[bookmark: historyclause][bookmark: _Toc383764588]3GPP TSG RAN WG1 #112b-e		R1-2303338 
e-Meeting, April 17th – 26th, 2023

Agenda Item: 9.2.3.1
Source: MediaTek Inc.
Title:	Evaluation on AI/ML for beam management
Document for: Discussion & Decision
1. [bookmark: _Ref4683067] Introduction 
The objective for this agenda item, stated in [1], is given by
Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
· Initial set of use cases includes: 
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
In this contribution, we discuss evaluation on AI/ML for beam management focusing on remaining issues on EVM and evaluation results on temporal beam prediction and spatial beam prediction.
2. Beam Management Performance Evaluation
The BM procedure is critical for the energy efficiency and latency performance of RAN1. The objective of the BM procedure is to achieve high data rate transmission (typically by finding the strongest Tx/Rx beams) with low beam measurement overhead. To evaluate the performance of AI/ML-assisted beam prediction, several performance metrics have been agreed in the previous meetings. However, there are still some performance metrics proposals left for discussion in the next meeting.
2.1. Performance metrics proposals
In this section, based on the discussions of RAN1#111, we have the following proposals for the performance metrics that can be used for the evaluation of AI/ML for beam management. The metrics include KPIs for the prediction accuracy and the reference signal overhead.
2.1.1. QCL overhead
The QCL overhead needs to be considered for evaluation since the actual measurement of the Top-1 predicted Tx beam might not be taken if this predicted beam is not in Set B. To obtain QCL relation, an extra measurement is required. However, depending on scenarios and schemes, such QCL overhead might not exists. For example, if the output of AI/ML model is Top-K beams and there exists P2 procedure in the AI/ML scheme to measure those K beams and select the best according to measurement, the QCL overhead will be captured by the RS overhead KPI. Moreover, if Set B are wide beams (e.g., SSB), QCL relation of a narrow beam (e.g., CSI-RS) in Set A can be obtained from the measurement of its associated wide beam, which doesn’t induce any additional QCL overhead. We can first study and list the scenarios when such QCL relation overhead exists, then discuss how to capture it.
Proposal 1: For QCL relation overhead, first study and list the scenarios when such QCL relation overhead exists, then discuss how to define the KPI.
2.1.2. UCI report overhead
In RAN1#110, we have the agreement for UCI report below,
	Agreement
· To evaluate the performance of AI/ML in beam management at least for NW side beam prediction, UCI report overhead can be further studied as one of KPI options. 
· FFS: number of UCI reports and UCI payload size



In our opinion, UCI report overhead can be an important KPI. However, the UCI report overhead depends on the number of UCI reports and how the report is quantized. Therefore, we suggest determining the number of UCI reports and UCI quantization schemes first.
Proposal 2: To define the UCI report overhead, first discuss the number of UCI reports and how the report is quantized.
2.1.3. User throughput
From the system level throughput simulation of DL Tx beam prediction in Section 2.4.1.1, we observe that incorrect beam prediction impacts the throughput more intensively for cell edge users than for other users. Therefore, we propose the following for user throughput evaluation.
Proposal 3: To evaluate the system level throughput performance of AI/ML beam management, both average user throughput and cell edge user throughput need to be reported.
2.2. [bookmark: _Ref131598786]Dataset construction
In this section, we explain the adopted datasets in our simulation and performance evaluation for temporal and spatial beam managements. We adopt two different datasets, namely, the SLS dataset and the ray-tracing dataset. The SLS dataset is generated based on 38.901[2], in which the wireless communication channels are generated using statistical modelling on the propagation paths/rays. The ray-tracing dataset is based on the DeepMIMO dataset [3], in which the propagation paths are generated according to the geometry of the communication environment.
2.2.1. [bookmark: _Ref115399288]SLS dataset
In the SLS dataset, we consider an area of 7 sites and 21 cells as shown in Figure 1. The detailed parameters of the SLS dataset are summarized in in Section 5.1.  
[image: ]
[bookmark: _Ref110957378][bookmark: _Ref110957368]Figure 1: illustration of the layout of the SLS dataset

The dataset contains 100 UEs, each is simulated with 1000 time-steps, the length of a time-step is 20ms. For each time-step sample, the RSRP for each pair of UE beams and gNB beams are recorded. That is, for each UE at one time-step, there are 21 (cells) x 32 (Tx beams) x 4 (Rx beams) = 2016 RSRP values being recorded. Besides the beam power, the UE location information in terms of azimuth and zenith angles to all the cells are recorded as well. We will denote this format as UE angle in the rest of the document. For each UE at each time-step, we define the UE’s serving cell, which is the cell that provides the best RSRP for a single Tx/Rx beam pair to the UE. 
Depends on the evaluation scheme, we prepare the data samples differently. For example, for the best Tx beam index prediction, we first identify the serving cell for each UE at each time-step. Then, for each Tx beams of the serving cell, we pick the best RSRP among all the RSRP values received by the UE’s Rx beams.  Therefore, each data sample for a UE at one time-step consists of a 1x32 vector of RSRP values. Besides, if the scheme is predicting with UE’s additional angle information, we will add both the UE’s azimuth and zenith angles to its serving cell for each data sample.
For temporal beam dataset, note that if the serving cell changes for a UE within the 1000 simulating time-steps (as UE is moving), the 1000 time-steps data sequence will be chunked to multiple data sequences so that the data samples in a single sequence is mapped to the same serving cell. For example, if the serving cell for a UE changes from Cell 1 to Cell 2 at time-step 500, there will be two data sequences generated, each has 500 samples. One uses Cell 1 as the serving cell and the other uses Cell 2 as the serving cell.
2.2.2. Ray-tracing dataset
The wireless communication beams at high carrier frequency, e.g. millimeter wave, highly depends on the geometry of the position and neighboring environment, and the geometry of the gNB and the mobile user. By taking into considerations of the configuration of the position and neighboring environment/geometry, we believe that the generated wireless communication channels can have more specific realistic spatial consistency. Therefore, we believe that evaluating the FR2 beam management on ray-tracing based wireless communication channel dataset is valuable.
The ray-tracing technology keeps track of the position, shape, and material of other objects in the neighboring environment of the communication devices and calculates the gain , delay , and propagation angles  (azimuth) and  (elevation) of each wireless communication propagation paths. Note that  refers to the index of the propagation paths. Given these channel parameters, the delay-domain communication channel can be constructed based on the delay-d channel model as the following
[image: ]
where  is the delay-domain channel response and  denotes the index of the delay taps.  is the pulse shaping function and  denotes the sampling time. (, ) is array response vector for the antenna array.
In this paper, we adopt the DeepMIMO dataset [3] to generate communication channel data using ray-tracing technology. The DeepMIMO dataset is a public dataset for deep learning applications in millimeter wave and massive MIMO systems.
The DeepMIMO “O1” scenario at 28 GHz carrier frequency is adopted in our simulation. The layout of the DeepMIMO “O1” scenario is shown in Figure 2. This scenario imitates a crowded downtown area in a city incorporating the intersection of two streets and multiple buildings (potential reflectors and scatterers). We placed our gNB at “BS 3” as circled in the Figure 2. Mobile users are distributed on the horizontal street as highlighted by the red rectangular box. In implementation, the user area is discretized into a user grid with the interval of 0.2 m. The channels between the gNB and all the positions in the user grid are generated.
The configuration of the DeepMIMO dataset is set to be as similar to [2] as possible. The detailed parameters of this configuration are summarized in Section 5.2.
[image: ]
[bookmark: _Ref110957413]Figure 2: DeepMIMO “O1” scenario layout

2.2.3. [bookmark: _Ref111135317]Configuration of Set A of beams
We apply a beam steering code book for the Set A of beams at gNB. As shown in Figure 3, these Set A of beams consist of 32 beams with 2 beam angles along the elevation dimension and 16 beam angles along the horizontal dimension. The horizontal beams span a 120° range to align with the cell service area. The beam angles of the 32 beams are also summarized in Figure 3. To increase the diversity of the best beam selected by each UE, we apply a 15° down-tilting angle to all the Set A of beams.
[image: ]
[bookmark: _Ref110957450]Figure 3: The Set A of beam configuration for gNB
2.3. Temporal beam prediction
As shown in Figure 4, the objective of the temporal beam prediction is to predict the future Top-k beams or beam pairs in Set A (in the prediction window size of T2) using the previous RSRP measurements of beams or beam pairs in Set B (in the observation window size of T1). Set A of beams are presented in Section 2.2.3. We consider Set B of beams are the same as Set A of beams.
[image: ]
[bookmark: _Ref110957477]Figure 4: the objective of the temporal beam prediction with additional UE information and temporal beam pair prediction

