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Introduction
[bookmark: _Hlk101176897]AI/ML-based CSI feedback enhancement is one of the use cases in this study item. In the RAN WG1 109-e meeting [1], spatial-frequency domain CSI compression using two-sided AI/ML model (depicted in Figure 1) is selected as one representative sub-use case.
Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.
[image: ]
[bookmark: _Ref131533032]Figure 1: The two-sided AI/ML model.
In the RAN WG1 111 meeting [2], time-domain CSI prediction using UE sided model is also selected as a representative sub-use case for CSI enhancement.
Agreement
Time domain CSI prediction using UE sided model is selected as a representative sub-use case for CSI enhancement.   
Note: Continue evaluation discussion in 9.2.2.1.
Note: RAN1 Defer potential specification impact discussion at 9.2.2.2 until the RAN1#112b-e, and RAN1 will revisit at RAN1#112b-e whether to defer further till the end of R18 AI/ML SI.
Note: LCM related potential specification impact follow the high level principle of other one-sided model sub-cases.  
In previous RAN WG1 112 meeting [3], some agreements and conclusions were made from the aspects of intermediate KPIs, benchmark/upper bound for training Type 3 and the generalization verification of UE speeds for the CSI prediction. In this contribution, we constitute to show our views and evaluation results based on our previous contribution.
Evaluation results for CSI compression 
Quantization
In RAN WG1 111 meeting, the following agreement regarding the AI/ML model quantization for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of quantization in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of quantization aware/non-aware training, the following cases are considered and reported by companies:
· Case 1: Quantization non-aware training, where the float-format variables are directly passed from CSI generation part to CSI reconstruction part during the training.
· Fixed/pre-configured quantization method/parameters is applied for the inference phase
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2: Quantization aware training, where quantization/dequantization is involved in the training process
· Case 2-1: Fixed/pre-configured quantization method/parameters are applied during the training phase; the same quantization codebook is applied for the inference phase.
· Companies to report the design of the fixed/pre-configured quantization method/parameters, e.g., quantization resolution, vector quantization codebook, etc.
· Case 2-2: The quantization method/parameters are updated in together with the AI/ML models during the training; when training is finished, the final quantization codebook is applied for the inference phase.
· Companies to report how to update the quantization method/parameters during the training.
Note: the above cases apply



In our view, for quantization aware training, the quantization/dequantization is involved in both the forward propagation (FP) and the loss function, this in turn affects back propagation (BP) in the whole training phase. The AI/ML model trained by a quantization aware strategy may be completely different from the AI/ML model trained by a quantization non-aware strategy in terms of both model weights and model performance. 
To evaluate the performance difference between quantization aware training and quantization non-aware training, we consider B-bits scalar uniform quantization. In our simulation, the input of quantization is normalized into the range [0,1] by setting the activation function of the neural network layer before quantization as sigmoid. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10 channel. 
The simulation results are provided in Figure 2 for 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training under various feedback payloads. From this figure, it can be observed that：
· Compared with quantization aware training, there is a 0.01~0.03 SGCS loss for quantization non-aware training for various feedback payloads.
· The SGCS loss of quantization non-aware training is reduced with the increasing quantization bits and the feedback payloads.
Observation-1: [bookmark: _Ref131771213] For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Let us fix a payload size, e.g., 120 bits. The numbers of floating-point outputs of the neural networks are 60, 40, 30, 24 for the 2-bit, 3-bit, 4-bit, and 5-bit quantizers, respectively. It is observed from Figure 2 that the performance of the case of quantization aware training followed by a 2-bit scalar quantizer is the best among all cases. The reasons are two-folded. First, the number of floating-point outputs in this case is the largest, which allows a neural network of a large size. Second, since the neural network is trained according to how its floating-point outputs are quantized in quantization aware training, the neural network is trained to adjust a better performance of the classification problem of the quantizer.
Observation-2: [bookmark: _Ref131771236]For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a low-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
 
[bookmark: _Ref131518895]Figure 2: The SGCS performance of 2-bits quantization aware training and {2,3,4,5}-bits quantization non-aware training.
In addition to the above uniform (scalar) quantization, we also consider a vector quantization (VQ) approach where the VQ table is updated during the training phase. Figure 3 provides the SGCS performance of the scalar uniform quantization and the VQ under various feedback payloads. From this figure, it can be seen that:
· Compared with the “Case 2-1 quantization aware training”, where the (scalar uniform) quantization method is fixed, the vector quantization (VQ) is updated together with the AI/ML models during the training phase in the “Case 2-2 quantization aware training”, which offers slightly better performance.
Observation-3: [bookmark: _Ref131771370]Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in an updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
 
[bookmark: _Ref131519210]Figure 3: The SGCS performance of the fixed/pre-configured quantization and the non-fixed/non-pre-configured quantization under various feedback payloads.
Based on the above simulation results, we have the following proposal.
Proposal-1: [bookmark: _Ref131771660] Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression.
Proposal-2: [bookmark: _Ref131771687]In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
We should also note that the cost of Case 2-2 is higher than those of Case 2-1. Specifically, since the quantizer is updated in the training phase, the quantization method, e.g., the codebook for VQ, should be acknowledged between the UE side and the NW side. The overhead is increased because of the possibly transmitted quantization codebook. With this regard, the throughput gain should be studied to ensure the gain of VQ. So, we have the following proposal.
Proposal-3: [bookmark: _Ref131771669]For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Regarding to transmission overheads, the output of an AI/ML based CSI generation part after quantization is preferred to be the separate training dataset for training Type 3. If the quantization scheme is not disclosed, there may be a quantization/dequantization mismatching between UE sides and NW sides. Although the AI/ML model can be trained by ignoring the quantization/dequantization mismatching because the neural network has universally approximation ability. But such kind of mismatching will make AI/ML model training more challenging and leads to a serious performance degradation. To evaluate the performance of quantization/dequantization mismatching, we consider the following three cases:
· Case 1(Baseline): AI/ML based CSI generation part and reconstruction part are jointly trained with 2-bit uniform (scalar) quantization/dequantization.
· Case 2: UE-first separate training, the quantization bits are respectively 2 and 4 for the UE side and the NW side.
· Case 3: NW-first separate training, the quantization bits are respectively 2 and 4 for the UE side and the NW side.
The simulation result for quantization/dequantization mismatching is given in Table 1. We can observe that there is a significant performance loss in terms of SGCS when the quantization and the dequantization are mismatched. With this regarding, we have the following observation and the proposal.
Observation-4: [bookmark: _Ref131771400]The significant SGCS performance loss can be observed for separate training (training Type 3) when the quantization and the dequantization are mismatched. 
Proposal-4: [bookmark: _Ref131771692]Evaluate the performance of separate training (training Type 3) for the case that the quantization and the dequantization are mismatched.
[bookmark: _Ref131523950]Table 1: SGCS performances for quantization mismatched.
	Feedback
Payload(bits)
	Case 1
	Case 2
	Case 3

	80
	0.7959
	0.2927
	0.2252

	120
	0.8569
	0.2638
	0.2222

	180
	0.9036
	0.2445
	0.2008

	240
	0.9256
	0.2419
	0.2136

	280
	0.9343
	0.2343
	0.2044



Training Type 2 
In this section, we provide our evaluation results on training Type 2. In our evaluation case, there are  UE part models with CNN-based and transformer-based backbones, and one NW part model with a transformer-based backbone. Two UE part models and one NW part model are simultaneously trained for training Type 2. The evaluation is performed on the link level simulations and the simulation parameters are adopted in Table 12. The SGCS performances of training Type 2 with CSI generation parts at UE sides and one CSI reconstruction part at the NW side are given Table 2 over the various feedback payloads.  We can observe that:
· For training Type 2, there is a significant SGCS loss for two UE part models and one NW part model and the backbone is different comparing with the joint training.
Observation-5: [bookmark: _Ref131771422]For training Type 2, the significant SGCS loss can be observed for two UE part models and one NW part model, and the backbone is different, comparing with the joint training.
[bookmark: _Ref131531209]Table 2: SGCS performances of training Type 2 with two CSI generation parts at UE sides and one CSI reconstruction part at the NW side.
	Feedback
payload(bits)
	Joint training
Transformer-Transformer
	Training Type 2
CNN-Transformer
	Training Type 2
Transformer-Transformer

