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1 Introduction
In last meeting, additional evaluation methodology were discussed and preliminary observations were drawn. The following is the progress. 
	Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.

· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.

· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.

Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:

· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.

· Label-free methods, where model monitoring does not require ground truth label (or its approximation).

Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.

Conclusion

· No dedicated evaluation is needed for the positioning accuracy performance of model switching

· It does not preclude future discussion on model switching related performance
Agreement

For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  

· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 

· Value L is up to sources. 

· Other models are not precluded

· [Whether/how to study the impact of labelling error to label-based model monitoring methods]

· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

Observation

Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 

· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.

· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 

· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.

Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.




In this contribution, we will continue discussing the remaining issues of the evaluation methodology, sub use cases and share the preliminary simulation results. 
2 Preliminary simulation results for sub-use cases 
2.1 Description of the sub use cases  
Direct positioning and indirect positioning were agreed for further study. For the direct positioning, the positioning coordinates of the devices can be directly inferenced by the AI model. And for the indirect positioning, the output of the inference is the intermediate parameters. 
In this section, we will conduct evaluation for both direct positioning and indirect positioning.  For the direct positioning, the input of the AI model is the CIR and the output is the coordinates as shown in Fig. 1. For the indirect positioning, the input of the AI model is also the CIR points and the output is the ToA. In addition, the input CIR is the CIR from 18 TRPs and the output is the predicated ToA for 18 TRPs. Based on the inferenced ToA,  the coordinates is obtained by utilizing the traditional TDOA solution as shown in Fig. 2
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Figure 1 Illustration of the fingerprinting positioning
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Figure 2 Illustration of the AI-based ToA predication
2.2 Performance gain for AI-based positioning and Discussion
Results for the direct AI-based positioning and AI-based ToA prediction a for scenarios with different clutter parameters are summarized in the associated excel.  Fig.3 depicts the positioning results when using traditional TDOA positioning solution. We will discuss and compare the evaluation results case by case. 
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Figure 3 CDF of positioning error for TDOA-based solution
· AI-based solution VS traditional non-AI based solution
In the TDOA-based method, the positioning error @ 90% for the scenario of inF-DH{60%, 6m, 2m} is up to 14m and even in the scenario of inF-DH{40%, 2m, 2m} , the positioning error @90% is still up to 12m. While for the AI-based solution, the performance is improved greatly. Depending on direct AI-based solution or indirect AI-based solution used, the performance is slightly different. Anyway, no matter which AI-based solution is used, the positioning error @90% is less than 1m.  In the scenario of inF-DH{60%, 6m, 2m}, the positioning error could achieve around 0.45m~0.65m if using the AI model trained by the data set of inF-DH{60%, 6m, 2m} and the positioning error is around 0.75m~0.85m if using the AI model trained by mix data set. In the scenario of inF-DH{40%, 2m, 2m}, the positioning error could achieve around 0.75m~0.85m if using the AI model trained by the data set of inF-DH{40%, 2m, 2m}. 
Observation 1: 
· AI-based solution could greatly improve the positioning accuracy performance for both direct AI-based positioning and AI-based ToA prediction
· The positioning error is less than 1m for both direct AI-based positioning and AI-based ToA prediction

· Direct AI-based positioning VS AI-based ToA predication
Generally, the performance of direct AI-based positioning and the AI-based ToA predication are similar for all evaluation cases and the positioning error difference is less than 0.2m in most cases. In addition, in all cases, the direct AI-based positioning show slightly better performance.  The reason is some performance loss is expected in the traditional TDOA based solution, while the end-to-end coordinates predication by using AI model could remedy this loss. 
Observation 2:
· The direct AI-based positioning outperforms the AI-based ToA predication solution slightly
2.3 Generalization study    
In this section, we will study the generalization performance.  We mainly focus on the study the impact of different clutter parameters , the impact of network synchronization and the impact of UE receiving timing error. 
2.3.1 Impact of different clutter parameters 
· Different clutter parameter for training and test 

We considered two inF-DH scenarios, InF-DH with the cluster parameter {60%, 6m, 2m} and InF-DH with cluster parameter {40%, 2m, 2m}. Two training data sets are generated.  One is the dataset purely generated in InF-DH {60%, 6m, 2m}, another one is the dataset purely generated in InF-DH {40%, 2m, 2m}. Two AI models are trained based on these two data sets, respectively. For the test, data sets of different clutter parameter are used. 