2.3.1. UE Trajectory
As discussed in [4], it is agreed that the user trajectory needs to be considered at least for the temporal beam prediction task. In this report, we adopt the option-2 [4] user trajectory. The user trajectory can be summarized as follows.
Trajectory model (based on option 2)
· Step 0: initialize random position and moving direction, speed is a constant
· Step 1: generate a time interval following exponential distribution (mean = 5 s) with granularity of 100 ms
· Step 2: UE moves straightly along the selected direction to the end of the time interval
· Step 3: generate new moving direction: current moving direction + uniform distribution of [-45°, 45°]
· Loop back to step 1, break loop if
· Time limitation is reached
· UE is out of the service area 
· If the trajectory length (in time) is less than the length of (observation + prediction window), the trajectory should be discarded.
· UE orientation is randomly generated at the beginning of the simulation and fixed during the whole trajectory.
2.3.2. [bookmark: _Ref110957794]Performance Evaluation for Temporal Beam Prediction
2.3.2.1. Temporal beam prediction for the best Tx beam index 
In this section, we demonstrate the performance evaluation result in terms of the Top-K/1 accuracy (i.e., the percentage of “the Top-1 genie-aided beam is one of the Top-K predicted beams”) over 32 beams on the SLS datasets.  We assume the prediction window is 4-time steps and observation window is 6 time-steps (i.e. N=4 and M=6). The UE speed is set to 60 km/h. We perform predictions by two AI/ML models, LSTM and CNNLSTM. The evaluation results are shown in Table 1. In this experiment, Option2 baseline scheme (Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources from Set B of beams at the time instants within T1) is used. We use the best Top-K beam observed in the last measurement in T1 as the predicted Top-K beam in T2.
We can observe that when measurement periodicity is 40 ms, the difference between the AI/ML models to the baseline scheme is not obvious. However, when the measurement periodicity is 80 ms. CNNLSTM improves the Top-1 accuracy by 13.9% and RSRP difference by 14.9% compared to the baseline scheme. The improvement becomes larger when the measurement periodicity is 160 ms. On the other hand, the improvement by using LSTM is limited.

[bookmark: _Ref127527154]Table 1: Model evaluation results for BM-Case2 without model generalization for DL Tx beam prediction
	Assumptions
	AI/ML model Input/
output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Beam prediction accuracy 
	L1-RSRP Diff
	System performance

	Number of beams in Set A
	Number of beams in Set B
	Measurement/Report Periodicity
	Model input
	Model output
	Short model description
	Model complexity (number of parameters (K))
	Computational complexity (KFLOPs)
	Top-1 Accuracy(%)
	Top-2/1 Accuracy(%)
	Top-3/1 Accuracy(%)
	Top-5/1 Accuracy(%)
	Average L1-RSRP diff (dB)
	RS Overhead Reduction (%) (*for Top-1 predicted beam)

	32
	32
	40 ms
	L1- RSRPs of Set A
	Beam indices
	LSTM
	18.0
	82.9
	64.3
	81.4
	89.6
	94.0
	1.08
	40 

	
	
	
	
	
	CNNLSTM
	102.2
	303.7
	68.2
	87.2
	92.0
	95.8
	1.07
	40

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	64.4
	84.0
	90.1
	94.3
	0.96
	40

	
	
	80 ms
	
	
	LSTM
	18.0
	82.9
	56.4
	75.4
	84.2
	90.2
	1.65
	40 

	
	
	
	
	
	CNNLSTM
	102.2
	303.7
	63.2
	82.0
	87.9
	92.8
	1.43
	40

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	55.5
	76.9
	85.3
	91.8
	1.68
	40

	
	
	160 ms
	
	
	LSTM
	18.0
	82.9
	47.2
	68.7
	78.2
	86.2
	2.40
	40 

	
	
	
	
	
	CNNLSTM
	102.2
	303.7
	56.1
	75.8
	82.8
	89.0
	2.18
	40

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	41.8
	62.5
	73.7
	85.2
	2.89
	40


* Option2: baseline Option2 scheme for BM Case-2
Table 2 shows the corresponding throughput evaluation when the measurement/report periodicity is 80 ms. In this evaluation, we compare with two baselines, Option1a and Option2. Option1a is defined as: Select the best beam for T2 within Set A of beams based on the measurements of all the RS resources or all possible beams from Set A of beams at the time instants within T2. In this case, Option1a means to exhaustively sweep beams in Set A every 80ms and update the best beams for data beam selection. Therefore, Option1a is used as the upper bound in this experiment. Note that in this simulation, we assume UE reports the Top-4 beams for beam-based scheduling. 7 cells with 21 sectors are simulated. UE speed is 60 km/h and we simulate for 2500 ms to avoid handover situation as much as possible. Traffic model is set to full buffer.
It can be shown that the difference between these three methods is not obvious. We believe the reason is that UE reports the Top-4 beams for the network to select for scheduling. From Table 1, we can see that Top-5/1 accuracy of CNNLSTM and Option2 is close to each other and almost > 90%. Therefore, they can guess the correct best beam most of the time by reporting the Top-4 best beams. 
[bookmark: _Ref127526670][bookmark: _Ref127526667]Table 2: The temporal beam prediction throughput evaluation results
	Measurement/Report Periodicity
	Model/Methods
	Average User Throughput Ratio (%)
	Cell-edge User Throughput Ratio (%)

	80ms
	Option1a
	100%
	100%

	
	Option2
	99.91%
	93.34%

	
	CNNLSTM
	99.76%
	92.60%



Observation 1: The AI/ML approach does not show much gain for BM-Case2 in terms of average throughput, compared to baseline Option1a and Option2, when UE is reporting the Top-4 beams.

2.3.2.2. Temporal beam prediction with additional information 
In this section, we evaluate the performance of temporal beam prediction with UE angle information as additional input to the AI/ML model. We assume each user uses the best Rx beam. The format of UE angle can be found in Section 2.2.1. Figure 5 shows the AI/ML model design for the temporal beam prediction with additional UE information, the input to the AI/ML model is the optimal beam indices and UE angle information obtained in the observation window (T1), and the output of the AI/ML model is the probability of each beam in Set A to be the best beam for all the time instances in the prediction window (T2). Therefore, the input of the AI/ML model is a 2-dimensional matrix, one dimension is the time-step and the other dimension is the input features, including optimal beam indices, UE azimuth and zenith angles. We adopt two AI/ML models, LSTM and Transformer, for prediction. Both models are trained with 25 epochs. The corresponding computation complexity of each model are shown in Table 3.

Table 3 also demonstrates the evaluation results for LSTM and Transformer, respectively, when the observation window size is fixed to 12 and the prediction window size is fixed to 2. The values colored by red show the best performance of each KPI metrics across different models and scenarios. For LSTM model, we didn’t observe any gain by adding additional UE angle information directly to the input of the model, comparing to predicting without UE angle information. For Transformer, the Top-K/1 accuracy and RSRP difference improves with the use of the UE angle information. However, LSTM’s performance without additional UE angle information still outperforms Transformer with additional UE angle information. The reason may be that the best beam indices obtained in the observation window already contains the information of the UE’s angle to the gNB. Therefore, to study the benefit of using additional UE side information for temporal beam prediction, more challenging scenarios, for example NLOS or beam blockage conditions, can be evaluated.
	[image: ]


[bookmark: _Ref110957508]Figure 5: illustration of AI/ML model based temporal beam prediction with additional UE information
[bookmark: _Ref115310326]
[bookmark: _Ref127529341]Table 3: The temporal beam prediction with additional UE angle information evaluation results (Observation window = 12, Prediction window size = 2, epoch is 25)
	Model
	Top-1 acc
	Top-2/1 acc
	Top-3/1 acc
	Top-5/1 acc
	Avg. RSRP-diff (dB)
	FLOPs
(M)

	without additional UE angle

	LSTM
	0.5234
	0.7220
	0.8170
	0.9058
	1.0857
	0.2390

	Transformer
	0.5143
	0.7062
	0.8088
	0.9067
	1.1528
	15.8135

	with additional UE angle

	LSTM
	0.5220
	0.7209
	0.8147
	0.9065
	1.0942
	0.2452

	Transformer
	0.5163
	0.7127
	0.8130
	0.9104
	1.1322
	15.8550



Observation 2: Temporal beam prediction by adding additional UE angle information directly to the input of the model did not show significant gains compared to predicting without UE angle information.
Proposal 4: Study more scenarios where additional information may improve the temporal beam prediction performance.
2.4. Spatial beam prediction
As shown in Figure 6, the objective of the spatial beam prediction is to predict the current Top-K beams in Set A using RSRP measurements of beams in Set B (in the observation window size of T1). Set A of beams and Set B of beams are presented in Section 2.2.3. We adopt Set B of beams as the subsets of Set A of beams and as a set of beams different from Set A. We also conducted simulations with different sizes of Set B to investigate the beam measurement overhead for the spatial beam prediction. Note that we arrange Set B of beams as distributed as possible when selecting from the Set A so that Set B can cover a wider range of beam angles. We assume that the user always uses the optimal UE beam in the best Tx beam prediction.
For spatial domain beam prediction, the AI/ML model inputs can include the RSRP of the beams in Set B and, optionally additional information, such as beam index and angle. The output of the AI/ML model can be the index of beam in Set A that achieves the highest RSRP, or the RSRP of all beams in Set A. 
[image: ]
[bookmark: _Ref110957530]Figure 6: the objective of the spatial beam prediction task
2.4.1. [bookmark: _Ref127530411][bookmark: _Hlk115370470]Spatial beam prediction for the best Tx beam 
[bookmark: _Hlk127288711]In our AI/ML model design for spatial beam prediction for the best Tx beam, the input to the model is the RSRP measurements of the beams in Set B. The output of the AI/ML model is the probability of each beam in Set A to be the best beam for the current time instance, from which we will calculate the Top-K beam indices among Set A, as shown in Figure 7. We evaluate the spatial beam prediction performance with two different machine learning models, DNN and Transformer.
[image: ]
[bookmark: _Ref110957538]Figure 7: illustration of ML model based spatial beam prediction

