facilitate the training process, the two training entities may need to exchange data including activation, target output, and gradient samples.

[image: Text

Description automatically generated]
Figure 2: Two-sided CSI compression model development via Type 2 or Type 3 training
Some observations on this scenario are as follows:
· One disadvantage of this approach is that the two training entities need to make arrangements to exchange information back and forth during the training session.
· An advantage of this approach is that each training entity need not reveal its own model structure to the other side.
· The inputs to the UE-side model and pre-processing aspects need not be provided to the training entity of the NW-side model.
· It is feasible to develop two-sided models that are compatible and work well using this approach even though the training procedure is not managed by a single entity. We present evaluation results in our accompanying contribution [2] that compare the performance of Type 2 training and Type 1 training, which shows that Type 2 training works well and achieves the performance of Type 1 training.
· Similar to Type 1 training, if a NW-side vendor uses a common model across different UE-side vendors (or vice versa), and if a new UE-side vendor that did not participate in the initial joint training process wants to develop a UE-side model, then the training would need to be performed across all vendors’ models again resulting in a large engineering effort for other vendors.
To summarize, as compared to the Type 1 training approach, the Type 2 approach enables a distributed mechanism for training without losing performance.

[bookmark: _Toc127526851][bookmark: _Toc131762883] It is feasible to train a two-sided AI/ML model using an offline Type 2 (multi-vendor) training approach with performance comparable to Type 1 training.
[bookmark: _Toc127526852][bookmark: _Toc131762884]For type 2 training, developing a new model for a new UE device type or vendor can result in a large engineering effort across multiple vendors if the NW-side or UE-side use a common model for multiple models on the opposite side.

Type 3 training
Type 3 training refers to the scenario where the UE-side and NW-side models are trained by different entities separately. While there is no collaboration during training, some coordination is necessary outside the training process to ensure that the UE-side and NW-side models are compatible and can work correctly.
Some observations on this separate training approach are listed below:
· This approach is more flexible than the Type 2 approach as it does not require any collaboration during the training process.
· Since each model is trained by a different entity, there is no need to disclose the model structure.
· As in the Type 2 approach, the inputs to the UE-side model need not be provided to the training entity of the NW-side model.
· Since the UE-side and NW-side models are trained separately, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple	models on the opposite side.
Our results in [2] show that it is possible to apply the Type 3 training framework to train two-sided AI/ML models.
[bookmark: _Toc127526853][bookmark: _Toc131762885] As compared to Type 2 training, the Type 3 offline training approach is more flexible as it does not require coordination during the training process.
[bookmark: _Toc127526854][bookmark: _Toc131762886] For Type 3 separate training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.

There are a few flavors of Type 3 training:
Sequential training starting with UE-side
[image: A picture containing graphical user interface

Description automatically generated]
Figure 3: Offline sequential training starting with UE-side
In this flavor, the UE-side model is first trained by a training entity (for example, the UE-side vendor). This training entity then shares a training dataset consisting of (encoder output, target CSI) to the other training entity (for example, the gNB-side vendor) to train the NW-side model so that the overall two-sided model performs correctly during inference.
Evaluation results in [2] shows that Type 3 offline sequential training starting with UE-side works well and achieves the performance of a Type 1 training.

Sequential training starting with NW-side

Here, the UE-side vendor shares the target CSI dataset with the training entity that trains the NW-side model (for example, the NW-side vendor). Based on this dataset, the NW-side model is trained first.
Once the NW-side model has been trained, there are different options for how to train the UE-side model. The different approaches to realizing NW-first sequential training are discussed and compared below:
[bookmark: _Ref127360204]Option 1: Sequential training based on dataset exchange
[image: A picture containing graphical user interface

Description automatically generated]
[bookmark: _Ref127522611]Figure 4: Offline sequential training starting with NW-side (Showing the Option 1 of Section 4.4.2.1)
In this option, the NW-side provides a dataset to the UE-side training entity where each sample contains the target CSI and the CSI feedback message corresponding to that target CSI, as shown in Figure 4.
The UE-side training entity performs supervised training of the UE-side model using this dataset, where the input is assumed to be the target CSI and the ground truth output is assumed to be the CSI feedback

[bookmark: _Ref127360288]Option 2: Sequential training based on activation and gradient exchange
[image: Graphical user interface

Description automatically generated with low confidence]
[bookmark: _Ref127522685]Figure 5: Offline sequential training starting with NW-side (Showing the Option 2 of Section 4.4.2.2)
In this option, the UE-side training entity performs a training session involving interaction with the network side during training, as shown in Figure 5. This is similar to Type 2 training, but only the UE-side model is updated during the process.
· The UE-side sends data samples to the NW-side containing Target CSI and the corresponding CSI feedback message generated by the current parameters of the UE-side model
· The NW-side computes the gradient update based on these samples using the pre-trained NW-side model and loss function and sends it to the UE-side training entity.
· Unlike Type 2 training, the NW-side model may be frozen and used only to compute the gradient.
· The UE-side training entity updates the model parameters based on the gradient.
· The process is repeated until the end of the training session.
In this option, the NW-side refers to any 3gpp or non-3gpp entity or service that the NW-side sets up for the purpose of providing training interface to the UE-side model training. For example, the “NW-side” may be a proprietary application server owned by an infra vendor that contains the NW-side model replica and provides an API that accepts the Target CSI and CSI feedback as input and returns gradient as output.