Associated simulation results excel sheets summarize the evaluation results and other parameters for the fingerprint and the AI-based ToA predication. If the same clutter parameter is set for the training dataset and the test dataset, optimal positioning accuracy could be achieved for both direct AI-based positioning and AI-based ToA prediction as shown in section 2.2. While, once the clutter parameter for test data set is different from that of the training data set, the inference performance degrades sharply. In the direct AI-based positioning, take the AI model trained by InF-DH{60%, 6m, 2m} dataset as example.  The positioning error @90% is less than 0.5m when using InF-DH{60%, 6m, 2m} test dataset , while the positioning error @90% is up to 7m when using InF-DH {40%, 2m, 2m} test dataset. That is to say, lack of generalization capability would happen if the dataset only generated in one scenario without change of parameters.  
Observation 3: 

· For AI-model trained by dataset generated from one scenario without parameter change,  inferior generalization capability is observed 

· Mixed clutter parameter setting for training  
In this case, the data set is generated by mixing the dataset from inF-DH{60%, 6m, 2m } and inF-DH{40%, 2m, 2m }. And the AI model is trained by the mixed data set and tested by the data set with clutter parameter {40%, 2m, 2m } and test dataset from inF-DH{60%, 6m, 2m }, respectively.
Associated simulation results excel sheets summarize the evaluation results. It is observed that using mixed dataset the positioning accuracy is improved greatly. For both the fingerprint and the AI-based ToA prediction, the positioning accuracy @90% is less than 1m. That is to say, for the AI model trained with mix dataset, the generalization problem can be relieved. 
Observation 4: 
· Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability 
· Model fine-tuning 
In this case, the model is firstly trained by data set with clutter parameter inF-DH{60%, 6m, 2m }or inF-DH {40%, 2m, 2m} and then fine-tuned by data set with different clutter parameters. The data set for fine-tuning only contains a small number of samples. 

Associated simulation results excel sheets summarize the evaluation results . Compared with results without fine-tuning in Table.3 and Table.4, the positioning accuracy is improved reasonably. For example, for the AI model trained by clutter parameter {60%, 6m, 2m } and fine-tuned by data set with clutter parameter {40%, 2m, 2m } , when applying this model in the scenario with clutter parameter {40%, 2m, 2m }, the positioning error is reduced from to ~7m to ~1.5 in both fingerprint method and ToA predication method. However, compared with the results of AI model trained with mixed data set , there is still some gap. The possible reason is less samples from the applied scenario in the fine-tuning. 
Observation 5: 

· For fine-tuning with different clutter parameters

· The positioning accuracy is improved compared with the situation of different clutter parameter between training data set and test data set 

· The improvement of positioning accuracy in the fine-tuning solution is less than that in the solution of mixed training data set with different clutter parameter 

2.3.2 Impact of network synchronization error  

In this section, we test the generalization performance with the non-ideal network synchronization. The timing errors and network synchronization error are modelled according to TR 38.857, where network synchronization error are modelled as truncated Gaussian distribution with zero mean and standard deviation of [image: image5.png] ns, with a truncated range as [image: image7.png]. And we test the performance of AI model trained by dataset generated with the cluster parameter {60%, 6m, 2m}, dataset generated with the cluster parameter {40%, 2m, 2m}. 
· Training data set with ideal network synchronization and test data set with 50ns network synchronization error  

Firstly, we test the case in which the AI/ML model is trained by dataset with ideal network synchronization and then is tested by dataset with 100ns network synchronization error. The results are summarized in the associated excel. It is observed that no matter in the direct AI-based positioning method or the AI-based ToA predication method, the positioning error @90% is poor and the positioning error is more than 10m. 
Observation 6: 

· If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed 

· Mixed training data set with network synchronization error {0n, 30ns, 40ns, 50ns} and test data set with 50ns network synchronization error  

In this case, mixed training data set is used by considering different network synchronization. According to the simulation results, it is observed that the positioning error @90% is reduced to around 1.27m and 2.3m for direct AI-based positioning and AI-based ToA prediction, respectively. Compared with the results with totally different network synchronization error between training and test, using mixed data set could improve the positioning accuracy greatly. 
Observation 7: 

· Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability 
· Training data set with ideal network synchronization error and fine-tuned data set with 50 ns network synchronization error  

In this case, we test the case where the AI/ML model is trained by dataset with ideal network synchronization and further fine-tuned by data set with 50 ns network synchronization error, at last the AI model is tested by dataset with 50ns synchronization error. The results are summarized in the companion simulation results excel. Compared with the results without fine-tuning,  there is certain improvement in the positioning accuracy. But the positioning accuracy is still poor. The positioning error is up to 8 m when the clutter parameter is {0.4, 2, 2}. It seems that fine-tuning does not help much in the genelization. 
Observation 8: 

· From the aspect that AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 50ns network synchronization error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor 
2.3.3 Impact of receive timing error  

In this section, we test the generalization performance with the non-ideal UE Rx timing. The timing errors are modelled according to TR 38.857, where Rx timing error are modelled as truncated Gaussian distribution with zero mean and standard deviation of [image: image9.png] ns, with a truncated range as [image: image11.png]. And we test the performance of AI model trained by dataset generated with the cluster parameter {60%, 6m, 2m}, dataset generated with the cluster parameter {40%, 2m, 2m}. 