	80
	0.7539
	0.7234
	0.7329

	120
	0.8284
	0.803
	0.808

	180
	0.8851
	0.8718
	0.8789

	240
	0.9166
	0.9024
	0.9089

	280
	0.9321
	0.9193
	0.9252



Separate training
In RAN WG1 111 meeting, the following agreement regarding Type 3 training for CSI compression has been made [2]. In this section, we give the simulation results for the following evaluation cases and show the performance of separate training for multi-vendors in spatial-frequency-domain CSI compression using two-sided AI/ML models.  
	Agreement
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following evaluation cases for sequential training are considered for multi-vendors 
· Case 1 (baseline): Type 3 training between one NW part model and one UE part model
· Note 1: Case 1 can be naturally applied to the NW-first training case where 1 NW part model to M>1 separate UE part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training UE part model is the same or a subset of the dataset for training NW part model
· Note 2: Case 1 can be naturally applied to the UE-first training case where 1 UE part model to N>1 separate NW part models
· Companies to report the dataset used between the NW part model and the UE part model, e.g., whether dataset for training NW part model is the same or a subset of the dataset for training UE part model
· Companies to report the AI/ML structures for the combination(s) of UE part model and NW part model, which can be the same or different
· FFS: different quantization methods between NW side and UE side
· Case 2: For UE-first training, Type 3 training between one NW part model and M>1 separate UE part models
· Note: Case 2 can be also applied to the M>1 UE part models to N>1 NW part models
· Companies to report the AI/ML structures for the M>1 UE part models and the NW part model
· Companies to report the dataset used at UE part models, e.g., same or different dataset(s) among M UE part models
· Case 3: For NW-first training, Type 3 training between one UE part model and N>1 separate NW part models
· Note: Case 3 can be also applied to the N>1 NW part models to M>1 UE part models
· Companies to report the AI/ML structures for the UE part model and the N>1 NW part models
· Companies to report the dataset used at NW part models, e.g., same or different dataset(s) among N NW part models 



For spatial-frequency-domain CSI compression using two-sided AI/ML models, joint training will face proprietary and hardware-compatible challenges for multi-vendors. If the CSI generation part or the CSI reconstruction part is transferred over the air interface, the AI/ML model description is also a big challenge.  For separate training, the CSI generation part and the CSI reconstruction part can be independently trained with a set of separate training data provided by NW side or UE side, even a common data provided by a third parity. This kind of training strategy can directly avoid model transferring and the above challenges.
For the above evaluation cases, the separate training process in our simulations is given as follows:
· Case 1
· UE-first: the CSI generation part and the CSI reconstruction part are jointly trained at a UE side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI reconstruction part is separately trained at a NW side with separate training dataset .
· NW-first: the CSI generation part and the CSI reconstruction part are jointly trained at a NW side with right singular vectors . Then separate training dataset  is generated with right singular vectors  (different from ) where  is the output of CSI generation part for the input . The CSI generation part is separately trained at a UE side with separate training dataset .
· Case 2: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each UE side with right singular vectors . Then the separate training dataset  is generated for each UE which is similar to Case 1 UE-first. The CSI reconstruction part is separately trained at a NW side with mixed separate training dataset  from multiple UE sides.
· Case 3: Each pair of CSI generation part and the CSI reconstruction part is jointly trained at each NW side with right singular vectors . Then the separate training dataset  is generated for each NW which is similar to Case 1 NW-first. The CSI generation part is separately trained at a UE side with mixed separate training dataset  from multiple NW sides.
[bookmark: _Ref127151911]Table 3: The SGCS performance of separate training with different quantization behaviors.
	Feedback payload(bits)
	Joint training
	NW-first
without quantization
	NW-first 
with quantization
	UE-first
without quantization
	UE-first
with quantization

	80
	0.7559
	0.7557
	0.7534
	0.7564
	0.7556

	120
	0.8282
	0.8279
	0.8265
	0.8266
	0.8256

	180
	0.8855
	0.8854
	0.8842
	0.8828
	0.8822

	240
	0.9236
	0.9233
	0.922
	0.9232
	0.922

	280
	0.9354
	0.9353
	0.9342
	0.9351
	0.934


.
We perform the link level simulations to evaluate performance of separate training with different quantization behaviors. The training data and test data are the right singular vectors of the channel matrix of a CDL-C-300-10.  Two kinds of separate training dataset are considered as follows：
· The output of CSI generation part after quantization is used for constructing separate training dataset.  
· The output of CSI generation part before quantization is used for constructing separate training dataset.
Table 3 provides the SGCS performance of separate training with two above quantization behaviors. No obvious performance difference is observed between two quantization behaviors for both NW-first and UE-first separate training.
Observation-6: [bookmark: _Ref131771434] There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training. 
[bookmark: _Ref127153778]Table 4: The SGCS performance of UE-first separate training with one UE part model and NW-first separate training with one UE part model.
	Feedback payload(bits)
	Joint training
Transformer
	NW-first
Transformer-Transformer
	NW-first
CNN-Transformer
	UE-first
Transformer-Transformer
	UE-first
Transformer-CNN

	80
	0.7559
	0.7557
	0.7149
	0.7564
	0.705

	120
	0.8282
	0.8279
	0.7664
	0.8266
	0.7768

	180
	0.8855
	0.8854
	0.8086
	0.8828
	0.8206

	240
	0.9236
	0.9233
	0.8432
	0.9232
	0.8705

	280
	0.9354
	0.9353
	0.8923
	0.9351
	0.8854



Table 4 provides the SGCS performance of NW-first separate training with one NW part model and two separate UE part models and UE-first with separate training with one UE part model and two separate NW part models. The training data and test data are also the right singular vectors of the channel matrix of a CDL-C-300-10. There is no significant performance loss between joint training and separate training for Transformer models.
Observation-7: [bookmark: _Ref131771445]For the Case 1 of Type 3 training, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training. 
Observation-8: [bookmark: _Ref131771447] For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
[bookmark: _Ref127154651]Table 5: The SGCS performance of UE-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
CNN-Transformer

	80
	0.7559
	0.9166
	0.7254
	0.9178

	120
	0.8282
	0.9472
	0.8067
	0.9437

	180
	0.8855
	0.9562
	0.8699
	0.9577

	240
	0.9236
	0.9636
	0.9119
	0.9633

	280
	0.9354
	0.9675
	0.9237
	0.9664


[bookmark: _Ref127154654]Table 6: The SGCS performance of NW-first separate training with 2 separate UE part models and 2 separate NW part model.
	Feedback payload(bits)
	Joint training
Transformer
	Joint training
CNN
	Separate training
Transformer-Transformer
	Separate training
Transformer-CNN

