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Introduction
This contribution concerns the Agenda Item 9.2.3.1 Evaluation on AI/ML for BM management. 
Our major updates in comparison to [7] (RAN1#112) are evaluations considering:
· 256 TX beams
· L1-RSRP predictions
· Variable number of beams in set B – Option 2D
· Model monitoring based on data distributions.
· Predictions including a confidence measure which is then utilized to reduce the RS-overhead.
The paper outline is as follows: 	
· Section 2: We share our views on the remaining evaluation methodology issues. 
· Section 3: We discuss the AI/ML assumptions
· Section 4: We outline the simulation assumptions used for the evaluations in this paper.
· Section 5: We present results for AI/ML-based spatial beam prediction. 
· Section 6: We present results for AI/ML-based temporal beam prediction. 
Remaining issues on evaluation methodologies
LCM evaluation or analysis
	Agreement 
Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, study the following alternatives (including feasibility/necessity) with potential down-selection:
· Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
· Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER
· Alt.3: Performance metric based on input/output data distribution of AI/ML 
· Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 
· Other alternatives are not precluded
· Note: At least the performance and spec impact should be considered



Regarding the agreement from 9.2.3.2, whether the different alternatives feasibility need to be addressed via evaluations is discussed below;
· Alt1 and Alt4: The metric alternative is already studied in the generalization evaluations, where the evaluations indicate how the performance can differ from a scenario where it is trained, to where it is tested and monitored. The performance metric is feasible given that we have a standardized data collection in place, so the NW/UE can get a ground truth. 
· Alt 2: The alternative should be feasible, the NW/UE can gather statistics and at least compare to a non-AI/ML procedure. 
· Alt 3: It is unclear what the “performance metric” comprises, and if it is possible to define such metric based on the input/output data. Feasibility needs to be evaluated. The performance metric should capture a possible performance degradation for a model trained on scenario A/config A, when tested on scenario B/config B. Based on our evaluations in 5.3.8, one method is to define a performance metric comprising of detection of an non-anomalous or anomalous input, where the latter category has much worse prediction accuracy.

[bookmark: _Toc131689810]Evaluations should study the feasibility to define a performance metric for monitoring models based on the input/output data distribution of AI/ML (alternative 3). For example, detection of a non-anomalous or anomalous input/output sample. FFS on the definition on anomalous sample.
Confidence/probability information
	Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, study the necessity, feasibility and the potential specification impact (if needed) of the following information reported from UE to network: 
· Predicted L1-RSRP(s) corresponding to the DL Tx beam(s) or beam pair(s)
· Whether/how to differentiate predicted L1-RSRP and measured L1-RSRP
· Confidence/probability information related to the output of AI/ML model inference (e.g., predicted beams)
· FFS: Definition/content of confidence/probability information
· Note: At least the performance and spec impact should be considered



Uncertainty is a key notion in AI/ML and uncertainty quantification is a key element for trustworthy and explainable AI/ML. Accuracy quantifies how close a prediction is to the true value and can only be measured once the true value is known. It is often determined as average for many predictions and used to evaluate and compare the predictive power of AI/ML algorithms. Uncertainty, on the other hand, assesses how much a prediction may differ from the true value and can be estimated along with the prediction. It is important that the feasibility of estimating confidence/probability information is supported by evaluations, hence we propose:
[bookmark: _Toc131689811]Evaluations should study the feasibility to estimate a confidence/probability information related to the output of AI/ML model inference and whether/how it can improve the beam management use case KPIs.

FFS on option 3 for RS-overhead
One of the benefits of temporal beam prediction is being able to reduce the number of periodic measurements, for example to configure a lower measurement periodicity and rely on predictions instead. Note that only a prediction of the strongest beam is not solely sufficient to configure a data transmission, one might also need an extra measurement prior to the data transmission to assess the quality of the strongest beam. In the current formulation for the FFS on option 3, it is not clear what is meant by each time-instance. It is preferred to discuss around a time-window, that is repeated with measurements and predictions according to a certain periodicity depicted in the figure below. 
Predicted beams
Measured beams
Time window 1
Time window 2





[bookmark: _Toc131689812]Update Option 3 with the text below
	· Option 3a:  
· where N is the number of beams (pairs) (with reference signal (SSB and/or CSI-RS)) required for measurement for AI/ML in each repeated time window
· where M is the total number of beams (pairs) to be predicted for each repeated time window
· Companies to report the assumption on the repeated time-window (e.g. periodicity)
Note: N includes all measurements (including Top-K if applicable) prior to data transmission with the selected beam from the AI/ML procedure.



AI/ML related assumptions

[bookmark: _Ref127174403]Assumptions on L1-RSRP measurement error
	Agreement
· Further study the impact of quantization error of inputed L1-RSRP (for training and inference)  for AI/ML model for beam management. 
· Existing quantization granularity of L1-RSRP (i.e., 1dB for the best beam, 2dB for the difference to the best beam) is the starting point for evaluation at least for network-sided model. 
Agreement
· Further study on whether/how to evaluate the performance impact with L1-RSRP measurement accuracy. 



Majority of evaluations in the study item have been performed under the assumption of no RSRP measurement errors. However, there are always measurement errors in the UE. Excerpts from 3GPP TS 38.133 on UE L1RSRP measurement requirements are shown in the following table.
[image: Table

Description automatically generated]
The above values are defined for SSB based L1-RSRP, however, the same values are specified for CSI-RS based L1-RSRP to be found in the TS 38.133.
To exemplify the impact of measurement inaccuracy errors in RSRP reporting, in section 5.3.6, evaluations with varying level of errors have been performed. As shown in the table above the measurement inaccuracy is provided as maximum tolerable value in the spec. However, to perform the evaluations and observe the impact of the error on the performance, we need to somehow make an assumption on the measurement error distribution. According to the discussion in RAN4 for determining the L1-RSRP accuracy requirement, the contributing elements for agreed above range consist of about 4dB RF impairments, about 1dB fading condition, and other factors like additive noise at the receiver side. RF impairment model is composed of different elements, including I/Q imbalance, Quantization noise, Phase noise, Filters/Ripple noise, RF PA distortion noise. Adding fading and additive thermal noise at receiver on top of this, for the sake of simplicity and counting for many different types of noise factors, we assume Normal distribution for modelling the RF impairments in our evaluations. The variance of normal distribution is set so that the 95% of the density function lay within the specified accuracy range in the evaluations. We also provide the results with RF impairments modelled as uniformly distributed random offsets in the dB domain. 
Although there is a possibility of more accurate modelling measurement inaccuracy error, Gaussian and/or uniform distribution can still provide us with valuable and general understanding of the impact of the measurement inaccuracy error on the AI based beam selection. Also, according to our investigations, a more critical factor regarding the error model is the degree of correlation among L1-RSRP values for different measured beams. 
Obviously, for selecting the best beam(s), the differential between L1-RSRPs values s more important rather than their absolute value. Therefore, if the measurement error between different L1-RSRP values is highly correlated the differential value will not be affected by the measurement error, and consequently it will not impact the prediction algorithm. However, if the error is (almost) independent among different RSRP values, a large value of +-6.5dB can considerably affect the selection algorithm as shown in our evaluation in section 5.3.6. 
The discussion in 3gpp RAN4, which led to setting the requirements on L1-RSRP relative measurement accuracy, it was assumed that if UE uses the same Rx chain for calculating different L1-RSRP of same measurement occasion, then the RF impairment error is the same and will not be affecting the L1-RSRP relative value. 
During Rel-15 discussions, such an assumption was not made for L1-RSRP measurement for FR2. That is why absolute and relative L1-RSRP accuracy requirement is of the same value, that is e.g. for SSB L1-RSRP ±6.5dB under same condition, clause 10.1.20 in [8], which is not the case for FR1, ±5.0dB or ±8.5dB depending on the transmit power for absolute value and ±3.0dB for relative value, clause 10.1.19 in [8].  The current NW assumptions on the L1-RSRP accuracy should be the starting point for the evaluations, for companies to understand whether there is any new RAN4 requirements needed or other specification impact.
[bookmark: _Toc131689786]If the UE uses the same RX-chain for RSRP estimation of two beams, the RF impairment error is the same. During Rel-15 discussions, there is however no assumptions that UE uses the same RX-chain for two-beam measurements on FR2.
[bookmark: _Toc131689813]Given the current RAN4 requirements, model the L1-RSRP measurement error due to RF-impairments as independent noise among beams as a starting point.
· [bookmark: _Toc131689814]modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise.
Since collecting accurate data for training and testing of the model is a crucial factor for AI algorithm, this aspect should be further investigated, and we propose that RAN1 might ask RAN4 for further investigation and provide more details.
[bookmark: _Toc115446146][bookmark: _Toc115446185][bookmark: _Toc115446222][bookmark: _Toc115446452][bookmark: _Ref127177528]Assumptions on thermal noise
In this section we discuss the impact of thermal noise on KPI evaluations. According to Table 10.1.20.1.2-1 in 3GPP TS 38.133 (see Section 3.1), the UEs RSRP measurement accuracy requirements only apply down to an SNR of -3 dB. Based on the agreed UE receiver noise figure (NF) of 10 dB, a gNB Tx power of 40 dBm, 120 kHz SCS, 624 subcarriers in the system BW, and assuming no power boosting, an SNR of -3 dB corresponds to a maximum beam-pair path loss (i.e. including beamforming gain) of . 
In the agreed scenarios, many UEs will have a larger path loss, even for their respective best Tx/Rx beam pair, and hence they may not be able to report RSRP accurately for any beam. This is illustrated in Figure 1, which shows a CDF over the path gains for the best beam pair of every gNB-UE link in agreed UMa 21-sector scenarios. For the case of 80% indoor UEs, about 25% of all UEs fall below -128 dB, and may hence not be able to report RSRP accurately for any beam. Furthermore, many of the remaining UEs have other beams that are below -128 dB, and hence these beams might not be accurately reported, making beam prediction harder than if the neural network had access to relevant measurements for all beams.
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[bookmark: _Ref126868582]Figure 1: CDF over UEs for the path gain of each UE’s best SSB Tx/Rx beam pair, for scenarios with and without indoor UEs. A 4x8 antenna array with 32 beams in Set A and 8 SSB beams in Set B was used.

[bookmark: _Toc131689815]Conclude that UEs can only reliably measure RSRP for beams with SNR above -3 dB in the evaluations.
According to Table 6.3.2.2-1 in 3GPP TS 38.104, NR allows for power boosting by up to 3 dB for PDSCH with QPSK or 16QAM modulation, but even with boosting, many UEs would be below the limit.
See Section 5.3.5 for evaluation of the thermal noise impact. Note that the SNR limit is not considered in the other sections of this contribution.

Simulation scenario
For the following discussion, we consider randomly dropped UEs in the 3GPP UMa scenario with 200 m inter-site distance, see appendix for details. We use spatially consistent channel model, and we fix a common random seed for the propagation conditions for all simulations (unless otherwise stated). The total number of UEs (samples) generated was typically in the order of 20000–30000 per sector (cell). About 90% of the samples were used to train AI/ML model for spatial beam prediction. The remaining channel samples were used for testing/inference. 
For the gNBs, SSB and CSI-RS beams were defined based on Table 1. No mechanical down tilt is used. We will use the following abbreviations for the gNB antenna array configurations:
· “4x8”: One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ

Cell selection: UEs were associated with their best gNB based on link gain. UE-side beamforming: Unless otherwise stated, we assume that the best UE-side Rx beam are used. That is, the SSB and CSI-RS L1-RSRPs were calculated assuming the best UE-side Rx beam. These RSRP values were then used as dataset for training and inference.
The complete set of SSB beams and CSI RS beams, in terms of zenith and azimuth angles, is listed in Table 1. All beams are generated using linearly increasing phase across antennas, with same amplitude on all elements. The prediction target (Set A) is always the complete set of CSI-RS beams. The considered measurement sets (Set B) are illustrated in Figure 2 (4x8 gNB array). Set B beams are the same in training and inference unless otherwise stated.
[bookmark: _Ref111022483][bookmark: _Ref111191499]Table 1: gNB SSB and CSI-RS beam directions
	Array size (#elements)
	RS type
	#zenith × #azimuth = total #beams
	Beam width
	List of angles 


	4x8
	SSB
	2×4 = 8
	Half-wide1)
	Zenith angles [deg]: 75, 105
Azimuth angles [deg]: -45, -15, 15, 45

	
	CSI-RS
	4×8 = 32
	Narrow
	Zenith angles [deg]: 67.5, 82.5, 97.5, 112.5
Azimuth angles [deg]: -52.5, -37.5, -22.5, -7.5, 7.5, 22.5, 37.5, 52.5


1) Only half of the antenna elements in each dimension are used, i.e. a quarter of all antenna elements.

 [image: ]
[bookmark: _Ref83924636][bookmark: _Toc127485707]Figure 2: Beam patterns for 4x8 gNB array, with filled circles indicating the Set B beams (4, 8, or 16).

Spatial beam prediction
In this section, we present our evaluation methodology and results for the spatial beam prediction sub use case.

