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Introduction
Rel-18 study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface, agreed in [1], includes a use case of positioning accuracy enhancement. For this use case, the target of the agenda item 9.2.4.1 is to evaluate performance benefits of AI/ML algorithms. The methodologies should be based on statistical models already defined in TR 38.857.  
In this contribution, we prioritize the evaluation that were agreed in the 3GPP RAN1#112 meeting. However, we also discuss proposals not agreed upon and topics for further study indicated as part of the agreements made in the previous meetings since RAN1-110e. A collection of agreements of the last 3GPP RAN1 meetings are available in Appendix A. In the document body, the agreements are presented within a frame block to be differentiated from the content. 
The relevant aspects of evaluations assumptions and datasets used in the evaluations are described in Section 2. In Section 3 we provide the evaluation results of relevant KPIs on AI/ML positioning enhancement. In Section 4, we provide the evaluation of different model input/output parameters. In Section 5, we provide the evaluation related to performance monitoring. In Section 6 and Section 7, we include a diversity of scenarios related to model generalization based on different settings and imperfections, respectively. In Section 8, we include other complementary evaluations that are not included in the previous sections. Finally, we provide a summary of observations and proposals in Section 9.
The main outcomes of this evaluation results are related to
· Evaluation of model performance when there are imperfections in the ground truth labels for direct AI/ML positioning, 
· Evaluation of the model performance and model complexity when the number of TRPs is selected and the PDP measurement is used as input parameter, 
· Evaluation of performance monitoring based on input parameters.

[bookmark: _Hlk510705081]Evaluation Assumptions and Datasets
[bookmark: _Hlk127116668]In the 3GPP RAN1#119-e meeting the following agreements were done:
	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.
Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.




These agreements set the basic simulation parameters used in the generation of the datasets used for training, testing, updating or fine tuning, and performance monitoring in the remaining sections.
[bookmark: _Ref131417028]Table 1 - Parameters used in the system level simulation to obtain the target datasets for AI/ML positioning enhancement evaluation, extracted from Table 6.1-1 in [2].
	
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m
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	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.


	Note 1:	According to Table A.2.1-7 in TR 38.802



Dataset generation: Using the parameters defined in Table 1 extensive system level simulation is used to generate the following datasets:
· Dataset 01: InF-DH scenario with factory clutter density of 40%, factory clutter height of 2 meters, factory clutter size of 2 meters, and factory ceiling height of 10 meters. This dataset has 21K samples and is generated with 100 different drops.
· Dataset 02: InF-DH scenario with factory clutter density of 60%, factory clutter height of 6 meters, factory clutter size of 2 meters, and factory ceiling height of 10 meters. This dataset has 12K samples and is generated with 100 different drops.
· Dataset 03: InF-DH scenario with factory clutter density of 50%, factory clutter height of 3 meters, factory clutter size of 2 meters, and factory ceiling height of 10 meters. This dataset has 20K samples and is generated with 100 different drops.

Note: In this contribution all scenarios considered an UE distribution area of 120x60 m.
Relevant KPIs on AI/ML Positioning Evaluation
This section aims to discuss, define, and propose relevant KPIs for AI/ML positioning evaluation. The first KPI is the inter-point distance metric (IPD) metric, which can be used as a quality indicator for data collection. The other proposed KPI is the F1-score, which provides a single metric that weights two ratios: precision and recall. Both KPIs, the IPD and the F1-score are detailed in the following subsections.