	80
	0.7559
	0.9166
	0.75
	0.9024

	120
	0.8282
	0.9472
	0.8227
	0.9316

	180
	0.8855
	0.9562
	0.8814
	0.9483

	240
	0.9236
	0.9636
	0.9185
	0.9588

	280
	0.9354
	0.9675
	0.932
	0.9648



Table 5 and Table 6 provide the SGCS performances of UE-first separate training with 2 separate UE part models and NW-first separate training with 2 separate NW part models. The transformer model of joint training is trained by right singular vectors of CDL-300-10, but the CNN model of joint training is trained by right singular vectors of CDL-30-10. The separate training data is generated by mixing the input and the output of both Transformer based and CNN based CSI generation part after quantization. It can be noticed that the significant performance loss of Case 2 of Type 3 training is observed compared with joint training when the backbones of joint training AI/ML models are transformer. However, no obvious performance loss is observed for Case 2 of Type 3 training when the backbones of joint training AI/ML models are CNN. For Case 3 of Type 3 training, minor performance loss can be observed for both transformer-based and CNN based backbones.
Observation-9: [bookmark: _Ref131771448] For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10: [bookmark: _Ref131771449] For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Proposal-5: [bookmark: _Ref131771700]For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6: [bookmark: _Ref131771701]For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
· Training method: quantization aware training or quantization non-aware training.
· Quantization method: scalar quantization or vector quantization.
AI/ML model generalization/scalability
In RAN WG1 111 meeting, the following agreement regarding the scalability over different input dimensions of CSI generation part has been made [2]. In our previous contributions, some evaluation results for AI/ML model generalization/scalability of feedback payload were provided [2]. In this section, we give the simulation results for AI/ML model generalization/scalability of sub-bands and antenna ports using zero-padding method in spatial frequency CSI compression.  
	[bookmark: _Hlk127381436]Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases



In our evaluations, the method to achieve the scalability over different input dimensions of CSI generation part is zero-padding. As shown in Figure 4, the input of CSI generation part will be filled with zero value along the sub-band dimension and/or the antenna port dimension if input dimensions are less than pre-configured values. For the CSI reconstruction part, the output will be truncated in the positions of zero padding. 
[bookmark: _Ref127126631][image: ]
[bookmark: _Ref131533076]Figure 4: The generalization/scalability of sub-bands and antenna ports with zero-padding method.
We perform the link-level simulation to evaluate the scalability performance of zero-padding method for different numbers of sub-bands and antenna ports. Figure 5 gives the scalability performance for 10 sub-bands and 13 sub-bands under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 10 sub-bands 32 ports case 1:  both training and test perform on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 10 sub-bands and 32 antenna ports.
· 10 sub-bands 32 ports case 3: training on the mixed data of 10 sub-bands and 13 sub-bands, and test on the data of 10 sub-bands and 32 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 13 sub-bands data and tested by 10 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of sub-bands using zero-padding method when the AI/ML model is trained with the mixed data of 10 sub-bands and 13 sub-bands.
It should be noted that the performance of 10 sub-bands 32 ports case 3 is even better than that of 10 sub-bands 32 ports case 1. This performance gain may benefit from a larger size of the mixed data.

[bookmark: _Ref131532795]Figure 5: The scalability performance for different numbers of sub-bands.
Figure 6 gives the scalability performance for 16 antenna ports and 32 antenna ports under various feedback payloads. In this figure, three lines stand for different combinations of training data and test data as follows:
· 13 sub-bands 16 ports case 1:  both training and test perform on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 2: training on the data of 13 sub-bands and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
· 13 sub-bands 16 ports case 3: training on the mixed data of 16 antenna ports and 32 antenna ports, and test on the data of 13 sub-bands and 16 antenna ports.
It can be observed from this figure that:
· There is a significant performance loss when the AI/ML model is trained by 32 sub-bands data and tested by 16 sub-bands data.
· The AI/ML model can achieve the good scalability performance for the number of antenna ports using zero-padding method when the AI/ML model is trained with the mixed data of 16 antenna ports and 32 antenna ports.


[bookmark: _Ref131533169][bookmark: _Ref127129951]Figure 6: The scalability performance for different numbers of antenna ports.
Observation-11: [bookmark: _Ref131771454]For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12: [bookmark: _Ref131771456] For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Finetuning
In the RAN WG1 110bis-e meeting, the following agreement regarding the AI/ML model finetuning for CSI feedback enhancement was made [3].
Agreement
For the evaluation of the potential performance benefits of model fine-tuning of CSI feedback enhancement which is optionally considered by companies, the following case is taken 
· The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
In this section, we evaluate the performance benefits of model finetuning according to this agreement. Link-level simulations are performed. We show that there is a significant performance gain of using finetuning, which is close to the performance of joint training. 
Finetuning for a jointly trained model
We describe our simulation setting as follows. A pair of two-sided AI/ML model is trained using a training dataset composed by the right singular vectors of the channel matrix of a CDL-C-300-10 channel. We then use a dataset composed by the right singular vectors of the channel matrix of a CDL-C-30-10 channel to do finetuning. The inference is performed by the dataset of same type of that of the finetuning dataset but is independently drawn from the finetuning dataset.
[bookmark: _Hlk131517985]When the size of finetuning dataset is 40K, the performance of finetuning is shown in Figure 7. The simulation parameters are summarized in Table 12 in Appendix A. According to Figure 7, a negligible performance degradation is observed in finetuning, compared to the performance of the jointly trained AI/ML model on CDL-C-30-10 channel.
[image: 图表, 折线图

描述已自动生成]
[bookmark: _Ref131533212]Figure 7: The performance of finetuning.
Finetuning for a separately trained model
Using high-resolution codebook quantization
We describe our simulation setting as follows. Two pairs of two-sided AI/ML models, namely AI/ML model pair A and AI/ML model pair B are trained based on the training dataset from the scenarios of CDL-C-30-10 and CDL-C-300-10 channels, respectively. The AI/ML-based CSI generation part of the AI/ML model pair A, namely Encoder A, is finetuned using a dataset  drawn from the CDL-C-300-10 channel, and the updated encoder is called Encoder A’. Then the performance of the pair of AI/ML model, which is composed by Encoder A’ and the AI/ML-based CSI reconstruction part of the AI/ML model pair B, namely Decoder B, is tested using a dataset  drawn independently from the CDL-C-300-10 channel.
We present the datasets used for finetuning () and inference (). The dataset for inference is composed by the right singular vectors of the channel matrices of CDL-C-300-10 channels. The dataset for finetuning is composed by the quantized version of the right singular vectors of the channel matrices of CDL-C-300-10 channels. Specifically, the approach of quantization is high resolution codebook quantization using Rel-16 type II-like method with new parameter values. In this paper, we choose two sets of new parameter values, which are presented in Table 7.
[bookmark: _Ref131533414]Table 7: The parameters of Rel-16 type II-like method for finetuning dataset construction.
	
	
	
	
	
	
	
	Reference Amplitude (bit)
	Difference Amplitude (bit)
	Phase (bit)
	Total Bit Number
	SCGS in CDL-C-300-10