Baseline description 
The baseline scheme uses the Set B beam sets defined by Figure 2 and Table 1. All beams in Set B are transmitted and reported. The baseline prediction is the best beam (Top-1) in Set B.
Spatial beam prediction description
Conventional beam prediction
The conventional beam prediction evaluated has the same structure as the AI/ML model Tx beam prediction described in Section 3.1 in [7], with Set A = SSB beams. The difference is only in how the set of K CSI-RS beams for step P2 is determined. In the conventional scheme, every CSI-RS beam is given an association with its closest SSB beam in terms of beam angle difference (defined as squared zenith angle difference plus squared azimuth angle difference). The set of CSI-RS beams for step P2 is then all the CSI-RS beams associated with the best SSB beam found in step P1. For the case of 8 SSB beams in Set B and 32 CSI-RS beams in Set A,  is 32/8 = 4.
Neural network architectures
Beam ID prediction
We use a neural network model with dense layers, and training is performed with a SoftMax cross-entropy loss function. Input normalization is based on scaling the beam RSRP values in dB per sample to yield the range 0.0 to 1.0 for RSRP values for each sample. Results also with a more complex neural network can be found in [5].
RSRP prediction
We use a neural network model with dense layers. This neural network is only used in for predicting RSRP as predicting the RSRP is a regression problem, which is different when comparing to beam ID prediction. The loss function is the mean absolute error (MAE). Normalization is based on scaling the beam RSRP values in dB per sample to yield the range 0.0 to 1.0 for RSRP values for each sample. The layer normalization and dropout are used to address the issue of overfitting. 
Table 2: AI/ML evaluation parameters, methodology, and complexity KPIs
	Parameters
	Potential Values

	Dataset description (Training/Test data)
	· Number of samples: Typically, in the order of 20000–30000 per sector (depending on scenario)
· Training on single sector, inference on same sector, unless otherwise stated

	Model validity area
	· Sector-specific training 

	Model description
	· Neural network, 2–3 dense layers, ReLU, dropout, layer normalization (for RSRP prediction)
· Model hyperparameters: learning rate 0.001–0.01

	Model input description
	· RSRP from SSB and/or CSI RS (one real value per measured beam unless otherwise stated)

	Model output description
	· Likeliness of beam being strongest beam, used to derive top-K beams
· RSRP prediction (for RSRP prediction)

	Training methodology
	· Loss function: Softmax cross-entropy
· Loss function: Mean absolute error (for RSRP prediction)

	Model complexity KPIs
	· Number of parameters:1) ~1300 (TX prediction), ~19000 (joint TX/RX prediction)
· FLOPs for inference:1) ~2700 (TX prediction), ~37000 (joint TX/RX prediction)



1) Rough numbers for Set B being 8 SSB TX beams and Set A being 32 CSI-RS beams. See resp. subsection for complexity for other cases.

Results
[bookmark: _Ref115199518]Beam prediction KPIs
Based on agreements and discussion in previous sections, we report the following KPIs:
· Beam prediction accuracy (%) for Top-1 and Top-3 beams, with 0 dB margin and 1 dB margin
· We use the Option 2 interpretation of “Top-K”; that is, the beam prediction accuracy (%) is the percentage of the Top-1 genie-aided beam is one of the Top-K predicted beams.
· CDF of L1-RSRP difference for Top-1 (and in some cases also Top-3) predicted beams 
· Average RSRP difference
· RS measurement overhead reduction (for one UE)
· Predicted RSRP difference (for RSRP prediction)
In all cases, the RS transmission overhead reduction is defined according to Option 1, i.e. as 1-N/M, where N is the number of beams (SSB and/or CSI-RS) that are transmitted in the beam finding procedure (sum of steps P1 and P2), and M is the total number of (CSI-RS) beams in Set A.
For the AI/ML and baseline schemes,  is calculated as

Note that this can be seen as a worst-case estimate, since if there are multiple UEs in a cell, they may have overlap between their respective top-K sets, and transmissions of top-K beams in step P2 may then be shared between UEs. Also, if Set B uses CSI-RS beams, some of the top-K beams may have been transmitted already during P1 and need not be repeated. Note that the baseline scheme used does not employ a multi-step procedure, and hence effectively has K = 1.
For the conventional scheme, the number of CSI-RS beams associated with a Set B SSB beam is fixed to  and Set B is the full set of SSB beams, i.e.  and hence .
As mentioned above, we trained one model for each sector (cell) in the network. Performance varies somewhat from sector to sector depending on shadow fading etc, and we show results for one representative sector unless otherwise stated.
ML KPIs TX-beam prediction, 32 beams in Set A
ML KPI results for 4x8 gNB array are provided in Table 3 and Figure 3, for a representative sector in the network. Table 3 shows the beam prediction accuracy (with 0 dB and 1 dB margins) along with corresponding beam transmission overhead. Figure 3 provides CDFs over the differences between RSRP for the predicted beam and the RSRP for the optimal beam, over all UEs in a cell, for various scenarios and schemes. 

[bookmark: _Ref127485765]Table 3: Beam-finding accuracy and overhead, 4x8 gNB array
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	8 or 16

	Scheme
	Beam accuracy [%]
	Meas. overhead 
1 - N/M [%]

	
	100% outdoor
	80%/20% in/outdoor
	

	
	0 dB margin
	1 dB margin
	0 dB margin
	1 dB margin
	

	Evaluation results
	Beam prediction accuracy (%)
	AI/ML, 8 SSB
	Top-1
	94.6
	97.0
	79.8
	87.6
	75

	
	
	
	Top-3
	99.7
	99.8
	97.1
	98.7
	66

	
	
	AI/ML, 8 CSI-RS
	Top-1
	96.9
	98.6
	76.3
	82.6
	75

	
	
	
	Top-3
	99.7
	99.8
	95.7
	97.1
	66

	
	
	AI/ML, 16 CSI-RS
	Top-1
	98.5
	99.7
	89.5
	96.0
	50

	
	
	
	Top-3
	99.9
	99.9
	99.0
	99.6
	41

	
	
	Baseline, 8 CSI-RS
	34.9
	41.3
	26.5
	37.4
	75

	
	
	Baseline, 16 CSI-RS
	37.0
	46.7
	46.1
	63.3
	50

	
	
	Conventional, 8 SSB
	97.6
	98.9
	94.6
	97.7
	62

	Note: “n SSB” / ”n CSI-RS” indicates the type and number of beams in Set B in accordance with Figure 1. 
1) For Set B with 8 SSB TX beams.




[image: ] [image: ] 
(a) 									(b)
[bookmark: _Ref127485820][bookmark: _Toc127485708]Figure 3: RSRP difference CDF, for 4x8 array, for (a) 100% outdoor UEs and (b) 80%/20% in/outdoor UEs. 

The results show that AI/ML schemes can outperform the baseline/conventional schemes. For example, considering the scenario with 100% outdoor users in Table 3, the trained AI/ML model with 25% overhead (using 8 SSB beams in Set B vs. 32 CSIRS beams in Set A) could predict the Top-1 beam for 97% of the users with a 1dB margin, while the baseline schemes reach only about 46% correct predictions at twice the overhead. The corresponding CDFs can be seen in Figure 3(a). 
The prediction problem can be expected to be more challenging for scenarios with many indoor UEs. This is confirmed in Table 3 and Figure 3(b). Although the Top-3 schemes can give good prediction accuracy, they lead to larger overhead (9% more overhead) comparing to the Top-1 schemes. It also shows that the conventional scheme in the current beam pattern has very good performance, which is because the conventional scheme with 8 SSB beams could be regarded as 8 SSB beams with Top-4 scheme.  
[bookmark: _Toc118704664][bookmark: _Toc118705232][bookmark: _Toc118705487][bookmark: _Toc131689787]In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A). 
[bookmark: _Toc131689788]With the adopted beam pattern, the conventional scheme significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.  

ML KPIs TX-beam prediction, 256 beams in Set A
	Agreement
· For the evaluation of both BM-Case1 and BM-Case2, 32 or 64 downlink Tx beams (maximum number of available beams) at NW side. 
· Other values, e.g., 256, etc, are not precluded and can be reported by companies.
· For the evaluation of both BM-Case1 and BM-Case2, 4 or 8 downlink Rx beams (maximum number of available beams) per UE panel at UE side. 
· Other values, e.g., 16, etc, are not precluded and can be reported by companies.




In Figure 4Figure 4, results with 256 beams in Set A (prediction set) are shown, for 100% outdoor UEs with joint training over 21 sectors, for selected parameter settings. Two different sets of Set B beams are considered: 8 halfwide beams or 32 narrow beams, with beam angles according to Table 1. The Set A beams are always narrow beams, with same pattern and spanned angular range as the 32 beams in Table 1 but with the angular spacing in azimuth as well as zenith dimension reduced by a factor of 2. 
Performance results for an RSRP difference margin of 1.0 dB are summarized in Table 4. Clearly, AI/ML can yield substantially lower RS overhead than the conventional algorithm (9 vs 33 for 8 beams in Set B), and while the reporting overhead is smaller for the conventional algorithm, the sum of the RS overhead and reporting overhead is still significantly lower for AI/ML (13 + 9 = 21 vs 33 + 2 = 35). A more complete set of KPIs for AI/ML is provided in Table 5.
[bookmark: _Toc131689789]With 256 beams in Set A, AI/ML can substantially reduce both RS overhead and total overhead compared to a conventional scheme while maintaining KPI performance. 
Finally, it should be noted that 256 beams give less straddling loss than 32 beams; assuming perfect beam prediction, the average gain in absolute Rx power from 256 beams is a bit over 1 dB.

[image: ]
[bookmark: _Ref131177009]Figure 4: Performance with 256 beams in Set A, with 100% outdoor UEs. 

[bookmark: _Ref131177750]Table 4: Performance with 256 beams in Set A
	Method
	Number of Set B beams
	Top-K
	RS overhead 1
	Reporting overhead 2
	Error rate 
(= 1 – accuracy), 
for margin 1 dB

	AI/ML
	8
	Top-5
	8 + 5 = 13
	8 + 1 = 9
	0.14%

	AI/ML
	32
	Top-2
	32 + 2 = 34
	32 + 1 = 33
	0.09%

	Conventional
	8
	Top-32
	8 + 32 = 33
	1 + 1 = 2
	0.19%

	Conventional
	32
	Top-8
	32 + 8 = 40
	1 + 1 = 2
	0.17%


1 Assuming no RS sharing between UEs 
2 For gNB-sided inference



[bookmark: _Ref131177753]Table 5: Performance with 256 beams in Set A
	
	Ericsson, Set A 256, Set B 8, K = 5
	Ericsson, Set A 256, Set B 8, K = 2

	Assumptions
	Number of [beams/beam pairs] in Set A
	256
	256

	
	Number of [beams/beam pairs] in Set B
	8
	32

	
	Baseline scheme
	Exhaustive Set A measurements
	Exhaustive Set A measurements

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam

	Data Size
	Training
	~400 000
	~400 000

	
	Testing
	~40 000
	~40 000

	AI/ML model
	Model description
	2 dense layers
	2 dense layers

	
	Model complexity
	~70 000 parameters
	~75 000 parameters

	
	Computational complexity
	~140 000 FLOPs
	~150 000 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	99.35%
	99.28%

	
	
	Accuracy, 1 dB margin
	99.86%
	99.91%

	
	L1-RSRP diff
	Average L1-RSRP diff 
	0.5 dB
	0.32 dB

	
	System performance
	RS overhead reduction 
1-N/M [%]
	1 – 13/256 = 95%
	1 – 34/256 = 87%





[bookmark: _Ref115102623]ML-specific KPIs for joint TX/RX beam prediction
In this section, we investigate joint TX/RX beam prediction, and compare it with a reference case where the optimal UE beam is assumed like in previous sections (i.e., where the UE implicitly is assumed to scan all of its RX beams for each TX beam, and only report the best value).
For the joint TX/RX prediction, we evaluate the following configuration:
· Set A consists of 32 TX CSI-RS beams and 8 RX CSI-RS beams, i.e., Set A consists of 32 × 8 = 256 TX/RX beam pairs.
· Set B: 8 TX SSB with Option 1 and Option 2 in below: 
· Option 1: consists of 64 TX/RX beam pairs defined as follows (Figure 5): 
· There are 8 TX SSB beams defined in accordance with Figure 2, and 8 RX beams (4 per UE panel), each RX beam is used to measure all TX SSB beams, i.e., in total there are 8 x 8 = 64 TX/RX beam pairs measured.
·  Option 2: consists of 32 TX/RX beam pairs defined as follows (Figure 5): 
· There are 8 TX SSB beams defined in accordance with Figure 2, and 8 RX beams (4 per UE panel), but each RX beam is only used to measure 4 of the TX SSB beams, i.e., in total there are 8 x 4 = 32 TX/RX beam pairs measured.
For a Top-1 scheme, option 1 and option 2 lead to RS measurement overhead 64/256 = 25% and 32/256 = 12.5%, respectively.
For the reference case, we consider a configuration with the same number of Set A beams and the same number of TX beams in Set B (i.e., 8), but assume that the UE scans all its RX beams for each TX beam in Set B. For a Top-1 scheme, this leads to RS overhead (8 x 8)/256 = 25%, i.e., twice as high as for joint prediction option 2. The results are illustrated in Table 6 and Figure 6, and show that: 
· For option 1: The performance of joint TX/RX is very similar to the DL TX-only prediction with always optimal RX beam.
· For option 2: The performance of joint TX/RX with less measurements only has negligible degradation when comparing to the DL TX-only prediction with always optimal RX beam.
[bookmark: _Toc131689790]For Set B with SSB beams, the joint TX/RX prediction provides good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
[image: ][image: ]
(a) 								   (b)
[bookmark: _Ref126967854][bookmark: _Toc127485709]Figure 5 Set B beams for joint TX/RX prediction: (a) Option 1 and (b) Option 2