Option 3: Sequential training based on model sharing
The NW-side shares the trained NW-side model as well as the training loss function to the UE-side training entity. The UE-side training entity incorporates this model and loss function into the training session while training the UE-side model. The process is similar to Option 2 – the training proceeds by keeping the NW-side model parameters frozen during the training updates.

Comparison of the options:
· Input type: Option 1 requires the input type to the UE-side model to be the same as the target CSI. Options 2 and 3 allow the UE-side full flexibility in selecting the input type and pre-processing.

· Training procedure alignment: With Option 1, the training loss computed while training the UE-side model is based on the CSI feedback message, whereas the training loss computed while training the NW-side model is based on the output CSI. With Option 2, since the NW-side computes the gradient, it can use the same loss function that was used to train the NW-side model and compute it using the output CSI even during the training of the UE-side model. In [2], we present evaluation results that show performance degradation for Option 1 as compared to Option 2 because of this discrepancy in how the loss function is computed.

· Dataset: Consider the scenario where the sequential training is being performed to develop a UE-side model for a new UE type with unique device and implementation characteristics. Options 2 and 3 allow the UE-side to collect data from the new type of UEs and use a training dataset that better captures aspects unique to the device type for which the UE-side model is being developed. In option 1, the dataset may include data collected using other types of devices. The resulting discrepancy could result in sub-optimal performance. In [2], we present evaluation results that show that the performance of the AI/ML model can vary considerably if there is a discrepancy between the training data and inference data due to device-side variations.

· Proprietary information: Option 3 requires the NW-side to provide access to the NW-side model and the training details such as the loss function to enable the UE-side model to perform training. Options 1 and 2 do not have such a requirement.

	
	Dataset exchange based
	Gradient exchange based
	Model sharing based

	Input type
	Same as target CSI
	Flexible
	Flexible

	Training loss
	Based on CSI feedback
	Based on output CSI (Aligned with NW-side model training)
	Based on output CSI (Aligned with NW-side training)

	Dataset
	May not be matched to UE type
	From UE-side, matched to UE-type
	From UE-side, matched to UE-type

	Proprietary information disclosure
	Not needed
	Not needed
	NW-side model and loss function need to be shared

[bookmark: _Toc127526855][bookmark: _Toc131762887]For NW-first sequential training, the training based on gradient exchange provides several benefits in terms of flexibility in the input type, better alignment between the UE-side and NW-side model training, aligned dataset and avoiding disclosure of proprietary information.

Generalization across multiple vendors
For the training scenarios discussed above, if there are many UE and NW vendors, then a UE may need to interface with different NW-side models, and a gNB may need to interface with different UE-side models.
One solution is for a UE-side vendor to prepare multiple UE-side models, one corresponding to each gNB-side model. Similarly, a NW-side vendor may prepare multiple gNB-side models, one corresponding to the UE-side model. The training approaches discussed above could be applied in a pair-wise manner to prepare such models for each pair of UE and NW vendors.
However, this implies that a UE and a gNB would need to switch between models for each model on the other side. It may be beneficial to a gNB if a NW-side model could generalize across different UE-side models. Similarly, if a UE-side model could generalize across different NW-side models, then switching could be avoided.
Consider, for example, the problem of training a NW-side model for a single NW-side vendor that generalizes across different UE-side models for different UE-side vendors. We discuss how the different training approaches would accommodate this requirement:
· In the Type 1 training approach, the training entity could train the different UE-side models and the common NW-side model jointly in a single training session provided it has access to the training data and has knowledge of the model structure for each of the models.
· Similarly, the Type 2 training approach could also train the multiple UE-side models and the common NW-side model through appropriate exchange of activations, gradients, and reference outputs. Note that this would require the training entity of each UE-side model and the NW-side model to coordinate in order to simultaneously participate in the training process. Figure 6 shows an example of the setup for the case of a single NW-side model and 3 UE-side models being trained in a Type 2 training approach:
[image: Graphical user interface, application, Teams

Description automatically generated]
[bookmark: _Ref127522709]Figure 6: Type 2 offline training of a single NW-side model and multiple UE-side models
· In the Type 3 training approach, the NW-first sequential training approach easily extends to multiple UE-side models as the same process used for training one UE-side model discussed above can be repeated with each UE-side model. Similarly, the UE-first sequential training approach can be extended to multiple UE-side models, wherein each UE-side model is trained first, and a common NW-side model can be trained on a mixture of datasets from all the UE-side vendors. This is confirmed in our evaluation results in [2].
[bookmark: _Toc127526856][bookmark: _Toc131762888] It is feasible to train a common NW-side model that is compatible with multiple UE-side models using Type 2 or Type 3 training approach with performance comparable to Type 1 training.
Overall comparison and relation to collaboration levels
Table 1 discusses the different types of training in terms of the considerations listed in Section 3.

