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[bookmark: _Ref513464071]Introduction
[bookmark: _Hlk127413224]In RAN#112 meeting, the following agreements were made for evaluation on AI/ML for positioning accuracy enhancement [1].
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.
Note: 
· Baseline evaluation area for InF-DH = 120x60 m.
· if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	



Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	



Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:
Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML
Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.
Conclusion
· No dedicated evaluation is needed for the positioning accuracy performance of model switching
· It does not preclude future discussion on model switching related performance
Agreement
[bookmark: _Hlk131671968]For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

Observation
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.



 In this contribution, we present evaluation result for direct AI/ML positioning based on agreements. 
Evaluation results
In this contribution, we evaluate the impact of following parameters on positioning accuracy for direct AI/ML positioning:
· Labelling error
· CIR as a model input
· Trade off among model performance and complexity
· Channel estimation error

Dataset is generated by carrying out system level simulation for IIoT scenario. The InF-DH channel model is configured to simulate NLOS heavy environment such that greater than 99% of the links between UE and TRP are NLOS. Furthermore, UEs are dropped in the entire deployment area including corners, which makes positioning even more challenging.  
Detailed simulation assumptions are listed in Table A1. A summary of the evaluation assumptions is described below:
· channel: InF-DH 
· clutter parameters {density, height, size}: {60%, 6m, 2m} 
· Spatial consistency modelling: enabled
· the large-scale parameters are modelled according to Section 7.5 of TR 38.901 and correlation distance = dclutter/2 for InF (Section 7.6.3.1 of TR 38.901) 
· the small-scale parameters are modelled according to Section 7.6.3.1 of TR 38.901
· Model inputs: 
1) RSRP measurements
2) RSRP+RSTD measurements
3) CIR measurements
· Model output: UE position
· Model type: ResNet
· Model deployed on: UE side
Evaluation of impact of labelling error
In the RAN1#112 meeting, companies reached consensus to study the impact of labelling error to positioning accuracy for direct AI/ML positioning [1]. For the case of direct AI/ML positioning, UE positions are labelled output. In this subsection, we evaluate the impact of labelling error, i.e., uncertainty in UE position, on achievable positioning accuracy for direct AI/ML positioning. 
To evaluate the impact of labelling error, noise is modelled in each dimension of x-axis and y-axis following the truncated Gaussian distribution with zero mean and standard deviation of L meters. We generated labelling error for following values of L: 
· L= {0 m, 0.05m, 0.1m, 0.25m, 0.5m, 1m, 2m}

Labelling error is added to ideal labels/UE position dataset and a unique model is trained for each labelling error configuration. Testing dataset and training dataset are generated with same labelling error configuration (L). In table 1, evaluation results for the impact of noisy labelling errors are presented.  
Table 1. Evaluation results for AI/ML model deployed on [UE]-side, without model generalization, with noisy label data, [short model description], UE distribution area = [120x60 m]
	Model input
	Model output
	(Percentage of training data set without) Label
	Labelling error (std. = L m) 
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP fingerprint
	UE position
	0% (default)
	 0
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.35

	RSRP fingerprint
	UE position
	0% (default)
	0.05
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.31

	RSRP fingerprint
	UE position
	0% (default)
	0.1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.30

	RSRP fingerprint
	UE position
	0% (default)
	0.25
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.33

	RSRP fingerprint
	UE position
	0% (default)
	0.5
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.38

	RSRP fingerprint
	UE position
	0% (default)
	1
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.52

	RSRP fingerprint
	UE position
	0% (default)
	2
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.98


The following observations are made based on the results. 
Observation 1: Direct AI/ML positioning technique with RSRP fingerprint as a model input, when L is less than or equal to 0.25m, yields approximately similar(~3.3m) horizontal positioning accuracy for 90% UEs.   
Observation 2: For direct AI/ML positioning with RSRP fingerprint as a model input, L= 1m results in 90% horizontal accuracy of 3.52 m which is ~0.17 m worse than simulation case with L equals to 0m.  
Observation 3: For direct AI/ML positioning with RSRP fingerprint as a model input, L= 2m results in 90% horizontal accuracy of 3.98 m which is ~0.63 m worse than simulation case with L equals to 0m.  
Observation 4: For direct AI/ML positioning with RSRP fingerprint as a model input, 90% horizontal positioning accuracy degrades for L value greater than 0.25m, compared to no labelling error.  
Based on the observations, we make following proposal:
Proposal 1: Study relationship between maximum acceptable labelling error and model accuracy for direct AI/ML based positioning.  
Evaluation of CIR input for direct AI/ML positioning 