KPI for Data Collection
The availability of required data density for model training and testing/validation is one of the key challenges in machine learning, especially in the context of positioning, where obtaining the ground truth labels in terms of UE location, LOS / NLOS condition, etc., is challenging. These challenges are visible through the evaluation of model performance using real-world data. These datasets could also be emulated in a simulated environment by assuming the availability of a limited dataset, which could be a subset of the grid-based or uniform distribution of UEs. As discussed in Sec. 3.1.3 of [4], there are various techniques, such as data augmentation, that could be applied in such scenarios to ensure sufficient model performance. 
It is important to highlight that in terms of training, the dataset size could be an indicator of user area density. However, this assumption is valid only when users are dropped following a uniform distribution within the simulation.
[bookmark: _Hlk127116846]Observation 1: One key challenge in AI/ML-based positioning is the availability of good quality data with sufficient diversity of positioning ground truth labels and samples with accurate information for fine tuning, updating, and monitoring.
Observation 2: It is important to note that dataset size as an indication of user area density is valid only for uniform distribution of UEs which is limited to only simulated scenarios. However, it is important to determine a realistic indicator of the data collection quality beyond the dataset size. 
[bookmark: _Hlk127116572]
[bookmark: _Hlk127540555]Inter-point distance metric (IPD): The IPD is one of the key metrics that could indicate the dataset density. For UE-based positioning method with UE-based AI/ML model training and inference. Currently, it is unclear how to ensure that the available training data is utilized in a manner that ensures optimal model performance.
The collected training dataset can be characterized with the proposed IPD metric. The IPD relates the distance between neighboring measured locations and is dependent on the density and the overall spreading of the training dataset within the considered region of interest. Typically, for a training dataset with high density, the measured locations are very close, which corresponds to a low IPD value. On the contrary, for sparse training datasets with low density, the IPD value is high, as illustrated in Figure 1. This information needs to be correlated with environmental characteristics. For instance, for the same IPD value and different LOS/NLOS conditions, the reached positioning accuracy is different. 
[image: ]
[bookmark: _Ref127267412]Figure 1 - Example of training datasets with low density corresponding to high IPD value (left side) and high density corresponding to low IPD value (right side).

One fictitious example of the correlation between the environment and the IPD metric is shared in Table 2. Here, the required training dataset density expressed through the IPD metric is derived from: (1) targeted positioning accuracy and (2) the NLOS probability (%). Note that this requirement table could be maintained at LMF and corresponds to the minimum IPD threshold value as a function of the targeted accuracy and NLOS probability, which can be eventually enriched with further parameters.
[bookmark: _Ref125615481]Table 2 - Example of the correlation between the IPD metric and the NLOS probability (environment metric).
	Targeted accuracy (meters)
	NLOS probability (%)
	IPD value (meters)

	1 
	90
	0.5

	1
	20
	1

	0.5
	10
	0.6



[image: ]
[bookmark: _Ref127267700]Figure 2 - IPD aware ML model training triggering.

The proposed IPD metric can be used to optimize the training procedure, as described in Figure 2. Given the collected training dataset, the first step is to estimate the related IPD metric. The IPD value is then compared to the threshold value (as shown in Table 2) according to the predefined requirements. If the condition is verified, then the model can be trained using the collected training dataset. However, if this condition is not verified, then there is a high probability that the trained ML model will not be able to reach the target performance/accuracy. Thus, it is necessary to collect further data to reach the desired density and perform training with it. To sum up, the proposed IPD-based training procedure performs training with it. The IPD-based procedure allows us to avoid going through useless data collection, training, and verification operations while ensuring the required positioning accuracy. 
[bookmark: _Hlk127116582]The following agreement was achieved for AI/ML positioning accuracy and the correlation with user density/size.:
	Agreement (RAN1-111)
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.



In the following, we present some evaluations related to the impact of the lack of diverse data availability and the application of data augmentation as a potential solution to this problem. First, we describe high-level parameters used in the evaluation, and in other sub-item, we share the performance evaluation.
Deployment scenario and simulation assumptions: From the list of datasets, we consider scenario 1, defined by a clutter density of 40%, with a clutter height of 2 meters, clutter ceiling height of 10 meters, and clutter size of 2 meters. Further details of the deployment scenario and related assumptions are shown in Table 1.
The generated dataset contains features, such as the downlink time of arrival (ToA) for each link between each BS and the specific UE (18 ToAs measurement per UE) as well the ground truth of UE horizontal-2D location.
Details of the AI/ML model trained with supervised learning are indicated in Table 3.
Performance evaluation: we consider a neural network-based positioning method (num_hidden_layers = 2, num_hidden_nodes = 500) which considers as input ToA from a variable number of TRPs (18, 9, or 6) and the 2D horizontal UE position as output.
The performance of the ML model is assessed following a split of the total collected data into two separate sets for training and testing following different partitions. The model is first trained on the selected training set, and then the positioning accuracy is estimated on the test dataset. 
The data set can be described through the distance between the geographical locations associated with the data points, called inter-point distance (IPD). The IPD metric can be computed using Ripley’s G function (available within pointpats, which is an open-source python library for statistical analysis of planar point patterns [7]). The G function depicts the distribution of nearest neighbor distances. IPD metric is then defined as:
.
As an example, Figure 4 shows the G function for the training set corresponding to 70% of the total data and for which IPD is estimated to be 1.5 m. As expected, the higher the proportion of the training set is the closer the data points (in terms of geographical distance), which corresponds to a lower IPD value. Figure 5 shows the IPD estimated for the training set ranging from 5% to 70% of the total data (for 5% training set proportion and 95% for testing, the IPD is 5m whereas IPD=1.5 m for 70% training proportion).
[bookmark: _Ref131751442]Table 3 - Dataset description, model parameters, and complexity used in the evaluation of user's density scenarios.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	ToA (from 18 TRPs)
	2d horizontal position (x, y)
	2d horizontal position (x, y)
	Inf DH (40%)
	Inf DH (40%)
	70%
	30%
	0,261 M