[bookmark: _Ref127455804]Table 1: Comparison of training types
	
	Type 1
(with device-agnostic encoder)
	Type 1
(with device-specific encoder)
	Type 2
	Type 3 NW-first (dataset exchange)
	Type 3 NW-first (gradient exchange)
	Type 3 UE-first

	Model structure accounts for device capability
	No
	Yes
	Yes
	Yes
	Yes
	Yes

	Data distribution matched to device?
	No
	Yes
	Yes
	No
	Yes
	Yes

	Applicable to non-backward compatible deployment
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Applicable to train new UE-side model backward compatible with existing NW-side model
	No
	No
	No
	No
	Yes
	No

	Applicable to train new NW-side model backward compatible with existing UE-side model
	No
	No
	No
	No
	No
	Yes

In collaboration level y, models are trained offline, and stored at the target device or at a server and delivered to the target device in a proprietary manner.
For type 1 training to be used in collaboration level y, the UE-part of the two-sided model trained by the type 1 training must be delivered to the UE in a proprietary manner. For example, with offline coordination between the NW-side vendor and UE-side vendor, the trained UE-part model may be compiled, tested, and stored at a UE-side model storage, all offline. The stored UE-part model may be delivered to the UE over-the-top in a manner transparent to air-interface signalling. Similarly, the trained NW-part model may be delivered to the gNB over-the-top.
For type 2 or type 3 training, the UE-side vendor is directly involved in the training process of the UE-part, and the NW-side vendor is directly involved in the training process of the NW-part. Hence, it is natural for the UE-vendor to compile, test and store the UE-part model for delivery, and similarly on the NW-side.
[bookmark: _Toc127526857][bookmark: _Toc131762889]Training type 1 (with device-specific encoder), training type 2 and training type 3 are applicable to both collaboration level y and level z.

[bookmark: _Ref127524652]An overall framework for training two-sided models
The discussion above summarizes the pros and cons of the different training approaches. However, the overall framework for training two-sided models need not be restricted to one of the training types. The framework has to accommodate various aspects such as new vendors, new device types, new cell-sites, and the need for backward compatibility of the model to already deployed models on the other side. Taking these into consideration, we have the following proposal.
[bookmark: _Ref127524696][bookmark: _Toc127527023][bookmark: _Toc131763068]Adopt the following two-sided model development/training framework:
· Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
· Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the existing decoders.
· Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
· Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training

We want to emphasize that “Case 1” is what RAN1 has discussed so far. “Case 1” itself may be done via Type 1, Type 2, or Type 3 training.
“Case 2” is an additional optional step that UE-side vendor can take. The encoder training in “Case 2” with a trained decoder from “Case 1” can be viewed as a NW-first Type 3 training. Similarly, “Case 3” is an additional optional step that NW-side vendor can take. The decoder training in “Case 3” with a trained encoder from “Case 1” can be viewed as a UE-first Type 3 training.
Therefore, the entire training process can be viewed as a hybrid of Type 1/2/3 followed by Type 3. We discuss other aspects of life-cycle management related to two-sided models in [3].

Model monitoring
On the need for real-time model monitoring
Before studying the potential RAN1 specification impact for model monitoring for two-sided models, it would be important to clarify the purpose and use cases for real-time model monitoring over the air-interface.
The goal of model monitoring is to detect and address the cases where the model performance is not adequate to ensure good user experience. As discussed in [3], performance issues for AI/ML models may arise from several sources:
· Bad training/validation dataset
· Bad model design/training
· Imperfect model selection and switching
· Training and target platform differences
· Data distribution shift
· Unexpected events
The above issues arise at different steps of the AI/ML LCM pipeline and at different frequencies, and therefore they demand different solutions.
The following table summarizes the discussion and outlines potential solutions to address the above issues:
	
	Bad training / validation dataset
	Bad model design / training
	Imperfect model selection and switching
	Training and target platform difference
	Data distribution shift
	Unexpected events

	RAN4 test
	
	Yes
	Yes
	
	
	

	Proper dataset construction
	Yes
	
	
	
	
	Yes

	Non-real-time direct KPI monitoring at training server
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Non-real-time indirect KPI monitoring at NW / UE
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Well-defined model selection criteria
	
	
	Yes
	
	
	

	Setting validation performance target for offline training
	
	Yes
	
	
	
	

	Offline testing at the target platform
	
	
	
	Yes
	
	

	Real-time performance monitoring
	No need
	No need
	No need
	No need
	No need
	No need

The discussion implies that the issues that cause inadequate model performance can be addressed using testing, validation and monitoring solutions that happen during the offline model development stage. If a model has been developed in this manner, then real-time monitoring of the model after it has been activated for use should not be necessary.
Considering this aspect, it would be desirable to avoid incurring additional overhead and additional processing complexity to perform real-time model monitoring.
[bookmark: _Toc131762890]Real-time performance monitoring that incurs overhead and/or additional processing complexity is unnecessary.
Besides, real-time monitoring to detect and address an unexpected model performance issue may not be feasible, as it comes with a cost of increased overhead and processing complexity. For two-sided CSI feedback, the target CSI and output CSI are generated at UE side and NW side separately. To enable monitoring based on inference accuracy, the UE could either run NW-side decoder or provide the target CSI to the NW-side. In the last meeting, following options regarding model monitoring based on intermediate KPI was discussed.
	Agreement

In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side.
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring.
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring.
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.

