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Introduction
This contribution presents ETRI’s views on the evaluation of AI/ML for CSI feedback enhancement use case for the AI/ML for NR Air Interface study [1].

	Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact.

Use cases to focus on: 
- Initial set of use cases includes: 
o	CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction [RAN1]
o	Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement [RAN1]
o	Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions [RAN1] 
…




Discussion
Evaluation methodologies
In this section, we discuss evaluation methodologies for AI/ML for CSI feedback enhancement.

Specific evaluation methodologies for AI/ML-based CSI compression sub use case

Quantization/dequantization
In RAN1 #110bis-e meeting, quantization/dequantization issues have been brought up, including whether/how to handle different quantization/dequantization methods between NW and UE [3]. 

By the limitation of uplink capacity to deliver CSI feedback from the UE, the size of the CSI feedback should be limited. To generate the limited length of CSI feedback, quantization should be performed on the UE side and dequantization should be performed on NW-side during the CSI compression procedure. The quantization/dequantization along with the AI/ML-based CSI feedback can be considered as following two types:
· Case 1: AI models perform compression and quantization simultaneously. Only a binary sequence of CSI payload is obtained by the UE-side model.
· Case 2: AI models perform compression, followed by quantization. An unquantized latent variable is additionally obtained by the UE-side model.

For Case 1, AI models simultaneously perform compression and quantization and generate CSI payloads of a binary sequence. In this case, AI models are trained along with the size of the CSI payload, i.e., quantization-aware training is allowed for AI model training. Moreover, different AI models are independently trained with different output sizes (i.e., CSI payload sizes). In this case, NW-side model can accept the binary CSI payload, and the quantization codebook is not required to be shared between UE and network-side models.

[bookmark: _GoBack]For Case 2, AI models perform compression and quantization sequentially. In this case, the quantization function can be separated from the compression function. An unquantized latent variable can be obtained by UE-side model and the variable is quantized by the quantization block to generate CSI payload. Various CSI payload sizes can be generated by controlling the quantization block. When the quantization is performed on each latent dimension, the quantization block is scalar quantization, otherwise, i.e., when the quantization is performed on multiple latent dimensions, the quantization block is vector quantization. Codebook for quantization/dequantization can be either fixed or dynamic throughout the training. For fixed codebook, the range of input and output of quantization can be pre-determined and does not necessarily be shared between both sides. For dynamic codebook, the relationship between input and output is continuously updated throughout the training and should be shared after each re-training. The AI model can be trained either with and without aware of the quantization block. 

[bookmark: _Hlk131772809]Proposal 1: For the evaluation of AI/ML-based CSI compression use case, companies to report the details on the quantization/dequantization including: 
· Functional separability of compression and quantization
· Configuration of quantization/dequantization block (Scalar or vector quantization, fixed or dynamic codebook)
· Quantization aware/non-aware training of the AI models

Figure 1 shows an example of an AI model with a functionally separable quantization block. In the model, a trained UE-side AI model can be applied for different CSI payload sizes using different quantization configurations. For example, when the dimension of the latent variable is L, by applying Q bits scalar quantization for each latent variable’s dimension, CSI payload size of Q*L bits can be generated and delivered to the NW-side.

[image: ]
Figure 1. Supporting various CSI payload sizes using quantization

Observation 1: AI/ML models with a functionally separable quantization block can adjust CSI payload sizes by using different quantization configurations.


Performance upper bound of quantization
In RAN1 #112 meeting, an issue of performance upper bound of quantization is brought up (Issue #3-18 in [5]) as following.
	Question 3.2.17: For the evaluation of quantization aware/non-aware training, on top of the agreed cases of quantization non-aware training (Case 1) and quantization aware training (Case 2-1, Case 2-2), do you think it is needed to introduce an additional upper bound case of Case 0: non-quantized inference (i.e., float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training and inference), to reflect the performance loss due to quantization?



In our view, the purpose of CSI compression sub-use case is to see recovery performance using quantized feedback information, and unquantized feedback information is unable to be delivered to CSI reconstruction part. In addition to the infeasibility, training and inference of AI/ML model using unquantized feedback information is not appropriate as an upper bound on performance because it tends to overestimate and does not provide much information on the performance of the AI/ML model. For example, when we consider the case of unquantization, an AI/ML model that doesn't compress the input information (e.g., precoding vector) at all can still perform perfect recovery.

