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 Introduction

In RAN1#112 meeting [1], the following agreements and conclusions were made for evaluation on AI/ML for positioning accuracy enhancement.

	Agreement

For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.

Note: 

Baseline evaluation area for InF-DH = 120x60 m.
if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 

Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]

Model input

Model output

Label

Clutter param

Dataset size

AI/ML complexity

Horizontal positioning accuracy at CDF=90% (meters)
Train

Test

Model complexity

Computation complexity

AI/ML

Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 

Model input

Model output

Label

Settings (e.g., drops, clutter param, mix)

Dataset size

AI/ML complexity

Horizontal pos. accuracy at CDF=90% (m)

Train

Test

Train

Test

Model complexity

Computation complexity

AI/ML

Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:

Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML
Agreement

For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.

The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.

The dimension of model input in terms of NTRP, Nt, and Nt’.
Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

Agreement

For direct AI/ML positioning, study the performance of model monitoring methods, including:

Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.

Label-free methods, where model monitoring does not require ground truth label (or its approximation).

Agreement

For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.

Conclusion

No dedicated evaluation is needed for the positioning accuracy performance of model switching

It does not preclude future discussion on model switching related performance
Agreement

For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  

The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 

Value L is up to sources. 

Other models are not precluded

[Whether/how to study the impact of labelling error to label-based model monitoring methods]

[Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

Observation

Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 

The generalization aspects include:
Different drops 
Different clutter parameters 
Different InF scenarios
Network synchronization error 
Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.

Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 

Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.

Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.




In this contribution, we provide the evaluation methodology and performance results of positioning accuracy enhancement.
 Evaluation methodology and performance results 

Dataset generation
For model training and performance evaluation, we totally generated 10 different drops of data. For data generated by the same drop, uniform distribution is assumed as the distribution of UE location. The evaluation parameters are set according to the agreed parameters of InF-DH scenario, as illustrated in Appendix. Network synchronization error is not considered.

AI/ML model
In our simulation, one sided model with CNN-based architecture is assumed to be applied at the UE side for AI/ML based positioning. For example, if CIR is taken as the model input, each sample size of the model input is 18×1×256, which corresponds to 18 BSs, single antenna port, and CIR of 256 length. Since the CIR value consists of the real part and the imaginary part, the model input can be further formulated as 18×256×2. The architecture of the AI model is shown in Fg.1
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Fig. 1 Architecture of AI/ML model for positioning

The related parameters for training phase are given in Table I.

Table I. Parameters for model training
	Loss function
	MSE

	Optimizer
	Adam

	Initial learning rate
	0.0001

	Batch size
	256


Simulation results on direct AI/ML positioning
In this section, we focus on direct AI/ML positioning. We respectively use CIR and CIR+RSRP as the model input, and the impact of the size of training dataset is also considered. The simulation results are illustrated in this section. 

Impact of training dataset size and model input type

Table II shows the evaluation results when CIR and CIR+RSRP are used as model input, and three different sizes of training dataset (i.e.,25000,5000,2500) are respectively used. All the training data and test data are taken from the same drop with spatial consistency.
Table II. Evaluation results for AI/ML model deployed on UE side, CNN

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	25000
	2500
	3.71M
	7.42M
	0.38

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	5000
	2500
	
	
	1.32

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	2500
	2500
	
	
	2.36

	CIR

(size:18*1*256)+
RSRP

(size:18*1)


	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	25000
	2500
	3.71M
	7.42M
	0.33

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	5000
	2500
	
	
	0.90

	
	
	
	{60%, 6m, 2m}, Drop 1


	{60%, 6m, 2m}, Drop 1 


	2500
	2500
	
	
	1.27


From the results, we can see that for the two kinds of model input, the positioning accuracy is smaller than 1 meter if the dataset size is large than a value, and taking RSRP as an additional model input to CIR can improve the positioning accuracy. When the training dataset size decreases from 25000 to 2500, the positioning accuracy decreases accordingly, and the performance of taking CIR as model input is more sensitive to the training dataset size. For example, the positioning accuracy of taking CIR as model input is decreased from 0.38m to 2.36m, while the positioning accuracy of taking CIR and RSRP as model input is decreased from 0.33m to 1.27m.

Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.

Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.

Generalization capability
To verify the generalization capability of different drops, we evaluate the AI/ML model trained with the dataset of Drop 1 and tested with the dataset of Drop 2. We also evaluate the AI/ML model trained with mixed dataset consists of samples from different drops. The simulation results are shown in Table III. 

Table III. Evaluation results for AI/ML model deployed on UE side, CNN

	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	18.45

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop

)
	2500
	
	
	0.49

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	25000（2500/Drop）
	2500 (250/Drop

)
	
	
	0.88

	CIR

(size:18*1*256) +RSRP

(size:18*1)

	UE coordinates


	ideal UE coordinates


	{60%, 6m, 2m}, Drop1
	{60%, 6m, 2m}, Drop 2
	25000
	2500
	3.71M
	7.42M
	14.58

	
	
	
	{60%, 6m, 2m}, Drop1&Drop2 mixed
	{60%, 6m, 2m}, Drop 2
	25000(12500/Drop

)
	2500
	
	
	0.37

	
	
	
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	25000（2500/Drop）
	2500 (250/Drop

)
	
	
	0.58


From the simulation results in Table III, it can be noted that the positioning accuracy of the AI/ML model trained with dataset of Drop 1 and tested with dataset of Drop 2 is larger than 10 meters, for both types of model input we evaluated. If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.

Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.

Model fine-tuning

One possible way to improve the generalization capability is fine-tuning. The evaluation results of generalization of different drops under different sizes of fine-tuning data is shown in Table IV. In our simulations, the model trained with 25000 samples in Drop 1 are fine-tuned with 500, 1000, 2000, 3000 samples in Drop 2, respectively. And the fine-tuned model is tested in the test dataset in Drop 2.

Table IV. Evaluation results for AI/ML model deployed on UE side, CNN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size:18*1*256

	UE coordinates

	ideal UE coordinates


	{60%, 6m, 2m}, Drop1

	{60%, 6m, 2m}, Drop 2
	{60%, 6m, 2m}, Drop 2
	25000

	500


	2500


	3.71M
	7.42M
	4.14

	
	
	
	
	
	
	
	1000


	
	
	
	3.35

	
	
	
	
	
	
	
	2000
	
	
	
	2.74

	
	
	
	
	
	
	
	3000
	
	
	
	1.95


From the results shown in Table IV, it can be observed that model fine-tuning with a small amount of data can obviously improve the generalization performance of different drops. When the fine-tuning dataset is increasing, the positioning accuracy will be improved accordingly.

Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.

Model complexity
To study the tradeoff among model performance, model complexity and computational complexity, we change the model structure in Fig1. by adding more Block2 after the Block3, which increase the model complexity. The simulation results are shown in Table V. 
Table V. Evaluation results for direct AI/ML positioning with different complexity
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	CIR
	POS
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	78400
	1600
	3.7M
	7.4M
	0.537

	
	
	
	
	
	
	
	6.4M
	12.8M
	0.386


From the results shown in Table V, it can be observed that with the increased model complexity and computation complexity, better position accuracy is archived.
Observation 5: As the complexity of the model increases, the positioning accuracy improves.
Simulation results on AI/ML assisted positioning
In this section, we focus on AI/ML assisted positioning. We use CIR as the model input, and the impact of the label is also considered. The simulation results are illustrated in this section. 