The option of UE reporting the target CSI to the NW-side over the air-interface can only provide a delayed view of the model performance to the NW due to the processing and reporting delays. Moreover, to prevent false alarms due to outlier samples (even within the training distribution), sufficient averaging may be required, and this may result in additional latency. Such latency can prevent timely detection and response.
Also, to detect a performance issue quickly, frequent periodic reports would be needed, but frequent triggers can result in large overhead. This may significantly reduce the overhead reduction benefit of AI/ML-based CSI compression. On demand triggering based on a performance degradation event would anyway result in a delayed detection after the issue has happened.
In contrast, an alternate approach can be considered where the monitoring happens on the UE-side based on the input channel samples. Such an approach does not incur the overhead associated with reporting target CSI. The option of UE running the NW-side model may be feasible only for UEs that can handle the added complexity. In the following sections, we discuss two such schemes along with evaluation results.
[bookmark: _Toc131762891]Model monitoring based on ground-truth provided by UE to the network requires large signaling overhead and may be sensitive to large latency.
[bookmark: _Toc131763069]For model performance monitoring, specification change for reporting the target CSI with high resolution from UE to network requires clear justification as it incurs additional overhead and may not be necessary.
Monitoring based on intermediate KPI prediction at UE side
In this part, we develop a proxy at the UE side which takes the latent information generated inside the UE-side model as input and outputs a predicted intermediate KPI (i.e., SGCS) directly. The total number of weights in the proxy model is around 13k. The block diagram is shown in Figure 7.
[image:]
[bookmark: _Ref131762048]Figure 7: Proxy model on UE-side to estimate intermediate KPI
Figure 8 illustrates the comparison between the predicted SGCS compared and the actual SGCS value resulted by the reconstructed CSI at NW side. For illustration purpose, we produce the results by randomly selecting 100 samples from total 171000 samples in the testing set. It can be seen that the predicted SGCS value and actual SGCS value are very close. Figure further shows that the CDF of the SGCS prediction and the CDF of the actual SGCS almost overlap. The average gap between the predicted SGCS and actual SGCS is around .
	[image: A picture containing chart

Description automatically generated][image: Diagram

Description automatically generated with medium confidence]

[bookmark: _Ref131761882]Figure 8: Left: predicted SGCS vs. actual SGCS; Right: SGCS CDF
The proxy-based model monitoring can be designed to monitor UE-side model only or designed to monitor UE-side and NW-side model jointly, depending on whether the SGCS ground-truth label for training the proxy model is generated by UE autonomously or provided by NW.
· For training the proxy model for the purpose of monitoring UE-side model only, UE may develop a private decoder which generates a reconstructed CSI, and the SGCS label is computed using this reconstructed CSI and its ground-truth. With this SGCS label and its associated input sample, UE is able to develop the proxy model. The reference decoder can be developed in the first step of UE-first Type3 training or developed together with the UE-side model in the last step of NW-first Type3 training.
· For training the proxy model for the purpose of monitoring both UE-side and NW-side model jointly, the training would need to use SGCS labels derived from the reconstructed CSI output by the actual CSI decoder deployed at the NW side. The NW-side can provide the reconstructed CSI output or SGCS labels along with the necessary information exchange in the Type3 training.
[bookmark: _Toc131762892]Model monitoring using a proxy model that outputs the intermediate KPI directly shows an accurate inference accuracy prediction.
[bookmark: _Toc131763070]Study specification impact of methods that directly outputs intermediate KPI at the UE side.
Input-based monitoring
Another simple approach for model monitoring is evaluating the input sample in inference. More specifically, UE calculates the target CSI (or input) based on the input sample measured in inference phase, and then compares it with the counterpart of the training set.
An example is elaborated as follows. Training samples are partitioned into two groups – the partition can be based on clustering methods, data statistics (e.g., angle, delay spread, doppler) or the meta-information provided in data-collection phase. One can see from Figure 9 that the distribution of the distance of a sample from samples belonging to an unmatched group is biased from the distribution of the distance from samples belonging to its matched group. Therefore, it is feasible for UE to differentiate samples based on distance or probability assessment.
[image: Chart, line chart