Proposal 2: For the evaluation of CSI compression sub use-case with quantization aware/non-aware training, consider not introducing training and inference using unquantized latent variables for the performance upper bound.


Definition of pre and post-processing

In RAN1 #112 meeting, an issue of processing complexity is brought up (Issue #2-4 in [5]) as following.
	Question 2.2.1: For the evaluation of CSI enhancements, when reporting the computational complexity including the pre-processing and post-processing, do you agree that we need to clarify the boundary of calculating the complexity metric (i.e., FLOPs)? E.g.,
· For the input of the CSI prediction, or input of the CSI generation part, the pre-processing starts at the raw channel matrix (i.e., includes the decomposition from channel matrix to eigenvectors)
· For the input of the CSI reconstruction part, the pre-processing includes the dequantization.
· For the output of the CSI generation part, the post-processing includes the quantization.
· For the output of the CSI reconstruction part, the ends at the precoding vectors.



Based on the discussion so far, the inputs and outputs of an AI/ML model can be in the form of a precoding matrix or an explicit channel matrix. In our view, pre and post-processing are not meant to change the format of the inputs and outputs of an AI/ML model, but rather as a supplementary means to improve the performance of inference. From this perspective, we think that it is reasonable to limit pre and post-processing operations perform after the input or output data is prepared (transformed) in the respective input and output formats. In this regards, pre and post-processing not include quantization and dequantization.

Proposal 3: For the evaluation of CSI compression sub use-case, consider limiting the pre-processing operations as operations after the input data is prepared in the input format (e.g., precoding matrix, or explicit channel matrix).

Proposal 4: For the evaluation of CSI compression sub use-case, consider limiting the post-processing operations as operations after the output data is prepared in the output format (e.g., precoding matrix, or explicit channel matrix).


Specific evaluation methodologies for AI/ML-based CSI prediction sub use case
In RAN #111 meeting, time domain CSI prediction is selected as sub-use case for AI/ML CSI enhancement [6]. In this section, we discuss simulation results for the CSI prediction sub-use case to evaluate performance of AI/ML models.

	Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer futher till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  



CSI prediction represents that an AI/ML model inferences T number of future CSI information (RAW channel matrix or eigenvectors) based on K number of previous CSI information. The structure of CSI prediction is described in the following figure.
[image: ]
Figure 2. The structure of CSI prediction

In the case of UE sided CSI prediction which is selected as sub-use case, both eigenvectors and RAW channel matrix can be considered as input of AI/ML model. Because, the UE directly measures channel matrix by receiving CSI-RS signals from gNB. In view of eigenvectors as input of AI/ML model, eigenvectors may have smaller dimensions and data size compared to raw channel matrix as input of AI/ML model. Thus, computational complexity of AI/ML model could be decreased. However, due to loss of information during making eigenvectors from RAW channel matrix, performance of AI/ML model could be degraded. At this time, it is important to check the degree of performance improvement in AI/ML model compared to the baseline.

Proposal 5: For the evaluation of CSI prediction sub use-case, consider the input of AI/ML model for CSI prediction as RAW channel matrix.


Evaluations on AI/ML-based CSI compression
In this section, we provide initial evaluation results on CSI compression sub use case based on SLS (System level simulations).

Evaluation assumption
For evaluation of AI/ML based CSI compression sub use case, the wireless channel data generated using the SLS for AI/ML based CSI compression sub use case. The parameters used for the SLS are provided in Table 1.