2.4.1.1. [bookmark: _Ref118476953][bookmark: _Hlk118472424]Accuracy and system level performance
In this section, we provide the model accuracy and throughput analysis by comparing the performance of AI/ML beam management to both baseline options. To match the agreement made in RAN1#110b-e, we use 32 Tx beams as Set A, as shown in Figure 3. We assume two UE panels, and the UE’s antenna layout is [M,N,P,Mg,Ng] = [1,4,2,1,2]. The rest of the parameters are aligned with Table 13. Set B of beams are evenly distributed across the spatial domain of beams in Set A, and 3 different sizes of Set B are tested: 4, 8, 16. The model evaluation results are shown in Table 4, note that the reported RS overhead reduction in system performance is for Top-1 predicted beam. 
The corresponding throughput performance are shown in Figure 8. The reported value is throughput ratio, which is the ratio between the throughput of the tested method to the throughput of the Option1 baseline (i.e., exhaustive search). For AI/ML method, we assume the Top-1 predicted beam is applied for data transmission. For Option2 baseline method, the beam in Set B with the best L1-RSRP measurement will be applied for data transmission. Traffic model is set to full buffer.
Figure 8(a) shows the average user throughput ratio. Both AI/ML models can reach less than 10% throughput difference when comparing to the Option1 baseline, when the number of beams in Set B is larger than 8. Moreover, for Transformer AI/ML model when Set B size is 16, the throughput drop is negligible (i.e., throughput drop < 0.05%). Note that we applied Top-1 predicted beam, hence the corresponding RS overhead reduction for 16 beams Set B is 50%. 
Figure 8(b) shows the cell edge user throughput ratio. We can observe that incorrect beam prediction impacts the throughput more intensively for cell edge users than for other users. For example, the cell edge throughput ratio when using 4 beams for Set B are less than 50% while their average user throughput ratios are greater than 80% with the same Set B design. Therefore, to demonstrate the impact of AI/ML method to throughput, we think both average user throughput and cell edge user throughput need to be reported.
On the other hand, we also observe that the throughput ratio of Transformer AI/ML model by using 16 beams in Set B is 102%. We believe one of the possible reasons is that even though the average user throughput drop is negligible, the dropped throughput for the non-cell-edge user provides cell edge users more opportunities to acquire larger size of resource blocks. Hence its cell edge user throughput can be larger than the performance of Option1 baseline. Another possible reason is due to the delay between beam measurement and beam application, the optimal beam at the beam measurement phase and the data transmission phase might be different. Therefore, Option 1 baseline’s optimal beam decision is not always optimal at the data transmission phase.
Observation 3: Both AI/ML models can reach less than 10% throughput difference when comparing with Option1 baseline, when the number of beams in Set B is larger than 8.
Observation 4: Transformer AI/ML model can achieve 100% throughput ratio with 50% RS overhead reduction.
Observation 5: Incorrect beam prediction impacts the throughput more intensively for cell edge users than for all the users.
Observation 6: Transformer AI/ML model may achieve >100% throughput ratio for cell-edge users with 50% RS overhead reduction.

[bookmark: _Ref127529889][bookmark: _Ref118474289]Table 4: Model evaluation results for BM-Case1 without model generalization for DL Tx beam prediction
	Assumptions
	AI/ML model Input/
output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Beam prediction accuracy 
	L1-RSRP Diff
	System performance

	Number of beams in Set A
	Number of beams in Set B
	Baseline schemes
	Model input
	Model output
	Short model description
	Model complexity (number of parameters (M))
	Computational complexity (MFLOPs)
	Top-1 Accuracy (%)
	Top-2/1 Accuracy (%)
	Top-3/1 Accuracy (%)
	Top-5/1 Accuracy (%)
	[Average L1-RSRP diff (dB)]
	RS Overhead Reduction (%) (*for Top-1 predicted beam)

	32
	4
	Option 1 (exhaustive)
	L1- RSRPs of Set B
	Beam indices
	DNN
	0.016
	0.032
	35.3
	55.4
	67.5
	81.6
	2.91
	87.5

	
	
	
	
	
	Transformer
	0.070
	0.545
	35.6
	55.3
	67.7
	81.8
	2.87
	87.5

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	12.5
	-
	-
	-
	6.80
	87.5

	
	8
	
	
	
	DNN
	0.016
	0.032
	55.7
	77.1
	87.2
	95.4
	1.12
	75

	
	
	
	
	
	Transformer
	0.070
	1.09
	61.7
	81.8
	90.2
	96.7
	0.92
	75

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	25
	-
	-
	-
	3.95
	75

	
	16
	
	
	
	DNN
	0.017
	0.033
	80.3
	96.0
	98.7
	99.7
	0.17
	50

	
	
	
	
	
	Transformer
	0.070
	2.17
	84.2
	97.5
	99.5
	99.9
	0.12
	50

	
	
	
	
	
	Option2*
(non AI/ML)
	-
	-
	50
	-
	-
	-
	1.27
	50


* Option2: baseline Option2 scheme
[image: ]
[bookmark: _Ref118474655]Figure 8: Throughput evaluation results for BM-Case1 without model generalization for DL Tx beam prediction for (a) average user throughput ratio, and (b) cell edge user throughput ratio.
2.4.1.2. Different sizes of Set B
In this section we evaluate the spatial beam prediction performance by using both SLS and ray-tracing datasets. Note that in this section, the SLS and ray-tracing dataset is different from that used in 2.4.1.1.1. The 15 degree down-tilting angle is not applied, and only 24 Tx beams is used as Set A, with the same 2 vertical beam angles shown in Figure 3 and 12 horizontal beam angles. Table 5 and Figure 9 demonstrate the evaluation results. It shows that with 4 beams in Set B (i.e. Set B size = 4), DNN and Transformer can achieve 42.8% and 46.3% Top-1 accuracy, respectively, with the SLS dataset. On the contrary, with the ray-tracing dataset, the Top-1 accuracy performances of these two models improve to 58.7% and 67.9%, respectively. The accuracy increases by more than 10% when comparing to SLS dataset. Also, Transformer’s Top-K/1 accuracy performance is always better than DNN given any dataset and Set B sizes. However, architecture-wise, Transformer is more complex than DNN.  That is, Transformer requires more FLOPs than DNN for inference.
On the other hand, it can be observed that by using more beams in Set B, the Top-K/1 accuracy performances of both models improve monotonically given any value of k. For example, DNN’s Top-1 accuracy increases from 42.8% to 88.1% on the SLS dataset. The same trend happens when using the ray-tracing dataset as well. However, it takes more beam RSRP measurements in Set B when the size of Set B increases.
Observation 7: Transformer always outperforms DNN in both datasets under various sizes of Set B. However, Transformer is more complex than DNN in terms of FLOPs. 
Observation 8: With a greater number of beams in Set B, both models achieve higher Top-K/1 accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 

[bookmark: _Ref127530007] Table 5: Evaluation results for BM-Case1 without model generalization for DL Tx beam prediction for different Set B sizes when Set B is a subset of Set A and evenly distributed in Set A 
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2/1 acc
	Top-3/1 acc
	Top-5/1 acc

	SLS
	DNN
	4
	42.8%
	66.1%
	83.0%
	92.9%

	
	Transformer
	
	46.3%
	70.2%
	86.0%
	95.2%

	
	DNN
	6
	51.4%
	75.3%
	88.3%
	95.6%

	
	Transformer
	
	59.1%
	81.4%
	91.9%
	97.0%

	
	DNN
	12
	71.1%
	92.3%
	96.6%
	98.3%

	
	Transformer
	
	79.4%
	95.7%
	99.0%
	99.84%

	
	DNN
	24
	88.1%
	96.3%
	97.8%
	98.6%

	
	Transformer
	
	99.88%
	99.96%
	99.99%
	99.99%

	Ray-tracing
	DNN
	4
	58.7%
	79.9%
	89.9%
	97.8%

	
	Transformer
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	DNN
	6
	73.4%
	90.2%
	95.8%
	99.2%

	
	Transformer
	
	85.4%
	96.3%
	98.8%
	99.8%

	
	DNN
	12
	84.5%
	97.5%
	99.5%
	99.97%

	
	Transformer
	
	91.8%
	98.8%
	99.75%
	99.98%

	
	DNN
	24
	95.9%
	99.5%
	99.84%
	99.98%

	
	Transformer
	
	99.95%
	99.99%
	100%
	100%



	[image: Chart
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[bookmark: _Ref111128799]Figure 9: illustration of the spatial beam prediction evaluation results for different Set B sizes when Set B is a subset and evenly distributed in Set A with (a) SLS Dataset, and (b) ray-tracing dataset. 
2.4.1.3. Different choices of beams in Set B
In the following experiment, we present the evaluation result for DNN and Transformer by using different choices of beams in Set B given the same dataset and the size of Set B. The dataset is from scenario as in 2.4.1.1.2, where the size of the Set A is 24. Note that Set B is still a subset of Set A (i.e. BM case 1, Alt. 1). Figure 11 shows two different selections of beams in Set B with 2 different Set B sizes, 4 and 6. In this figure, the green table shows all beams in Set A which are arranged based on their vertical and horizontal beam directions. The selection of beams in Set B is shown by the red circles. Note that Set B selection 1 is evenly distributed across the spatial domain of beams in Set A, therefore, they are used in the performance evaluations above. We evaluate the prediction performance of the above two models using the ray-tracing dataset. Table 6 and Figure 10 demonstrate the evaluation results in terms of Top-K/1 accuracy. For both models, the prediction performance by using Set B selection 1 is always higher than that by using Set B selection 2 given any Top-K/1 accuracy evaluation. 
Observation 9: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction.