Baseline performance of traditional positioning algorithms
We firstly bring out some traditional positioning algorithms and test them with the dataset, to check the validity of our realization and the performance. Newton's method and the CHAN are used. TOA, TDOA and the ideal-TOA(based on the assumption that each gNB-UE link has a LOS path) are the input data. The simulation results are shown in Table VI. 
Table VI. Evaluation results for traditional positioning algorithms
	Label
	Newton's method/m
	CHAN/m

	
	CDF=90%
	RMSE
	CDF=90%
	RMSE

	TOA
	28.62
	19.52
	43.81
	18.21

	TDOA
	\Unable to converge
	\
	43.81
	18.21

	ideal-TOA
	9.28 e-08
	3.62 e-08
	2.80 e-12
	1.98 e-12


From the results shown in Table VI, it can be observed that ideal-TOA input to both algorithms can get a high accuracy, which prove that the realization of algorithm is correct. Both algorithms can not work properly when input TOA and TDOA, shows the limitations of traditional localization algorithms.

Observation 6: traditional positioning algorithms can not work properly in inF scenario.
Performance of AI/ML assisted positioning
To evaluate the Performance of AI/ML assisted positioning, we take CIR as the model input, and TOA,TDOA as the model output. Then traditional positioning algorithms introduced in the previous section are used to generate the final result. The simulation results are shown in Table VII and Table VIII. 
Table VII. Evaluation results for AI/ML assisted positioning with Newton's method
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	TOA
	TOA
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	78400
	1600
	3.71M
	7.42M
	28.94

	
	TDOA
	TDOA
	
	
	
	
	
	
	Unable to converge

	
	TOA
	Ideal-TOA
	
	
	
	
	
	
	0.279


Table VIII. Evaluation results for AI/ML assisted positioning with CHAN
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	CIR

size：18*1*256
	TOA
	TOA
	{60%, 6m, 2m}, 10 Drops mixed 


	{60%, 6m, 2m}, 10 Drops mixed


	78400
	1600
	3.71M
	7.42M
	45.36

	
	TDOA
	TDOA
	
	
	
	
	
	
	39.58

	
	TOA
	Ideal-TOA
	
	
	
	
	
	
	0.307


From the results shown in Table VII and Table VIII, it can be observed that with the ideal-TOA lable, AI/ML assisted positioning can also get a accurate result, but same problem is suffered when the label is TOA and TDOA.

Observation 7: AI/ML assisted positioning can not work properly in inF scenario due to the lack of LOS path.

Conclusion

In this contribution, we share our views on the evaluation methodology for AI/ML based positioning accuracy enhancement, and some evaluation results are also provided. The observations and proposals are summarised as follows:

Observation 1: If RSRP is taken as an additional model input to CIR, the positioning accuracy can be improved.

Observation 2: The positioning accuracy is sensitive to the training dataset size, when the dataset size is large than a value, the positioning accuracy is smaller than 1 meter.

Observation 3: If the mixed training dataset comprises the samples of the drop as the test dataset, the positioning accuracy can be improved obviously.

Observation 4: Model updating with a small amount of fine-tuning data can obviously improve the generalization performance of different drops.

Observation 5: As the complexity of the model increases, the positioning accuracy improves.
Observation 6: traditional positioning algorithms can not work properly in inF scenario.
Observation 7: AI/ML assisted positioning can not work properly in inF scenario due to the lack of LOS path.
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Appendix

Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)

	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 

(baseline) 120x60 m



	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.

-
for the small hall (L=120m x W=60m): D=20m

-
for the big hall (L=300m x W=150m): D=50m

[image: image2.emf] 



	
	Room height
	10m

	
	
	

	Total gNB TX power, dBm
	24dBm
	24dBm

EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1

Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1

One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.

	UE antenna height
	Baseline: 1.5m

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m

	Clutter parameters: {density [image: image4.png]


, height [image: image6.png]


,size [image: image8.png]A.rorerer



}
	High clutter density:

- {40%, 2m, 2m} 

- {60%, 6m, 2m}

Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.

	Note 1:
According to Table A.2.1-7 in TR 38.802
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