	0.521 M

	2.65




 [image: ]IPD 

[bookmark: _Ref127113547]Figure 4 - Example IPD metric estimation with Ripley’s G function for test data 70% of total data.
[image: ]
[bookmark: _Ref127113656]Figure 5 - IPD metric estimation with Ripley’s G function for different training/test split proportion.
Observation 3: The dataset size is not a relevant parameter to indicate the quality of data collection.
Observation 4: For UE-based positioning, a quality indicator of the collected dataset used for model update, fine tuning, and monitoring is needed to ensure optimal model performance.
Proposal 1: RAN1 to study and evaluate for AI/M-based positioning the inter-point distance (IPD) metric-based criteria as quality indicator for collection of labeled data.

Performance evaluation: IPD metric versus data size 
We highlight in this section the impact of training data density versus data size on the ML positioning performance. To this end, the labeled data set (radio measurements and corresponding 2D positioning) is split into training and test sets. We then consider two cases (see Figure 6):
· Case 1: The training set is located randomly in the region of interest (RoI). This corresponds to the conventional case. 
· Case 2: The same training set size as case 1 is considered. However, the spatial distribution of the training data is modified to have more data localized in one specific region (), whereas only sparse points are left on the rest of the RoI. 

Computing the IPD metric (using the G function as shown in Figure 7), we can see clearly the gap between two sets even with the same size. The spatial distribution impacts their IPD value as follows: 2,5m for case 1 and 6m for case 2. 
The same ML model configuration is trained using dataset case 1 (model 1) and dataset case 2 (model 2). Thereafter, both models are tested using the same test data set. The obtained results are depicted in Table 4 for 90 percentile CDF horizontal positioning accuracy. For case 1, the obtained accuracy is 2.73 m, whereas it is 4.24 m. Thus, even with the same training dataset size but with different spatial distributions, the positioning accuracy degradation can reach 55%. This clearly shows the importance of the IPD metric to assess the training set quality and proves that the dataset size is not a sufficient parameter to characterize training data.
[image: ]
[bookmark: _Ref127113729]Figure 6 - Training data set for case 1: Random locations and case 2: Same size as case 1 but re-arranged.
 [image: ]
[bookmark: _Ref127113818]Figure 7 - G function for case 1 random training set (left) and case 2 re-arranged training set (right).

[bookmark: _Ref131751754]Table 4 - Horizontal positioning accuracy at CDF=90% for the evaluation related to dataset density based on IPD.
	Case 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	
	Train
	Test
	Train
	test
	AI/ML

	1
	ToA
	2d horizontal position (x, y)
	2d horizontal position (x, y)
	Inf DH (40%)
	Inf DH (40%)
	20%
Randomly located
	80%
	2.73


	2
	ToA
	2d horizontal position (x, y)
	2d horizontal position (x, y)
	Inf DH (40%)
	Inf DH (40%)
	20%
Same size as case 1 but re-arranged (Mostly located on the left side)
	80%
	4.24




Proposal 2: For evaluation of AI/ML-based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs to better represent real-world scenarios.