[bookmark: _Ref127431311]Table 6: Joint TX/RX beam prediction, 4x8 gNB array, 100% outdoor, Top-1
	
	Ericsson, Tx-only prediction, for reference
	Ericsson, joint Tx/Rx prediction, Option 1
	Ericsson, joint Tx/Rx prediction, Option 2

	Assumptions
	Number of beam pairs in Set A
	256
	256
	256

	
	Number of beams pairs in Set B
	64
	64
	32

	
	Baseline scheme
	– 
	–
	–

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP
	Normalized L1-RSRP
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000
	~30000
	~30000

	
	Testing
	~3000
	~3000
	~3000

	AI/ML model
	Model description
	2 dense layers
	2 dense layers
	2 dense layers

	
	Model complexity
	~82000 parameters
	~82000 parameters
	~74000 parameters

	
	Computational complexity
	~170000 FLOPs
	~170000 FLOPs
	~154000 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	94.6
	92.7
	92.5

	
	
	Accuracy, 1 dB margin
	97.0
	97.6
	97.3

	
	System performance
	RS overhead reduction 1-N/M
	75%
	75%
	87.5%





[image: ]
[bookmark: _Ref115110191][bookmark: _Ref126967769][bookmark: _Toc127485710]Figure 6: RSRP difference CDF, for 4x8 array, with or without joint TX/RX prediction. 
L1- RSRP prediction 
	Agreement RAN1#112
· For AI/ML models, which provide L1-RSRP as the model output, to evaluate the accuracy of predicted L1-RSRP, companies optionally report average (absolute value)/CDF of the predicted L1-RSRP difference, where the predicted L1-RSRP difference is defined as:
· The difference between the predicted L1-RSRP of Top-1[/K] predicted beam and the ideal L1-RSRP of the same beam.



The current agreed definition (in RAN1#109) of (1) Beam prediction accuracy (%) for Top-1 and/or Top-K beams and (2) Beam prediction accuracy (%) with 1dB margin for Top-1 beam are only used for beam ID prediction. So, for the problem of L1-RSRP prediction, we evaluate the performance of DL Tx beam RSRP prediction using the CDF of the predicted L1-RSRP difference agreement shown above from RAN1#112 as a starting point.
In our example, Set B and Set A consist of 8 SSB beams and 32 CSI-RS beams, respectively. The model output consists of 32 predicted RSRPs (same number of beams in Set A). We plotted the CDF of the predicted L1-RSRP difference of the 1st, 2nd, and 3rd best beams for 100% Outdoor UE and 80%/20% in/outdoor UE. As can be seen in Figure 7, for a given number of samples, the predicted RSRP difference with 100% outdoor UEs is much smaller than the one with 80%/20% in/outdoor UEs. More specifically, for outdoor UEs, the predicted difference of 1st, 2nd, and 3rd best beams are less than 2dB for 91%, 86%, and 84% of the samples, respectively. While, for 80%/20% in/outdoor UEs, the predicted difference of 1st, 2nd, and 3rd best beams are less than 2dB for 68%, 67%, and 66% of the samples, respectively. 
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(a)								(b)
[bookmark: _Ref131706195]Figure 7: CDF of predicted L1-RSRP difference, for 4x8 array, DL TX beam RSRP prediction: (a) 100% Outdoor UE and (b) 80%/20% in/outdoor UE.
[bookmark: _Toc131689791]For the setting of 4x8 array with 8 SSB beams as Set B and 32 CSI-RS beams as Set A, the difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the same beam is below 2 dB for the 91th percentile for 100% outdoor, and 68th percentile when having 80%/20% in/outdoor UEs.


Variable number of beams in Set B - Option 2D
	Agreement
· Additionally study the following option on the selection of Set B of beams (pairs) (for Option 2: Set B is variable) 
· Opt D: Set B is a subset of measured beams (pairs) Set C (including Set B = Set C), e.g. Top-K beams(pairs) of Set C
· Companies report the number of pre-configured patterns used in the evaluation for Option 2: Set B is variable if applicable (e.g. Opt A and Opt B)



In this section, we investigate variable number of beams in Set B, focusing on option D where a fixed set of beams is measured, but the number of reported beams for NW-sided model inference is variable due to pre-processing of measurements at the UE-side. The objective is to see to what extent the reporting overhead can be reduced while maintaining good accuracy.
We consider two schemes with gNB-side inference, one where the UE measures a fixed set of beams, but only reports beams with RSRP exceeding a certain threshold relative to the strongest beam, i.e., only beams with an RSRP at most X dB below the RSRP of the strongest measured beam are reported. In the second scheme only fixed number of beams with highest L1-RSRP values are reported. These schemes are valuable as it reduces reporting overhead.
Figure 8 shows results for threshold-based reduction with X = 10 dB and X = 15 dB, and for the fixed number of top 5, top 3 and top 2 reported beams for the measured set consisting of CSI-RS, in comparison with the case where all measured beams are reported. The average reporting overhead reduction obtained in simulations is indicated in the legend but note that the number of reported beams may vary significantly between UEs. Also note that the number of fixed reported beams are selected to get a fair comparison with the threshold-based reporting with respect to amount of reduction in reporting. In case of threshold-based reporting, ss can be seen, despite the rather large reporting overhead reduction (up to almost 86%), in case of Top-1 KPI, performance degradation for X=10 dB is acceptable, and in case of X=15 dB (70% reporting reduction), even negligible. In comparison, for reporting fixed number of beams, reported top 2 beams case provide a considerably degraded performance compared to X=10dB with almost the same amount of reporting overhead, even reported top 3 beams with about 9% more overhead cannot outperform the threshold-based X=10dB. However, for reporting the fixed number of top-5 best beams the performance is slightly better than threshold-base method and as the same level of full-reporting, however this might be due to the fact that it has 1.3% more reporting overhead. Also, it shows with reporting of only 5 best beams among 16 CSI-RS measured beams, can provide almost the same performance of full reporting in simulated scenario. 

[bookmark: _Toc131689792]For variable number of beams in Set B, Option 2D, the reporting overhead can be substantially reduced with little performance degradation in comparison with reporting all measured beams in set B. 
[bookmark: _Toc131689793]For variable number of beams in Set B, Option 2D, UE reporting the measured beams within a threshold of the strongest performs better than a fixed number of reported strongest beams.
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[bookmark: _Ref110879900][bookmark: _Toc127485711]Figure 8: RSRP difference CDF, for 4x8 array, 100% outdoor, Top-1, for different average number of reported beams. 
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Figure 9 RSRP difference CDF, for 4x8 array, 100% outdoor, Top-3, for different average number of reported beams.
 
Rx beam for DL Tx beam prediction
	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.



In this section, we investigate the impact of UE Rx beam for DL Tx beam when the Set B is 16 out of 32 CSI-RS beams. As can be seen in Figure 10, the performance of Option 1 with “best” Rx beam and Option 2 (Option2a and Option 2b) with specific Rx beam are quite similar, while Option 3 with random Rx beam per model input sample achieves very poor performance. Similar findings can be seen when considering 80%/20% in/outdoor UEs.
[bookmark: _Toc131689794]For DL Tx beam prediction, Option 3 with random Rx beam per model input sample achieves very poor performance. 
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(a) 								   (b)
[bookmark: _Ref127056736][bookmark: _Toc127485712]Figure 10 RSRP difference CDF, for 4x8 array, Top-1, for different UE Rx. beams for DL TX beam prediction: (a) 100% Outdoor UE and (b) 80%/20% in/outdoor UE. 


[bookmark: _Ref127177179]Impact on thermal noise
We estimated the KPI impact from the thermal noise (as detailed in Section 3.2) through evaluations with the following assumptions:
· UEs with no Set B beam pair above -128 dB were excluded from both training and testing datasets.
· For the remaining UEs, all Set B beam pairs with path gain below -128 dB had their path gain set to -128 dB before training and testing.

In Figure 11 and Table 7, the results are compared with KPI evaluations without thermal noise. Set B here consists of 8 SSB beams. Evidently, there is a substantial impact from thermal noise for scenarios with indoor UEs, and the impact should therefore be considered in KPI evaluations.
[image: ]
[bookmark: _Ref126868584][bookmark: _Toc127485714]Figure 11: Performance with and without thermal noise impact. 

[bookmark: _Ref126941872]Table 7: Comparison of performance with and without thermal noise impact
	
	Ericsson, w/o thermal noise
	Ericsson, with thermal noise

	Assumptions
	Number of [beams/beam pairs] in Set A
	32
	32

	
	Number of [beams/beam pairs] in Set B
	8
	8

	
	Baseline scheme
	–
	–

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam
	Likeliness of beam being strongest beam

	Data Size
	Training
	~20000
	~20000 1)

	
	Testing
	~2000
	~2000 1)

	AI/ML model
	Model description
	2 dense layers
	2 dense layers

	
	Model complexity
	~1300 parameters
	~1300 parameters

	
	Computational complexity
	~2700 FLOPs
	~2700 FLOPs

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy, 0 dB margin
	84.8
	80.1

	
	
	Accuracy, 1 dB margin
	91.0
	86.8

	
	L1-RSRP diff
	Average L1-RSRP diff 
	0.43 dB
	0.72 dB

	
	System performance
	RS overhead reduction 
1-N/M [%]
	75
	75


        1) Before removing low-SNR UEs

[bookmark: _Toc131689795]Thermal noise has significant impact on prediction KPIs in scenarios with indoor UEs, and should therefore be considered in evaluations.

[bookmark: _Ref127174339]Impact from measurement errors 
The errors described in 3.1 are independently selected for each gNB beam, according to the following:
· During training: Errors were applied to model input as well as to targeted model output (ground truth).
· During inference: Errors were applied to model input but not to targeted model output (ground truth).
In Figure 12, evaluation results for different distributions and noise ranges are provided. We can observe that although for measurement inaccuracy error up to 2dB the results can be tolerable with 1dB deviation margin from measurements without error at 95%.  However, for larger error inaccuracy values the degradation becomes substantial. Therefore, the impact of measurement inaccuracy error on the AI beam prediction should be further investigated, and if necessary proper solutions including possible specification changes should be considered e.g. setting new requirement, reporting UE capability in this regard etc.It may also be necessary to further discuss UE measurement accuracy modelling, e.g., correlations between errors for different gNB beams. It may be helpful for the network to have better knowledge of the accuracy of the UE measurements.
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Description automatically generated] 
[bookmark: _Ref115439999][bookmark: _Toc127485715]Figure 12: L1-RSRP error when having imperfections in model input and ground truth due to measurement noise
The natural solution to this problem is to tighten the requirements on measurement accuracy. However, this may not be applied to the legacy UEs, so to mitigate this issue, different capability of UEs could be defined with different measurement accuracy. In this way, the ML algorithm can take into account the level of L1-RSRP measured value when training the ML model, e.g. RSRP values that have higher accuracy can get higher importance when calculating the training loss metric. 
[bookmark: _Toc115446149][bookmark: _Toc115446188][bookmark: _Toc115446225][bookmark: _Toc115446455][bookmark: _Toc131689816]Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
· [bookmark: _Toc131689817]Send LS to RAN4 to explore the possibility to tighten requirements on L1-RSRP measurement accuracy.
· [bookmark: _Toc131689818]Define different UE capability based on their capability in fulfilling a measurement accuracy requirement. 