Table 1. Parameters for the SLS
	Parameter
	Value

	Carrier frequency
	4 GHz

	Scenario
	Dense Urban (Macro only)

	BWP
	48 RBs

	Subcarrier spacing
	15 kHz

	Subband/PRG size
	4 RBs

	Antenna setup and port layouts at gNB
	 32 ports: (8,8,2,1,1,2,8), 
(dH,dV) = (0.5, 0.8)λ


	Antenna setup and port layouts at UE
	4RX: (1,2,2,1,1,1,2), 
(dH,dV) = (0.5, 0.5)λ for (rank 1-4)

	BS Tx Power
	44dBm for 20MHz

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Slot/non-slot
	14 OFDM symbol slot

	SCS
	15kHz for 2GHz, 30kHz for 4GHz

	Simulation bandwidth
	20 MHz

	Number of layers
	1

	UE distribution
	80% indoor (3km/h), 20% outdoor (30km/h)

	Channel estimation
	Ideal




Autoencoder based AI model for CSI compression
For AI/ML based CSI compression sub use case, AI model at UE (Encoder) gets wireless channel information as the input and generates compressed feedback information as the output, and AI model at gNB (Decoder) gets compressed feedback information as the input and generates the original wireless channel information as the output. 

Autoencoder architecture is deployed for the evaluation of CSI compression. The architecture of Autoencoder is in Figure 5.
[image: ]
Figure 3. Architecture of the Autoencoder

We set eigenvectors of subbands as input of the encoder and output of the decoder in the evaluation. The number of latent variables is M, and Q bits are used to quantize each latent variable, i.e., the size of CSI feedback information is MQ bits.

The Encoder and Decoder in Autoencoder architecture are deployed using neural networks and design choices of the neural networks can be made with considerations of performance and complexity. We use Transformer-based neural networks for both the encoder and decoder. Figure 4 shows the Transformer-based model for AI/ML based CSI compression. 

[image: ]
Figure 4. Transformer-based model for AI/ML based CSI compression

In order to train the AI Model, training samples are collected by the SLS. The parameters of AI Model and training are in Table 2. 

Table 2. Parameters of AI Models
	Parameter
	Value

	Total number of samples
	57e4

	Portion of validation samples
	0.1

	Batch size
	512

	Total number of epoches
	512

	Learning algorithm
	Adam

	Learning rate
	0.0003



Summary of evaluation results of AI/ML-based CSI compression

According to the initial template discussed at the last meeting, the initial evaluation results are summarized as follows.

Table 3. Evaluation results for CSI compression on 1-on-1 joint training
	Assumptions
	ETRI #1

	CSI generation part
	AI/ML model backbone
	Transformer

	
	Pre-processing
	

	
	Post-processing
	

	
	FLOPs/M
	179

	
	Number of parameters/M
	7.15

	
	[Storage /Mbytes]
	

	CSI reconstruction part
	AI/ML model backbone
	Transformer

	
	[Pre-processing]
	

	
	[Post-processing]
	

	
	FLOPs/M
	179

	
	Number of parameters/M
	7.15

	
	[Storage /Mbytes]
	

	Common description
	Input type
	Eigenvector

	
	Output type
	Eigenvector

	
	Quantization /dequantization method
	Uniform quantization (2bits per each latent dimension)

	
	Rank/layer adaptation settings for rank>1
	N/A

	Dataset description
	Train/k
	570

	
	Test/k
	1

	
	Ground-truth CSI quantization method (including scalar/codebook based quantization, and the parameters)
	Float32

	
	Overhead reduction compared to Float32 if high resolution quantization of ground-truth CSI is applied
	

	[Other assumptions/settings agreed to be reported]
	

	Benchmark
	R16 eTypeII

	Benchmark assumptions, e.g., CSI overhead calculation method (Optional)
	

	SGCS of benchmark, [layer 1]
	X: <=80bits
	0.717

	
	Y: 100bits-140bits
	0.79

	
	Z: >=230bits
	0.831

	Gain for SGCS, [layer 1]
	X: <=80bits
	2.79%

	
	Y: 100bits-140bits
	0%

	
	Z: >=230bits
	3.13%

	NMSE of benchmark, [layer 1]
	X: <=80bits
	

	
	Y: 100bits-140bits
	

	
	Z: >=230bits
	

	Gain for NMSE, [layer 1]
	X: <=80bits
	

	
	Y: 100bits-140bits
	

	
	Z: >=230bits
	

	Other intermediate KPI (description/value) (optional)
	

	Gain for other intermediate KPI (description/value) (optional)
	



Observation 2: In the CSI compression sub-use case, with a Transformer based Autoencoder, there are no or slight (2~3%) improvements in terms of SGCS compared to the baseline (R16 eTypeII) for payload sizes X/Y/Z.