	Parameter Set #1
	6
	7
	0.5
	0.5
	13
	1
	4
	4
	4
	449
	0.8387

	Parameter Set #2
	12
	13
	0.95
	0.5
	13
	1
	4
	4
	4
	1579
	0.9609



The simulation parameters are summarized in Table 12 in Appendix A. The size of the dataset for finetuning is 40K. The performance is measured by SGCS and is presented in Figure 8.
[image: 图表, 折线图
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[bookmark: _Ref131533296]Figure 8: The performance of finetuning from an AI/ML model trained in the scenario of CDL-C-30-10 channel, which is compared with that of the jointly trained two-sided AI/ML model and Rel-16 type II codebook for the scenario of CDL-C-300-10.
It is noticed from Figure 8 that the SGCS achieved by finetuning is very close to that of the jointly trained AI/ML model, which is much better than that of Rel-16 type II codebook. We have the following observations and proposal.
Observation-13: [bookmark: _Ref131771459] There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14: [bookmark: _Ref131771461] The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15: [bookmark: _Ref131771462]For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Proposal-7: [bookmark: _Ref131771715] High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Comparison with finetuning using right singular vectors
In this subsection, we compare the finetuning performance obtained from using Rel-16 type II-like method and true right singular vectors of channel matrices. The result is shown in Figure 9. It is observed that the performance of finetuning using those two types of data is almost the same.
Observation-16: [bookmark: _Ref131771467]The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
It is also noticed from Figure 9 that the performance varies for different amount of finetuning data used. Specifically, a better performance is obtained when a larger amount of data is used than a small amount of data used for finetuning. We further study this problem in the next subsection.
[image: 图表, 散点图
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[bookmark: _Ref131533507]Figure 9: Comparison of the performances of finetuning using Rel-16 type II-like method and right singular vectors of channel matrices.
We analyze the overhead reduction. As discussed above, 449 bits are consumed for each codebook vector with parameters in Table 7, which is approximately 56 bytes. However, according to the antenna configuration and the number of subband as summarized in Table 8, a total number of 3328 bytes is needed to represent a right singular vector in floating-point numbers. By using codebook-based dataset, only  overhead is consumed compared to the dataset of right singular vectors, but only with a minor performance degradation in terms of the SGCS. 
We have the following observation and proposal.
Observation-17: [bookmark: _Ref131771469] It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method to achieve a low-overhead dataset transferring in separate training.
Proposal-8: [bookmark: _Ref131771716] In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring, the codebook-based quantization approach should be further studied.
SLS throughput
This section provides the throughput evaluation based on the system level simulation (SLS). The simulation parameters are given in Table 13. For eType-II codebook, we consider parameter configurations of {1,3,6} which corresponds to feedback payloads of {62, 111, 279} bits and {113, 207, 539} bits for rank=1 and rank=2. For AI/ML based CSI feedback, a layer-common AI/ML model is used to evaluate the performance. The feedback payloads of AI/ML models are {62, 110, 278} bits.
Table 8 and Table 9 show the UPT performance for eType-II codebook and AI/ML models for rank=1 and the maximum rank=2, respectively. For these simulation results, the traffic model of full buffer is used, and the rank adaption is adopted for the maximum rank=2. It can be observed that:
· Comparing with eType-II codebook, the average UPT can be improved by 2%~9% and the 5% UPT can be improved by 6.1%~20.9% by using AI/ML based CSI feedback for the rank=1 and full buffer traffic.
· Comparing with eType-II codebook, the average UPT can be improved by 7%~13.7% and the 5% UPT can be improved by 3.5%~14.9% by using AI/ML based CSI feedback for the maximum rank=2 and full buffer traffic.
Observation-18: [bookmark: _Ref131771471]Comparing with eType-II codebook, the throughput can be improved by AI/ML based CSI feedback:
· 2%~9% gain for average UPT and 6.1%~20.9% gain for 5% UPT for rank=1 and full buffer traffic.
· 7%~13.7% gain for average UPT and 3.5%~14.9% gain for 5% UPT for the maximum rank=2 and full buffer traffic.
[bookmark: _Ref131769855]Table 8: The UPT performance for eType-II codebook and AI/ML models for rank=1 and the traffic model of full buffer.
	Feedback payload(bit)
	62/62
	111/110
	279/278

	Average UTP, eType-II
	1
	1.144
	1.27

	Average UTP, AI/ML
	1.09(+9%)
	1.2(+5.6%)
	1.29(+2%)

	5%UPT, eType-II
	1
	1.122
	1.25

	5%UPT, AI/ML
	1.209(+20.9%)
	1.296(+17.4%)
	1.311(+6.1%)


[bookmark: _Ref131769859]Table 9: The UPT performance for eType-II codebook and AI/ML models for the maximum rank=2 with rank adaption and the traffic model of full buffer.
	Feedback payload(bit)
	113/114
	207/220
	539/556

	Average UTP, eType-II
	1
	1.108
	1.217

	Average UTP, AI/ML
	1.092(+9.2%)
	1.178(+7%)
	1.354(+13.7%)

	5%UPT, eType-II
	1
	1.131
	1.463

	5%UPT, AI/ML
	1.149(+14.9%)
	1.166(+3.5%)
	1.274


Model monitoring
Model monitoring is an important issue which has been discussed in the last meeting [3]. Basically, the model monitoring is involved in model activate/deactivate, model switch and model fallback. For CSI compression, the intermediate KPIs based model monitoring considers the SGCS or the NMSE between the reconstructed CSI and the target CSI. This model monitoring can be further divided into monitoring at the NW side and monitoring at the UE side. For intermediate KPIs based model monitoring at the NW side, UE needs to report the target CSI to the NW side which may be realized by high resolution codebook quantization using Rel-16 type II-like method with new parameter values. For intermediate KPIs based model monitoring at the UE side, the CSI reconstruction part or the reconstructed CSI should be available at the UE side. 
In this section, we evaluate the feasibility of intermediate KPIs based model monitoring at the UE side with a monitoring decoder at the UE side. Two training types are considered as follows:
· Joint training: three AI/ML models of the CSI generation part, the CSI reconstruction part and the monitoring decoder are jointly trained.
· Separate training (training Type 3): The CSI generation part and the CSI reconstruction part are firstly trained then the monitoring decoder is separately trained with separate training data.
We consider the case that the same model structure (Transformer) but smaller model size (about 1/40 comparing with CSI reconstruction part) for the monitoring decoder and the case that the different model structure (CNN) for the monitoring decoder. Figure 10 shows the SGCS performance of the monitoring decoder for joint training for the above two cases. It can be observed that:
· For joint training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part whether the structure between the monitoring decoder and the CSI reconstruction part is the same.
Figure 11 provides the SGCS performance of the monitoring decoder for separate training for the above two cases. In this figure, the red curve and the blue curve respectively stand for SGCS performances of the CSI reconstruction part and the monitoring decoder. It can be observed that:
· For separate training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS shift can be observed when the backbone is different.
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[bookmark: _Ref131539397][bookmark: _Ref131539389][image: 图表
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描述已自动生成]Figure 10: The SGCS performance of monitoring decoder with different model sizes (left) and structures (right) for joint training.
[bookmark: _Ref131540203]Figure 11: The SGCS performance of monitoring decoder with different model size and model structure for separate training (training Type 3).
Based on these simulation results, we have the following observations and the proposal.
Observation-19: [bookmark: _Ref131771472]For joint training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part whether the structure between the monitoring decoder and the CSI reconstruction part is the same.
Observation-20: [bookmark: _Ref131771473]For separate training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS shift can be observed when the backbone is different.
Proposal-9: [bookmark: _Ref131771720]For AI/ML based CSI feedback using two-side model, study the feasibility and the performance of using UE-side monitoring decoder, taking at least the following aspects into account:
· KPIs for performances
· Complexity
· Multi-vendor cases
Evaluation results for CSI prediction
Performance comparison with benchmark
In RAN WG1 110bis-e, the following conclusions for CSI prediction have been made. In this section, we provide our views and evaluation results for CSI prediction.
	Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the outdoor UEs, add O2I car penetration loss per TS 38.901 if the simulation assumes UEs inside vehicles.
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, no explicit trajectory modeling is considered for evaluation
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, and if the AI/ML model outputs multiple predicted instances, the intermediate KPI is calculated for each prediction instance
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, both of the following types of AI/ML model input are considered for evaluations:
· Raw channel matrixes
· Eigenvector(s)
Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, for the evaluation of CSI prediction:
· Companies are encouraged to report the assumptions on the observation window, including number/time distance of historic CSI/channel measurements as the input of the AI/ML model, and
· Companies to report the assumptions on the prediction window, including number/time distance of predicted CSI/channel as the output of the AI/ML model