In order to show how the knowledge of UE measurement accuracy can help the network to improve the AI beam prediction performance we consider the following scenario where the RSRP measurements for model training are assumed to be collected from two types of UEs. One UE class provides L1-RSRP without any measurement error, while the other class measures L1-RSRP with inaccuracy of +-6dB. In this scenario, we also assume that 20% of collected data belongs to the first class, and 80% belongs to the second class. We also as
In our approach, we make the assumption that every UE reports its capability regarding measurement accuracy. By doing so, we obtain information on the measurement error inaccuracy of each L1-RSRP. When training our model, we modify the loss function to give larger weights to the loss of L1-RSRP measurements that have higher measurement accuracy. This technique is frequently utilized when dealing with the issue of imbalanced data in classification tasks.
More specifically, assuming the cross-entropy loss function for training, we multiply each sample loss by a weight parameter , and set a larger  values to more accurate L1-RSRP samples:

Where  is the SoftMax output or logits, and  is the true labels. For our evaluation here, we assigned  for samples without measurement error and  for samples with 6dB measurement inaccuracy error. We should notice that ratio between these values matters rather than their absolute values. The evaluation results are shown in Figure 13 for top-1 KPI conventional ( for all training examples regardless of their measurement inaccuracy) and weighted loss function explained above. Despite the weight parameter values being selected without optimization, we observe considerable improvement in the beam prediction performance. Further gains can likely be achieved through optimization.
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[bookmark: _Toc127485716][bookmark: _Ref127450121]Figure 13 performance with/without applied weighted parameters to the loss function
In the study item, it has been suggested to set higher resolution on reporting L1-RSRP measurements for data collection and thus improving the beam predictions. Here, we demonstrate that setting higher accuracy on reported L1-RSRP values does not lead to further gains without requiring higher measurement accuracy. For this aim, we performed evaluations with varying L1-RSRP reporting granularity for two different levels of measurement inaccuracy. The results are shown in Figure 14. More precisely, the quantized absolute L1-RSRP values are used as input to the train and test algorithm of Neural Network. 

As we can observe, when the measurement inaccuracy is as high as 4dB, reducing the quantization level has a negligible impact on the prediction performance. While when the inaccuracy is at 1dB, the reduction of quantization level can significantly improve the prediction performance. The reason is that the granularity provided by reducing quantization level below the noise floor, would be dissolved by the measurement noise, while doing so for values above noise floor can provide more information during model’s training. 

Although we used the quantization for absolute L1-RSRP values, the general concept is also applicable to reporting of relative L1-RSRP values. Based on this we make the following observation:

[bookmark: _Toc131689796]Setting higher reporting accuracy in terms of granularity of reported values cannot improve the AI model performance without setting higher accuracy level on measurement error accuracy.  
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[bookmark: _Toc127485717][bookmark: _Ref127450155]Figure 14 Performance for varying quantization level of L1-RSRP report with difference level of noise inaccuracy 
	Assumptions
	Number of [beams/beam pairs] in Set A
	8

	
	Number of [beams/beam pairs] in Set B
	32

	
	Baseline scheme
	8

	AI/ML model
input/output
	Model input
	Quantized L1-RSRP 
	L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~21000

	
	Testing
	~2300

	AI/ML model
	[Short model description]
	2 dense layers

	
	Model complexity
	~1300 parameters

	
	Computational complexity
	~2700 FLOPs

	Measurement error (dB) 
	0
	4

	Quantization step size (dB)
	0
	1
	2
	4
	0
	1
	2
	4

	Evaluation results
[With AI/ML / baseline]
	[Beam prediction accuracy (%)]
	0 dB margin Top-1 
	93.5
	90
	87.5
	83
	74
	73
	72.5
	70.5

	
	
	1 dB margin Top-1
	96.5
	95.5
	93
	87
	79.5
	79
	78.8
	75

	
	[System performance]
	[RS overhead Reduction (1 – N/M) % ]
	75




[bookmark: _Ref115203946]Generalization evaluations 
Impact of various deployment scenarios (UMa, UMi, and different UE distributions)

Results of model generalization where the AI/ML model is trained in one cell (i.e., sector) which is 1 out of 21 cells (i.e., 7 sites) and used for beam prediction in another cell in the network (without additional training) are shown in Table 8 and Table 9. The 4x8 gNB antenna array configuration with 32 CSI-RS beams is used to generate the dataset for training, testing and inference. 
Table 14 in Appendix shows the performance when the model is trained and tested using the data from the same sector (from sector [0] to sector [20]) with 90% for training and 10% for testing. It is found that the performance significantly depends on the selection of Set B and the sector used for training. For example, the performance for different sectors varies from 2% (16-32 CSI-RS beams) to 14% (4-8 CSI-RS beams) when considering 100% outdoor UE with the deployment of UMa. Similar findings can be seen when considering 80%/20% in/outdoor UEs with the deployment of UMa.
Table 8 presents the generalization performance when the model is tested in different sectors in comparison to the training with the same scenarios, i.e., training the model using the data from one of the sectors and performing the inference in different sectors. The detailed performance for each sector can be found in Table 15 in Appendix. From the Table 8, the model trained using the data from sector [5] is used to perform the inference for different sectors. It is shown that, for a given selected Set B, the performance heavily depends on the data from which sector. Therefore, it is important to know the sector information used for training and testing. 

[bookmark: _Ref131709838]Table 85: Generalization evaluations of the inference in different sectors.
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	4, 8, or 16

	Scheme
	Beam prediction accuracy (%)
With 1 dB margin

	
	Top 1/Top 3 
	Max
	Min
	Mean

	Evaluation results
	Beam prediction accuracy (%)
	100% outdoor
	4-8 SSB
	0.921/0.995
	0.681/0.903
	0.788/0.970

	
	
	
	8-8 SSB
	0.970/0.998
	0.819/0.942
	0.903/0.986

	
	
	
	4-32 CSI-RS
	0.564/0.922
	0.240/0.572
	0.350/0.720

	
	
	
	8-32 CSI-RS
	0.985/0.998
	0.778/0.898
	0.848/0.960

	
	
	
	16-32 CSI-RS
	0.997/0.999
	0.857/0.951
	0.949/0.985

	
	
	80%/20% in/outdoor
	4-8 SSB
	0.759/0.950
	0.639/0.904
	0.690/0.928

	
	
	
	8-8 SSB
	0.868/0.984
	0.831/0.971
	0.845/0.977

	
	
	
	4-32 CSI-RS
	0.407/0.796
	0.280/0.664
	0.321/0.715

	
	
	
	8-32 CSI-RS
	0.817/0.972
	0.729/0.935
	0.756/0.956

	
	
	
	16-32 CSI-RS
	0.968/0.997
	0.922/0.986
	0.940/0.991

	Note: train the model based on the data from sector [5] and perform the inference in different sectors within the same scenario.
1) For Set B with 8 SSB TX beams.
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(a) 									(b)
[bookmark: _Ref118743111][bookmark: _Ref118502080][bookmark: _Toc127485718]Figure 15: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference in different scenarios for (a) model trained based on the dataset with 100% outdoor UEs and (b) model trained based on the dataset with 80%/20% in/outdoor UEs


Table 9 presents the generalization performance when the model is tested in different scenarios (i.e., various deployment scenarios and various outdoor/indoor UE distributions) in comparison to the training, where the model trained based on the data in sector [5] is selected to perform the inference, and the data in sector [0] is selected for inference. It is shown that it is more challenging to use a model trained based on 100% UE distribution to perform the inference of the scenario with 80%/20% In/outdoor UE distribution. However, the performance is much better if using a model trained based on 80%/20% In/outdoor UE distribution to perform the inference of the scenario with 100% UE distribution. Therefore, the model training should ensure a mix of various UE deployments. 

When considering the different ISDs for training and testing (i.e., ISD=200 and ISD=500 for training and testing, respectively), the performance degrades when the model is trained only using the data generated by one deployment scenario (i.e., ISD=200) and perform the inference in another deployment scenario (i.e., ISD=500). Therefore, the model training would benefit from a mix of various deployment scenarios in terms of generalizing to different ISD. It is also found that for various UE distribution, the performance varies according to the considered deployment scenario (i.e., UMa or UMi). For instance, for 100% Outdoor UE distribution, the performance degrades if the model is trained based on the deployment scenario (i.e., UMa) and the inference is done in a different deployment scenario (i.e., UMi). However, for 80%/20% In/outdoor UE distribution, the performance does not always depend on the deployment scenario (UMa or UMi) if different deployment scenarios are considered for training and inference. Therefore, it is not clear the impact of deployment scenario (UMa or UMi) for 80%/20% In/outdoor UE distribution, which needs further investigations. Therefore, it is important to have proper model monitoring procedures in place to detect the deployment scenarios and UE distribution when the inference is used to for the target cell. 
[bookmark: _Ref131709849]Table 96: Generalization evaluations of various deployment scenarios and various outdoor/indoor UE distributions for the setting with 4x8 gNB array
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1300 parameters 1) 

	
	Computational complexity
	~2700 FLOPs 1)

	Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	4, 8, or 16

	Scheme
	Beam prediction accuracy (%) with 1 dB margin

	100% outdoor
	Description
	Top 1/Top 3 
	4-8 
SSB
	8-8 SSB
	4-32
CSI-RS
	8-32
CSI-RS
	16-32
CSI-RS

	
	Same UE Distribution
Same Deployment
Same ISD
	Out (UMa) ->Out (UMa)
ISD=200 ->ISD=200
	0.841
/
0.975
	0.914
/
0.990
	0.415
/
0.848
	0.889
/
0.978
	0.963
/
0.992

	
	Same UE Distribution
Same Deployment
Different ISD
	Out (UMa) ->Out (UMa)
ISD=200 ->ISD=500
	0.759
/
0.931
	0.835
/
0.948
	0.381
/
0.730
	0.793
/
0.938
	0.910
/
0.969

	
	Same UE Distribution
Different Deployment
Same ISD
	Out (UMa) ->Out (UMi)
ISD=200 ->ISD=200
	0.754
/
0.928
	0.832
/
0.964
	0.246
/
0.704
	0.776
/
0.933
	0.914
/
0.972

	
	Same UE Distribution
Different Deployment
Different ISD
	Out (UMa) ->Out (UMi)
ISD=200 ->ISD=500
	0.757
/
0.939
	0.812
/
0.961
	0.360
/
0.709
	0.798
/
0.949
	0.883
/
0.972

	
	Different UE Distribution
Same Deployment
Same ISD
	Out (UMa) ->Inout (UMa)
ISD=200 ->ISD=200
	0.698
/
0.907
	0.783
/ 0.940
	0.318
/
0.686
	0.722
/
0.913
	0.848
/
0.952

	
	Different UE Distribution
Same Deployment
Different ISD
	Out (UMa) ->Inout (UMa)
ISD=200 ->ISD=500
	0.685
/
0.888
	0.758
/
0.931
	0.306
/
0.660
	0.705
/
0.908
	0.831
/
0.945

	
	Different UE Distribution
Different Deployment
Same ISD
	Out (UMa) ->Inout (UMi)
ISD=200 ->ISD=200
	0.682
/
0.896
	0.775
/
0.942
	0.291
/
0.663
	0.700
/
0.903
	0.852
/
0.955

	
	Different UE Distribution
Different Deployment
Different ISD
	Out (UMa) ->Inout (UMi)
ISD=200 ->ISD=500
	0.719
/
0.909
	0.780
/
0.945
	0.326
/
0.694
	0.720
/
0.927
	0.854
/
0.964

	80%/20% in/outdoor
	Same UE Distribution
Same Deployment
Same ISD
	Inout (UMa) ->Inout (UMa)
ISD=200 ->ISD=200
	0.713
/
0.938
	0.855
/
0.981
	0.330
/
0.735
	0.773
/
0.963
	0.952
/
0.994

	
	Same UE Distribution
Same Deployment
Different ISD
	Inout (UMa) ->Inout (UMa)
ISD=200 ->ISD=500
	0.745
/
0.943
	0.857
/
0.982
	0.337
/
0.755
	0.762
/
0.956
	0.950
/
0.994

	
	Same UE Distribution
Different Deployment
Same ISD
	Inout (UMa) ->Inout (UMi)
ISD=200 ->ISD=200
	0.709
/
0.936
	0.852
/
0.982
	0.277
/
0.686
	0.741
/
0.948
	0.947
/
0.993

	
	Same UE Distribution
Different Deployment
Different ISD
	Inout (UMa) ->Inout (UMi)
ISD=200 ->ISD=500
	0.789
/
0.964
	0.859
/
0.987
	0.341
/
0.766
	0.767
/
0.966
	0.965
/
0.997

	
	Different UE Distribution
Same Deployment
Same ISD
	Inout (UMa) ->Out (UMa)
ISD=200 ->ISD=200
	0.782
/
0.957
	0.892
/
0.986
	0.390
/
0.826
	0.909
/
0.989
	0.983
/
0.999

	
	Different UE Distribution
Same Deployment
Different ISD
	Inout (UMa) ->Out (UMa)
ISD=200 ->ISD=500
	0.778
/
0.961
	0.874
/
0.989
	0.395
/
0.798
	0.825
/
0.971
	0.963
/
0.997

	
	Different UE Distribution
Different Deployment
Same ISD
	Inout (UMa) ->Out (UMi)
ISD=200   ->ISD=200
	0.743
/
0.952
	0.875
/
0.981
	0.225
/
0.692
	0.761
/
0.945
	0.953
/
0.993

	
	Different UE Distribution
Different Deployment
Different ISD
	Inout (UMa) ->Out (UMi)
ISD=200   ->ISD=500
	0.791
/
0.973
	0.867
/
0.989
	0.372
/
0.769
	0.809
/
0.977
	0.966
/
0.998

	Note: 1) For Set B with 8 SSB TX beams.