[bookmark: _Ref127530155]Table 6: The spatial beam prediction evaluation results under different sizes of Set B with different beam selections for Set B
	Dataset
	Model
	Set B size
	Top-1 acc
	Top-2/1 acc
	Top-3/1 acc
	Top-5/1 acc

	Ray-tracing
(Set B selection 1)
	DNN
	4
	58.74%
	79.94%
	89.90%
	97.78%

	
	Transformer
	
	67.87%
	87.34%
	94.55%
	98.78%

	
	DNN
	6
	73.38%
	90.17%
	95.82%
	99.15%

	
	Transformer
	
	85.35%
	96.28%
	98.78%
	99.83%

	Ray-tracing
(Set B selection 2)
	DNN
	4
	49.58%
	69.49%
	80.61%
	90.97%

	
	Transformer
	
	56.10%
	75.21%
	84.48%
	93.40%

	
	DNN
	6
	69.38%
	90.32%
	95.91%
	99.18%

	
	Transformer
	
	82.74%
	95.60%
	98.35%
	99.70%
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[bookmark: _Ref111128982]Figure 10: illustration of the spatial beam prediction evaluation results for different beam selections for Set B with (a) Set B size = 4, and (b) Set B size = 6.
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[bookmark: _Ref110957595]Figure 11: illustration of two different selections of beams in Set B for beam size 4 and 6
2.4.1.4. Different designs of beam shape in Set B
In the experiment below, we present the evaluation result for DNN and Transformer by using different designs of beams for Set B. The dataset is from scenario as in 2.4.1.1.2, where the size of the Set A is 24. Note that in this evaluation, Set B is not necessarily a subset of Set A. The design and pattern of beams in Set B can be completely different from the beams in Set A.  Figure 12 demonstrates an example of different designs of beams in Set B. Figure 12 (a) shows the shape of beams in Set B when it is a subset of Set A and when the selection of Set B matches the Set B selection 1 pattern for Set B size = 4 in Figure 11. On the other hand, Figure 12 (b) shows the beam shape when the beams in Set B are wider beams compared to beams in Set A. An example can be that Set B are SSB beams and Set A are communication beams (or CSI-RS beams). Finally, Figure 12 (c) shows the beam shape when the beams in Set B have multi-arm beam shapes. 
To generate the wide beam design for Set B at gNB, we reduce the number of antennas used for signal transmission. We use the first half of the antenna arrays, that are being used to generate Set A of beams, along both vertical and horizontal dimensions. That is, the (M,N,P) = (4,8,2) antenna array becomes (2,4,2). To generate the multi-arm beam design for Set B at gNB, we conduct the following steps. First, we generate 24 beams as Set A. Second, each of these 24 beams are multiplied with a Taylor window to achieve sidelobe suppression. Third, we generate a 5-by-31 parity-check matrix for Hamming code. Note that only first 24 columns of this matrix are used to match the number of beams in Set A. Finally, we generate five multi-arm beams in Set B, each of which is the summation of the corresponding beams in Set A as indicated by the parity-check matrix.
Table 7 and Figure 13 show the evaluation results for both models in terms of Top-K/1 accuracy using a variety of beam shape designs in Set B. The results show that even though the wide beam design of Set B is evenly distributed and covers almost all the beam directions in Set A, it does not outperform the subset design. Moreover, in terms of Top-1 accuracy, wide beam design’s performance is worse than the subset design, changing from 58.7% for subset design to 51.3% for wide beam design when using DNN, and from 67.9% for subset design to 67 % for wide beam design when using Transformer. We believe the reason is that the ML models cannot learn how to distinguish among narrow beams whose beam directions lie within a wide beam. To improve the accuracy, a second stage narrow beam sweeping is necessary to identify the best beam. 
On the other hand, both models deliver improvements in terms of the Top-1 and top-2 accuracy by using the multi-arm beam design. Since the waveform of multi-arm beam is asymmetric and unbalanced spatially, the ML models can learn to identify the best beam in Set A by cross comparing the input features of the RSRP of all the multi-arm beams in Set B. 
[image: ]
[bookmark: _Ref110957619]Figure 12: different beam designs of Set B: (a) subset, (b) wide beams, and (c) multi-arm beams
	[bookmark: _Ref110960577]Dataset
	Model
	Beam design of Set B
	Top-1 acc
	Top-2/1 acc
	Top-3/1 acc
	Top-5/1 acc

	Ray-tracing

	DNN
	Subset
	58.7%
	79.9%
	89.9%
	97.8%

	
	Transformer
	
	67.9%
	87.3%
	94.6%
	98.8%

	
	DNN
	Wide beam
	51.3%
	78.8%
	89.3%
	98.3%

	
	Transformer
	
	67.0%
	87.5%
	94.2%
	98.9%

	
	DNN
	Multi-arm beam
(5 beams)
	59.8%
	81.9%
	89.3%
	94.9%

	
	Transformer
	
	69.8%
	88.1%
	93.4%
	97.4%


[bookmark: _Ref127530200]Table 7: The spatial beam prediction evaluation results for different beam designs of Set B
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[bookmark: _Ref111129098]Figure 13: illustration of the spatial beam prediction evaluation results for different Set B
Observation 10: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 11: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Proposal 5: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.
2.4.1.5. [bookmark: _Ref131596975]Rx beam selection
We have the following agreement, 
	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
Other options are not precluded and can be reported by companies.


For Option2, there is an FFS on how to select the specific Rx beam(s). In our opinion, if the specific Rx beam can be chosen wisely, we can further reduce the beam measurement overhead while achieving similar performance compared to Option1. 
In this section, we study different options for choosing Rx beams for providing input for AI/ML model for training and/or inference input. Specifically, the following cases are considered:
· Case 1, Best Rx beam exhaustive: The best Rx beam for each Tx beam within Set B is used in measurement. To derive the best Rx beam, all the available Rx beams (i.e., Rx#0~#3 in our setup) are swept, thus multiple sweeping of Set B Tx beams is required, as shown in Figure 14(a).
We further consider the following cases for Option2 and Option3.
· Case 2A, Fixed Rx beam: One fixed Rx beam is used in the measurement for all model input sample. In this experiment, we fix Rx beam to Rx #1. 
· Case 2B, One random Rx beam for all Tx beams: One random Rx beam is used per model input sample. (Option3) The Rx beam chosen for the certain measurement is the same among all Tx beams measured.
The procedure for Case 2A/2B is illustrated in Figure 14(b). Only 1-round of Tx beam sweeping is sufficient for measurement as the search for the best Rx beam is not performed. Therefore, compared to Option1, the measurement overhead can be reduced by 75%. Besides Option1 and Option2, 
· Case 3, best among 2 Rx beams: The best Rx beam among 2 fixed Rx beams searched for each Tx beam within Set B is used. 2-round sweeping of Set B Tx beams is needed, which is shown in Figure 14(c).
· Case 4A, Searched for one fixed Tx beam: The best Rx beam searched for one fixed middle Tx beam (Tx beam #15) is used for measuring all Tx beams within Set B. 
· Case 4B, Searched for previous best Tx beam: The best Rx beam searched for one Tx beam, which was the best Set A Tx beam in the previous RS period, is used for measuring all other Set B beams. In our experiment, the best Tx beam 20ms ago is used.
As the procedure shown in Figure 14(d), case 4A/4B require 1-round Tx beam sweeping for measurement with an additional P3 stage beforehand.
· Case 5, Rx beam of the previous best Tx/Rx pair: Shown in Figure 14(e), it is assumed that the previous best Rx beam of the best Tx/Rx beam pair can be found in antecedent BM procedures, e.g., from the P3 result of the last measurement. Also, to show the upper bound of this case, we assume the previous used Tx beam is always the best Tx beam (the previous used Tx/Rx beam pair is always the best Tx/Rx beam pair). The Rx beam is then used for current measurement on all Set B Tx beams. In our experiment, the best Rx beam 20ms ago is used. Only 1-round of Tx beam sweeping is enough for this case. However, a P3 stage is required for deciding best Rx beam after the inference of the AI/ML model so that it can be used for the later prediction instances. 
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	[bookmark: _Ref131762532]Figure 14: Illustration of the Rx selection procedure of studied cases