Figure 1. Direct AIML positioning with CIR measurements as input measurements.
In this subsection, we present evaluation results for direct AI/ML positioning where UE positions are estimated directly by providing Channel Impulse Response (CIR) measurements as an input to the AI/ML model. For each UE-TRP pair, we collected 256(Nt) CIR measurements (complex values). We generated 16000 training samples from system level simulator where each sample consists of 4608 CIR measurements collected from 18 different TRPs in deployment area. 
For this experiment, we do not add any noise to labels (UE position). For comparison purpose, we also present simulation results where UE positions are estimated directly by providing RSRP measurements and RSRP+RSTD measurements as an input to the AI/ML model. In Table 2, accuracy and complexity comparison are presented to analyse the impact of different for model inputs.   
Table 2. Evaluation results for AI/ML model deployed on UE-side, without model generalization, Res-Net model, UE distribution area = 120x60 m
	Model input
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	RSRP 
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	332k
	11.37 M FLOPs
	3.35

	RSRP +RSTD
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000
	334k
	11.41 M FLOPs
	1.69

	CIR (NTRP =18* Nt = 256*Complex Number=2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M FLOPs
	0.98



The following observations are made based on the results. 
Observation 5: Direct AI/ML positioning technique based on CIR measurements as an input, achieves ~0.98 m horizontal positioning accuracy for 90% UEs. 
Observation 6:  Direct AI/ML positioning technique based on CIR measurements as an input yield ~0.71 m better horizontal accuracy than RSRP+RSTD measurements as an input for 90%ile UEs. 
Observation 7:  Direct AI/ML positioning technique based on CIR measurements as an input yield ~2.37 m better horizontal accuracy than RSRP measurements as an input for 90%ile UEs. 
Observation 8: Direct AI/ML positioning technique based on CIR measurements as an input achieves better positioning accuracy for 90%ile UEs compared to RSRP measurements and RSRP+RSTD measurements as model input. 
Observation 9: Direct AI/ML positioning technique based on CIR measurements as an input achieves sub meter level 90% horizontal accuracy with significantly higher model complexity (~112 times) and computational complexity (~76 times) compared to RSRP measurements and RSRP+RSTD measurements as model input.
Evaluation of trade-off between AI/ML models
To evaluate the trade-off between model complexity and positioning accuracy, we trained a less complex AI/ML model (compared to AIML model with CIR input presented in section 2.2) with CIR input as a model input and predicted UE positions. We keep training dataset size, test dataset size and model input same between both experiments. In this evaluation, we consider a less complex model whose model complexity is nearly 4% of the original model. Accordingly, the computational complexity is also nearly 4% of the computational complexity of the original model. In table 3, simulation results for accuracy and complexity between large and small AI/ML models are presented.  
Table 3. Evaluation results for AI/ML model deployed on UE-side, CIR input, without model generalization, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	37 M
	843 M FLOPs
	0.98

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000

	4000

	1.4 M
	38 M FLOPs
	1.41



The following observations are made: 
Observation 10: Less complex AI/ML model with CIR measurements as a model input achieves ~ 1.41 m horizontal accuracy for 90% UEs. 
Observation 11: Less complex AI/ML model compared to more complex AI/ML model with CIR measurements as a model input achieves ~ 0.43m worse 90% horizontal positioning UEs.
Observation 12: More complex AI/ML model compared to less complex AI/ML model with CIR measurements as a model input achieves ~ 0.43m better 90% horizontal positioning accuracy with ~26 times higher model complexity and ~22 times higher computational complexity.
Evaluation of impact of channel estimation error


Figure 2. Direct AIML positioning with channel estimation error.
For the evaluation of channel estimation error, we add AWGN to the CIR measurement in time domain. Two different datasets are generated with SNR= 0 dB and SNR=10 dB values and compared with dataset without noise. 
In Table 4, we present evaluation results for different SNR values without generalization. For each evaluation result, we predict UE positions where SNR values in training dataset and testing dataset are same. 
Table 4. Evaluation results for AI/ML model deployed on UE-side, CIR input under different SNR conditions, without model generalization, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	0.98

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	1.20

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.07

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	1.41

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=10 dB)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	2.00