Evaluations on AI/ML-based CSI prediction

In this section, we provide basic evaluation results on the CSI prediction sub-use case based on a dataset derived from our SLS platform.

Evaluation assumption and dataset generation
For the evaluation of AI/ML based CSI prediction sub-use case, wireless channel datasets are generated by the SLS platform. The detailed parameters used for evaluation are described in Table 4.

Table 4. Parameters for channel generation
	Parameter
	Value

	Scenario
	Urban Macro

	Carrier Frequency
	4GHz

	Inter-BS distance
	200m

	Channel Model
	NR Uma

	Subcarrier spacing
	15kHz

	Antennas at gNB
	32 ports (8,8,2,1,1,2,8)

	Antennas at UE
	4 ports (1,2,2,1,1,2,2)

	UE distribution
	100% outdoor

	UE velocity
	20 km/h



Details of generated datasets in preliminary simulation are shown in Table 5. We generate channel sample of 570 UEs during 500ms with CSI-RS interval 5ms. We utilize 90% of samples as training datasets and other 10% samples are used as test datasets

Table 5. Description of datasets
	Parameter
	Value

	CSI-RS periodicity
	5ms

	Simulation time
	500ms

	Number of UEs
	570

	Number of RB
	52

	Number of subblock
	12

	Number of samples
	50000

	Training/Test sets split
	90% / 10%



AI/ML model for CSI prediction
The AI/ML model for CSI prediction utilizes the MLP-Mixer as the backbone. As the name implies, the MLP-mixer is simply composed of MLP (multi-layer perceptrons). The detailed structure of MLP-Mixer is shown in below Figure 5. Original channel images(inputs) are separated into patches and patches are entered them in a sequential order. In mixer layers, MLPs are repeatedly applied across either spatial locations or feature channels.
[image: ]
Figure 5. Structure of MLP-mixer

The parameters of AI/ML model and training are in Table 6. In the input dimension, K means the number of the observed channel matrix. And, in the output dimension, T means the number of the predicted channel matrix. For simplicity, we perform simulations considering only one Rx antenna. Our AI/ML model for prediction has 8.77M parameters and 738.87M FLOPs of computations

Table 6. Parameters of AI/ML model
	Parameter
	Value

	Backbone
	MLP-Mixer

	Input / Output type
	RAW channel matrix

	Input dimension
	K x 2 x 32 x 52

	Output dimension
	T x 2 x 32 x 52

	Batch size
	128

	Number of epochs
	150

	Optimizer
	Adam

	Initial learning rate
	0.001

	Loss function
	MSE



Evaluation results on CSI prediction
In this chapter, we show evaluation results on CSI prediction with sample and hold baseline which stores the nearest historical CSI. We evaluate intermediate KPIs such as NMSE. Firstly, we simulate 5 historical CSI information as the input of AI/ML model to predict 3 future CSIs. The results show that the AI/ML based prediction method outperforms the baseline. And, it can be confirmed that the performance of AI/ML model is superior in the results of distant times. In other words, the performance of the baseline rapidly degrades over time.

Table 7. Evaluation result on CSI prediction with 5 historical CSI
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	AI/ML model
	Baseline
	AI/ML model
	Baseline
	AI/ML model
	Baseline

	NMSE [dB]
	-4.608
	0.636
	-3.626
	2.708
	-3.269
	3.401



Observation 3: AI/ML based CSI prediction improves performance compared to the baseline.

Evaluation results changing the number of historical CSI
The next results show the performance of AI/ML based CSI prediction while changing the number of CSI information used as input of AI/ML model. According to the results, if more CSI inputs are given, the performance of AI/ML prediction model slightly increases.

Table 8. Evaluation result on AI/ML based CSI prediction with various number of historical CSI
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	5 samples
	10 samples
	5 samples
	10 samples
	5 samples
	10 samples

	NMSE [dB]
	-4.608
	-4.823
	-3.626
	-3.701
	-3.269
	-3.346



Observation 4: AI/ML based CSI prediction slightly improves performance as the number of historical input CSIs increase.