The evaluation results are shown in Table 8 and Figure 15. In Table 8, we adopt RS overhead reduction KPI Option2 and the baseline scheme is Option1 baseline (exhaustive beam sweeping for all Tx beams in Set A, with all UE Rx beams)
Compared to Case 1, obvious performance drop can be seen in Case 2A/B, where the search of the best Rx beams is skipped. The difference between 2A and 2B are very little. In Case 3, the search of Rx beam is restricted to 2 specific beams. Though slightly better than Case 2A/B, performance degradation is still evident in Case 3. By Case 4A, we find that, even with only one Tx beam, a sweeping on Rx beam can largely improve the accuracy. Furthermore, if some information from previous BM procedure can be utilized to select Rx beam as assumed in Case 4B and 5, the results are no difference compared to Case 1, especially for small Set B size. While the ratio between sizes of Set B and Set A is large, e.g., 1/2 (Set B size = 16), Case 1 always provides the best performance. Case 4A, 4B and 5 all require a P3 procedure for Rx beam scan, but the measurement overhead is much less than exhaustive search of Case 1. However, the performance of Case 4B and 5 shown below are under the assumption that the previous beam prediction is always accurate, and UE is not moving. It would be interesting to further study on how these topics affect Case 4B and 5.
Observation 12: By using Option 2 for Rx beam for providing input for AI/ML model for training and/or inference can further reduce RS overhead compared to Option 1 of Rx beam selection.
Observation 13: Searching all the Rx beams by only one Tx beam can give better accuracy than searching half of available Rx beams with all Tx beams.
Observation 14: Measurement with one specific Rx beam can provides comparable or better accuracy than those with the best Rx beam for each Tx beam, if the Rx beam can be selected based on information of previous best Tx beam or best Tx/Rx beam pair. 
Proposal 6: Regarding Option2’s FFS on how to select the specific Rx beam(s), further study selecting Rx beam based on sweeping one of the Tx beams, where this Tx beam can be chosen by a fix Tx beam or from previous prediction.
Proposal 7: Regarding Option2’s FFS on how to select the specific Rx beam(s), further study selecting Rx beam based on previous Tx beam prediction and Rx sweeping measurements.

[bookmark: _Ref131735549]Table 8: Evaluation results for different Rx selection methods in DL Tx beam prediction
	Assumptions
	AI/ML model Input/
output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Beam prediction accuracy 
	L1-RSRP Diff
	System Performance

	Number of beams in Set A
	Number of beams in Set B
	Model input
	Model output
	Short model description
	Rx beam selection method
	Top-1 Accuracy (%)
	Top-2/1 Accuracy (%)
	Top-3/1 Accuracy (%)
	Top-5/1 Accuracy (%)
	[Average L1-RSRP diff (dB)]
	RS Overhead Reduction (%) (*for Top-1 predicted beam, Option1 baseline)

	32

	4
	L1- RSRPs of Set B
	Beam indices
	DNN
	Case 1
	35.0
	55.4
	67.3
	81.5
	2.95
	87.5

	
	
	
	
	
	Case 2A
	25.0
	41.3
	52.2
	66.4
	3.90
	96.9

	
	
	
	
	
	Case 2B
	24.7
	40.7
	51.8
	65.8
	3.90
	96.9

	
	
	
	
	
	Case 3
	28.2
	45.7
	56.7
	70.7
	3.60
	93.8

	
	
	
	
	
	Case 4A
	32.8
	50.8
	61.5
	74.4
	3.22
	93.8

	
	
	
	
	
	Case 4B
	38.1
	58.0
	69.2
	81.5
	2.68
	93.8

	
	
	
	
	
	Case 5
	37.3
	56.9
	68.3
	81.0
	2.73
	96.9

	
	8
	
	
	DNN
	Case 1
	56.2
	77.97
	87.78
	95.85
	1.09
	75.0

	
	
	
	
	
	Case 2A
	36.66
	53.02
	62.34
	73.49
	2.51
	93.8

	
	
	
	
	
	Case 2B
	35.61
	52.11
	61.15
	73.13
	2.58
	93.8

	
	
	
	
	
	Case 3
	42.12
	59.75
	69.56
	79.75
	2.08
	87.5 

	
	
	
	
	
	Case 4A
	51.69
	68.76
	76.37
	84.01
	1.52
	90.6

	
	
	
	
	
	Case 4B
	59.35
	77.82
	85.22
	91.05
	1.02
	90.6

	
	
	
	
	
	Case 5
	57.81
	76.27
	84.12
	90.48
	1.06
	93.8

	
	16
	
	
	DNN
	Case 1
	81.25
	96.48
	98.75
	99.61
	0.17
	50.0

	
	
	
	
	
	Case 2A
	45.22
	59.32
	65.75
	72.97
	1.96
	87.5

	
	
	
	
	
	Case 2B
	44.15
	58.77
	65.44
	73.14
	2.00
	87.5

	
	
	
	
	
	Case 3
	56.7
	70.45
	75.91
	81.32
	1.36
	87.5

	
	
	
	
	
	Case 4A
	67.55
	78.66
	81.68
	85.39
	0.88
	84.4

	
	
	
	
	
	Case 4B
	78.49
	89.07
	90.76
	92.51
	0.30
	84.4

	
	
	
	
	
	Case 5
	75.74
	87.27
	89.71
	92.17
	0.36
	87.5
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	[bookmark: _Ref131735739]Figure 15: Illustration of Rx selection evaluation results



2.4.1.6. Dataset requirements 
2.4.1.5.1 Dataset sizes
In this section, we study the requirement of the dataset for BM-Case 1. We use the same AI/ML model and dataset in for BM-Case 1 as described in Section 2.4.1.1. Figure 16 shows the experiment of evaluating the corresponding Top-1 accuracy and RSRP difference under different number of samples in the training dataset. The original number of samples in the training dataset is 70K. For each evaluated training dataset sizes, we randomly choose the corresponding number of samples from the original training dataset. The number of samples in the testing dataset is fixed to 35K. Three kinds of Set B designs are evaluated in this experiment, Set B size = 4, 8, 16, respectively, while Set A size = 32.
From Figure 16, we can observe that the performance of the AI/ML model drops when training with a smaller number of samples. However, when Set B size = 4 or 16, the performance drop is not obvious compared to Set B size = 8.  The Top-1 accuracy reduces < 10% when the dataset size reduces by 1/3 from 60K to 20K samples for Set B size = 4 and 16. However, by reducing the same amount of training samples, the Top-1 accuracy of Set B size = 8 reduces around 20%. Therefore, we believe the design of Set B will impact the dataset requirement.
Observation 15: Model performance drops with the decreased size of the dataset. However, for Set B size = 4 and 16, the Top-1 accuracy drops < 10% when the dataset size reduces from 60K to 20K samples.
Observation 16: For Set B size = 8, the Top-1 accuracy drops by 20% when the dataset size reduces from 20K to 60K.
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	[bookmark: _Ref127435868]Figure 16: Model training and testing at different size of dataset with (a) Top-1 accuracy and (b) RSRP difference performance comparison



2.4.1.5.2 Dataset sample quantization
In the following discussion, we will study the requirement of each data sample for data collection for NW-side AI/ML models. NW-side AI/ML model requires UE to report the measured L1-RSRP values or beam ID for training. However, the quality of the reported values has not been evaluated yet. Currently, we use Floating point 32 bits (FP32) to save the L1-RSRP values for dataset generation and AI/ML model training. Therefore, if UE reports L1-RSRPs to the network by using FP32 format, the training and testing performance will not be impacted. However, the corresponding reporting overhead will be prohibitively huge. For example, it takes 128 bits for UE to report L1-RSRP for 4 beams. On the contrary, Figure 17 shows the method used to quantize L1-RSRP report in the current specification [5]. When UE reports L1-RSRP for 4 beams, UE maps the maximum L1-RSRP in dBm to Table 10.1.6.1-1 in [6] (Figure 17a), which maps a sequence of dBm levels by 7 bits (i.e., 128 values). For the rest of the L1-RSRP values, UE maps their difference to the maximum L1-RSRP values (in dB) by Table 10.1.6.1-2 in [6] (Figure 17b), which maps differential dB levels (every two dB) by 4 bits (i.e., 16 values). As a result, it takes 19 bits for UE to report L1-RSRP for 4 beams. However, it is expected that the model training and testing performance by using this method will be worse than FP32. In the following experiment, we evaluate the potential performance impacts. In addition to FP32 and the current specification, we evaluate the performance with other quantized methods, FP16 and two uniform quantization methods, 
· uniform quantization (log scale):
· UE calculates the differential dB levels of each RSRP values of a beam report to the maximum RSRP value in this report
· Each differential dB value is quantized by uniform quantizing the value between -55 to 0 by a given number of bits (e.g., N)
· -55 dB is the maximum differential dB value that we have observed in our dataset
· uniform quantization (linear scale): 
· UE normalizes linear RSRP values of a beam report by the maximum RSRP value in this report
· Each normalized RSRP value is quantized by uniform quantizing the value between 0 to 1 by a given number of bits (e.g., N)
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	[bookmark: _Ref127449450]Figure 17: The current specification on the beam L1-RSRP report mapping between the RSRP dBm and reported values