KPI for AI/ML Assisted Positioning
F1-score for LOS/NLOS classification
In the case of LOS/NLOS classification, which is a binary classification, using metrics to measure the sensitivity of the prediction is an important factor to evaluate the performance of the AI/ML model. One metric to evaluate the performance of the LOS/NLOS prediction is the false positive probability (FPP), which measures the probability that an AI/ML model is predicting that a specific link is in LOS. However, if the link is in NLOS, it could carry potential issues on the legacy positioning that is being assisted. It is because usually legacy methodologies only rely on LOS links. Thus, using this LOS/NLOS with a high rate of FPP could introduce errors in the positioning estimation.
Another metric is the false negative probability (FNP), which measures the probability that an AI/ML model is predicting that a specific link is in NLOS when it is in LOS. The consequence of the prediction when this rate increases is that the legacy positioning that is being assisted could lose samples to estimate the position. For example, in case of a high rate of FNP, some legacy methodologies could be impacted because the minimum number of links could not be achieved. 
In the case of binary classification, such LOS/NLOS prediction uses the harmonic mean of LOS/NLOS rate prediction. To evaluate this harmonic mean, the F1-score provides a single metric that weights two ratios: precision and recall using the following formula:

Where:


Here, the precision measures the quality of links predicted as LOS, and the recall measures the accuracy of links predicted as LOS [6].
In the evaluation section, only the F1-score and the accuracy are considered to evaluate the performance of the model output parameters in AI/ML assisted positioning.
Evaluation: An industrial scenario is simulated. From this setup, a snapshot of 18 links with PDP of the downlink is used as input parameter of an AI/ML assisted positioning. The intermediate metric that is estimated is the LOS/NLOS indication. The PDP is truncated in the first 128 samples. The summary of this evaluation is shared in Table 5. Here, it is possible to identify the usability of F1-score compared to accuracy for this binary classification problem.
[bookmark: _Ref127116086]Table 5 - LOS/NLOS performance evaluation in both scenarios. Scenario 01 with clutter density of 40%, and Scenario 2 with clutter density of 60%.
	
	Classification accuracy
	F1score

	Scenario 01 (hard selection)
	87.9% 
	0.8499

	Scenario 02 (hard Selection)
	99.4%
	0.659



[bookmark: _Hlk127116935]Observation 5: The F1-score KPI has potential to evaluate the sensitivity of LOS prediction for AI/ML-assisted positioning.
Proposal 3: RAN1 to consider at least F1-score as KPIs to measure the quality/sensitivity of LOS prediction for AI/ML assisted positioning.

Model Input/Output Performance Evaluation
Input on Direct AI/ML Positioning
CIR vs PDP data type as model input
In the 3GPP RAN1-111 meeting, the following agreement was achieved:
	Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.



Based on this agreement, the CIR samples of dataset 1 are considered as input model parameters. From these CIR samples we extract only the module information to get the PDP samples.  The values of Table 6 indicate that using the same AI/ML model, the performance using PDP has less than 3 meters of better accuracy than CIR in the 2D horizontal error at CDF 90%. This result does not indicate necessarily that PDP is a better input parameter than CIR. However, for CIR as input model parameter, there should be an extra model and computational complexity.
[bookmark: _Ref127112562]Table 6 - CIR and PDP, input parameters results, using the same model complexity. This evaluation was done on dataset 1 (clutter density 40%).
	Dataset/Scenario
	PDP or CIR
	N_TRPs
	Nport
	N’t
	2D horizontal error - CDF 90%

	Dataset 01 (Clutter density 40%)
	CIR
	18
	1
	128
	6.7

	Dataset 01 (Clutter density 40%)
	PDP
	18
	1
	128
	3.97



[bookmark: _Hlk127116989]Observation 6: Many companies are providing a diversity of results when comparing CIR and PDP as input model parameters. In some cases, CIR outperforms PDP and vice versa. However, we cannot get yet a conclusion on this comparison if companies do not define a clear and fare scenario setting to evaluate the trade-off between both input model parameters.
Proposal 4: RAN1 to define a fair and clear scenario setting to evaluate the performance of CIR and PDP. The setting should consider specific model/computational complexity, CIR/PDP dimensions and reporting in a unique common table.
PDP sample size representation
In the 3GPP RAN1-111 meeting, the following agreement was agreed:
	Agreement (RAN1-111)
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.