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	3.55



[bookmark: _Hlk131684451]Observation 13: After performing training and testing with dataset of 10 dB SNR more complex AI/ML model achieves ~ 1.2 m horizontal accuracy for 90% UEs, which is ~0.22 m worse than noiseless dataset.
Observation 14: After performing training and testing with dataset of 0 dB SNR more complex AI/ML model achieves ~ 2.07 m horizontal accuracy for 90% UEs, which is ~1.09 m worse than noiseless dataset.
Observation 15: After performing training and testing with dataset of 10 dB SNR less complex AI/ML model achieves ~ 2.00 m horizontal accuracy for 90% UEs, which is ~0.59 m worse than noiseless dataset.
[bookmark: _Hlk131685529]Observation 16: After performing training and testing with dataset of 0 dB SNR less complex AI/ML model achieves ~ 3.55 m horizontal accuracy for 90% UEs, which is ~2.14 m worse than noiseless dataset.
Observation 17: AI/ML model with a larger complexity is less susceptible to channel estimation error compared to less complex AI/ML model (~1.09 m accuracy degradation for more complex AI/ML model vs ~2.14 m accuracy degradation for less complex AI/ML model).
To evaluate generalization performance under different channel estimation error values without mixed training or model fine-tuning, we use different SNR values among test dataset and training dataset where the SNR indicates quality of CIR estimate. In Table 5, generalization evaluation results are presented.   
Table 5. Evaluation results for AI/ML model deployed on UE-side, CIR input, trained and tested under different SNR conditions, with model generalization without mixed dataset or model finetuning, UE distribution area = 120x60 m
	Model input (NTRP *Nt *Complex Number)
	Model output
	(Percentage of training data set without) Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Comp. complexity
	AI/ML

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	37 M
	843 M FLOPs
	>15 

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR=10 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(Noiseless)
	4000
(SNR= 0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	1.40

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	2.28

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	37 M
	843 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR= 10 dB)
	4000
(SNR=0 dB)
	1.4 M
	38 M FLOPs
	>15

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	37 M
	843 M FLOPs
	2.77

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(SNR= 10 dB)
	1.4 M
	38 M FLOPs
	4.85

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	37 M
	843 M FLOPs
	2.93

	CIR (18*256*2)
	UE position
	0% (default)
	60%, 6m, 2m
	16000
(SNR=0 dB)
	4000
(Noiseless)
	1.4 M
	38 M FLOPs
	5.05


Based on the results presented above, we make following observations: 
[bookmark: _Hlk131700557][bookmark: _Hlk131685642]Observation 18: After performing training with noiseless dataset and testing with dataset with lower SNR (10 dB and 0 dB), both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 19: After performing training with dataset consisting of 10 dB SNR and testing with dataset consisting of 0 dB SNR, both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 20: After performing training with dataset consisting of 10 dB SNR and testing with noiseless dataset , larger and smaller AI/ML models yields ~1.4 m and ~2.28 m positioning accuracy for 90% UEs respectively. 
Observation 21: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.77 m and ~4.85 m positioning accuracy for 90% UEs respectively. 
Observation 22: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.93 m and ~5.05 m positioning accuracy for 90% UEs, respectively. 
Observation 23: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.
Conclusion
In this contribution, the following observations are made: 
Observation 1: Direct AI/ML positioning technique with RSRP fingerprint as a model input, when L is less than or equal to 0.25m, yields approximately similar(~3.3m) horizontal positioning accuracy for 90% UEs.   
Observation 2: For direct AI/ML positioning with RSRP fingerprint as a model input, L= 1m results in 90% horizontal accuracy of 3.52 m which is ~0.17 m worse than simulation case with L equals to 0m.  
Observation 3: For direct AI/ML positioning with RSRP fingerprint as a model input, L= 2m results in 90% horizontal accuracy of 3.98 m which is ~0.63 m worse than simulation case with L equals to 0m.  
Observation 4: For direct AI/ML positioning with RSRP fingerprint as a model input, 90% horizontal positioning accuracy degrades for L value greater than 0.25m, compared to no labelling error.  
Observation 5: Direct AI/ML positioning technique based on CIR measurements as an input, achieves ~0.98 m horizontal positioning accuracy for 90% UEs. 
Observation 6:  Direct AI/ML positioning technique based on CIR measurements as an input yield ~0.71 m lower horizontal accuracy than RSRP+RSTD measurements as an input for 90%ile UEs. 
Observation 7:  Direct AI/ML positioning technique based on CIR measurements as an input yield ~2.37 m lower horizontal accuracy than RSRP measurements as an input for 90%ile UEs. 
Observation 8: Direct AI/ML positioning technique based on CIR measurements as an input achieves lowest positioning accuracy for 90%ile UEs compared to RSRP measurements and RSRP+RSTD measurements as model input. 
Observation 9: Direct AI/ML positioning technique based on CIR measurements as an input achieves sub meter level 90% horizontal accuracy with significantly higher model complexity (~112 times) and computational complexity (~76 times) compared to RSRP measurements and RSRP+RSTD measurements as model input.
Observation 10: Less complex AI/ML model with CIR measurements as a model input achieves ~ 1.41 m horizontal accuracy for 90% UEs. 
Observation 11: Less complex AI/ML model compared to more complex AI/ML model with CIR measurements as a model input achieves ~ 0.43m worse 90% horizontal positioning UEs.
Observation 12: More complex AI/ML model compared to less complex AI/ML model with CIR measurements as a model input achieves ~ 0.43m better 90% horizontal positioning accuracy with ~26 times higher model complexity and ~22 times higher computational complexity.
Observation 13: After performing training and testing with dataset of 10 dB SNR more complex AI/ML model achieves ~ 1.2 m horizontal accuracy for 90% UEs, which is ~0.22 m worse than noiseless dataset.
Observation 14: After performing training and testing with dataset of 0 dB SNR more complex AI/ML model achieves ~ 2.07 m horizontal accuracy for 90% UEs, which is ~1.09 m worse than noiseless dataset.
Observation 15: After performing training and testing with dataset of 10 dB SNR less complex AI/ML model achieves ~ 2.00 m horizontal accuracy for 90% UEs, which is ~0.59 m worse than noiseless dataset.
Observation 16: After performing training and testing with dataset of 0 dB SNR less complex AI/ML model achieves ~ 3.55 m horizontal accuracy for 90% UEs, which is ~2.14 m worse than noiseless dataset.
Observation 17: AI/ML model with a larger complexity is less susceptible to channel estimation error compared to less complex AI/ML model (~1.09 m accuracy degradation for more complex AI/ML model vs ~2.14 m accuracy degradation for less complex AI/ML model).
Observation 18: After performing training with noiseless dataset and testing with dataset with lower SNR (10 dB and 0 dB), both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 19: After performing training with dataset consisting of 10 dB SNR and testing with dataset consisting of 0 dB SNR, both larger and smaller AI/ML models yields >15 m positioning accuracy for 90% UEs.
Observation 20: After performing training with dataset consisting of 10 dB SNR and testing with noiseless dataset, larger and smaller AI/ML models yields ~1.4 m and ~2.28 m positioning accuracy for 90% UEs respectively. 
Observation 21: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.77 m and ~4.85 m positioning accuracy for 90% UEs respectively. 
Observation 22: After performing training with dataset consisting of 0 dB SNR and testing with dataset consisting of 10 dB SNR, larger and smaller AI/ML models yields ~2.93 m and ~5.05 m positioning accuracy for 90% UEs, respectively. 
Observation 23: AI/ML model trained with lower SNR dataset and tested with higher SNR dataset results in better accuracy compared to AI/ML model trained with higher SNR dataset and tested with lower SNR dataset.
Based on the observations, we make following proposal:
Proposal 1: Study relationship between maximum acceptable labelling error and model accuracy for direct AI/ML based positioning.  
Reference
[1] [bookmark: _Ref127399375][bookmark: _Hlk127413391]RAN1 Chairman’s note, RAN1#112, Feb. 2023.
[bookmark: _Ref127399426]Appendix
Table A1: IIoT scenario system parameters
	Parameter
	 Values