Evaluation results using eigenvectors as input of model
The next results show the performance of AI/ML based CSI prediction using eigenvectors as input of AI/ML model instead of RAW channel matrix. As shown in the results, AI/ML based prediction method outperforms the baseline. However, the degree of improvement of AI/ML model as input of eigenvectors is slightly reduced compared to the AI/ML model as input of the RAW channel matrix.

Table 9. Evaluation result on CSI prediction using eigenvectors as input
	
	5ms CSI
	10ms CSI
	15ms CSI

	Type
	AI/ML model
	Baseline
	AI/ML model
	Baseline
	AI/ML model
	Baseline

	NMSE [dB]
	-4.276
	-3.615
	-3.099
	-1.734
	-2.401
	-0.682



Observation 5: Performance improvement of AI/ML based CSI prediction as input of eigenvectors is slightly reduced compared to the AI/ML model as input of RAW channel matrix.

Summary on evaluation results of AI/ML-based CSI prediction 
In this chapter, according to the template without generalization discussed at the last meeting, the simulation results described in the previous sections are summarized as follows.

Table 10. Evaluation results for CSI prediction without model generalization/scalability
	
	
	ETRI (Section 3.2.3)
	ETRI (Section 3.2.5)

	AI/ML model description
	AL/ML model backbone
	MLP-Mixer
	MLP-Mixer

	
	[Pre-processing]
	Min-Max 
	Min-Max 

	
	[Post-processing]
	Min-Max
	Min-Max

	
	FLOPs/M
	738.87M
	91.86M

	
	Parameters/M
	8.77M
	4.01M

	
	[Storage /Mbytes]
	-
	-

	
	Input type
	RAW channel matrix
	Eigenvector

	
	Output type
	RAW channel matrix
	Eigenvector

	Assumption
	UE speed
	20 Km/h
	20 Km/h

	
	CSI feedback periodicity
	5ms
	5ms

	
	Observation window 
(number/distance)
	5 / 5ms
	5 / 5ms

	
	Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	3 / 5ms / 5ms
	3 / 5ms / 5ms

	
	Whether/how to adopt spatial consistency
	-
	-

	Dataset size
	Train/k
	45K
	45K

	
	Test/k
	5K
	5K

	Benchmark 1
	Nearest historical CSI w/o prediction
	Nearest historical CSI w/o prediction

	NMSE of Benchmark 1 
(1,…N, N is number of prediction instances)
	 0.636, 
 2.708, 
3.401
	 -3.615,
 -1.734,
 -0.682

	Gain for NMSE over Benchmark 1 
(1,…N, N is number of prediction instances)
	5.244 (-4.608),
6.334 (-3.626),
6.670 (-3.269)
	0.661 (-4.276),
1.365 (-3.099),
1.719 (-2.401)



Generalization performances of AI/ML-based CSI prediction
In the last RAN1 meeting, FL summarized potential issues related to the generalization of CSI prediction as follows [5].

	· Drawing observations
· As the templates for the CSI compressions sub use case (including the basic 1-on-1 joint training table, the generalization/scalability verification table, and the multi-vendor joint training as well as the separate training table) and the CSI prediction sub use case (the basic table as well as the generalization/scalability verification table) have been accomplished this meeting, and to be reported by companies before the next meeting, it is the initial plan of Moderator to start drawing observations in the next meeting; probably first with generalization/scalability which has less controversy, then followed by the performance gain of CSI prediction (to facilitate the check point of this sub use case), the performance gain of CSI compression, and the comparison among training types.



Generalization performance over UE speeds
In this chapter, we provide some evaluation results on generalization performances over various UE speeds. The AI/ML model is trained using a training dataset of a certain UE speed and this model is tested to the dataset of different speeds. According to the simulation results, changes in the speed of UE significantly degrade the performance of AI/ML model.

Table 11. Evaluation result on CSI prediction with various UE speeds
	NMSE [dB]
	Testing (UE speed)

	Training (UE speed)
	60km/h
	30km/h
	20km/h
	10km/h

	60km/h
	-2.667
	1.079
	2.025
	6.724

	30km/h
	0.328
	-3.426
	2.235
	5.891

	20km/h
	3.603
	4.462
	-4.587
	7.365

	10km/h
	6.169
	6.853
	9.468
	-7.141



To overcome this performance degradation, we trained AI/ML model with a mixed dataset which equally combined different UE speeds (20km/h, 30km/h and 60km/h). The results show that the performance degradation is alleviated compared to the result of AI/ML model trained on a certain speed.