Observation 1 [bookmark: _Toc131689797]With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference. 
Observation 2 [bookmark: _Toc131689798]Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Impact of Rx beam
	Agreement
At least for evaluation on the performance of DL Tx beam prediction, consider the following options for Rx beam for providing input for AI/ML model for training and/or inference if applicable
· Option 1: Measurements of the “best” Rx beam with exhaustive beam sweeping for each model input sample
· Option 2: Measurements of specific Rx beam(s)
· Option 2a: Measurements of specific Rx beam(s) per model input sample 
· Option 2b: Measurements of specific Rx beam(s) for all model input sample
· FFS how to select the specific Rx beam(s)
· Option 3: Measurements of random Rx beam(s) per model input sample
· Other options are not precluded and can be reported by companies.



In this subsection we discuss the impact of Rx beam on the performance of DL Tx beam prediction. It is noted that the model trained based on the data in sector [5] is selected for inference, and the data in sector [2] is selected for inference. The KPIs of Top 1 RSRP difference are summarized in Table 10.
When considering the same option of Rx beam for training and inference, it is very challenging to train the model without knowing any information of UE Rx beam. As shown in Figure 16, Option 3 (i.e., random Rx beam per model input sample) achieves very bad performance for models trained on the dataset with 100% outdoor UEs and 80%/20% in/outdoor UEs. However, the performance is improved significantly if the best Rx beam information or at least partial Rx beam information, e.g., the Rx beam is fixed during the measurement period or the Rx beam is changed according to the pre-configured pattern. 
[image: ][image: ]
(a) 									(b)
[bookmark: _Ref127197462][bookmark: _Toc127485719]Figure 16: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference for given option of Rx beam for (a) model trained based on the dataset with 100% outdoor UEs and (b) model trained based on the dataset with 80%/20% in/outdoor UEs

For different options of Rx beam for training and inference, in Figure 17, we take an example of performing inference on dataset using different UE Rx beam option to see the impact of UE Rx beam applied differently between training and inference. More specifically, the model is trained on the dataset with mixed 80%/20% in/outdoor UEs from sector [5] and the inference is performed on the dataset with 100% outdoor UEs from sector [2]. Different Rx beam options are used for training and inference. As shown Figure 17, performing the inference on dataset using random Rx beam, i.e., Option 3 always have very poor performance no matter the model is trained on which kind of UE Rx beam option. In addition, the performance of using trained model on Option 1, Option 2a, and Option 2b have very similar performance in terms of inference, which significantly outperforms the one using random Rx beams, i.e., Option 3. 
Based on the observations from Figure 16 and Figure 17, the information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is good to discuss the impact of Rx beam.  

[image: ]
[bookmark: _Ref127202928][bookmark: _Toc127485720]Figure 17 RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference on dataset of 100% outdoor UEs for different options of Rx beam for model trained based on the dataset with 80%/20% in/outdoor UEs. 
[bookmark: _Ref131710048]Table 10 Generalization evaluations of Rx beam impact in various deployment scenarios and various outdoor/indoor UE distributions for the setting with 4x8 gNB array.
	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	model description
	2 dense layers

	
	Model complexity
	~1600 parameters

	
	Computational complexity
	~4000 FLOPs

	Assumptions
	Number of beam pairs in Set A
	32

	
	Number of beams pairs in Set B
	16

	Scheme
	Beam accuracy [%]

	Evaluation results
	Beam prediction accuracy (%)
	Same option of Rx beam for training and inference

	
	
	Case
	Option 1
	Option 2a
	Option 2b
	Option 3

	
	
	Outdoor -> Outdoor
	94.0
	94.7
	94.9
	51.3

	
	
	Outdoor -> In/Out
	83.3
	88.9
	88.0
	48.9

	
	
	In/Out -> Outdoor
	95.3
	95.7
	95.9
	53.6

	
	
	In/Out -> In/Out
	93.1
	94.4
	95.0
	53.3

	
	
	Different options of Rx beam for training and inference

	
	
	Case
	Option of Rx beam for inference

	
	
	In/Out->Outdoor
	Option 1
	Option 2a
	Option 2b
	Option 3

	
	
	Option of Rx beam for loaded model
	Option 1
	95.3
	95.2
	95.1
	42.3

	
	
	
	Option 2a
	96.2
	95.7
	95.5
	43.5

	
	
	
	Option 2b
	96.3
	96.0
	95.9
	42.2

	
	
	
	Option 3
	75.6
	74.9
	75.2
	53.6

	Note: 
(1) Case summary: 4x8 gNB, UMa, ISD=200m, Set B: 16-32 CSI-RS, Top 1, 1 dB margin
(2) Train the model using the data in Sector [5] and perform the inference in different scenarios using the data in Sector [2].



[bookmark: _Toc131689799]The information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is important to address the impact of Rx beam selection

Impact of Fine-tuning
	Agreement

The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· The following case for generalization verification, can be optionally considered by companies:
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Company to report the fine-tuning dataset setting (e.g., size of dataset) and the improvement of performance
· FFS: Investigate of the feasibility the fine-tuning on the UE/Network side



In this subsection we mainly discuss Case 2A of model generalization focusing on the impact of fine-tuning on the generalization performance of DL Tx beam prediction. It is noted that the data in sector [5] is used for both model training and model inference. We aim to load the model trained on the data on 100% outdoor UEs and perform the inference on the data based on mixed 80%/20% in/outdoor UEs. 
We denote the case of “Outdoor-> In/Out” as the baseline which could be regarded as a lower bound. We also denote the case of “In/Out -> In/Out” as the ideal result which could be regarded as an upper bound. The KPIs of Top 1 RSRP difference are summarized in Table 11.  
[bookmark: _Ref127488719]Table 11 Generalization evaluations of Case 2A with fine-tuning. 
	[bookmark: _Ref127219922]Assumptions
	Number of beams in Set A
	32

	
	Number of beams in Set B
	16

	AI/ML model
input/output
	Model input
	Normalized L1-RSRP

	
	Model output
	Likeliness of beam being strongest beam

	Data Size
	Training
	~30000

	
	Testing
	~3000

	AI/ML model
	[Short model description]
	2 dense layers

	
	Model complexity
	~1600 parameters

	
	Computational complexity
	~4000 FLOPs

	scheme
	With fine-tuning

	Evaluation results
	Beam prediction accuracy (%)
	Accuracy 
with 1 dB margin 
	Outdoor -> In/Out

	Epochs
	200
	94.8

	
	
	
	
	Data
	30%
	

	
	
	
	
	Epochs
	200
	92.4

	
	
	
	
	Data
	10%
	

	
	
	
	
	Epochs
	100
	93.6

	
	
	
	
	Data
	30%
	

	
	
	
	
	Epochs
	100
	90.9

	
	
	
	
	Data
	10%
	

	
	
	
	Without fine-tuning

	
	
	
	Outdoor -> In/Out
	Epochs
	2000
	90.7

	
	
	
	
	Data
	90%
	

	
	
	
	In/Out -> In/Out
	Epochs
	2000
	97.1

	
	
	
	
	Data
	90%
	

	Note: 
(1) Case summary: 4x8 gNB, UMa, ISD=200m, Set B: 16-32 CSI-RS, Top 1, 1 dB margin, Rx beam with Option 2b
(2) data in Sector [5] are used for both model training and model inference.



 [image: ]
[bookmark: _Ref127217512][bookmark: _Toc127485721]Figure 18: RSRP difference CDF, for 4x8 array, selecting 16 out of 32 CSI-RS beams as Set B, performing the inference on dataset of 80%/20% in/outdoor UEs using the pre-trained model with fine-tuning.
For the fine-tuning process, we first load the model trained on the data on 100% outdoor UEs. Then, we aim to fine-tune the model by quickly re-training the model using parts of the inference dataset (i.e., 10% or 30%) with less than hundreds number of epochs (i.e., 100 or 200). It is noted that the normal training process will 90% of the data with 2,000 epochs, so the retraining process will significantly reduce the time and resource when comparing to the normal training process. As shown in Figure 18, the greater number of epochs and number of percentages of data from the inference dataset are used, the bigger improvement are presented. Besides, the curve with “100 Epochs + 30% data” outperforms the curve with “200 Epochs + 10% data”. So, it could see that increasing the percentages of inference data is a more effective way to improve the performance. Therefore, it exists the trade-off between the number of epochs and the number of percentages of data from the inference dataset. 
[bookmark: _Toc131689800]It is shown that increasing the amount of fine-tuning data improves the performance

[bookmark: _Ref130823398]Model monitoring
As discussed in more detail in our discussion paper [6], monitoring consists in calculating one or more performance metrics of the AI/ML model (any of the recently agreed Alt 1–4) and, depending on the calculated metrics, decide whether some action should be taken, e.g., fallback to a default feature/model, deactivate the model, etc. Monitoring can be NW-sided, UE-sided, or hybrid. Depending on where the monitoring is located, different metrics Alt 1–4 may be relevant. In this section, we focus on Alt 3 (“Performance metric based on input/output data distribution of AI/ML”), which should be relevant for all possible locations of the monitoring algorithm.
More specifically, we investigate to what extent an Alt 3 based monitoring algorithm can detect appearance of UEs with poor prediction performance due to propagation conditions not resembling those seen during training (i.e. data drift). The detection can be used to sound an alarm if the number of such UEs increases too much.
Two different scenarios with data drift are considered in the following subsections. In both cases Set B consists of 2×4 = 8 SSB beams and Set A of 4×8 = 32 CSI-RS beams, in accordance with Figure 2.
Outdoor vs indoor UEs
As a first example of data drift, we consider an AI/ML model trained on a dataset of only outdoor UEs, henceforth referred to as “Distribution A”, and investigate whether a monitoring algorithm can detect the degraded prediction performance due to appearance of indoor UEs, henceforth referred to as “Distribution B”. Both training and testing is performed on 21 sectors, with joint training of a single model for all sectors.
In order to estimate the prediction performance, a k-nearest neighbors (kNN) method is used to identify anomalous (outlier) samples (UEs). The kNN is fitted to Distribution A, i.e. only outdoor UEs. The input to the kNN is composed from both AI/ML model input (measured RSRP data for Set B) and AI/ML model output. Each sample encountered during inference can then classified as either anomalous or non-anomalous depending on the average distance to its k nearest neighbors (in our case k = 3). Figure 19 shows a CDF of these distances, and hence indicates how large fraction of samples will be classified as non-anomalous as a function of the choice of distance threshold. It is seen that using a threshold of 7 (dotted green line), most outdoor UEs (Distribution A) would be classified as non-anomalous and most indoor UEs (Distribution B) would be classified as anomalous. Test (inference) results for this threshold value are illustrated in Figure 20, and the prediction accuracy for 1 dB margin (i.e. the accuracy at 1 dB RSRP difference in the CDFs) is summarized in Table 12.
It may be noted that while the separation in between outdoor UEs and indoor UEs is quite good, there are still >10% of the UEs that fall in the opposite group.
However, of more practical relevance than classification of outdoor vs indoor UEs is to classify UEs as having either low or high prediction error rate (where error rate is defined as 1 minus prediction accuracy). The classification works well for this purpose: For outdoor as well as indoor UEs, the error rate for the anomalous samples (UEs) is roughly an order of magnitude higher that for the non-anomalous samples (12 and 6 times higher, resp.). An interpretation of this is that a substantial number of indoor UEs may actually have propagation condition characteristics quite similar to outdoor UEs seen during training, and that prediction therefore works well for those. Conversely, there are some outdoor UEs which cannot be accurately predicted, and the monitoring algorithm is able to detect that by categorizing them as anomalous samples.
[image: ]
[bookmark: _Ref131171117][bookmark: _Ref131170976]Figure 19: Fraction of UEs classified as non-anomalous as a function of kNN distance threshold. 


[image: ][image: ]
				(a)								(b)
[bookmark: _Ref130821660]Figure 20: Accuracy for (a) Distribution A UEs (outdoor) and (b) Distribution B UEs (indoor), based on training on Distribution A. 


[bookmark: _Ref130820591]Table 12: Model monitoring results for UEs trained on Distribution A (outdoor UEs)
	Test distribution
	Fraction anomalous UEs
	Error rate (i.e. 1 – accuracy)
with 1 dB RSRP diff. margin
	Error rate ratio (anom. over non-anomalous)

	
	
	Non-anomalous
	Anomalous
	

	A (outdoor)
	15%
	0.9%
	11%
	12

	B (indoor)
	87.4%
	3.3%
	20%
	6



UEs in new geographical area
As a second example, we consider an AI/ML model trained on an outdoor dataset where one geographical area has been cleared from UEs, i.e. the UE locations are first randomized as usual, but then a subset of UEs within a certain geographical area are removed before forming the training dataset (“Distribution A”, blue dots in Figure 21). It is then investigated to how detection performance is changed when UEs in the cleared geographical area appear (“Distribution B”, red dots in Figure 21), and to what extent the monitoring algorithm can detect the degraded prediction accuracy. This scenario could correspond to a situation where there is some outdoor area which is normally devoid of people, but which during some special event, e.g. an outdoor festival, attracts many people. Only a single sector is considered in this investigation.
A kNN with same parameters as above (k = 3, threshold 7) is fitted to Distribution A. The results are summarized in Table 13 and illustrated in Figure 22. Clearly, the fraction of UEs classified as anomalous is much higher for Distribution B (event UEs), and again, the prediction error rate is generally much higher for samples classified as anomalous, both for Distribution A and Distribution B. 
Hence, the monitoring algorithm is also in this scenario able to detect UEs with poor prediction performance and could sound an alarm if many such UEs start to appear.