Description automatically generated]
[bookmark: _Ref131760901]Figure 9: Distribution of sample distances from two groups in the training data
The results we present in [2] show that it is possible to use the metrics derived from the input samples to determine the model performance during inference. The metrics derived from comparison of the input samples and training samples are observed to have a strong relationship with inference accuracy.
[bookmark: _Toc131762893]Model monitoring based on metrics derived by comparison between input samples inference and training samples can have strong relationship with the inference accuracy. As a result, input-based monitoring appears promising.
[bookmark: _Toc131763071]Study specification impact of input-based model monitoring on the UE-side by comparing input samples at inference time to the training samples.
Specification impact for two-sided model inference
CSI report configuration
After the discussion in the last meeting, the feature lead encouraged companies to pay attention to potential enhancement to CSI report configuration. In this part, we discuss general aspects of CSI report configuration for two-sided CSI feedback. Before that, let us review current CSI report setting. For current codebook-based PMI reporting, following is configured.
· Carrier ID
· Measurement resources including CMR and IMR
· Time type of the CSI report, periodic, semi-persistent or aperiodic
· Report quantity: e.g., cri-ri-pmi-cqi
· Frequency band configuration, e.g., subbands for CSI feedback
· Codebook configuration, including the codebook type, rank-restriction, antenna port layout and other parameters related to the configured codebook, etc.
For two-sided CSF, the only difference compared to legacy CSI feedback approach is that the codebook is replaced by a pair of ML models deployed at the UE side and NW side. Hence, the legacy configuration of carrier ID, measurement resource, time-type of CSI report, report quantity and frequency band configuration can be reused. The necessary change in the specification lies in configuring information related to using ML mode to perform CSI feedback rather than a codebook configuration.
Regarding configuring the two-sided ML-based CSI feedback, as mentioned, a paired UE and NW side model performs analogous to a codebook with a certain functionality/feature, e.g., supported rank, subband/port configuration, etc. Hence, a pairing identifier is needed for the gNB to configure the UE to use a CSI compression matched with the CSI reconstruction model used by the gNB. The UE vendor and NW vendor may develop multiple pairs of models in offline model training phase, and the developing criteria/condition can be per cell/site or per scenario. The criteria/condition is transparent to the standard and upto vendors’ offline agreement, but it is essential to align the models used at the two sides.
Other configuration related to the inference of two-sided model can be configured, such as rank-restriction, antenna port layout (e.g., analogous to N1 and N2 configuration for codebook-based PMI reporting), and payload related information. It is worth noting that pairing ID is a logical ID which does not imply the actual model implementation at both sides. For instance, some UE or NW vendor may develop rank-specific models, while some other UE or NW vendors may develop rank-common models, but these are implementation choices and these models can be registered with the same pairing ID. Similar logic applies to the case where UE/NW implements single model for all possible subband configuration or implements multiple models for them, and the case where UE/NW implements single model for all possible antenna port layout configuration, or implement multiple models for them.
[bookmark: _Toc131763072]Reuse current CSI report configuration framework with new signaling of pairing ID and necessary information related to the CSI feedback, e.g., rank restriction, antenna port configuration, payload information.

Note: A pairing ID is a logical ID that indicates compatibility between the UE-side and NW-side model of a two-sided model. For example, all encoders developed from a two-sided multi-vendor training session may be associated with a single pairing ID. As another example, in NW-side first training, UE-side encoders trained based on the same NW-side model may be associated with a single pairing ID.
Payload determination
In the last meeting, following agreement was agreed for CSI report configuration and payload determination:Agreement
In CSI compression using two-sided model use case, further study the following aspects for CSI configuration and report:
· NW configuration to determine CSI payload size, e.g., possible CSI payload size, possible rank restriction and/or other related configuration.
· How UE determines/reports the actual CSI payload size and/or other CSI related information within constraints configured by the network.

