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Introduction
The Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface NR positioning evolution was agreed upon during the RAN#94-e [1] meeting, where one of the objectives included the discussion on the performance and evaluation framework for evaluating AI/ML positioning use cases. 
Furthermore, substantive progress made during the past meetings, regarding the simulation assumptions as well as general observations for the AI/ML positioning performance evaluations. The following agreements were made during the RAN1#112 [2] meeting:
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.
Note: 
· Baseline evaluation area for InF-DH = 120x60 m.
· if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	



Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	


Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:
Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML
Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.
Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.
Conclusion
· No dedicated evaluation is needed for the positioning accuracy performance of model switching
· It does not preclude future discussion on model switching related performance
Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]
Observation
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.



This contribution provides a brief discussion into the some of the open issues relating to the evaluation scenarios and KPIs for enabling a meaningful AI/ML positioning performance evaluation.
AI/ML Model KPIs
Positioning AI/ML Model Generalization
Many of the AI/ML based positioning systems are expected to be location or environment specific based on the data collected for training and thus the positioning performance may be limited to a certain scenario. In addition, generalization should also consider the movement of objects within a specific location or environment, which may be captured by the channel characteristics. The generalization capability of a positioning AI/ML model(s) should be evaluated by testing the performance of the simulated AI/ML model considering the following aspects:
· Different channel parameters of the indoor factory channel model, e.g., different clutter densities, different BS and UE heights
· Different UE speeds and rotations 
· Different PRS configurations, e.g., comb patterns, repetitions, number of samples
· Different Tx/Rx beam configurations e.g., beamwidths, QCL assumptions.
The use of different InF scenarios for training and test data has already been agreed upon during the RAN1#110-bis-e meeting, which assists in evaluating the AI/ML generalizability performance. 
In addition, in the case of a strongly generalized AI/ML model, it is important that the test set include samples from a UE that is not present during the training time. The size of such generalized data samples for the test data set should also be carefully considered across a variety of configurations/scenarios.
Proposal 1: The evaluation methodology should be designed under a common generalizability framework, including additional considerations such as positioning performance evaluations under different UE mobility options, Tx/Rx beam configurations and DL-PRS configurations.
Positioning AI/ML Model Update
In the case of positioning, there are three choices in terms of AI/ML model deployment including the UE, gNB and LMF. These three nodes should also be well-coordinated in terms of the triggering, deployment and inference processing of the model.   
Due to dynamics and characteristics of the radio channel environment as mentioned in the previous section, it is inevitable that a set of collected data will be at some point be outdated due to the 1) UE mobility/rotation 2) channel characteristics (NLOS, multipath, small- and large-scale fading effects, etc.). Thus, there is a need for a model monitoring and model update component which may be used to update the AI/ML model depending on the real-time dynamics or conditions of the evaluated environment at different points in time. This can also be fed back into the training model component to re-train the AI/ML model with the updated data. Model Robustness and Adaptability may be considered as part of the generalizability criteria. Table 1 presents the views on the definition of AI/ML model Robustness and Adaptability.
[bookmark: _Ref131758321]Table 1: Model Robustness and Adaptability
	Model Robustness
	· The robustness of AI/ML models via model inference monitoring and triggering model update should be considered. 
· Since AI/ML models are largely dependent on the type of data used to train the models, the robustness of such derived models needs to validated/tested using different types of “good” and “bad” data samples due to the dependency on the channel models and associated assumptions used to generate the simulated data.
· Further study robustness metrics

	Adaptability
	· Since radio channel and UE mobility are dynamic in nature, this may affect the overall performance of the trained models.
· Model update procedure and associated accuracy of the model when it is deployed in an environment other than the environment the training data is extracted from should be evaluated.
· This may depend on the chosen channel model and may affect aspects such as LOS/NLOS probability, multipath (reflectors and scatterers) and UE mobility assumptions at various locations.
· Further study adaptability metrics



Proposal 2: The positioning AI/ML model evaluation methodology should support scenarios evaluating a model's robustness and adaptability, e.g., including how often an AI/ML model is updated/switched in order to maintain the desired positioning performance targets. FFS any other relevant criteria.
Positioning AI/ML Model Complexity 
The complexity of the AI/ML positioning techniques can especially impact the UE positioning performance in terms of power consumption. AI/ML models which perform well in positioning scenarios, but have high complexity may not be realistic from an implementation perspective for UE-based approaches. However, at the same time UE-assisted positioning approaches can leverage the computational ability of the LMF and therefore complexity constraint may be relaxed to some extent.
Observation 1: AI/ML models for positioning require a careful balance between performance and complexity depending on the type of positioning mode (UE-assisted or UE-based).
Although FLOPs may be considered a meaningful metric of evaluating algorithmic complexity, the hardware and software platforms (e.g., AI/ML libraries used) used to derive the FLOP count should also be considered in the evaluation as AI/ML algorithms with same flop count may potentially lead to different runtimes on different platforms and systems. 
The resources required to execute an AI/ML model should also be further considered in terms of execution time, memory, inputs and outputs as well hardware considerations. Therefore, each AI/ML model should be studied in an objective manner independent of the type of implementation, software platforms or hardware systems.
Further aspects of consideration for evaluating the AI/ML model complexity in the context of positioning include:
· Input size definition: Defined as the number of bits required to represent the input or features of an algorithm, e.g., training data set and largely depends on the type of data, which impacts the time complexity of an algorithm.
· Type of training including AI/ML in terms of online and offline training, typically offline training may require more time when compared to online training in an already deployed system
· Complexity type: AI/ML algorithmic complexity may be defined in terms of one the of the following types of complexity: worst-case, best-case, average-case and amortized complexity
A further aspect may be to characterize the AI/ML algorithm used for evaluation using the Big O notation, which is generally used to define the time/resources used to solve a computing problem including AI/ML algorithms. This is one of the methods to establish a fair comparison among companies for the different performance evaluations. During the RAN1#112 meeting [2], some discussions revolved around the definition of nominal computational complexity values, which aim to showcase non-optimized GPU/TPU implementations. Since this may also be applicable to other use cases including CSI and Beam management, the general definition can be established in AI 9.2.1 to serve as guidance on the complexity definition for all use cases.
Proposal 3: Await further discussions and progress on the definition “Nominal Computational Complexity” in AI 9.2.1 to establish a fair complexity comparison of performance evaluations among different companies.
Conclusion
This discussion paper has noted the following observations with respect to the AI/ML positioning evaluations:
Observation 1: AI/ML models for positioning require a careful balance between performance and complexity depending on the type of positioning mode (UE-assisted or UE-based).
The discussion proposals are summarized as follows:
Proposal 1: The evaluation methodology should be designed under a common generalizability framework, including additional considerations such as positioning performance evaluations under different UE mobility options, Tx/Rx beam configurations and DL-PRS configurations.

Proposal 2: The positioning AI/ML model evaluation methodology should support scenarios evaluating a model's robustness and adaptability, e.g., including how often an AI/ML model is updated/switched in order to maintain the desired positioning performance targets. FFS any other relevant criteria.
Proposal 3: Await further discussions and progress on the definition “Nominal Computational Complexity” in AI 9.2.1 to establish a fair complexity comparison of performance evaluations among different companies
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