[image: ]
[bookmark: _Ref130821663]Figure 21: Illustration of the two UE distributions, where Distribution B could e.g. correspond to an outdoor event.. 
[image: ] [image: ]
				(a)								(b)
[bookmark: _Ref130821666]Figure 22: Accuracy for (a) Distribution A UEs and (b) Distribution B UEs (event UEs), based on training on Distribution A. 

[bookmark: _Ref130820575]Table 13: Model monitoring results for UEs trained on Distribution A (non-event UEs)
	Test distribution
	Fraction anomalous UEs
	Error rate (i.e 1 – accuracy),
with 1 dB RSRP diff. margin
	Error rate ratio (anom. over non-anomalous)

	
	
	Non-anomalous
	Anomalous
	

	A (non-event)
	37.5%
	0.48%
	2.1%
	6

	B (event)
	79%
	0.0%
	13.3%
	



Model monitoring discussion
The overall finding is similar in the two investigated scenarios: It is possible to classify samples as either non-anomalous or anomalous, with the latter category having much worse prediction accuracy. It is FFS what can be gained from classifying samples into more than two uncertainty groups.
[bookmark: _Toc131689801]Based on model input/output distribution, it is feasible to classify each sample (UE) as either non-anomalous or anomalous, where the latter category has much worse prediction accuracy (e.g. an order of magnitude larger). Such a classifier can be the basis for a model monitoring algorithm that sounds an alarm if too many anomalous samples appear.
It is also clear from the results that an alarm cannot be sounded based on assessment of just a single sample. Even samples classified as anomalous have quite low error rate, certainly nowhere close to 100%, and the false-alarm rate would hence be very high if an alarm were sounded after a single sample is classified as anomalous. While the kNN distance threshold can be increased to reduce the fraction of anomalous samples, that would instead lead to high missed-detection rate.
[bookmark: _Toc131689802]To achieve reasonable missed-detection and false-alarm rates (MDR and FAR), the alarm would have to be sounded based on statistics from multiple samples, not a single sample.

On the usability of confidence/probability information
	Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, study the necessity, feasibility and the potential specification impact (if needed) of the following information reported from UE to network: 
· Predicted L1-RSRP(s) corresponding to the DL Tx beam(s) or beam pair(s)
· Whether/how to differentiate predicted L1-RSRP and measured L1-RSRP
· Confidence/probability information related to the output of AI/ML model inference (e.g., predicted beams)
· FFS: Definition/content of confidence/probability information
· Note: At least the performance and spec impact should be considered



In this section we investigate the usefulness of also estimating a confidence value of a prediction, more specifically, we will estimate the epistemic uncertainty. As discussed in [6], epistemic uncertainty describes what the model does not know because training data was not appropriate. Given enough training samples, epistemic uncertainty will decrease (e.g. data from the new scenario).
The kNN-based estimation introduced in Section 5.3.8 can be used to estimate the uncertainty/confidence due to lack of training data in the AI/ML model inference step, where such uncertainty/confidence information can be used to reduce the P2 overhead. We will consider the same scenario in Section 5.3.8 to evaluate the usability of the uncertainty/confidence information, where we showed how the anomalous samples should be associated to worse prediction accuracy.
Step P2 consists in transmitting K candidate beams (typically narrow Set A CSI-RS beams) identified during step P1. In most evaluations, KPI performance is presented for a fixed K, e.g. Top-1 performance or Top-3 performance. However, by letting the number of beams in P2 depend on the estimated uncertainty of the beam prediction in P1, overhead can potentially be reduced without sacrificing accuracy. For example, during inference, one can classify each sample as either non-anomalous or anomalous, and use a small K for the former class and a larger K for the larger class.
In the present section, we evaluate gains obtainable when samples are divided into the two groups based on the kNN in the previous section but with cutoff distance set to 5. The results are shown in Figure 23. A more refined analysis could use more classes, and hence a larger set of different K values.
It can be seen that if a fixed K of 4 is used for all samples, the performance is very good, about 99.9% with 1 dB margin (dash-dotted red curve). If K is reduced to 2 in order to reduce overhead, the error rate becomes about several times higher (solid blue curve). However, by adaptively setting K = 2 for non-anomalous samples and K = 4 for anomalous samples (dotted black curve), the performance of fixed K = 4 is essentially regained, but with an average K of only 2.6, i.e. about 35% overhead reduction compared to fixed K = 4. 

[image: ]
[bookmark: _Ref130824709]Figure 23: Accuracy for different subsets of sample, for different numbers (K) of beams transmitted in step P2. 

[bookmark: _Toc131689803]Adaptive Top-K based on prediction uncertainty/confidence information can reduce reporting and measurement overhead. An example of 35% overhead reduction with maintained accuracy is shown.
[bookmark: _Toc131689819]Conclude that estimating prediction uncertainty/confidence information can reduce reporting and measurement overhead.
[bookmark: _Ref127176053]
Temporal beam pair prediction
TX beam prediction	
In this section, the objective for a trained Neural Network (NN) is to predict the CSI-RS beam index that is most likely to have the maximum L1-RSRP value, from the L1-RSRPs of CSI-RS measured at the observation time instances. 
[bookmark: _Ref131506786]Evaluation description
The assumed CSI report periodicity is 80ms, and at each reporting time instance there are 32 CSI-RS from each UE. The NN’s inputs at training and inference are the L1-RSRPs selected from the time instances numbered as {0, 2, 4}, such that the observation duration T1=2*80ms=160ms. The time index numbering in T1 here assumes that the reports at time instances {1, 3, 5, …}, are absent. If a CSI-RS periodicity of 40ms was assumed, the reporting time instances would then be indicated with consecutive numbers {0, 1, 2, 3, 4, 5, …}. Figure 24 shows an illustration of this. See [7] for more details.
[image: Chart

Description automatically generated]
[bookmark: _Ref131673347]Figure 24: illustration of measurement report arrival at the NW.
At inference, the NN predicts at the time instances for which the measurement report is absent. The training labels for the overall best CSI-RS beam at the time instance {5} serve as the NN’s outputs at training. 80ms periodicity, there is an RS overhead reduction of 50% for the same NN input size.  
For the TX beam prediction problem in this section, the definitions of Set A and Set B are respectively given as the set of all the 32 CSI-RS indices and the subset of CSI-RS beam indices whose RSRPs serve as the NN’s input in T1. Here, Set B ⊆ Set A and |Set B|= 32 or 16.
Selecting Set B here is based on calculating the fraction of times a beam index occurs as the best beam when evaluated over all the UE and over all the simulated time instances for each UE. Beam indices that have a relatively higher fraction are more likely to be a part of Set B. Visualization of this is shown in [7]. It is further assumed that the UE always uses its best beam. 
Results
An all outdoor UMa scenario is considered here. Each randomly dropped UE moves at 30kmph in a straight line and in a random direction. Except for the input layer, which changes with |Set B|, the to be trained model retains the hidden layers and the output layer for various cases considered here. For the TX beam prediction problem, the NN functions as a classifier with a length 32 softmax output layer. The NN’s input size is (3, |Set B|), where the number 3 corresponds to the #time instances in T1.
Towards the performance evaluation, the considered KPI is the absolute L1-RSRP difference. For 2 different Set Bs, where |Set B|=16 and |Set B|=32, are separately considered. This difference is calculated wrt the overall best RSRP value at the predicting instance. Figure 25 compares the trained model’s performance with a baseline sample-and-hold scheme for predicting instance {5}. The baseline assumes that the best beam index at the predicting time is the best beam index carried forward from the last available observation time instance.

[image: ]   [image: ] [image: ]
[bookmark: _Ref131515163][bookmark: _Ref131514983]Figure 25 Comparison of the trained model with baseline for 2 different Set Bs. Input time instances = {0,2,4}. Prediction time instance = {5}. (left) cdf of the absolute RSRP difference. (center) 99%-ile and 95%-ile. (right) mean absolute RSRP difference.

Figure 25 shows the plot for the chosen KPI which is an instantaneous metric. For the same |Set B|, the NN performs better than the baseline. NN’s performance with both |Set B|=16 and |Set B|=32 is similar. Hence a possibility of further overhead reduction, in addition to the time dimension, when selecting |Set B|.

As seen in Figure 25 (center), for both the considered Set Bs, the 5% worst UEs (indicated as 95%-ile) have a performance deviation of 1.8dB to 3.2dB, while the 1% worst UEs (indicated as 99%-ile) suffer from a higher deviation of 6.3dB to 7.1dB. The large L1-RSRP error in the lower percentiles may motivate TX-beam prediction for UEs with high reliability requirements, to mitigate a large drop in signal quality.
Figure 25 (right) shows a metric that reflects the average performance. For both the Set Bs, a loss of ~0.3 dB is observed. The trained model in any case is better than the baseline. 
[bookmark: _Toc127537886][bookmark: _Toc131689804]For TX-beam prediction, evaluations indicate the possibility to increase the measurement periodicity from 40ms to 80ms, where the prediction-based method used to predict 40ms ahead indicates slight gain over baseline for the worst UEs
TX/RX beam pair prediction
In this section, the objective for a trained NN is to predict jointly a TX/RX beam pair, from the L1-RSRPs fed into the NN at observation time T1. The predicted index, i.e., the beam pair combination, is most likely to have the maximum L1-RSRP value. In addition, the periodicity of the measurements and predictions are changed.
Evaluation description
The assumed CSI report periodicity is 40ms. Further, there are 32 NW side (or TX) beams, and 8 UE (or RX) side beams assumed here. At each reporting time instance there can be at most 256 L1-RSRP values for each UE. The NN’s inputs at training and inference are the L1-RSRPs selected from the first 3 consecutive time instances, numbered as {0,1,2}, such that the observation duration T1=2*40ms=120ms. See section 6.1.1 for an explanation on periodicity. The labels for the overall best CSI-RS beam pair at the time instance {3} serve as the NN’s outputs at training. 
For the case of NW side only prediction, the definitions of Set A and Set B are given in [7] and outlined in section 6.1.1. These definitions are extended to the joint TX-RX beam pair prediction.
The set with all the 256 beam indices, i.e., the 256 beam pair combinations of the 32 NW side beams and 8 UE side beams, constitutes the Set A. Set B is identified by the pair (#NW beams, #UE beams), such that |Set B| = #NW beams * #UE beams 
Results
An all outdoor UMa scenario is considered here. Each randomly dropped user is moving in a straight line at 30kmph in a random direction. With a validation fraction of 0.2, a total of ~80000 independent samples are used at training. For inference ~15000 samples are used. In the best case across various trained models, the NN had a training and validation accuracy of ~ 81% separately.
Except for the input layer, which changes with Set B, the to be trained model retains the hidden layers and the output layer for various cases considered here. The NN functions as a classifier with a length 256 softmax output layer. 
For the performance evaluation, the considered KPI at the predicting time is the absolute L1-RSRP difference between the RSRP value of the best beam index of Set A and the RSRP value associated with the predicted beam index. For comparison, a baseline sample-and-hold scheme is also shown, where the best TX-RX pair index for the prediction time instance is assumed to be the best TX-RX pair index carried forward from the last observation time instance.
The plots with instantaneous values show performance deviation from the optimal and are more intuitive than the plots with average metrics. Hence only the instantaneous plots are shown for the TX/RX problem here.
There are 3 sets of results in the following subsections. Results in subsection 6.2.2.1 assume a report periodicity of 40ms, where RSRPs of Set B indices at 3 consecutive input time instances {0,1,2} are fed to the NN’s input, and show the trained model’s prediction performance at time instances {3} and {8}. Results in subsection 6.2.2.2 assume a report periodicity is 80ms, as against 40ms in subsection 6.2.2.1, such that the input RSRPs for the NN are taken from time instances {0,2,4}. The prediction performance for report missing time instances {5} and {7} is shown with the same Set B as in subsection 6.2.2.1. With inputs from time {0,1,2} and prediction for instance {8}, subsection 6.2.2.3 shows the inference for different Set Bs for a given fixed #beam pairs, i.e., the performance for a varying spatial beam pattern for the same |Set B|. All these results show the NN’s sensitivity to various temporal and spatial domain changes in Set B.
[bookmark: _Ref131603142]Prediction with 40ms report arrival periodicity
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[bookmark: _Ref131515297]Figure 26: Comparison of the trained model with baseline for various beam selection. Input time instances = {0,1,2}. Prediction time instance = {3}. (left) cdf of the absolute RSRP difference for various (#NW beams, #UE beams). (center) 99%-ile. (right) 95%-tile.
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[bookmark: _Ref131515302]Figure 27: Comparison of the trained model with baseline for various beam selection. Input time instances = {0,1,2}. Prediction time instance = {8}. (left) cdf of the absolute RSRP difference for various (#NW beams, #UE beams). (center) 99%-ile. (right) 95%-tile.