In this part, we will first review the payload determination principle of legacy eType II PMI feedback, and elaborate whether the principle can be applied to ML-CSF or any enhancement is needed.
For eType II PMI, the payload principle is as follows
· Max payload is derived from network configuration in terms of number of SD bases, number of FD bases and number of max non-zero coefficients in W2 matrix.
· These three parameters scale with number of ports, number of subbands and max allowable rank.
· Actual payload is further determined by reported rank and actual number of non-zero coefficients (NNZC).
For two-sided ML-based CSI feedback, the PMI is reported in the form of latent messages which is non-structural. Hence, to control the CSI reporting payload, payload information related latent message can be considered. More importantly, the principle of payload scalability with number of subband, number of ports and rank should remain to ensure a solid CSI feedback for variable configurations. An evaluation can be seen from section 10.2 of [2] where good results can be achieved for 6SB case with half of the payload of 12SB case. Note that the payload scalability does not imply scalability of ML models. UE/NW can choose to implement a common model for all payload configuration or specific model for each payload configuration.
Regarding the actual payload, it is natural to follow the principle that the actual payload is determined based on the reported rank. Regarding other aspects such as NNZC that determine the actual payload, it is useful for eType II because the gNB may under-estimate the channel sparsity in angle-delay domain. However, this may not hold for ML-CSF because the latent message is much more condensed than the features in angle-delay domain.
Besides, there were proposals in the last meting regarding allowing UE to determine the payload among a list of payload candidates. In our view, it is infeasible for the UE to make the decision without knowing the reconstructed CSI. Also, it increases the inference complexity. This is biased from the principle of NNZC reporting in eT2 where UE may simply count the non-zeros in angle-delay domain.
Based on the discussion, we propose:
[bookmark: _Toc131763073]Study payload scalability with number of subbands, number of ports and rank.
[bookmark: _Toc131763074]UE-side actual payload determination should be based on only reported rank for two-sided ML-CSI feedback.
Input, output, pre-/post processing
In this part, we discuss the specification impact of the input, output, pre-/post processing aspect. Before that, it would be useful to first consider what aspects are specified in the legacy CSI feedback framework.
General principle for the specification impact of CSI feedback
The conventional CSI feedback via PMI codebooks, e.g., Type I, Type II and eType II, is specified in two aspects.
· The first aspect is the final precoding matrix and its format, e.g., W=W1*W2 in Type I/II and W=W1*W2*Wf in eType II. The reason is that it tells the UE what to report, and also gNB would know how to use the reported CSI. Another reason is that the UE will use it to calculate the CQI. Without clear definition of the final precoding matrix, the CSI report would become meaningless.
· The second specification aspect is the UCI components and payloads. The reason is that the UE and gNB should align on how each PMI components, e.g., W1, W2, Wf, is quantized and reported over the air-interface. With such information, the gNB is able to construct the precoding matrix based on each UCI components using the PMI codebook.
Besides, it is worth noting that the specification does not specify the following: 1) PMI searching algorithm, and 2) the input of the PMI calculation algorithm (the input could be CSI-RS reception, channel estimate or unquantized precoder or anything else upto UE implementation). It means that, upon receiving the channel/interference measurement resource, UE has the full flexibility and freedom to optimize the algorithm that searches for the best PMI in the form of specified final format.
In CSI feedback using the two-sided AI model, the PMI algorithm is replaced by the CSI encoder while the PMI codebook is replaced by the CSI decoder using which the gNB is able construct the precoding matrix. The general principle for CSI feedback specification should remain the same. In particular, the specification should only specify the final CSI format (e.g., precoding matrix) and how it or its components are reported over the air-interface. The UE would design and develop the model to provide the best CSI in its final format (e.g., a precoding matrix), but the input and the model are kept proprietary.
Pre-processing and post-processing
With such consideration, any preprocessing UE performs from receiving the CSI-RS to the CSI encoder is upto UE implementation.
Regarding “post-processing”, the terminology could be interpreted in different ways:
· One interpretation is that it refers to the processing of the NW-side model output to produce the final CSI format. In this sense, such “post-processing” should be absorbed into part of the final CSI format (e.g., precoding matrix).
· In one example, the final CSI is precoding matrix W=W1*W2 where W1 is the legacy DFT vector while W2 is obtained via the AI model pair. In this case, one may consider W1 as a “post-processing” of the NW-side model output W2 to get the final CSI W. In our view, following the principle for CSI feedback specification, this operation should be specified as part of the final CSI format rather than a “post-processing”
· Another interpretation is that it refers to the processing of the final CSI. In one example, the gNB may use the final precoding matrix W to calculate MU precoder; in another example, the gNB may interpolate the final precoding matrix W to obtain finer granularity in frequency domain. These operations are gNB implementation.
Moreover, it is worth noting that the nominal input (i.e., input-CSI-NW) is only used to train the nominal encoder as discussed in Section 4.7 and Proposal 11:. The actual choice of input used by the UE-side and pre-processing is proprietary without the need of specification. With this in mind, the general principle and criteria for CSI feedback should remain. UE-side vendors (and/or chipset vendors) and NW-side vendors should train their AI models based on the standardized UCI payload and final CSI format.
[bookmark: _Toc131762894]Only UCI and final format of the reported CSI (e.g., the precoding matrix) are specified in legacy CSI feedback framework. The PMI search algorithm and its input are proprietary.
[bookmark: _Toc131762895]In CSI feedback via two-sided model, PMI searching algorithm is replaced by UE-side model while PMI codebook is replaced by NW-side model. The general principle for specification impact should be preserved. The need for specifying UE-side input and pre-processing is not clear.
[bookmark: _Toc131762896]Post-processing of NW-side model output into the final CSI format can be absorbed into the specification of the final CSI format.
[bookmark: _Toc131763075] The input to the UE-side model should be left to UE implementation, the output at the NW-side model can be specified.
[bookmark: _Toc131763076] Preprocessing at UE-side is upto UE-implementation and should not be specified.
[bookmark: _Toc131763077] For AI-based CSI feedback, the size of the UCI payload and the final CSI format can be specified.
Eigen-value / soft-rank reporting
In the past few meetings, some companies proposed to study explicit CSI feedback – encoder takes raw channel or its transformed domain representation as input and the decoder output the reconstructed channel matrices (a.k.a., H-in-H-out). In this section, we discuss issues with H-in-H-out approach and elaborate that eigen-value/soft-rank reporting is a more reasonable alternative than explicit CSI feedback.
In our view, H-in-H-out is concerning in following aspects. Channel matrix feedback was discussed extensively from LTE through to NR, but yet to get standardized. For AI/ML-based CSI feedback, the situation should remain and there is no clear benefit to specify channel matrix feedback in addition to implicit CSI feedback. Moreover, specifying H-in-H-out in addition to implicit CSI feedback (i.e., precoder feedback or V-in-V-out) will cause additional and unnecessary complexity at both UE and gNB sides. Specifically, it is difficult to design a common encoder/decoder which is compatible for both explicit and implicit CSI feedback. Hence, to ensure multi-vendor interoperability, each device may have to implement two different encoders so as to provide CSI feedback for variable decoder choices at gNB side.
To achieve the merit of channel matrix feedback, eigen-value feedback (a.k.a., soft-rank) can be considered together with precoder feedback. The eigen-values provide strength of each layer (or relative strength among layers if interpreted by soft-rank). Such information is equivalent to providing channel matrix to the gNB side. It provides sufficient flexibility for the gNB to perform MU pairing and rank selection.
The eigen-value/soft-rank can be computed by the two-sided models jointly with the PMI reporting without causing a significant increase in the complexity of implementation.
[bookmark: _Toc131762897] Channel matrix feedback (i.e., H-in-H-out) creates additional and unnecessary complexity for multi-vendor operation.
[bookmark: _Toc131762898] Eigen-value or soft-rank feedback, along with precoder, achieves similar merit as the channel matrix feedback in terms of flexibility for network scheduling without causing significant increase in implementation complexity.
[bookmark: _Toc131763078]Study reporting the precoding matrix together with eigen-values or soft-rank for two-sided AI/ML CSI feedback.
Compressing the raw-channel matrix may incur high overhead. For example, if the channel rank is small, it may be sufficient to convey only the precoding vectors for as many layers as the rank. Before discussing specification impact, careful justification is needed that compares H-in-H-out to the V-in-V-out approach in terms of the tradeoff between overhead and user experience metrics.
Considering this discussion, we propose the following:
[bookmark: _Toc131763079]Deprioritize channel matrix feedback for the R18 study item.