· Training data set with ideal Rx timing and test data set with 10ns network synchronization error  

Firstly, we test the case in which the AI/ML model is trained by dataset with ideal Rx timing and then is tested by dataset with 10ns Rx timing error. The results are summarized in the associated excel. It is observed the positioning error @90% is around 2.58 m for direct AI-based positioning and AI-based ToA prediction with clutter parameter of {0.4,2,2}. 
Observation 9: 

· If the AI/ML model is trained with data set of ideal Rx timing and the tested by  data set is with Rx timing error, there is some positioning accuracy degradation
· Mixed training data set with Rx timing error {0n, 10ns, 20ns, 30ns} and test data set with 10ns Rx timing error  

In this case, mixed training data set is used by considering different Rx timing error. According to the simulation results, it is observed that the positioning error @90% is reduced to around 1.3 m for direct AI-based positioning and AI-based ToA prediction with clutter parameter of {0.4,2,2}. Compared with the results with totally different error between training and test, using mixed data set could improve the positioning accuracy. 

Observation 10: 

· Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability 
· Training data set with ideal Rx timing and fine-tuned data set with 10 ns Rx timing error  

In this case, we test the case where the AI/ML model is trained by dataset with ideal Rx timing and further fine-tuned by data set with 10 ns Rx timing error, at last the AI model is tested by dataset with 10ns Rx timing error. The results are summarized in the companion simulation results excel. The positioning error @90% is reduced to around 2.2m for direct AI-based positioning and AI-based ToA prediction with clutter parameter of {0.4,2,2}. Compared with the results without fine-tuning, there is certain improvement in the positioning accuracy. But the improvement is not significant. 

Observation 11: 

· From the aspect that AI model is trained by data set with ideal timing error and fine-tuned by data set with 10ns Rx timing error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor 
3 Impact of the size of training data set 
One recommendation is last meeting is to study how AI/ML positioning accuracy is affected by user density/size of training data set. In this section, we will provide our test results. In the test, positioning accuracy @90% is collected for different training data size. Clutter parameter {0.6,6,2} is set for both the training data set and test data set. The detailed relationship between positioning accuracy and training data size is illustrated in Figure 3  and Figure 4 for direct AI-based positioning and AI-based ToA predication, respectively. 
According to the test results, it is observed that with the increase of training data size, the positioning accuracy improves accordingly. While, on the other hand, the improvement become marginal when the size of training data set exceed certain threshold. For example, in the following figure, it shows when the size of data set exceed 30000, then the positioning accuracy would become stable. 
[image: image12.png]
Figure 3 Relationship between size of training data set and positioning accuracy for direct AI-based positioning 
[image: image13.png]
Figure 4 Relationship between size of training data set and positioning accuracy for ToA-based prediction
Observation 12:
· The positioning accuracy would be improved with the increase of training data set size 

· When the size of training data set exceeds certain threshold, the accuracy improvement would become marginal 
4 Impact from the label error 

For the AI-based positioning, it is also possible to collect the labels based on UE or LMF by using positioning methods. In this case, the collected labels are non-ideal and some error is included in the label. During last meeting, how to model the label error was agreed. Based on the error modelling method, we perform simulation to evaluate the impact on positioning accuracy from different label error setting. 
	Model input
	Model output
	Label
	Clutter param & network synchronization error 
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error std=0.3 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	0.6032

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error std=0.8 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	0.9500

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error std=1.5 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.1748

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates

Error std=2 m
	{0.6，6，2}


	{0.6，6，2}


	70000
	10000
	21,277,442
	5.76GFlops
	1.7503


According to the simulation results, it is observed that with labelling error, there is positioning error degradation.  But on the other hand,  when the labelling error is controlled within certain range (e.g., with the std< 0.8m ), the positioning accuracy of less than 1m could still be maintained. 

Observation 13:  The positioning accuracy can be maintained within 1m if the labelling error is controlled within a small range 
5 Signalling and model size reduction
In section 2, for both the direct AI-based positioning and AI-based ToA prediction, the input dimension is 18*256*1 for each sample. Large inference input dimension would result in large model size and more computation complexity. In addition, for the scenario where inference node is the LMF and the UE need to feedback the measured CIR information. In this case, large input dimension would cause large signaling. 
Considering these aspects, we will evaluate the performance of the following options with reduced input dimension for the direct AI-based positioning.  