Figure 26 and Figure 27 show the performance of a trained model for 2 separate prediction time instances {3} and {8}, when the report periodicity is 40ms. This corresponds to T2=1*40=40ms and T2=6*40=240ms respectively, where the latter is the performance at a longer prediction time. 
The results show that sample-and-hold outperforms the model for (32,8). Comparing with the baseline, the error difference between ML and baseline for the 95th percentile is greater at T2=40ms (time-instance 3) than at T2=240ms. The results indicate that there is no significant increase in the benefit of using a prediction model with an increasing T2. Furthermore, there is a large error for both baseline and model for T2=240ms in the 95th percentile. 
[bookmark: _Toc131689805]No improvement is seen using AI/ML over baseline in prediction performance with an increasing T2 
[bookmark: _Toc131689806]Challenging to predict the best beam pair when T2=240ms, L1-RSRP error of ~10dB is shown in the 95th percentile also when all beams in set A are measured during T1
[bookmark: _Ref131684187]Prediction with 80ms report arrival periodicity
The problem of Tx-only beam prediction in section 6.1.1 is extended here for the TX/RX beam pair problem. Report arrival at the NW is assumed as shown in Figure 24. 
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[bookmark: _Ref131515798]Figure 28: Comparison of the trained model with baseline for various beam selection alternatives. Input time instances = {0,2,4}. Prediction time instance = {5}. (left) cdf of the absolute RSRP difference for various (#NW beams, #UE beams). (center) 99%-ile. (right) 95%-tile.
[bookmark: _Toc131434082][bookmark: _Toc131434083][bookmark: _Toc131434084]Figure 28 show the inference performance of a trained model for the instance where the report at every second 40ms instance is assumed to be absent, i.e. the report periodicity is 80ms. The observation is similar to Figure 26 and Figure 27. The simple sample-and-hold baseline (32,8) Set B has the best performance, while the model-based approach provides gain due to its ability to predict in the spatial domain when set B beam comprises a subset of set A.
[bookmark: _Toc131689807]For BM case-2 beam-pair prediction, sample and hold baseline provides better performance than AI/ML model in case all beams in set A are measured during T1.
[bookmark: _Toc131689808]For BM case-2 beam-pair prediction, AI/ML model is better than sample-and-hold baseline if a subset of beams in set A are measured during T1.
[bookmark: _Ref131674070]Observation on how set B selection impacts performance
[image: Chart

Description automatically generated] 
[bookmark: _Ref131515728]Figure 29: Comparison of trained models with different (#NW beams, #UE beams) combinations for a given #beam pairs. Input time instances = {0,1,2}. Prediction time instance = {8}.
Figure 29 compares different Set B selections for a given fixed #beam pairs at T2=240ms (prediction instance {8}). Baseline is also shown for reference. It is shown that the performance for the same RS-overhead varies based on the selection on the measured TX/RX-beams, when the number of measured beams is the same. For example when measuring on 16 beam pairs, (8,2) provides better performance than (4,4).  
[bookmark: _Toc131689809]The performance varies based on the set B configuration even if the number of beams in set B are the same. This indicates that it is useful to first collect the dataset prior to determining the set B selection.

Conclusions
In the previous sections we made the following observations: 
Observation 1	If the UE uses the same RX-chain for RSRP estimation of two beams, the RF impairment error is the same. During Rel-15 discussions, there is however no assumptions that UE uses the same RX-chain for two-beam measurements on FR2.
Observation 2	In outdoor scenarios, AI/ML can reduce beam spatial-domain beam prediction overhead substantially while maintaining good accuracy for 4x8 (32 beams in Set A).
Observation 3	With the adopted beam pattern, the conventional scheme significantly outperforms the baseline schemes and have similar performance as AI/ML schemes.
Observation 4	With 256 beams in Set A, AI/ML can substantially reduce both RS overhead and total overhead compared to a conventional scheme while maintaining KPI performance.
Observation 5	For Set B with SSB beams, the joint TX/RX prediction provides good performance while significantly reducing RS overhead compared to measurements of all RX beams for each TX beam in Set B.
Observation 6	For the setting of 4x8 array with 8 SSB beams as Set B and 32 CSI-RS beams as Set A, the difference between the predicted L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the same beam is below 2 dB for the 91th percentile for 100% outdoor, and 68th percentile when having 80%/20% in/outdoor UEs.
Observation 7	For variable number of beams in Set B, Option 2D, the reporting overhead can be substantially reduced with little performance degradation in comparison with reporting all measured beams in set B.
Observation 8	For variable number of beams in Set B, Option 2D, UE reporting the measured beams within a threshold of the strongest performs better than a fixed number of reported strongest beams.
Observation 9	For DL Tx beam prediction, Option 3 with random Rx beam per model input sample achieves very poor performance.
Observation 10	Thermal noise has significant impact on prediction KPIs in scenarios with indoor UEs, and should therefore be considered in evaluations.
Observation 11	Setting higher reporting accuracy in terms of granularity of reported values cannot improve the AI model performance without setting higher accuracy level on measurement error accuracy.
Observation 12	With identical antenna configuration, initial evaluations indicates that a model trained in one cell is found to be generalized well while the performance heavily depends on the sector is selected for the inference.
Observation 13	Generalization results indicate the importance of having model monitoring procedures that detects issues when a model trained in one cell is used in another.
Observation 14	The information of UE Rx beam plays a vital role on prediction KPIs in DL Tx beam prediction. Therefore, it is important to address the impact of Rx beam selection
Observation 15	It is shown that increasing the amount of fine-tuning data improves the performance
Observation 16	Based on model input/output distribution, it is feasible to classify each sample (UE) as either non-anomalous or anomalous, where the latter category has much worse prediction accuracy (e.g. an order of magnitude larger). Such a classifier can be the basis for a model monitoring algorithm that sounds an alarm if too many anomalous samples appear.
Observation 17	To achieve reasonable missed-detection and false-alarm rates (MDR and FAR), the alarm would have to be sounded based on statistics from multiple samples, not a single sample.
Observation 18	Adaptive Top-K based on prediction uncertainty/confidence information can reduce reporting and measurement overhead. An example of 35% overhead reduction with maintained accuracy is shown.
Observation 19	For TX-beam prediction, evaluations indicate the possibility to increase the measurement periodicity from 40ms to 80ms, where the prediction-based method used to predict 40ms ahead indicates slight gain over baseline for the worst UEs
Observation 20	No improvement is seen using AI/ML over baseline in prediction performance with an increasing T2
Observation 21	Challenging to predict the best beam pair when T2=240ms, L1-RSRP error of ~10dB is shown in the 95th percentile also when all beams in set A are measured during T1
Observation 22	For BM case-2 beam-pair prediction, sample and hold baseline provides better performance than AI/ML model in case all beams in set A are measured during T1.
Observation 23	For BM case-2 beam-pair prediction, AI/ML model is better than sample-and-hold baseline if a subset of beams in set A are measured during T1.
Observation 24	The performance varies based on the set B configuration even if the number of beams in set B are the same. This indicates that it is useful to first collect the dataset prior to determining the set B selection.
Based on the discussion in the previous sections we propose the following:
Proposal 1	Evaluations should study the feasibility to define a performance metric for monitoring models based on the input/output data distribution of AI/ML (alternative 3). For example, detection of a non-anomalous or anomalous input/output sample. FFS on the definition on anomalous sample.
Proposal 2	Evaluations should study the feasibility to estimate a confidence/probability information related to the output of AI/ML model inference and whether/how it can improve the beam management use case KPIs.
Proposal 3	Update Option 3 with the text below
Proposal 4	Given the current RAN4 requirements, model the L1-RSRP measurement error due to RF-impairments as independent noise among beams as a starting point.
	modelled as additive gaussian noise with 95% of the density function within the measurement accuracy range, and/or uniformly distributed noise.
Proposal 5	Conclude that UEs can only reliably measure RSRP for beams with SNR above -3 dB in the evaluations.
Proposal 6	Consider the following to mitigate the L1-RSRP measurement inaccuracy impact in ML based beam prediction
	Send LS to RAN4 to explore the possibility to tighten requirements on L1-RSRP measurement accuracy.
	Define different UE capability based on their capability in fulfilling a measurement accuracy requirement.
Proposal 7	Conclude that estimating prediction uncertainty/confidence information can reduce reporting and measurement overhead.
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Appendix: Simulation Assumptions
[bookmark: _Ref118502017][bookmark: _Ref111030355]Table 14: Evaluations of training and inference using the data from the same sector for the setting with 4x8 gNB array
	Top 1/Top 3 
(1 dB margin)
	UMa, 100% outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin
	UMa, 80%/20% in/outdoor UEs
4x8 gNB, ISD=200m
with 1 dB margin

	
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)
	SSB beams 
(8 beams)
	CSI-RS beams
(32 beams)

	
	4-8
	8-8
	4-32
	8-32
	16-32
	4-8
	8-8
	4-32
	8-32
	16-32

	Sector [0]
	0.902
/0.994
	0.964
/1.000
	0.538
/0.918
	0.964
/0.994
	0.994
/0.999
	0.753
/0.948
	0.877
/0.988
	0.375
/0.787
	0.819
/0.975
	0.953
/0.997

	Sector [1]
	0.840
/0.982
	0.959
/0.992
	0.656
/0.915
	0.928
/0.993
	0.984
/0.998
	0.695
/0.907
	0.845
/0.975
	0.360
/0.724
	0.757
/0.943
	0.945
/0.995

	Sector [2]
	0.866
/0.989
	0.960
/0.998
	0.516
/0.830
	0.950
/0.994
	0.989
/1.000
	0.699
/0.919
	0.867
/0.979
	0.358
/0.694
	0.800
/0.966
	0.944
/0.991

	Sector [3]
	0.880
/0.991
	0.960
/0.997
	0.424
/0.853
	0.967
/0.998
	0.995
/0.999
	0.705
/0.942
	0.848
/0.982
	0.374
/0.731
	0.801
/0.968
	0.963
/0.995

	Sector [4]
	0.882
/0.993
	0.959
/0.998
	0.556
/0.898
	0.939
/0.997
	0.994
/0.999
	0.716
/0.934
	0.857
/0.982
	0.398
/0.781
	0.784
/0.963
	0.961
/0.997

	Sector [5]
	0.921
/0.995
	0.969
/0.997
	0.556
/0.925
	0.986
/0.997
	0.995
/0.998
	0.759
/0.951
	0.868
/0.986
	0.407
/0.798
	0.817
/0.970
	0.970
/0.997

	Sector [6]
	0.918
/0.993
	0.970
/0.998
	0.617
/0.907
	0.958
/0.994
	0.994
/1.000
	0.692
/0.915
	0.857
/0.980
	0.352
/0.747
	0.775
/0.957
	0.945
/0.995

	Sector [7]
	0.909
/0.995
	0.974
/0.998
	0.631
/0.923
	0.970
/0.996
	0.995
/1.000
	0.715
/0.946
	0.869
/0.983
	0.395
/0.768
	0.797
/0.964
	0.961
/0.996

	Sector [8]
	0.911
/0.978
	0.961
/0.996
	0.604
/0.915
	0.950
/0.993
	0.987
/0.998
	0.723
/0.928
	0.855
/0.982
	0.402
/0.772
	0.800
/0.965
	0.956
/0.995

	Sector [9]
	0.858
/0.994
	0.971
/0.996
	0.451
/0.847
	0.977
/0.995
	0.994
/0.999
	0.709
/0.934
	0.855
/0.979
	0.366
/0.741
	0.812
/0.967
	0.953
/0.995

	Sector [10]
	0.800
/0.981
	0.935
/0.995
	0.482
/0.843
	0.946
/0.993
	0.987
/0.998
	0.729
/0.941
	0.867
/0.984
	0.376
/0.747
	0.795
/0.964
	0.959
/0.997

	Sector [11]
	0.802
/0.968
	0.948
/0.997
	0.497
/0.833
	0.947
/0.994
	0.981
/0.999
	0.712
/0.944
	0.868
/0.979
	0.350
/0.738
	0.804
/0.970
	0.956
/0.995

	Sector [12]
	0.938
/0.995
	0.971
/0.997
	0.745
/0.957
	0.936
/0.998
	0.991
/0.999
	0.722
/0.921
	0.854
/0.975
	0.395
/0.755
	0.786
/0.968
	0.936
/0.993

	Sector [13]
	0.896
/0.990
	0.963
/0.996
	0.682
/0.899
	0.959
/0.995
	0.993
/1.000
	0.694
/0.932
	0.859
/0.980
	0.399
/0.764
	0.788
/0.963
	0.961
/0.997