Table 12. Evaluation result on CSI prediction with various UE speeds using the mixed dataset
	NMSE [dB]
	Testing (UE speed)

	Training (UE speed)
	60km/h
	30km/h
	20km/h

	Mixed datasets
	-1.702
	-3.605
	-3.357



[bookmark: _Hlk131601873][bookmark: _Hlk131607182]Observation 6: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of UE speeds.

Observation 7: Mixed datasets of different UE speeds can mitigate performance degradation compared to datasets of single UE speed.

Proposal 6: Further evaluate the AI/ML based CSI prediction over various UE speeds to overcome performance degradation in untrained UE speed.

Generalization performance over Carrier Frequencies
In this chapter, we provide some evaluation results on generalization performances over various carrier frequencies. The AI/ML model is trained using a training dataset of a certain UE speed and this model is tested to the dataset of different carrier frequencies. According to the simulation results, changes in carrier frequency significantly degrade the performance of AI/ML model.

Table 13. Evaluation result on CSI prediction with various carrier frequencies
	NMSE [dB]
	Testing (Carrier Freq.)

	Training (Carrier Freq.)
	2GHz
	3GHz
	4GHz

	2GHz
	-7.611
	-0.827
	-0.026

	3GHz
	-0.394
	-5.998
	2.942

	4GHz
	-1.497
	1.612
	-4.587



To overcome this performance degradation, we trained AI/ML model with a mixed dataset which equally combined different carrier frequencies (2GHz, 3GHz, 4GHz). The results show that the performance degradation is alleviated compared to the result of AI/ML model trained on a certain speed.

Table 14. Evaluation result on CSI prediction with various carrier frequencies using the mixed dataset
	NMSE [dB]
	Testing (Carrier Freq.)

	Training (Carrier Freq.)
	2GHz
	3GHz
	4GHz

	Mixed datasets
	-6.583
	-4.860
	-2.143



Observation 8: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of carrier frequencies.

Observation 9: Mixed datasets of different carrier frequencies can mitigate performance degradation compared to datasets of single carrier frequency.

Proposal 7: Further evaluate the AI/ML based CSI prediction over various carrier frequencies to overcome performance degradation in untrained carrier frequency.

Summary on generalization results of AI/ML-based CSI prediction 
In this chapter, according to the template with model generalization discussed at the last meeting, the simulation results described in the previous sections are summarized as follows.

Table 15. Evaluation results for CSI prediction with model generalization over UE speeds
	
	
	ETRI #1
	ETRI #2
	ETRI #3
	ETRI #4

	AI/ML model description
	AL/ML model backbone
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer

	
	[Pre-processing]
	Min-Max 
	Min-Max 
	Min-Max 
	Min-Max 

	
	[Post-processing]
	Min-Max
	Min-Max
	Min-Max
	Min-Max

	
	FLOPs/M
	738.87M
	738.87M
	738.87M
	738.87M

	
	Parameters/M
	8.77M
	8.77M
	8.77M
	8.77M

	
	[Storage /Mbytes]
	-
	-
	
	

	
	Input type
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix

	
	Output type
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix

	Assumption
	UE speed
	20 Km/h
	20 Km/h
	20 Km/h
	20 Km/h

	
	CSI feedback periodicity
	5ms
	5ms
	5ms
	5ms

	
	Observation window 
(number/distance)
	5 / 5ms
	5 / 5ms
	5 / 5ms
	5 / 5ms

	
	Prediction window 
(number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	3 / 5ms / 5ms
	3 / 5ms / 5ms
	3 / 5ms / 5ms
	3 / 5ms / 5ms

	
	Whether/how to adopt spatial consistency
	-
	-
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	20km/h, 45K
	30km/h, 45K
	60km/h, 45K
	20km/h+30km/h+60km/h, 
15K+15K+15K