We use the same AI/ML model and dataset in for BM-Case 1 as described in Section 2.4.1.1. Three kinds of Set B designs are evaluated in this experiment, Set B size = 4, 8, 16, respectively, while Set A size = 32. Figure 18 shows the Top-1 accuracy and RSRP difference by model trained and tested with samples quantized with different methods when Set B size = 4. The red dot is the performance of the current specification and the purple ‘+’ markers show the performance of FP16 and FP32. The blue and green curves show the performance of using uniform quantization (linear scale) and uniform quantization (log scale), respectively. First, we have observed that by using FP16 to quantize has no difference than FP32 in terms of the trained model’s performance. Also, by using uniform quantization in log scale, using 4 bits per beam RSRP can achieve the same Top-1 accuracy as the current spec, which uses ~5 bits (19/4) per beam RSRP in average. On the other hand, Figure 19 shows the corresponding performance when Set B size = 8. In this result, the performance by using the current spec is almost the same as using the other two uniform quantization methods under the same number of bits per beam report. However, if we want to improve the predicting accuracy, we need to increase the number of bits for quantization. If we increase twice of the number of bits (i.e., 8 bits/beam), the Top-1 accuracy can improve by 10%. Finally, Figure 20 demonstrates the corresponding performance when Set B size = 16. By using uniform quantization in log scale, using 3 bits per beam RSRP can achieve better Top-1 accuracy than the current spec, which uses 4 bits per beam RSRP, and reach similar accuracy performance of using FP16/FP32. Therefore, it is interesting to study the tradeoff between the reporting overhead (i.e., quantized bits) and the model’s performance. Also, a new quantization method might be required if we want to improve the model performance to the same level as FP32 trained model while keeping the reporting overhead as low as the current spec. 
Another interesting effect that we have observed from these three figures is that in Figure 18 and Figure 19 when Set size = 4 or 8, uniformly quantizing RSRP in log scale performs better than uniformly quantizing RSRP by linear scale. However, in Figure 20 when Set B size = 16, uniformly quantizing RSRP by linear scale is better than log scale. Therefore, we believe for different Set B designs, the optimal method to quantize the samples for UE reporting should be different. 
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	[bookmark: _Ref131596177][bookmark: _Ref127453224]Figure 18: Model training and testing with difference methods quantized samples with (a) Top-1 Accuracy and (b) L1-RSRP difference performance when Set B size = 4
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	[bookmark: _Ref127454644]Figure 19: Model training and testing with difference methods quantized samples with (a) Top-1 Accuracy and (b) L1-RSRP difference performance when Set B size = 8
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	[bookmark: _Ref127455025]Figure 20: Model training and testing with difference methods quantized samples with (a) Top-1 Accuracy and (b) L1-RSRP difference performance when Set B size = 16


Observation 17: The model trained and tested by FP16 quantized data samples is the same as the model trained and tested by FP32 quantized data samples.
Observation 18: For Set B size = 4, by using uniform quantization in log scale, using 4 bits per beam RSRP can achieve the same Top-1 accuracy as the current spec, which uses ~5 bits (19/4) per beam RSRP in average.
Observation 19: For Set B size = 8, using the current spec is almost the same as using the other two uniform quantization methods under the same number of bits per beam report. However, the corresponding model performance is 10% less than a model trained with FP16 samples or with 8 bits uniform quantized samples. 
Observation 20: For Set B size = 16, by using uniform quantization in log scale, 3 bits per beam RSRP can achieve better Top-1 accuracy than the current spec, which uses 4 bits per beam RSRP, and reach similar accuracy performance of using FP16/FP32. 
Observation 21: If the total number of bits in one beam reporting is limited to 32, Set B size = 16 (2 bits per L1-RSRP) achieves better Top-1 and L1-RSRP difference performance than Set B size = 8 (4 bits per L1-RSRP) and Set B size = 4 (8 bits per L1-RSRP).
Observation 22: For Set B size = 4 and 8, uniformly quantizing RSRP by dBm values performs better than uniformly quantizing RSRP by linear values, under the condition that model input is linear RSRP values. However, for Set B size = 16, uniformly quantizing RSRP by linear values is better than dBm values.
Proposal 8: Study different quantizing methods, including different bits used for quantization and quantized quantity (linear or dBm), for different Set B designs.
2.4.1.7. Inference sample quantization
The beam RSRP report mapping method in the current specification, as shown in Figure 17, can be easily expanded and used for higher number of beams (>4). However, in Section 2.4.1.5, we have shown that for Set B size = 8 or 16, its precision and the resulting model performance might not be optimal. Moreover, different Set B designs will have different sensitivity to the beam RSRP report’s precision. We have shown the possibility and benefit of using different reporting quantization methods for L1-RSRP report for different Set B designs. To study the impact of using different beam report quantization methods during model inference, we evaluate the condition when the AI/ML model is trained and tested with samples that are quantized with different methods.  Figure 21 shows the Top-1 Accuracy and L1-RSRP difference performance of a model trained and tested by either same or different quantization methods. The solid lines are the model trained with FP32 data while tested with data quantized by different methods. In this experiment, the quantization method used is uniform quantization (linear) with various number of bits. The dash lines are the models trained and tested with samples from the same uniform quantization (linear) methods. We have observed that model trained with FP32 samples but conducting inference with another quantization method samples will perform worse than the model trained with samples from the same quantization method that is used for inference. Moreover, the performance drops significantly when UE is reporting beam RSRP with smaller number of bits. Therefore, the UE and the network should align the quantization method that is being used for both model training and inference. 
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	[bookmark: _Ref127200088]Figure 21: (a) Top-1 Accuracy and (b) L1-RSRP difference performance of models trained with FP32 and testing by same or different quantization methods


Observation 23: Model trained and tested with the same quantization methods performs better than model trained with higher precision quantization methods but tested with lower precision quantization methods.





2.4.2. Spatial beam prediction with additional information 
In this section, we evaluate the spatial beam prediction performance with or without the UE angles as additional input. Figure 22 shows the corresponding input and output of the AI/ML model. Table 9 and Figure 22 demonstrate the evaluation results. The size of Set A is 32 and the ratio between the sizes of Set B and Set A that we investigated starts from 1/8 to 1. The accuracy increases slightly only when the ratio is 1/8. No obvious improvement is observed in other cases by including the UE angle information. In most cases, the performance difference is neglectable. Also, Transformer’s Top-K/1 accuracy performances are always better than DNN given any Set B sizes. However, architecture-wise, Transformer is more complex than DNN.  That is, Transformer requires more FLOPs than LSTM for inference.
Observation 24: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, at least for the ratio of Set B and Set A sizes is larger than 1/8.
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[bookmark: _Ref115431744]Figure 22: illustration of ML model based spatial beam prediction with optional UE additional information as input

[bookmark: _Ref127530235] Table 9: The spatial beam prediction evaluation results for different Set B sizes when Set B is a subset of Set A and evenly distributed in Set A 
	Input
	Model
	Set B size
	RSRP Diff(dB)
	Top-1 acc (%)
	Top-2/1 acc (%)
	Top-3/1 acc (%)
	Top-5/1 acc (%)

	RSRP
	DNN
	4
	2.91
	35.3
	55.4
	67.5
	81.6

	
	Transformer
	
	2.87
	35.6
	55.3
	67.7
	81.8

	
	DNN
	8
	1.12
	55.7
	77.1
	87.2
	95.4

	
	Transformer
	
	0.92
	61.7
	81.8
	90.2
	96.7

	
	DNN
	16
	0.17
	80.3
	96.0
	98.7
	99.7

	
	Transformer
	
	0.12
	84.2
	97.5
	99.5
	99.9

	
	DNN
	32
	0.01
	94.2
	99.1
	99.7
	99.9

	
	Transformer
	
	0.004
	99.9
	100
	100
	100

	RSRP & UE Angle
	DNN
	4
	2.61
	36.8
	57.3
	69.8
	83.7

	
	Transformer
	
	2.43
	38.2
	59.2
	71.7
	85.1

	
	DNN
	8
	1.15
	54.8
	76.3
	86.7
	95.2

	
	Transformer
	
	0.91
	61.9
	81.9
	90.2
	96.7

	
	DNN
	16
	0.17
	80.4
	96.0
	98.7
	99.7

	
	Transformer
	
	0.11
	84.1
	97.7
	99.6
	99.9

	
	DNN
	32
	0.02
	93.7
	99.0
	99.6
	99.9

	
	Transformer
	
	0.001
	99.9
	100
	100
	100
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Figure 23: illustration of the spatial beam prediction evaluation results for different Set B sizes when Set B is a subset and evenly distributed in Set A (a) RSRP only, and (b) RSRP and UE angle 

2.4.3. [bookmark: _Ref131598599]Spatial beam prediction for beam RSRP 
Instead of predicting the best Tx beam, another ML model is investigated to estimate L1-RSRP for each beam in Set A. The input to the model is still the measurements of the beams in Set B, while the output is the predicted L1-RSRPs of Set A beams. This type of model has advantage in the model performance monitoring, as its output can be directly compared to a later L1-RSRP measurement of beam in Set A once available.
[image: ]
Figure 24: illustration of ML model based spatial beam prediction
The evaluation result is shown in Table 10. The L1-RSRP difference is defined in the RAN1#110 agreement as the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. The other metric, predicted L1-RSRP difference, is defined as the L1-RSRP difference between the predicted L1-RSRPs of Top-K predicted beams and the ideal L1-RSRPs of Top-K predicted beams, in this study. The average absolute value of the predicted RSRP differences for Top-1 and Top-5 predicted beams are both given. The model structures used here are the same as those predicting best Tx beams in 2.4.1, so their complexities are almost the same. Comparing the resulting L1-RSRP difference to 2.4.1, this model is slightly worse when the size of Set B is 4 and 8 but provides better performance when the size of Set B is 16. Considering its effect on the user throughput, the degradation, if any, is limited and negligible. Besides, the predicted RSRP difference shows that the model’s capability of estimating L1-RSRP for multiple beams in Set A.
Observation 25: The AI/ML model of spatial beam prediction can estimate L1-RSRP of beams in Set A while maintaining similar system level performance in selecting optimal beams.