· Option 1: The input dimension is 18*24*2, where 18 represents the number of the involved TRP for positioning, 24 represents the top 24 CIR points with strongest signaling strength among 256 CIR points and 2 represents the amplitude of the CIR points and the index of the CIR point
· Option 2: The input dimension is 9*256*1, where 9 represents the number of the involved TRP for positioning, 256 represents the CIR points 

Table.1 shows the results of option 1 for direct AI-based positioning. Compared with the performance with input dimension of 18*256*1, inferior positioning accuracy is achieved, due to less information is proved by limited input points. However, the positioning error is still less than 1m @ 90%. On the other hand, when looking at comparison in computation complexity, it is observed that the computation complexity in the option with reduced input dimension is much less than that of option with input dimension of 18*256*1. In addition, if UE is required to feedback the CIR to the LMF, then the potential signaling overhead is around 1/10 of that in option with input dimension of 18*256*1. 

Table. 2 shows the performance of option 2 for direct AI-based positioning. Compared with the input dimension of 18*256*1, inferior positioning accuracy is achieved due to less TRPs involved in the positioning. On the other hand, when the involved TRP is reduced to 9, the positioning accuracy is still around 1m. In addition, the computation complexity and signaling overhead is reduced as well. 

When comparing option 1 and option 2, it is observed that the reducing the number of CIR taps per TRP impose less impact on the positioning accuracy and cause more reduction in the computation complexity is observed as well 
Observation 14: 

· Reducing the number of CIR taps per TRP to 24 could reduce the computation complexity and signaling overhead  significantly while still maintain less 1m positioning error  
· Reducing the number of TRP to 9 could reduce the computation complexity and signaling overhead while maintain around 1m positioning error 

Table 1 Evaluation results for reduced CIR taps per TRP for direct AI-based positioning, model deployed on UE or NW side, without model generalization, ResNet 

	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6, 2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.4462

	18*24*2 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}


	70000
	10000
	21,277,442
	539.94MFlops
	0.8219


Table 2 Evaluation results for reduced TRPs for direct AI-based positioning, model deployed on UE or NW side, without model generalization, ResNet

	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	Training
	test
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	18*256*1 CIR
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}
	70000
	10000
	21,277,442
	5.76GFlops
	0.4462

	9*256 *1 CIR 
	2*1 UE coordinates
	2*1 UE coordinates
	{0.6，6，2}
	{0.6，6，2}


	70000
	10000
	21,277,442
	3.38GFlops
	1.2738


6 Conclusion
In this contribution, we discuss the evaluation methodology and show the initial simulation results. Based on the discussion and evaluation results, our views and observations are summarized as follow 
Observation 1: 
· AI-based solution could greatly improve the positioning accuracy performance for both direct AI-based positioning and AI-based ToA prediction

· The positioning error is less than 1m for both direct AI-based positioning and AI-based ToA prediction

Observation 2:
· The direct AI-based positioning outperforms the AI-based ToA predication solution slightly

Observation 3: 

· For AI-model trained by dataset generated from one scenario without parameter change,  inferior generalization capability is observed 

Observation 4: 

· Generating the training data set with different  cluster parameters could relax the problem of inferior generalization capability 
Observation 5: 

· For fine-tuning with different clutter parameters

· The positioning accuracy is improved compared with the situation of different clutter parameter between training data set and test data set 

· The improvement of positioning accuracy in the fine-tuning solution is less than that in the solution of mixed training data set with different clutter parameter 

Observation 6: 

· If the AI/ML model is trained with data set of ideal network synchronization and the tested by  data set is with network synchronization error, poor generalization performance is observed 

Observation 7: 

· Generating the training data set with mixed network synchronization error could relax the problem of inferior generalization capability 
Observation 8: 

· From the aspect that AI model is trained by data set with ideal network synchronization error and fine-tuned by data set with 50 ns network synchronization error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor 
Observation 9: 

· If the AI/ML model is trained with data set of ideal Rx timing and the tested by  data set is with Rx timing error, there is some positioning accuracy degradation

Observation 10: 

· Generating the training data set with mixed Rx timing error could relax the problem of inferior generalization capability 
Observation 11: 

· From the aspect that AI model is trained by data set with ideal timing error and fine-tuned by data set with 10ns Rx timing error, improvement in the positioning accuracy is observed. But the improved positioning accuracy is still poor 
Observation 12:

· The positioning accuracy would be improved with the increase of training data set size 

· When the size of training data set exceeds certain threshold, the accuracy improvement would become marginal 
Observation 13:  The positioning accuracy can be maintained within 1m if the labelling error is controlled within a small range 
Observation 14: 

· Reducing the number of CIR taps per TRP to 24 could reduce the computation complexity and signaling overhead  significantly while still maintain less 1m positioning error  

· Reducing the number of TRP to 9 could reduce the computation complexity and signaling overhead while maintain around 1m positioning error 
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