	Carrier frequency, GHz 
	3.5GHz

	Bandwidth, MHz
	100MHz

	Subcarrier spacing, kHz
	30kHz 

	Channel model
	InF-DH

	Hall size
	120(L) x 60(W) m, D – 20 m

	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

[image: ]

	Room height
	10 m

	Number of floors
	1

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	InF-DH - {60%, 6m, 2m} 

	UE model parameters 
	

	UE noise figure, dB
	9dB – Note 1

	UE max. TX power, dBm
	23dBm – Note 1

	UE antenna configuration
	Panel model 1 – Note 1
Mg = 1, Ng = 1, P = 2, dH = 0.5λ,
(M, N, P, Mg, Ng) = (1, 2, 2, 1, 1)

	UE antenna radiation pattern 
	Omni, 0dBi

	Network synchronization
	Fully synchronized

	UE/gNB RX and TX timing error
	T1= 0 ns

	UE horizontal drop procedure
	Uniformly distributed over entire factory floor

	UE antenna height
	1.5 m

	gNB model parameters 
	

	Total gNB TX power, dBm
	24 dBm

	gNB noise figure, dB
	5dB

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

	gNB antenna height
	8 m



Table A2: Model configuration for direct AI/ML positioning
	Parameter
	 Values

	Training input measurements
	1.) RSRP: Per beam RSRP from multiple TRPs (108 RSRP values, 6 beams per TRP)
2.) RSRP + RSTD: Per beam RSRP from multiple TRPs (108 RSRP values, 6 beams per TRP) and per TRP RSTD value (18 RSTD values) 
3.) CIR: CIR from multiple TRPs (4608 complex values, 256 complex values per TRP). 

	Output
	UE position

	Number of TRPs
	18

	BS locations
	As specified in Table A1

	ML model
	ResNet (‘j’ Convolutional layer, ‘k’ residual layers, 1 fully connected layer) 
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