Observation 26: The predicted L1-RSRP difference varies consistently with L1-RSRP difference. It can not only measure the accuracy of RSRP estimation, but also serve as a system performance indicator.


[bookmark: _Ref127530299]Table 10: The spatial beam prediction evaluation results for predicted RSRP as AI/ML output
	Assumptions
	AI/ML model Input/output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Average Absolute Predicted L1-RSRP Diff
	L1-RSRP Diff

	Number of beams in Set A
	Number of beams in Set B
	Model input
	Model output
	Short model description
	Model complexity (number of parameters (M))
	Computational complexity (MFLOPs)
	In Top-1 Predicted Beams (dB)
	In Top-5 Predicted Beams (dB)
	Average L1-RSRP diff (dB)

	32
	4
	L1- RSRPs of Set B
	Predicted L1-RSRPs of Set A
	DNN
	0.016
	0.031
	4.06
	3.86
	3.29

	
	
	
	
	Transformer
	0.070
	0.545
	3.83
	3.74
	3.09

	
	8
	
	
	DNN
	0.016
	0.031
	1.76
	1.97
	1.32

	
	
	
	
	Transformer
	0.070
	1.09
	1.61
	1.83
	1.16

	
	16
	
	
	DNN
	0.016
	0.033
	0.31
	0.42
	0.13

	
	
	
	
	Transformer
	0.070
	2.17
	0.23
	0.31
	0.08




2.4.4. Model Generalization
In this section, we study model generalization performance of the previously shown models to different simulation deployment settings. We evaluate the performance for both models using beam ID and RSRP as model output. For the model using beam ID as output, we use the DNN AI/ML model as described in Section 2.4.1.1. For the model using RSRP as output, we use the Transformer AI/ML model as described in Section 2.4.3. We trained both models with the same dataset as described in Section 2.2. 
On the other hand, we prepare three different testing datasets to evaluate the generalization performance. In the first testing dataset, we fix the SLS parameters as shown in Section 5.1, but change UE distribution to 100% indoor. In the second testing dataset, we change UE distribution to 20% indoor and 80% outdoor. In the third testing dataset, we fix the SLS parameters as shown in Section 5.1, but change channel mode from IMT2020_ChannelB_UMa to IMT2020_ChannelB_UMi.
Table 11 shows the evaluation results for BM-Case1 with model generalization for DL Tx beam prediction by using beam ID as model output. Overall, the AI/ML model generalizes well to different UE distributions. Compared to 100% outdoor scenario, the Top-1 accuracy drops by only 5% when the AI/ML model is tested with the 100% indoor scenario. On the contrary, the Top-1 accuracy drops by 10% when the AI/ML model is tested with the UMi scenario. The gap increases when Set B size is 8, where 14% decrease is observed for Top-1 accuracy when testing with the UMi scenario.  However, such gap reduces when Set B size is 16, where only 8% drop is recorded. 
Observation 27: AI/ML model using beam ID as model output generalizes well to different UE distributions.

Observation 28: There is severe Top-1 accuracy performance degradation when the AI/ML model is trained with UMa scenario and tested with the UMi scenario.



[bookmark: _Ref131599871]Table 11: Model evaluation results for BM-Case1 with model generalization for DL Tx beam prediction by using beam ID as model output 
	Assumptions
	AI/ML model Input/
output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Beam prediction accuracy 
	L1-RSRP Diff

	Number of beams in Set A
	Number of beams in Set B
	Model input
	Model output
	Short model description
(trained with 100% outdoor, UMa dataset)
	Testing dataset
	Top-1 Accuracy(%)
	Top-2/1 Accuracy(%)
	Top-3/1 Accuracy(%)
	Top-5/1 Accuracy(%)
	[Average L1-RSRP diff (dB)]

	32
	4
	L1- RSRPs of Set B
	Beam indices
	DNN
	100% outdoor, UMa
	34.3
	54.3
	66.5
	80.9
	3.00

	
	
	
	
	DNN 
	100%indoor, UMa
	29.7
	49.0
	62.0
	77.5
	3.07

	
	
	
	
	DNN
	20%indoor/80%outdoor, UMa
	33.8
	53.0
	65.7
	80.3
	3.01

	
	
	
	
	DNN
	100% outdoor, UMi
	24.2
	42.6
	56.4
	73.3
	2.17

	
	8
	
	
	DNN
	100% outdoor, UMa
	54.8
	76.8
	86.7
	95.2
	1.14

	
	
	
	
	DNN 
	100%indoor, Uma
	48.2
	72.0
	83.9
	93.7
	1.25

	
	
	
	
	DNN 
	20%indoor/80%outdoor, UMa
	53.6
	76.0
	86.4
	95.1
	1.15

	
	
	
	
	DNN 
	100% outdoor, UMi
	40.6
	64.6
	78.5
	91.2
	0.96

	
	16
	
	
	DNN
	100% outdoor, UMa
	79.6
	95.8
	98.5
	99.6
	0.18

	
	
	
	
	DNN 
	100%indoor, Uma
	78.4
	95.1
	98.4
	99.6
	0.19

	
	
	
	
	DNN 
	20%indoor/80%outdoor, UMa
	80.0
	95.7
	98.6
	99.7
	0.17

	
	
	
	
	DNN 
	100% outdoor, UMi
	71.4
	91.3
	96.9
	99.3
	0.21



Table 12 shows the evaluation results for BM-Case1 with model generalization for DL Tx beam prediction by using beam L1-RSRP as model output. The Top-K Beam prediction accuracy is obtained by ranking the beams in Set A by their predicted L1-RSRP. Overall, the AI/ML model generalizes well to different UE distributions. Compared to 100% outdoor scenario, the Top-1 accuracy drops by only 1% when the AI/ML model is tested with the 100% indoor scenario. On the contrary, the Top-1 accuracy drops by 4% when the AI/ML model is tested with the UMi scenario. The gap increases when Set B size are 8 and 16, where 7% and 9 % decrease is observed, respectively, for Top-1 accuracy when testing with the UMi scenario. For larger Set B sizes, especially when Set B size is 16, by using beam L1-RSRP as model output can achieve higher prediction accuracy than beam ID as model output. Moreover, it can keep at least the same level of generalization performance degradation when being tested with different UE distribution as well as UMa and UMi channel modes.
Observation 29: AI/ML model using beam RSRP as model output generalizes well to different UE distributions.

Observation 30: The Top-1 accuracy performance degradation of the AI/ML model using beam RSRP as model output is not as obvious as the AI/ML model using beam ID as model output, when both models are trained with UMa scenario and tested with the UMi scenario.






[bookmark: _Ref131602432]Table 12: Model evaluation results for BM-Case1 with model generalization for DL Tx beam prediction by using beam L1-RSRP as model output 
	Assumptions
	AI/ML model Input/
output
	AI/ML model or other methods
	Evaluation results

	
	
	
	Beam prediction accuracy 
	L1-RSRP Diff
	Average Absolute Predicted L1-RSRP Diff (MAE)

	Number of beams in Set A
	Number of beams in Set B
	Model input
	Model output
	Short model description
(trained with 100% outdoor, UMa dataset)
	Testing dataset
	Top-1 Accuracy(%)
	Top-2/1 Accuracy(%)
	Top-3/1 Accuracy(%)
	Top-5/1 Accuracy(%)
	[Average L1-RSRP diff (dB)]
	In Top-1 Predicted Beams (dB)
	In Top-5 Predicted Beams (dB)

	32
	4
	L1- RSRPs of Set B
	Beam indices
	Transformer
	100% outdoor, UMa
	28.3
	47.8
	61.4
	76.7
	3.24
	3.99
	3.84

	
	
	
	
	Transformer
	100%indoor, Uma
	27.1
	46.3
	59.3
	75.0
	3.15
	4.09
	3.86

	
	
	
	
	Transformer
	20%indoor/
80%outdoor, UMa
	28.2
	47.9
	61.0
	76.5
	3.20
	3.98
	3.82

	
	
	
	
	Transformer
	100% outdoor, UMi
	24.4
	42.9
	57.4
	74.4
	2.07
	3.89
	3.38

	
	8
	
	
	Transformer
	100% outdoor, UMa
	46.8
	70.3
	82.0
	91.9
	1.17
	1.60
	1.84

	
	
	
	
	Transformer
	100%indoor, Uma
	45.0
	69.2
	81.1
	91.3
	1.18
	1.64
	1.81

	
	
	
	
	Transformer
	20%indoor/
80%outdoor, UMa
	47.1
	70.4
	82.1
	91.9
	1.15
	1.58
	1.83

	
	
	
	