	
	Test (setting#A, size/k)
	20km/h, 5K
	30km/h, 5K
	60km/h, 5K
	20km/h, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	 -4.587, 
 -3.607, 
-3.252
	 -3.426, 
 -2.953, 
-2.665
	 -2.667, 
 -2.561, 
-2.541
	 -1.702, 
 -1.384, 
-1.144

	Generalization Case 2
	Train (setting#A, size/k)
	20km/h, 45K
	30km/h, 45K
	60km/h, 45K
	20km/h+30km/h+60km/h, 
15K+15K+15K

	
	Test (setting#A, size/k)
	30km/h, 5K
	20km/h, 5K
	20km/h, 5K
	30km/h, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	 4.462, 
 2.804, 
3.091
	 2.235, 
 2.571, 
2.875
	 2.205, 
 2.058, 
2.173
	 -3.605, 
 -2.946, 
-2.502

	Generalization Case 3
	Train (setting#A, size/k)
	20km/h, 45K
	30km/h, 45K
	60km/h, 45K
	20km/h+30km/h+60km/h, 
15K+15K+15K

	
	Test (setting#A, size/k)
	60km/h, 5K
	60km/h, 5K
	30km/h, 5K
	60km/h, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	 3.603, 
 2.106, 
2.522
	 0.328, 
 0.723, 
1.153
	 1.079, 
 1.100, 
1.251
	 -3.357, 
 -2.896, 
-2.662



Table 16. Evaluation results for CSI prediction with model generalization over carrier frequencies
	
	
	ETRI #1
	ETRI #2
	ETRI #3
	ETRI #4

	AI/ML model description
	AL/ML model backbone
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer
	MLP-Mixer

	
	[Pre-processing]
	Min-Max 
	Min-Max 
	Min-Max 
	Min-Max 

	
	[Post-processing]
	Min-Max
	Min-Max
	Min-Max
	Min-Max

	
	FLOPs/M
	738.87M
	738.87M
	738.87M
	738.87M

	
	Parameters/M
	8.77M
	8.77M
	8.77M
	8.77M

	
	[Storage /Mbytes]
	-
	-
	
	

	
	Input type
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix

	
	Output type
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix
	RAW channel matrix

	Assumption
	UE speed
	20 Km/h
	20 Km/h
	20 Km/h
	20 Km/h

	
	CSI feedback periodicity
	5ms
	5ms
	5ms
	5ms

	
	Observation window 
(number/distance)
	5 / 5ms
	5 / 5ms
	5 / 5ms
	5 / 5ms

	
	Prediction window 
(number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	3 / 5ms / 5ms
	3 / 5ms / 5ms
	3 / 5ms / 5ms
	3 / 5ms / 5ms

	
	Whether/how to adopt spatial consistency
	-
	-
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	2GHz, 45K
	3GHz, 45K
	4GHz, 45K
	2GHz+3GHz+4GHz,
15K+15K+15K

	
	Test (setting#A, size/k)
	2GHz, 5K
	3GHz, 5K
	4GHz, 5K
	2GHz, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	-7.611,
-7.012,
-5.418
	-5.998,
-5.070,
-4.188
	-4.587,
-3.607,
-3.253
	-6.583,
-6.457,
-5.477

	Generalization Case 2
	Train (setting#A, size/k)
	2GHz, 45K
	3GHz, 45K
	4GHz, 45K
	2GHz+3GHz+4GHz,
15K+15K+15K

	
	Test (setting#A, size/k)
	3GHz, 5K
	2GHz, 5K
	2GHz, 5K
	3GHz, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	-0.827,
1.028,
1.969
	-0.394,
0.199,
0.931
	-1.497,
0.050,
0.577
	-4.860,
-4.052,
-3.325

	Generalization Case 3
	Train (setting#A, size/k)
	2GHz, 45K
	3GHz, 45K
	4GHz, 45K
	2GHz+3GHz+4GHz,
15K+15K+15K

	
	Test (setting#A, size/k)
	4GHz, 5K
	4GHz, 5K
	3GHz, 5K
	4GHz, 5K

	
	NMSE (1,…N, N is number of prediction instances)
	-0.026,
2.460,
1.867
	2.942,
3.523,
4.163
	1.612,
2.396,
2.584
	-2.413,
-1.559,
-0.819