Aligning quantization method
In [2], we present results for the case when the two-sided model for CSI compression is trained with and without awareness of the quantization. We also compared the case of fixed and trainable quantization method.
Based on those results, we make the following observations:
[bookmark: _Toc131762899]Quantization non-aware training (case-1) leads to noticeable performance degradation compared with quantization aware training (case-2).
[bookmark: _Toc131762900]Trainable quantization offers more flexibility and better performance compared to fixed quantization, e.g., trainable vector quantization can improve the performance.
To ensure compatibility between the UE-side and NW-side, the quantization method should be aligned. One approach to aligning the quantization method is to use a fixed method. However, the results show that compared to fixed quantization method, the best quantization performance is achieved when the quantization method is itself trained together with the UE-side and NW-side model. The quantization method therefore depends on the choice of the model and the characteristics of the dataset. Allowing the quantization to be trainable provides the best flexibility and performance.
Considering this, the quantization and dequantization steps can be treated as being a part of the UE-side and NW-side model respectively. There is no separate specification impact needed to align the quantization method.
[bookmark: _Toc131763080]Quantization method should be considered a part of the UE-side model and dequantization method should be considered a part of the NW-side model. The quantization method should be aligned for good performance, but there is no need for separate specification support to align the quantization method.
Conclusions
In this document, we have discussed aspects related to model monitoring, types of offline training and potential specification impact for the CSI feedback enhancement use case. We have made the following observations:
Observation 1:	For the AI/ML-based CSI feedback enhancement use case, the use of an AI/ML model for inference within a device would require prior offline device-specific optimization and testing.
Observation 2:	Type 1 training with device-agnostic encoder would result in a UE-side model that:
· is not optimized in a device-specific manner for the intended UE-side device,
· assumes a structure and input format that is not compatible with the UE-side implementation capabilities, and
· may have sub-optimal performance due to a discrepancy between the training and inference data distribution due to device-side variations.
Observation 3:	Type 1 training performed on the NW-side with involvement of the UE-side vendor requires the UE-side to provide information (such as model structure, pre-processing, post-processing, datasets and ground truth) to the training entity to ensure that the trained models are suitable for inference.
Observation 4:	For NW-side type 1 training with UE-side involvement, developing a new model for a new UE device type or vendor can result in a large engineering effort across multiple vendors.
Observation 5:	It is feasible to train a two-sided AI/ML model using an offline Type 2 (multi-vendor) training approach with performance comparable to Type 1 training.
Observation 6:	For type 2 training, developing a new model for a new UE device type or vendor can result in a large engineering effort across multiple vendors if the NW-side or UE-side use a common model for multiple models on the opposite side.
Observation 7:	As compared to Type 2 training, the Type 3 offline training approach is more flexible as it does not require coordination during the training process.
Observation 8:	For Type 3 separate training, the engineering effort of adding a new UE type or new UE-side vendor is contained and does not propagate to other vendors even if the NW-side or UE-side use a common model for multiple models on the opposite side.
Observation 9:	For NW-first sequential training, the training based on gradient exchange provides several benefits in terms of flexibility in the input type, better alignment between the UE-side and NW-side model training, aligned dataset and avoiding disclosure of proprietary information.
Observation 10:	It is feasible to train a common NW-side model that is compatible with multiple UE-side models using Type 2 or Type 3 training approach with performance comparable to Type 1 training.
Observation 11:	Training type 1 (with device-specific encoder), training type 2 and training type 3 are applicable to both collaboration level y and level z.
Observation 12:	Real-time performance monitoring that incurs overhead and/or additional processing complexity is unnecessary.
Observation 13:	Model monitoring based on ground-truth provided by UE to the network requires large signaling overhead and may be sensitive to large latency.
Observation 14:	Model monitoring using a proxy model that outputs the intermediate KPI directly shows an accurate inference accuracy prediction.
Observation 15:	Model monitoring based on metrics derived by comparison between input samples inference and training samples can have strong relationship with the inference accuracy. As a result, input-based monitoring appears promising.
Observation 16:	Only UCI and final format of the reported CSI (e.g., the precoding matrix) are specified in legacy CSI feedback framework. The PMI search algorithm and its input are proprietary.
Observation 17:	In CSI feedback via two-sided model, PMI searching algorithm is replaced by UE-side model while PMI codebook is replaced by NW-side model. The general principle for specification impact should be preserved. The need for specifying UE-side input and pre-processing is not clear.
Observation 18:	Post-processing of NW-side model output into the final CSI format can be absorbed into the specification of the final CSI format.
Observation 19:	Channel matrix feedback (i.e., H-in-H-out) creates additional and unnecessary complexity for multi-vendor operation.
Observation 20:	Eigen-value or soft-rank feedback, along with precoder, achieves similar merit as the channel matrix feedback in terms of flexibility for network scheduling without causing significant increase in implementation complexity.
Observation 21:	Quantization non-aware training (case-1) leads to noticeable performance degradation compared with quantization aware training (case-2).
Observation 22:	Trainable quantization offers more flexibility and better performance compared to fixed quantization, e.g., trainable vector quantization can improve the performance.