For CSI prediction, eigenvectors as the input of AI/ML models can be a starting point since their dimension size is more less than raw channel matrices. The eigenvector prediction considered in this contribution is illustrated in Figure 12 where the historical eigenvectors are used to predict the future eigenvectors at one or multiple slots.  The gain of the AI/ML based eigenvector prediction compared to the sample-and-hold method is evaluated by system level simulations. The simulation parameters are considered in Figure 13 where UE speeds are 10, 30, 60 km/h for 100% outdoor. The sampling interval of eigenvectors (v1, v2, v3, …) is 5ms, the slot numbers of AI/ML model input and output are 5 and 1, respectively. The evaluation result is provided in Table 10 where RNN based AI/ML models are considered. The layer-common AI/ML model is used to predict eigenvectors from two layers. It can be seen that:
· AI/ML based eigenvector prediction outperforms the sample-and-hold method for temporal domain.
· For AI/ML based eigenvector predictions, the performance gain is decreased as the UE speed increases, compared to the sample-and-hold method.
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[bookmark: _Ref131525595]Figure 12: The prediction of right singular vectors (eigenvectors).
[bookmark: _Ref131787872]Table 10:The SGCS performance of AI/ML based CSI prediction and sample-and-hold for eigenvectors from 2 layers.
	UE speed
	Sample-and-hold
	AI/ML (v1, v2, v3, v4, v5->v6)

	
	Layer 1
	Layer 2
	Layer 1
	Layer 2

	10 km/h
	0.857
	0.818
	0.922(7.58%)
	0.877(7.21%)

	30 km/h
	0.685
	0.638
	0.75(9.49%)
	0.615(4.77%)

	60 km/h
	0.587
	0.545
	0.685(7.37%)
	0.566(3.85%



Observation-18: AI/ML-based eigenvector prediction outperforms the sample-and-hold method for temporal domain.
Observation-19: For AI/ML-based eigenvector predictions, the performance gain is decreased as the UE speed increases, compared to the sample-and-hold method.
Generalization for UE speeds
In RAN WG1 112 meeting, the following agreement for CSI prediction have been made. In this section, we provide evaluation results for the generalization of AI/ML based CSI prediction over various UE speeds.
	Agreement
The CSI prediction-specific generalization scenario of various UE speeds (e.g., 10km/h, 30km/h, 60km/h, 120km/h, etc.) is added to the list of scenarios for performing the generalization verification.
· FFS various frequency PRBs (e.g., trained based on one set of PRBs, inference on the same/different set of PRBs)


To evaluate the generalization of AI/ML models, we consider the following cases:
· Case 1: The AI/ML model for CSI prediction are trained by the dataset with UE speed X and evaluated by the dataset with UE speed X.
· Case 2: The AI/ML model for CSI prediction is trained by the dataset with UE speed X and evaluated by the dataset with UE speed Y(X).
· Case 3: The AI/ML model for CSI prediction is trained by the mixed dataset with UE speed X1, X2, X3 and respectively evaluated by the dataset with UE speed X1, or X2, or X3.
The system level simulation is used by the above three cases. The sampling interval of eigenvectors (v1, v2, v3, …) is also 5ms, the slot numbers of AI/ML model input and output are 5 and 1, respectively. Table 11 shows the generalization evaluation of AI/ML based CSI predictions over 10, 30, 60 km/h UE speeds. It can be observed that:
· For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y ().
· For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
Observation-21: [bookmark: _Ref131771479]For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y().
Observation-22: [bookmark: _Ref131771480]For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
[bookmark: _Ref131535898]Table 11: The generalization evaluation of AI/ML based CSI predictions for various UE speeds and 2 layers.
	Test set
Training set
	10km/h
	30km/h
	60km/h

	
	Layer1 
	Layer 2
	Layer 1
	Layer 2
	Layer 1 
	Layer 2

	10km/h
	0.922
	0.877
	0.712
	0.654
	0.574
	0.53

	30km/h
	0.899
	0.849
	0.75
	0.685
	0.618
	0.567

	60km/h
	0.866
	0.813
	0.723
	0.663
	0.615
	0.566

	10&30&60km/h
	0.916
	0.866
	0.742
	0.679
	0.615
	0.565



Conclusions
Observation-1:For scalar uniform quantization, the performance of quantization aware training is better than that of quantization non-aware training, and the performance loss of quantization non-aware training is reduced with the increasing quantization bits and feedback payloads.
Observation-2:For a fixed number of payload size, the number of floating-point outputs of the neural network followed by a low-resolution quantizer is larger than that followed by a high-resolution quantizer. This is helpful in increasing the SGCS performance if quantization aware training is used.
Observation-3:Under the method of quantization aware training, compared with the fixed scalar uniform quantization method (Case 2-1), better performance is achieved in an updated quantization approach (Case 2-2), where the vector quantization is updated together with the AI/ML models during the training phase.
Observation-4:The significant SGCS performance loss can be observed for separate training (training Type 3) when the quantization and the dequantization are mismatched.
Observation-5:For training Type 2, the significant SGCS loss can be observed for two UE part models and one NW part model, and the backbone is different, comparing with the joint training.
Observation-6:There is negligible performance difference between two quantization behaviors for both NW-first and UE-first separate training.
Observation-7:For the Case 1 of Type 3 training, only a negligible SGCS degradation (0.0001~0.0011) is observed compared to joint training.
Observation-8:For the Case 1 of Type 3 training, by varying the backbones of AI/ML models and fixing other conditions, it is observed that the performance of transformer models is superior to that of a convolutional neural network (CNN).
Observation-9:For the Case 2 of Type 3 training, where the training at UE side is performed at first, the SGCS degradation is 0.11~0.03 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-10:For the Case 3 of Type 3 training, where the training at NW side is performed at first, the SGCS degradation is negligibly 0.003~0.006 compared to that of Case 1 of Type 3 training if the backbone of the AI/ML model is transformer.
Observation-11:For generalization/scalability of AI/ML model over the different number of sub-bands, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-12:For generalization/scalability of AI/ML model over the different number of antenna ports, the zero-padding method can achieve good performances in terms of the SGCS when the AI/ML model is trained with mixed data.
Observation-13:There is a huge penalty of the performance if the AI/ML-based CSI generation part and the AI/ML-based CSI reconstruction part are mismatched in the sense that they are trained using the datasets from different scenarios.
Observation-14:The performance of the finetuning is very similar to that of joint training in terms of the SGCS.
Observation-15:For finetuning, an excellent performance can be achieved by the dataset composed by the high-resolution codebook quantization, i.e., Rel-16 type II-like method with new parameter values, of the right singular vectors of the spatial-frequency-domain channel matrix.
Observation-16:The performance of finetuning is almost the same from using right singular vectors of channel matrices and their high-resolution codebook quantization, e.g., Rel-16 type II-like method with new parameter values.
Observation-17:It is observed that there is a significant overhead reduction of transferring a codebook-based dataset than a dataset composed by channel vectors of floating-point numbers for separate training. So, it is worth to study codebook-based quantization method to achieve a low-overhead dataset transferring in separate training.
Observation-18:Comparing with eType-II codebook, the throughput can be improved by AI/ML based CSI feedback:
Observation-19:For joint training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part whether the structure between the monitoring decoder and the CSI reconstruction part is the same.
Observation-20:For separate training, the SGCS of the monitoring decoder is like that of the CSI reconstruction part when the backbone of AI/ML models is similar; But the SGCS shift can be observed when the backbone is different.
Observation-21:For AI/ML based CSI prediction, the performance degradation can be observed when the AI/ML model trained by the dataset with UE speed X is tested on the dataset with UE speed Y().
Observation-22:For AI/ML based CSI prediction, the AI/ML model trained by the mixed dataset has good generalization for various UE speeds.
Proposal-1:Quantization aware training is considered as the priority training strategy for the evaluation of AI/ML based CSI compression.
Proposal-2:In quantization aware training, it is suggested that we increase the number of floating-point outputs for a fixed number of output bit numbers.
Proposal-3:For the evaluation of the quantization aware training, study and compare the throughput achieved by the approaches that the quantizers are updated (Case 2-2) or not (Case 2-1) during the training phase. This provides evidence for studying which of the two should be considered as the priority method.
Proposal-4:Evaluate the performance of separate training (training Type 3) for the case that the quantization and the dequantization are mismatched.
Proposal-5:For the evaluation of the Type 3 training, evaluate the effect of the choice of backbone of AI/ML model on the performance of Type 3 training.
Proposal-6:For the evaluation of the Type 3 training, evaluate the effect of the choice of quantizer on the performance of Type 3 training, from the perspectives of
Proposal-7:High-resolution codebook quantization of the right singular vectors of the spatial-frequency-domain channel matrix, e.g., Rel-16 type II-like method with new parameter values, can be used in the dataset construction for finetuning.
Proposal-8:In order to achieve a low-overhead dataset transferring in over-the-air-training/monitoring, the codebook-based quantization approach should be further studied.
Proposal-9:For AI/ML based CSI feedback using two-side model, study the feasibility and the performance of using UE-side monitoring decoder, taking at least the following aspects into account:
· KPIs for performances
· Complexity
· Multi-vendor cases