	Transformer
	100% outdoor, UMi
	39.5
	64.2
	78.1
	90.7
	0.92
	1.62
	1.40

	
	16
	
	
	Transformer
	100% outdoor, UMa
	84.4
	96.8
	98.6
	99.6
	0.09
	0.23
	0.31

	
	
	
	
	Transformer
	100%indoor, Uma
	80.7
	95.7
	98.0
	99.5
	0.12
	0.28
	0.35

	
	
	
	
	Transformer
	20%indoor/
80%outdoor, UMa
	84.1
	96.7
	98.5
	99.6
	0.09
	0.23
	0.33

	
	
	
	
	Transformer
	100% outdoor, UMi
	75.0
	93.2
	96.9
	99.0
	0.12
	0.25
	0.29



3. Conclusion
In summary, based on the above discussion we have the following observations and proposals:
Proposal 1: For QCL relation overhead, first study and list the scenarios when such QCL relation overhead exists, then discuss how to define the KPI.
Proposal 2: To define the UCI report overhead, first discuss the number of UCI reports and how the report is quantized.
Proposal 3: To evaluate the system level throughput performance of AI/ML beam management, both average user throughput and cell edge user throughput need to be reported.
Proposal 4: Study more scenarios where additional information may improve the temporal beam prediction performance.
Proposal 5: Study and evaluate a more comprehensive Set B design, including joint designing the number of beams in Set B and their beam shape for spatial beam prediction.
Proposal 6: Regarding Option2’s FFS on how to select the specific Rx beam(s), further study selecting Rx beam based on sweeping one of the Tx beams, where this Tx beam can be chosen by a fix Tx beam or from previous prediction.
Proposal 7: Regarding Option2’s FFS on how to select the specific Rx beam(s), further study selecting Rx beam based on previous Tx beam prediction and Rx sweeping measurements.
Proposal 8: Study different quantizing methods, including different bits used for quantization and quantized quantity (linear or dBm), for different Set B designs.

Observation 1: The AI/ML approach does not show much gain for BM-Case2 in terms of average throughput, compared to baseline Option1a and Option2, when UE is reporting the Top-4 beams.
Observation 2: Temporal beam prediction by adding additional UE angle information directly to the input of the model did not show significant gains compared to predicting without UE angle information.
Observation 3: Both AI/ML models can reach less than 10% throughput difference when comparing with Option1 baseline, when the number of beams in Set B is larger than 8.
Observation 4: Transformer AI/ML model can achieve 100% throughput ratio with 50% RS overhead reduction.
Observation 5: Incorrect beam prediction impacts the throughput more intensively for cell edge users than for all the users.
Observation 6: Transformer AI/ML model may achieve >100% throughput ratio for cell-edge users with 50% RS overhead reduction.
Observation 7: Transformer always outperforms DNN in both datasets under various sizes of Set B. However, Transformer is more complex than DNN in terms of FLOPs. 
Observation 8: With a greater number of beams in Set B, both models achieve higher Top-K/1 accuracy. However, greater number of beams in Set B requires more beam RSRP measurements. 
Observation 9: The selection of beams in Set B will affect the prediction accuracy of the AI/ML-based spatial beam prediction.
Observation 10: The spatial beam prediction by using multi-arm beam design in Set B performs better than using subset beam design in Set B.
Observation 11: The spatial beam prediction by using wide beam design in Set B does not outperforms the performance by using subset beam design in Set B. 
Observation 12: By using Option 2 for Rx beam for providing input for AI/ML model for training and/or inference can further reduce RS overhead compared to Option 1 of Rx beam selection.
Observation 13: Searching all the Rx beams by only one Tx beam can give better accuracy than searching half of available Rx beams with all Tx beams.
Observation 14: Measurement with one specific Rx beam can provides comparable or better accuracy than those with the best Rx beam for each Tx beam, if the Rx beam can be selected based on information of previous best Tx beam or best Tx/Rx beam pair. 
Observation 15: Model performance drops with the decreased size of the dataset. However, for Set B size = 4 and 16, the Top-1 accuracy drops < 10% when the dataset size reduces from 60K to 20K samples.
Observation 16: For Set B size = 8, the Top-1 accuracy drops by 20% when the dataset size reduces from 20K to 60K.
Observation 17: The model trained and tested by FP16 quantized data samples is the same as the model trained and tested by FP32 quantized data samples.
Observation 18: For Set B size = 4, by using uniform quantization in log scale, using 4 bits per beam RSRP can achieve the same Top-1 accuracy as the current spec, which uses ~5 bits (19/4) per beam RSRP in average.
Observation 19: For Set B size = 8, using the current spec is almost the same as using the other two uniform quantization methods under the same number of bits per beam report. However, the corresponding model performance is 10% less than a model trained with FP16 samples or with 8 bits uniform quantized samples. 
Observation 20: For Set B size = 16, by using uniform quantization in log scale, 3 bits per beam RSRP can achieve better Top-1 accuracy than the current spec, which uses 4 bits per beam RSRP, and reach similar accuracy performance of using FP16/FP32. 
Observation 21: If the total number of bits in one beam reporting is limited to 32, Set B size = 16 (2 bits per L1-RSRP) achieves better Top-1 and L1-RSRP difference performance than Set B size = 8 (4 bits per L1-RSRP) and Set B size = 4 (8 bits per L1-RSRP).
Observation 22: For Set B size = 4 and 8, uniformly quantizing RSRP by dBm values performs better than uniformly quantizing RSRP by linear values, under the condition that model input is linear RSRP values. However, for Set B size = 16, uniformly quantizing RSRP by linear values is better than dBm values.
Observation 23: Model trained and tested with the same quantization methods performs better than model trained with higher precision quantization methods but tested with lower precision quantization methods.
Observation 24: The spatial prediction accuracy does not improve much by using UE angles directly as the additional input, at least for the ratio of Set B and Set A sizes is larger than 1/8.
Observation 25: The AI/ML model of spatial beam prediction can estimate L1-RSRP of beams in Set A while maintaining similar system level performance in selecting optimal beams.

Observation 26: The predicted L1-RSRP difference varies consistently with L1-RSRP difference. It can not only measure the accuracy of RSRP estimation, but also serve as a system performance indicator.
Observation 27: AI/ML model using beam ID as model output generalizes well to different UE distributions.

Observation 28: There is severe Top-1 accuracy performance degradation when the AI/ML model is trained with UMa scenario and tested with the UMi scenario.

Observation 29: AI/ML model using beam RSRP as model output generalizes well to different UE distributions.

Observation 30: The Top-1 accuracy performance degradation of the AI/ML model using beam RSRP as model output is not as obvious as the AI/ML model using beam ID as model output, when both models are trained with UMa scenario and tested with the UMi scenario.
4. References
[1] [bookmark: _Ref4682760][bookmark: _Ref100586806]RP-213599, “Study on Aritificial Intelligence (AI) / Machine Learning (ML) for NR Air Interface,” Qualcomm.
[2] [bookmark: _Ref111128188]TR 38.901, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3GPP Release 16, Dec 2019.
[3] [bookmark: _Ref110954004]A. Alkhateeb, “DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications,” in Proc. of The Information Theory and Applications Workshop (ITA), San Diego, CA, Feb. 2019.
[4] [bookmark: _Ref111127726]Chairman's notes of 3GPP TSG RAN WG1 #109-e, May 2022.
[5] [bookmark: _Ref127449783]TS 38.331, “5G NR Radio Resource Control (RRC); Protocol specification,” 3GPP Release 16, Jul. 2020.
[6] [bookmark: _Ref131596045]TS 38.133, “5G NR Requirements for support of radio resource management,” 3GPP Release 15, Oct. 2018.
5. [bookmark: _Ref101361592]Appendix
5. [bookmark: _Ref111135225]Simulation parameters for SLS dataset
[bookmark: _Ref40286490]Table 13: Simulation parameters for SLS dataset
	Parameter
	Value


	Frequency Range
	FR2 @ 30 GHz

	SCS
	120 kHz

	Deployment
	200m ISD, 2-tier model with wrap-around (7 sites, 3 cells per site)

	Channel mode
	IMT2020_ChannelB_UMa

	System BW
	80MHz

	UE Speed
	Spatial beam prediction: 3km/h
Temporal beam prediction: 30km/h

	UE distribution
	10 UE per cell, 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	(4, 8, 2, 1, 1)

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	(1, 4, 2, 1, 1)

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	BS Antenna tilting angle
	15 degree

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB


5. [bookmark: _Ref111135341]Simulation assumptions for the ray-tracing dataset
	Table 14: Simulation parameters for ray-tracing dataset

	[bookmark: _Hlk102038587][bookmark: _Hlk111194379]Parameter
	Value

	Carrier frequency
	28 GHz

	Subcarrier spacing
	120 KHz

	BS antenna configuration
	(4, 8, 2, 1, 1)

	BS antenna radiational pattern
	isotropic

	BS orientation
	Pointing to the horizontal street with 10° down-tilting

	BS height
	6 m

	UE antenna configuration
	(1, 4, 2, 1, 1)

	UE antenna radiational pattern
	isotropic

	UE orientation
	Random

	UE height
	2m

	BS BF scheme
	Beam-steering

	Data allocation
	32 OFDM subcarriers
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