We have the following proposals:
Proposal 1:	For data collection for model training, RAN1 should focus on what data should be collected. Mechanism for training data collection needs architectural considerations and should be handled by other working groups.
Proposal 2:	For AI/ML-based CSI feedback using two-sided model, the procedure used to process the downlink measurements and derive the input to the UE-side model during inference should be left to UE implementation.
Proposal 3:	While generating the training dataset, the target CSI corresponding to a downlink measurement should be derived by the UE side to reflect the UE processing during inference (e.g., channel estimation, eigen-vector derivation, etc.).
Proposal 4:	Study assistance signalling for UE’s data collection in the form of a zone ID, scenario ID, and configuration ID.
Proposal 5:	Model development and training options should consider the need for the UE-part of two-sided AI/ML models to be designed based on the UE capabilities and optimized in a device-specific manner.
Proposal 6:	Model development and training options should strive for the principle of engineering isolation, i.e., confining engineering effort needed for a new chipset/UE development to the given chipset/UE vendor.
Proposal 7:	Model development and training options need to consider whether the model is developed for common use across a group of UEs or is developed for an individual UE.
Proposal 8:	Model development and training options need to consider feasibility of disclosing proprietary model information to the other side.
Proposal 9:	For AI/ML-based CSI feedback enhancement use-case, take offline training as a starting point.
Proposal 10:	Deprioritize Type 1 training with device-agnostic encoder in the R18 study.
Proposal 11:	Adopt the following two-sided model development/training framework:
· Case 1: Initial (non-backward-compatible) development/training of “nominal encoder + nominal decoder”
· The use of the nominal encoder at the UE-side is not mandated
· If needed, UE-side may implement a different proprietary encoder based on this decoder using Case 2.
· As the encoders are only nominal, input used in the training process is only a nominal input. The actual input to the CSI encoders may be different and of proprietary choice.
· The use of the nominal decoder at the NW-side is not mandated
· If needed, NW-side may implement a different proprietary decoder based on this encoder using Case 3.
· Case 2: Encoder development/training to be interoperable with existing decoders (e.g., encoders for new UEs or updating encoders for existing UEs):
· UE-side vendor trains new encoders based on the existing decoders.
· Infra vendor should make the existing decoders available (via either a run-time image or an API for training) for the encoder training.
· Case 3: Decoder development/training to be interoperable with existing encoders (e.g., decoders for new cell sites or updating decoders for existing cell sites):
· Network-side vendor trains new decoders based on the existing encoders.
· FFS: Need for encoder availability for decoder training

Proposal 12:	For model performance monitoring, specification change for reporting the target CSI with high resolution from UE to network requires clear justification as it incurs additional overhead and may not be necessary.
Proposal 13:	Study specification impact of methods that directly outputs intermediate KPI at the UE side.
Proposal 14:	Study specification impact of input-based model monitoring on the UE-side by comparing input samples at inference time to the training samples.
Proposal 15:	Reuse current CSI report configuration framework with new signaling of pairing ID and necessary information related to the CSI feedback, e.g., rank restriction, antenna port configuration, payload information.
Note: A pairing ID is a logical ID that indicates compatibility between the UE-side and NW-side model of a two-sided model. For example, all encoders developed from a two-sided multi-vendor training session may be associated with a single pairing ID. As another example, in NW-side first training, UE-side encoders trained based on the same NW-side model may be associated with a single pairing ID.

Proposal 16:	Study payload scalability with number of subbands, number of ports and rank.
Proposal 17:	UE-side actual payload determination should be based on only reported rank for two-sided ML-CSI feedback.
Proposal 18:	The input to the UE-side model should be left to UE implementation, the output at the NW-side model can be specified.
Proposal 19:	Preprocessing at UE-side is upto UE-implementation and should not be specified.
Proposal 20:	For AI-based CSI feedback, the size of the UCI payload and the final CSI format can be specified.
Proposal 21:	Study reporting the precoding matrix together with eigen-values or soft-rank for two-sided AI/ML CSI feedback.
Proposal 22:	Deprioritize channel matrix feedback for the R18 study item.
Proposal 23:	Quantization method should be considered a part of the UE-side model and dequantization method should be considered a part of the NW-side model. The quantization method should be aligned for good performance, but there is no need for separate specification support to align the quantization method.

[bookmark: _Ref450583331]References
1. [bookmark: _Ref111206219][bookmark: _Ref115432331][bookmark: _Ref102039492][bookmark: _Ref101527739]RAN1 Chair’s notes, RAN1 #110.
1. [bookmark: _Ref102109502]R1-2303582, “Evaluation on AI/ML for CSI feedback enhancement”, Qualcomm Incorporated, 3GPP TSG RAN WG1 #112bis-e, April 2023.
1. [bookmark: _Ref131711286]R1-2303581, “General aspects of AI/ML framework”, Qualcomm Incorporated, 3GPP TSG RAN WG1 #112bis-e, April 2023.
1. [bookmark: _Ref127519993]RAN1 Chair’s notes, RAN1 #111.
1. [bookmark: _Ref131760830]RAN1 Chair’s notes, RAN1 #112.

5

image3.png

image4.png

image5.png

image6.png

image7.png

image8.jpg

image9.jpg

image10.png

image1.png

image2.png