Appendix A. Simulation parameters and AI/ML models
The parameters for link-level simulation used in this paper are summarized in Table 12.
[bookmark: _Ref131525502]Table 12: Simulation parameters for LLS.
	Parameter
	Value


	Duplex, Waveform
	FDD, OFDM

	BS Antenna Element Number (
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	UE Antenna Element Number ()
	4Rx: (1,2,2,1,1,1,2), (dH,dV) = (0.5, 0.5)λ

	Channel Estimation
	Realistic Channel Estimation

	Channel Model
	CDL-C

	Bandwidth
	10 MHz

	RB Number
	52

	Sub-Band Number
	13

	Carrier Frequency
	2 GHz

	Sub-Carrier Spacing
	15 kHz

	Delay Spread
	30/300 ns

	Doppler shift
	100/200/400 Hz



The parameters for link-level simulation used in this paper are summarized in Table 13.
[bookmark: _Ref131525531]Table 13: Simulation parameters for SLS.
	Parameter
	Value

	Duplex, Waveform
	FDD, OFDM

	Multiple access
	OFDMA

	Scenario
	Uma

	Frequency Range
	2GHz

	[bookmark: _Hlk130373213]Inter-BS distance
	200m

	Channel model        
	According to TR 38.901

	Antenna setup and port layouts at gNB
	32 ports: (8,8,2,1,1,2,8), (dH,dV) = (0.5, 0.8)λ

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	BS Tx power
	41 dBm

	BS antenna height
	25m

	UE antenna height & gain
	Follow TR36.873

	UE receiver noise figure
	9dB

	Numerology
	Slot/non-slot
	14 OFDM symbol slot

	
	SCS
	15kHz

	Simulation bandwidth
	10MHz

	Frame structure
	Slot Format 0 (all downlink) for all slots

	CSI feedback
	· CSI feedback periodicity:  5 ms,
· Scheduling delay:  4 ms
· 52 PRBs, 13 sub-bands

	Traffic model
	- Full Buffer

	UE distribution
	For CSI compression:
- 80% indoor (3km/h), 20% outdoor (30km/h)
For CSI prediction:
- 100% outdoor (10/30/60km/h)



Appendix B. The details of AI/ML models
In this appendix, we present the details of AI/ML model used in both CSI compression and CSI prediction.
[image: ]The structure of the two-sided AI/ML model is depicted in Figure 13. The number of parameters in the AI/ML model is 10.86M, and the computational complexity is 137.96M FLOPS. 
[bookmark: _Ref131525661]Figure 13: The two-sided AI/ML model used in the simulations.
The structure of the AI/ML model used for CSI prediction is depicted in Figure 14. The number of parameters in the AI/ML model is 2.46M, and the computational complexity is 541.3M FLOPS. 
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[bookmark: _Ref131527388]Figure 14: The AI/ML model used for CSI prediction.

Appendix C. Templates for collecting simulation results.
Table X. Evaluation results for CSI compression of 1-on-1 joint training without model generalization/scalability, [traffic type], [Max rank value], [RU]
	
	
	Source 1
	Source 2
	Source 3

	CSI generation part
	AI/ML model backbone
	transformer
	transformer
	CNN

	
	Pre-processing
	
	
	

	
	Post-processing
	
	
	

	
	FLOPs/M
	55.1M
	55.1M
	3.71M

	
	Number of parameters/M
	8.8M
	8.8M
	0.035M

	
	[Storage /Mbytes]
	35.2M
	35.2M
	0.14M

	CSI reconstruction part
	AI/ML model backbone
	transformer
	transformer
	CNN

	
	[Pre-processing]
	
	
	

	
	[Post-processing]
	
	
	

	
	FLOPs/M
	82.7M
	82.7M
	35.26M

	
	Number of parameters/M
	13.2M
	13.2M
	0.119M

	
	[Storage /Mbytes]
	52.8M
	52.8M
	0.476M

	Common description
	Input type
	eigenvector
	eigenvector
	eigenvector

	
	Output type
	eigenvector
	eigenvector
	eigenvector

	
	Quantization /dequantization method
	SQ
	VQ
	VQ

	
	Rank/layer adaptation settings for rank>1
	
	
	

	Dataset description
	Train/k
	40
	40
	40

	
	Test/k
	2
	2
	2

	
	Ground-truth CSI quantization method (including scalar/codebook-based quantization, and the parameters)
	
	
	

	
	Overhead reduction compared to Float32 if high resolution quantization of ground-truth CSI is applied
	
	
	

	[Other assumptions/settings agreed to be reported]
	
	
	

	Benchmark
	R16 type II codebook
	R16 type II codebook
	R16 type II codebook

	Benchmark assumptions, e.g., CSI overhead calculation method (Optional)
	
	
	

	SGCS of benchmark, [layer 1]
	CSI feedback payload X
	0.7559
	0.8087
	0.8071

	
	CSI feedback payload Y
	0.8282
	0.8849
	0.8457

	
	CSI feedback payload Z
	0.9354
	0.9407
	0.9371

	SGCS of benchmark, [layer 2]
	CSI feedback payload X
	
	
	

	
	CSI feedback payload Y
	
	
	

	
	CSI feedback payload Z
	
	
	

	Gain for SGCS, [layer 1]
	CSI feedback payload X
	0.017
	0.0689
	0.0673

	
	CSI feedback payload Y
	0.0371
	0.0938
	0.0546

	
	CSI feedback payload Z
	0.0521
	0.0574
	0.0538

	Gain for SGCS, [layer 2]
	CSI feedback payload X
	
	
	

	
	CSI feedback payload Y
	
	
	

	
	CSI feedback payload Z
	
	
	

	…
(other layers)
	
	
	
	

	NMSE of benchmark, [layer 1]
	CSI feedback payload X
	-4.6685(0.3413)
	-5.9127(0.2562)
	-5.3919(0.2889)

	
	CSI feedback payload Y
	-6.5572(0.2209)
	-8.5245(0.1404)
	-6.5298(0.2223)

	
	CSI feedback payload Z
	-11.4731(0.0712)
	-11.804(0.066)
	-11.6339(0.0686)

	NMSE of benchmark, [layer 2]
	CSI feedback payload X
	
	
	

	
	CSI feedback payload Y
	
	
	

	
	CSI feedback payload Z
	
	
	

	Gain for NMSE, [layer 1]
	CSI feedback payload X
	7.5255
	8.7697
	8.2489

	
	CSI feedback payload Y
	9.4082
	11.3755
	9.3808

	
	CSI feedback payload Z
	14.3176
	14.6485
	14.4787

	Gain for NMSE, [layer 2]
	CSI feedback payload X
	
	
	