Conclusion
In this contribution, ETRI’s views on the evaluation on AI/ML for CSI feedback enhancement were shown and the following proposals and observations were made:

Proposal 1: For the evaluation of AI/ML-based CSI compression use case, companies to report the details on the quantization/dequantization including: 
· Functional separability of compression and quantization
· Configuration of quantization/dequantization block (Scalar or vector quantization, fixed or dynamic codebook)
· Quantization aware/non-aware training of the AI models

Observation 1: AI/ML models with a functionally separable quantization block can adjust CSI payload sizes by using different quantization configurations.

Proposal 2: For the evaluation of CSI compression sub use-case with quantization aware/non-aware training, consider not introducing training and inference using unquantized latent variables for the performance upper bound.

Proposal 3: For the evaluation of CSI compression sub use-case, consider limiting the pre-processing operations as operations after the input data is prepared in the input format (e.g., precoding matrix, or explicit channel matrix).

Proposal 4: For the evaluation of CSI compression sub use-case, consider limiting the post-processing operations as operations after the output data is prepared in the output format (e.g., precoding matrix, or explicit channel matrix).

Proposal 5: For the evaluation of CSI prediction sub use-case, consider the input of AI/ML model for CSI prediction as RAW channel matrix.

Observation 2: In the CSI compression sub-use case, with a Transformer based Autoencoder, there are no or slight (2~3%) improvements in terms of SGCS compared to the baseline (R16 eTypeII) for payload sizes X/Y/Z.

Observation 3: AI/ML based CSI prediction improves performance compared to the baseline.

Observation 4: AI/ML based CSI prediction slightly improves performance as the number of historical input CSIs increase.

Observation 5: Performance improvement of AI/ML based CSI prediction as input of eigenvectors is slightly reduced compared to the AI/ML model as input of RAW channel matrix.

Observation 6: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of UE speeds.

Observation 7: Mixed datasets of different UE speeds can mitigate performance degradation compared to datasets of single UE speed.

Proposal 6: Further evaluate the AI/ML based CSI prediction over various UE speeds to overcome performance degradation in untrained UE speed.

Observation 8: For AI/ML based CSI prediction, the performance reduction occurs significantly depending on changes of carrier frequencies.

Observation 9: Mixed datasets of different carrier frequencies can mitigate performance degradation compared to datasets of single carrier frequency.

Proposal 7: Further evaluate the AI/ML based CSI prediction over various carrier frequencies to overcome performance degradation in untrained carrier frequency.


References
[1] [bookmark: _Ref94002833][bookmark: _Ref95163286]RP-213599, New SI: Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface, Qualcomm
[2] RAN#95-e Meeting Report
[3] R1-2210753, Summary#7 of [110bis-e-R18-AI/ML-02], Moderator(Huawei)
[4] R1-2212966, Summary#6 for CSI evaluation of [111-R18-AI/ML], Moderator (Huawei)
[5] R1-2301940, Summary#5 for CSI evaluation of [112-R18-AI/ML], Moderator (Huawei)
[6] 3GPP RAN1, Chairman’s Notes, 3GPP RAN WG1 #111, November 2022


--

image3.png
EBJep pajonJisucosy

Decoder

a|qeLeA Juale

Encoder

-

ejep Indu|

Auto Encoder




image4.png
Input
(Eigenvectors)

CSl reconstruction

model

LY

Dequantization

l

Patch embedding Patch embedding
Transformer Transformer
Encoder Encoder
MLP Head MLP Head

Quantization v
Output

(Eigenvectors)

CSl generation
model Csl feedback





image5.png
Inputs

Patches X

channels

Mixer

Layer

Out classes

Outputs

—
=

[

Rearrange

Linear

Sigmoid




image1.png
csl

UE-side Al model
(Encoder)

Latent
Variable.

A

Quantization
method 1

CSl payload 1
e

Quantization
method 2

CSl payload 2





image2.png
T

I ]

One or more
measurment of CSI-RS

.T

AI/ML based
Prediction Model

One or more
Predicted CSI