	Sector [14]
	0.904
/0.994
	0.978
/0.999
	0.596
/0.923
	0.976
/0.998
	0.996
/0.999
	0.694
/0.923
	0.862
/0.984
	0.332
/0.728
	0.774
/0.957
	0.945
/0.994

	Sector [15]
	0.863
/0.992
	0.965
/0.996
	0.581
/0.891
	0.952
/0.995
	0.991
/0.999
	0.703
/0.938
	0.844
/0.977
	0.358
/0.723
	0.779
/0.959
	0.945
/0.995

	Sector [16]
	0.885
/0.990
	0.958
/0.996
	0.654
/0.891
	0.948
/0.991
	0.982
/0.999
	0.727
/0.931
	0.858
/0.982
	0.397
/0.753
	0.781
/0.952
	0.949
/0.996

	Sector [17]
	0.876
/0.986
	0.951
/0.999
	0.652
/0.921
	0.963
/0.995
	0.989
/0.999
	0.692
/0.934
	0.861
/0.984
	0.391
/0.755
	0.794
/0.969
	0.956
/0.995

	Sector [18]
	0.893
/0.997
	0.977
/0.999
	0.462
/0.858
	0.982
/0.999
	0.998
/1.000
	0.704
/0.928
	0.863
/0.985
	0.363
/0.758
	0.804
/0.960
	0.953
/0.997

	Sector [19]
	0.891
/0.995
	0.978
/0.999
	0.524
/0.907
	0.974
/0.995
	0.998
/1.000
	0.729
/0.939
	0.861
/0.983
	0.395
/0.770
	0.789
/0.966
	0.950
/0.996

	Sector [20]
	0.894
/0.989
	0.959
/0.997
	0.571
/0.900
	0.953
/0.996
	0.990
/0.998
	0.749
/0.945
	0.867
/0.983
	0.398
/0.798
	0.807
/0.965
	0.962
/0.996

	Max
	0.938
/0.997
	0.978
/1.000
	0.745
/0.957
	0.986
/0.999
	0.998
/1.000
	0.759
/0.951
	0.877
/0.988
	0.407
/0.798
	0.819
/0.975
	0.970
/0.997

	Min
	0.800
/0.968
	0.935
/0.992
	0.424
/0.830
	0.928
/0.991
	0.981
/0.998
	0.692
/0.907
	0.844
/0.975
	0.332
/0.694
	0.757
/0.943
	0.936
/0.991

	Mean
	0.882
/0.990
	0.963
/0.997
	0.571
/0.893
	0.958
/0.995
	0.991
/0.999
	0.715
/0.933
	0.860
/0.982
	0.378
/0.754
	0.793
/0.963
	0.953
/0.995



[bookmark: _Ref118501965]Table 15: Generalization evaluations of the inference in different sectors
	Top 1/Top 3 
(1 dB margin)
	Train model based on the data from sector [5] to 
perform the inference in different sectors with the same scenario

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
Outdoor
	4-8
SSB
	0.841/
0.975
	0.681/
0.903
	0.714/
0.970
	0.721/
0.959
	0.827/
0.977
	0.921/
0.995
	0.771/
0.972
	0.848/
0.984
	0.833/
0.952
	0.800/
0.989
	0.729/
0.957
	0.711/
0.945

	
	8-8
SSB
	0.914/
0.990
	0.819/
0.942
	0.911/
0.991
	0.820/
0.980
	0.905/
0.989
	0.970/
0.998
	0.903/
0.989
	0.927/
0.992
	0.908/
0.962
	0.922/
0.994
	0.856/
0.978
	0.854/
0.965

	
	4-32
CSI-RS
	0.415/
0.848
	0.321/
0.749
	0.290/
0.597
	0.313/
0.641
	0.382/
0.785
	0.564/
0.922
	0.305/
0.675
	0.353/
0.831
	0.240/
0.683
	0.307/
0.669
	0.292/
0.572
	0.297/
0.651

	
	8-32
CSI-RS
	0.889/
0.978
	0.778/
0.898
	0.889/
0.962
	0.840/
0.966
	0.818/
0.942
	0.985/
0.998
	0.820/
0.953
	0.798/
0.970
	0.856/
0.959
	0.899/
0.984
	0.788/
0.928
	0.802/
0.933

	
	16-32
CSI-RS
	0.963/
0.992
	0.857/
0.951
	0.943/
0.980
	0.944/
0.988
	0.954/
0.991
	0.997/
1.000
	0.948/
0.992
	0.972/
0.991
	0.925/
0.970
	0.977/
0.996
	0.917/
0.975
	0.906/
0.952

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.768/
0.972
	0.783/
0.973
	0.791/
0.983
	0.713/
0.964
	0.801/
0.969
	0.852/
0.983
	0.819/
0.987
	0.825/
0.988
	0.807/
0.976
	0.921/
0.995
	0.681/
0.903
	0.788/
0.970

	
	8-8
SSB
	0.950/
0.994
	0.917/
0.991
	0.945/
0.995
	0.883/
0.994
	0.875/
0.985
	0.932/
0.992
	0.929/
0.997
	0.918/
0.996
	0.905/
0.987
	0.970/
0.998
	0.819/
0.942
	0.903/
0.986

	
	4-32
CSI-RS
	0.383/
0.778
	0.466/
0.801
	0.327/
0.699
	0.324/
0.598
	0.317/
0.658
	0.455/
0.790
	0.386/
0.702
	0.301/
0.739
	0.316/
0.738
	0.564/
0.922
	0.240/
0.572
	0.350/
0.720

	
	8-32
CSI-RS
	0.823/
0.944
	0.841/
0.970
	0.843/
0.963
	0.810/
0.947
	0.820/
0.953
	0.898/
0.983
	0.852/
0.981
	0.876/
0.981
	0.879/
0.972
	0.985/
0.998
	0.778/
0.898
	0.848/
0.960

	
	16-32
CSI-RS
	0.948/
0.988
	0.954/
0.991
	0.957/
0.996
	0.953/
0.993
	0.933/
0.977
	0.971/
0.992
	0.966/
0.996
	0.973/
0.996
	0.966/
0.988
	0.997/
1.000
	0.857/
0.951
	0.949/
0.985

	

	Dataset
	Set B
	[0]
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	UMa
80%/20%
In/outdoor
	4-8
SSB
	0.713/
0.938
	0.644/
0.912
	0.664/
0.919
	0.639/
0.925
	0.707/
0.929
	0.759/
0.950
	0.643/
0.913
	0.708/
0.935
	0.709/
0.922
	0.684/
0.937
	0.700/
0.934
	0.667/
0.924

	
	8-8
SSB
	0.855/
0.981
	0.834/
0.974
	0.846/
0.974
	0.832/
0.978
	0.840/
0.980
	0.868/
0.984
	0.848/
0.971
	0.846/
0.979
	0.843/
0.975
	0.842/
0.978
	0.846/
0.979
	0.850/
0.977

	
	4-32
CSI-RS
	0.330/
0.735
	0.296/
0.676
	0.305/
0.671
	0.298/
0.664
	0.355/
0.746
	0.407/
0.796
	0.280/
0.677
	0.341/
0.743
	0.308/
0.727
	0.318/
0.699
	0.323/
0.710
	0.292/
0.688

	
	8-32
CSI-RS
	0.773/
0.963
	0.729/
0.935
	0.767/
0.952
	0.760/
0.966
	0.743/
0.959
	0.817/
0.972
	0.741/
0.950
	0.733/
0.960
	0.738/
0.951
	0.769/
0.961
	0.761/
0.958
	0.752/
0.960

	
	16-32
CSI-RS
	0.952/
0.994
	0.922/
0.986
	0.931/
0.990
	0.946/
0.994
	0.947/
0.992
	0.968/
0.997
	0.923/
0.990
	0.947/
0.992
	0.936/
0.988
	0.951/
0.994
	0.948/
0.993
	0.942/
0.990

	
	
	[12]
	[13]
	[14]
	[15]
	[16]
	[17]
	[18]
	[19]
	[20]
	Max
	Min
	Mean

	
	4-8
SSB
	0.705/
0.923
	0.672/
0.924
	0.658/
0.904
	0.661/
0.929
	0.728/
0.925
	0.686/
0.929
	0.688/
0.927
	0.724/
0.938
	0.736/
0.943
	0.759/
0.950
	0.639/
0.904
	0.690/
0.928

	
	8-8
SSB
	0.840/
0.975
	0.843/
0.976
	0.831/
0.973
	0.841/
0.977
	0.847/
0.976
	0.851/
0.980
	0.834/
0.976
	0.854/
0.982
	0.853/
0.980
	0.868/
0.984
	0.831/
0.971
	0.845/
0.977

	
	4-32
CSI-RS
	0.341/
0.723
	0.337/
0.721
	0.295/
0.673
	0.288/
0.683
	0.320/
0.727
	0.347/
0.722
	0.310/
0.722
	0.306/
0.745
	0.345/
0.768
	0.407/
0.796
	0.280/
0.664
	0.321/
0.715

	
	8-32
CSI-RS
	0.748/
0.954
	0.758/
0.958
	0.739/
0.947
	0.754/
0.949
	0.729/
0.951
	0.761/
0.959
	0.759/
0.954
	0.766/
0.959
	0.776/
0.962
	0.817/
0.972
	0.729/
0.935
	0.756/
0.956

	
	16-32
CSI-RS
	0.929/
0.987
	0.938/
0.991
	0.925/
0.987
	0.935/
0.992
	0.939/
0.990
	0.938/
0.991
	0.935/
0.991
	0.948/
0.994
	0.949/
0.993
	0.968/
0.997
	0.922/
0.986
	0.940/
0.991




Table 9: Evaluation scenario
	[bookmark: _In-sequence_SDU_delivery]Parameters
	Values

	Frequency Range
	FR2 @ 30 GHz
· SCS: 120 kHz

	Deployment
	200m ISD,
· 2-tier model with wrap-around (7 sites, 3 sectors/cells per site)
Other deployment assumption is not precluded

	Channel mode
	UMa with distance-dependent LoS probability function defined in Table 7.4.2-1 in TR 38.901.

	System BW
	80MHz

	UE Speed
	· For spatial domain beam prediction, 3km/h
· For time domain beam prediction: 30km/h (baseline), 60km/h (optional)
· Other values are not precluded

	UE distribution
	· FFS UEs per sector/cell for evaluation. More UEs per sector/cell for data generation is not precluded.
 
· For spatial domain beam prediction: FFS:
· Option 1: 80% indoor ,20% outdoor as in TR 38.901
· Option 2: 100% outdoor
· For time domain prediction: 100% outdoor

	Transmission Power
	Maximum Power and Maximum EIRP for base station and UE as given by corresponding scenario in 38.802 (Table A.2.1-1 and Table A.2.1-2)

	BS Antenna Configuration
	·         [One panel: (M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), (dV, dH) = (0.5, 0.5) λ as baseline]
·         [Four panels: (M, N, P, Mg, Ng) = (4, 8, 2, 2, 2), (dV, dH) = (0.5, 0.5) λ. (dg,V, dg,H) = (2.0, 4.0) λ as optional]
·         Other assumptions are not precluded.
 
Companies to explain TXRU weights mapping.
Companies to explain beam selection.
Companies to explain number of BS beams

	BS Antenna radiation pattern
	TR 38.802 Table A.2.1-6, Table A.2.1-7

	UE Antenna Configuration
	[Panel structure: (M,N,P) = (1,4,2)]
·         2 panels (left, right) with (Mg, Ng) = (1, 2) as baseline
·         Other assumptions are not precluded
 
Companies to explain TXRU weights mapping.
Companies to explain beam and panel selection.
Companies to explain number of UE beams

	UE Antenna radiation pattern
	TR 38.802 Table A.2.1-8, Table A.2.1-10

	Beam correspondence
	Companies to explain beam correspondence assumptions (in accordance to the two types agreed in RAN4)

	Link adaptation
	Based on CSI-RS

	Traffic Model
	FFS:
· Option 1: Full buffer
· Option 2: FTP model
Other options are not precluded

	Inter-panel calibration for UE
	Ideal, non-ideal following 38.802 (optional) – Explain any errors

	Control and RS overhead
	Companies report details of the assumptions

	Control channel decoding
	Ideal or Non-ideal (Companies explain how it is modelled)

	UE receiver type
	MMSE-IRC as the baseline, other advanced receiver is not precluded

	BF scheme
	Companies explain what scheme is used

	Transmission scheme
	Multi-antenna port transmission schemes
Note: Companies explain details of the using transmission scheme.

	Other simulation assumptions
	Companies to explain serving TRP selection
Companies to explain scheduling algorithm

	Other potential impairments
	Not modelled (assumed ideal).
If impairments are included, companies will report the details of the assumed impairments

	BS Tx Power
	[40 dBm]

	Maximum UE Tx Power
	23 dBm

	BS receiver Noise Figure
	7 dB

	UE receiver Noise Figure
	10 dB

	Inter site distance
	200m

	BS Antenna height
	25m

	UE Antenna height
	1.5 m

	Car penetration Loss
	38.901, sec 7.4.3.2: μ = 9 dB, σp = 5 dB
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