	
	CSI feedback payload Y
	
	
	

	
	CSI feedback payload Z
	
	
	

	…
(other layers)
	
	
	
	

	Other intermediate KPI (description/value) (optional)
	
	
	

	Gain for other intermediate KPI (description/value) (optional)
	
	
	

	Gain for Mean UPT (for a specific CSI feedback overhead)
	[CSI feedback payload X*Max rank value]
	
	
	

	
	[CSI feedback payload Y*Max rank value]
	
	
	

	
	[CSI feedback payload Z*Max rank value]
	
	
	

	Gain for 5% UPT
	[CSI feedback payload X*Max rank value]
	
	
	

	
	[CSI feedback payload Y*Max rank value]
	
	
	

	
	[CSI feedback payload Z*Max rank value]
	
	
	

	Gain for upper bound without CSI compression over Benchmark –Mean UPT (Optional)
	[CSI feedback payload X*Max rank value]
	
	
	

	
	[CSI feedback payload Y*Max rank value]
	
	
	

	
	[CSI feedback payload Z*Max rank value]
	
	
	

	Gain for upper bound without CSI compression over Benchmark –5% UPT (Optional)
	[CSI feedback payload X*Max rank value]
	
	
	

	
	[CSI feedback payload Y*Max rank value]
	
	
	

	
	[CSI feedback payload Z*Max rank value]
	
	
	

	[CSI feedback reduction (%)]
	
	
	

	…
	
	
	
	

	FFS others
	
	
	
	


Table X. Evaluation results for CSI compression with model generalization/scalability, [Max rank value], [Scenario/configuration]
	
	
	Source 1
	Source2

	CSI generation part
	AL/ML model backbone
	transformer
	transformer

	
	Pre-processing
	
	

	
	Post-processing
	
	

	
	FLOPs/M
	55.1M
	55.1M

	
	Number of parameters/M
	8.8M
	8.8M

	
	[Storage /Mbytes]
	35.2M
	35.2M

	CSI reconstruction part
	AL/ML model backbone
	transformer
	transformer

	
	[Pre-processing]
	
	

	
	[Post-processing]
	
	

	
	FLOPs/M
	82.7M
	82.7M

	
	Number of parameters/M
	13.2M
	13.2M

	
	[Storage /Mbytes]
	52.8M
	52.8M

	Common description
	Input type
	eigenvector
	eigenvector

	
	Output type
	eigenvector
	eigenvector

	
	Quantization /dequantization method
	SQ
	SQ

	
	Generalization/Scalability method description if applicable, e.g., truncation, adaptation layer, etc.
	setting#A:origin eigenvector
setting#B:keep the ahead 10 subbands
	setting#A:origin eigenvector
setting#B:keep the ahead 16 port

	
	Input/output scalability dimension if applicable, e.g., N>=1 NW part model(s) to M>=1 UE part model(s)
	
	

	Dataset description
	Ground-truth CSI quantization method
	
	

	[Other assumptions/settings agreed to be reported]
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	40
	40

	
	Test (setting#A, size/k)
	2
	2

	SGCS, layer 1
	CSI feedback payload X
	0.7559
	0.7559

	
	CSI feedback payload Y
	0.8282
	0.8282

	
	CSI feedback payload Z
	0.9354
	0.9354

	SGCS, layer 2
	CSI feedback payload X
	
	

	
	CSI feedback payload Y
	
	

	
	CSI feedback payload Z
	
	

	NMSE, layer 1
	CSI feedback payload X
	
	

	
	CSI feedback payload Y
	
	

	
	CSI feedback payload Z
	
	

	NMSE, layer 2
	CSI feedback payload X
	
	

	
	CSI feedback payload Y
	
	

	
	CSI feedback payload Z
	
	

	…
(other settings for Case 1)
	
	
	

	…
	
	
	

	Generalization Case 2
	Train (setting#A, size/k)
	40
	40

	
	Test (setting#B, size/k)
	2
	2

	…
(results for Case 2)
	CSI feedback payload X
	0.7139
	0.7423

	
	CSI feedback payload Y
	0.802
	0.783

	
	CSI feedback payload Z
	0.9199
	0.8727

	…
(other settings for Case 2)
	
	
	

	Generalization Case 3
	Train (setting#A+#B, size/k)
	40k per setting
	40k per setting

	
	Test (setting#A/#B, size/k)
	2k per setting
	2k per setting

	…
(results for Case 3, setting#A)
	CSI feedback payload X
	0.7625
	0.7607

	
	CSI feedback payload Y
	0.8312
	0.8389

	
	CSI feedback payload Z
	0.936
	0.9344

	…
(results for Case 3, setting#B)
	CSI feedback payload X
	0.7918
	0.8313

	
	CSI feedback payload Y
	0.8612
	0.8923

	
	CSI feedback payload Z
	0.9482
	0.9585

	…
(other settings for Case 3)
	
	
	

	Fine-tuning case (optional)
	Train (setting#A, size/k)
	
	

	
	Fine-tune (setting#B, size/k)
	
	

	
	Test (setting#B, size/k)
	
	

	…
(results for Fine-tuning)
	
	
	

	…
(other settings for Fine-tuning)
	
	
	

	FFS others
	
	
	


Table X. Evaluation results for CSI prediction with model generalization, [Max rank value]
	
	
	Source 1
	…

	AI/ML model description
	AL/ML model description (e.g., backbone, structure)
	GRU
	

	
	[Pre-processing]
	
	

	
	[Post-processing]
	
	

	
	FLOPs/M
	541.3
	

	
	Parameters/M
	2.46
	

	
	[Storage /Mbytes]
	10.3
	

	
	Input type
	eigenvector
	

	
	Output type
	eigenvector
	

	Assumption
	CSI feedback periodicity
	5ms
	

	
	Observation window (number/distance)
	5
	

	
	Prediction window (number/distance between prediction instances/distance from the last observation instance to the 1st prediction instance)
	1
	

	
	Whether/how to adopt spatial consistency
	
	

	Generalization Case 1
	Train (setting#A, size/k)
	10kmh,205.8k
	

	
	Test (setting#A, size/k)
	10kmh,88.2k
	

	
	SGCS (1,…N, N is number of prediction instances)
	0.9
	

	
	NMSE (1,…N, N is number of prediction instances)
	
	

	…
(other settings and results for Case 1)
	
	
	

	Generalization Case 2
	Train (setting#A, size/k)
	10kmh,205.8k
	

	
	Test (setting#B, size/k)
	30kmh,88.2k
	

	
	SGCS (1,…N, N is number of prediction instances)
	0.683
	

	
	NMSE (1,…N, N is number of prediction instances)
	
	

	…
(other settings and results for Case 2)
	
	
	

	Generalization Case 3
	Train (setting#A+#B, size/k)
	10+30+60km/h,205.8k
	

	
	Test (setting#A/#B, size/k)
	60kmh,88.2k
	

	
	SGCS (1,…N, N is number of prediction instances)
	0.59
	

	
	NMSE (1,…N, N is number of prediction instances)
	
	

	…
(other settings and results for Case 3)
	
	
	

	Fine-tuning case (optional)
	Train (setting#A, size/k)
	
	

	
	Fine-tune (setting#B, size/k)
	
	

	
	Test (setting#B, size/k)
	
	

	
	SGCS (1,…N, N is number of prediction instances)
	
	

	
	NMSE (1,…N, N is number of prediction instances)
	
	

	…
(other settings and results for Fine-tuning)
	
	
	

	FFS others
	
	
	



Table X. Evaluation results for CSI compression of multi-vendor joint training without model generalization/scalability, [Max rank value]
	
	
	Source 1
	…

	Common description
	Input type
	eigenvector
	

	
	Output type
	eigenvector
	

	
	[Training method]
	
	

	
	Quantization /dequantization method
	SQ
	

	Dataset description
	Train/k
	40
	

	
	Test/k
	2
	

	
	Ground-truth CSI quantization method
	
	

	Case 1 (baseline): NW#1-UE#1
	UE part AI/ML model backbone/structure
	Cnn
	

	
	Network part AI/ML model backbone/structure
	transformer
	

	...
(other NW-UE combinations for Case 1)
	UE part AI/ML model backbone/structure
	transformer
	

	
	Network part AI/ML model backbone/structure
	transformer
	

	Case 2 (1 NW part to M>1 UE parts)
	NW part model backbone/structure
	transformer
	

	
	UE#1 part model backbone/structure
	Cnn
	

	
	UE#1 part training dataset description and size
	origin eigenvector
40k
	

	
	UE#2 part model backbone/structure
	transformer
	

	
	UE#2 part training dataset description and size
	origin eigenvector
40k
	

	Case 3 (N>1 NW parts to 1 UE part)
	UE part model backbone/structure
	
	

	
	NW#1 part model backbone/structure
	
	

	
	NW#1 part training dataset description and size
	
	

	
	…
	
	

	
	NW#N part model backbone/structure
	
	

	
	NW#N part training dataset description and size
	
	

	Intermediate KPI type (SGCS/NMSE)
	
	

	FFS other cases
	
	
	

	Case 1: NW#1-UE#1: Intermediate KPI 
	CSI feedback payload X
	0.7255
	

	
	CSI feedback payload Y
	0.8076
	

	
	CSI feedback payload Z
	0.9251
	

	(results for other NW-UE combinations for Case 1)
	CSI feedback payload X
	0.7539
	

	
	CSI feedback payload Y
	0.8284
	

	
	CSI feedback payload Z
	0.9321
	

	Case 2: Intermediate KPI 
	CSI feedback payload X, 
NW-UE#1
	0.7234
	

	
	CSI feedback payload X, 
NW-UE#2
	0.7329
	

	
	CSI feedback payload Y, 
NW-UE#1
	0.803
	

	
	CSI feedback payload Y, 
NW-UE#2
	0.808
	

	
	CSI feedback payload Z, 
NW-UE#1
	0.9193
	

	
	CSI feedback payload Z, 
NW-UE#2
	0.9252
	

	Case 3: Intermediate KPI 
	CSI feedback payload X, 
NW#1-UE
	
	

	
	…
	
	

	
	CSI feedback payload X, 
NW#N-UE
	
	

	
	CSI feedback payload Y …
	
	

	
	CSI feedback payload Z …
	
	

	FFS other cases
	
	
	

	FFS others
	
	
	


Table X. Evaluation results for CSI compression of separate training without model generalization/scalability, [Max rank value]
	
	
	Source 1
	…

	Common description
	Input type
	eigenvector
	

	
	Output type
	eigenvector
	

	
	Quantization /dequantization method
	SQ
	

	
	Shared output of CSI generation part/input of reconstruction part is before or after quantization
	After
	

	Dataset description
	Test/k
	2k
	

	
	Ground-truth CSI quantization method
	
	

	[Benchmark: NW#1-UE#1 joint training]
	UE part AI/ML model backbone/structure
	transformer
	

	
	rou 
Network part AI/ML model backbone/structure
	transformer
	

	
	Training dataset size
	40k
	

	...
(other NW-UE combinations for benchmark)
	
	
	

	Case 1-NW first training
	NW part AI/ML model backbone/structure
	transformer
	

	
	UE#1 part model backbone/structure
	transformer
	

	
	UE#1 part training dataset description and size
	output of CSI generation part at NW after quantization,
40k
	

	
	…
	
	

	
	UE#2 part model backbone/structure
	Cnn
	

	
	UE#2 part training dataset description and size
	output of CSI generation part at NW after quantization,
40k
	

	
	[air-interface overhead of information (e.g., dataset) sharing]
	dataset
	

	Case 1-UE first training
	NW#1 part model backbone/structure
	transformer
	

	
	NW#1 part training dataset description and size
	output of CSI generation part at UE after quantization,
40k
	

	
	…
	
	

	
	NW#2 part model backbone/structure
	CNN
	

	
	NW#2 part training dataset description and size
	output of CSI generation part at UE after quantization,
40k
	

	
	UE part model backbone/structure
	transformer
	

	
	[air-interface overhead of information (e.g., dataset) sharing]
	Data
	

	Case 2-UE first training
	UE#1 part model backbone/structure
	transformer
	

	
	…
	
	

	
	UE#2 part model backbone/structure
	CNN
	

	
	NW part AI/ML model backbone/structure
	transformer
	

	
	NW part training dataset description and size (e.g., description/size of dataset from M UEs and how to merge)
	output of CSI generation part at all UE after quantization,
80K
	

	Case 3-NW first training
	NW#1 part model backbone/structure
	transformer
	

	
	…
	
	

	
	NW#2 part model backbone/structure
	CNN
	

	
	UE part model backbone/structure
	transformer
	

	
	UE part training dataset description and size (e.g., description/size of dataset from N NWs and how to merge)
	output of CSI generation part at all NW after quantization,
80K
	

	Intermediate KPI type (SGCS/NMSE)
	SGCS
	

	FFS other cases
	
	
	

	NW#1-UE#1 joint training: Intermediate KPI
	CSI feedback payload X
	0.7559
	

	
	CSI feedback payload Y
	0.8282
	

	
	CSI feedback payload Z
	0.9354
	

	…
(results for other 1-on-1 NW-UE joint training combinations)
	
	
	

	Case 1-NW first training: Intermediate KPI
	CSI feedback payload X, 
NW-UE#1
	0.7534
	

	
	…
	
	

	
	CSI feedback payload X, 
NW-UE#2
	0.7149
	

	
	CSI feedback payload Y ,
NW-UE#1
	0.8265
	

	
	CSI feedback payload Y ,
NW-UE#2
	0.7664
	

	
	CSI feedback payload Z ,
NW-UE#1
	0.9342
	

	
	CSI feedback payload Z ,
NW-UE#2
	0.8921
	

	Case 1-UE first training: Intermediate KPI
	CSI feedback payload X, 
NW#1-UE
	0.7556
	

	
	CSI feedback payload X, 
NW#2-UE
	0.7119
	

	
	CSI feedback payload Y, 
NW#1-UE
	0.8256
	

	
	CSI feedback payload Y, 
NW#2-UE
	0.7825
	

	
	CSI feedback payload Z, 
NW#1-UE
	0.934
	

	
	CSI feedback payload Z, 
NW#2-UE
	0.8963
	

	Case 2-UE first training: Intermediate KPI
	CSI feedback payload X, 
NW#1-UE
	0.7328
	

	
	CSI feedback payload X, 
NW#2-UE
	0.914
	

	
	CSI feedback payload Y, 
NW#1-UE
	0.8131
	

	
	CSI feedback payload Y, 
NW#2-UE
	0.9449
	

	
	CSI feedback payload Z, 
NW#1-UE
	0.9286
	

	
	CSI feedback payload Z, 
NW#2-UE
	0.9694
	

	Case 3-NW first training: Intermediate KPI
	CSI feedback payload X, 
NW-UE#1
	0.7501
	

	
	CSI feedback payload X, 
NW-UE#2
	0.9021
	

	
	CSI feedback payload Y, 
NW-UE#1
	0.8232
	

	
	CSI feedback payload Y, 
NW-UE#2
	0.9324
	

	
	CSI feedback payload Z, 
NW-UE#1
	0.932
	

	
	CSI feedback payload Z, 
NW-UE#2
	0.9647
	

	FFS other cases
	
	
	

	FFS others
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