 
In this regard, an evaluation is done in a scenario in which the same model and computational complexity are used to evaluate a direct AI/ML positioning with PDP as the input parameter and the horizontal 2D position as ground truth. The PDP samples were truncated on different N’t values as indicated in the agreement. For each N’t value, the model was trained/tested in 20 different realizations or campaigns. The mean and variance of each specific realization campaign is calculated and shared in Table 7.
[bookmark: _Ref131484978]Table 7 - Horizontal 2D error -90% CDF with PDP as an input parameter of the AI/ML model using the dataset for testing. The PDP is truncated in the first N samples. The dataset used in this evaluation is the Inf-DH with 40% of clutter density.
	CIR size (N’t samples)
	32
	64
	128
	256
	1200

	Mean of horizontal 2D error at CDF 90% (meters)
	5.1416
	5.3317
	5.4057
	5.5558
	5.9670

	Variance of Horizontal 2D error (meters)
	0.1239
	0.0477
	0.415
	0.0634
	0.0354



[bookmark: _Hlk127117000]Proposal 5: RAN1 to define a fair and clear scenario setting to evaluate the performance of the first N’t samples. The setting should consider specific model/computational complexity, CIR/PDP dimensions and reporting in a unique common table.

Input/Output on AI/ML Assisted Positioning
Multi-TRP-one model for LOS/NLOS classification

The following agreements were done in the 3GPP RAN1#111 meeting:
	Agreement (RAN1-111)
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP).



	Agreement (RAN1-111)
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.



The AI/ML-assisted positioning corresponds to LOS/NLOS classification using as input parameter PDP measurements. A low computational and model complexity is considered in the measure of the accuracy of different scenarios. In the multi-TRPs evaluation, the N TRPs vary between 1 and 18, i.e., one model for N={1, 2, …, 18} TRPs. In each value of N several measurements of accuracy and F1-score are obtained, then the average of both is shared in Table 8 for the correspondent value of N. Here, the tendency is that increasing the number of TRPs has a negative impact on the average accuracy. When N=1, the accuracy achieves almost 95% and an F1-score of 0.78; when N=18, the accuracy drops to 88%, and the F1-score is a little bit enhanced to 0,85. 
[bookmark: _Ref131484403]Table 8 - Average accuracy and F1-score for AI/ML assisted positioning with LOS/NLOS in the output model. This prediction corresponds to a multi-TRP scenario with one model for N TRPs used simultaneously. This evaluation uses dataset 1 (clutter density 40%).
	N_TRPs
	1
	4
	8
	12
	16
	18

	Average
accuracy
	0.950
	0.9049
	0.9047
	0.8806
	0.8837
	0.8794

	Average F1-score
	0.7943
	0.8595
	0.8668
	0.8496
	0.8501
	0.8499



[bookmark: _Hlk127116778]Proposal 6: For multi-TRP scenarios (i.e., one model for N TRPs) evaluate the performance of LOS indication using a KPI (e.g. F1-score) indicating the TRP selection strategy and its respective model and computational complexity on a common table.

Performance Monitoring Evaluation
In the 3GPP RAN1#112 meeting, companies agreed the following:
	Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).



Our evaluation focuses on methods that do not depend on the ground truth labeling for both input and output monitoring, they are described in the following subsections. 
Input parameter monitoring
For input parameter monitoring, we propose two evaluations. The first methodology is based on the definition of a null hypothesis that two distributions are identical, and the second is based on a machine learning model classifier.
monitoring based on the similarity of distributions
Here, we use the Kolmogorov Smirnov Test (Kstest) for two-sample test comparison. It is based on the definition of a null hypothesis that two distributions are identical, Z(x) distribution is identical to H(x) for all x samples. If the hypothesis is not true, they are not identical. The hypothesis is evaluated using the p-value. For instance, if the null hypothesis is that a sample is distributed according to Z(x), we define a confidence level of 95%; which means that we will reject the null hypothesis in favor of the alternative (Z(x) distribution is different than H(x) distribution) if the p-value is less than 0.05.
In Table 9, Table 10, and Table 11 we share the outcomes of using the Kstest on different hypothetical scenarios. In all cases we consider the null hypothesis that a dataset used for training, fine-tuning, or monitoring (Z(x)) is identical to a new dataset representing a new scenario (H(x)). In all cases we choose a confidence level of 99%; that is, we will reject the null hypothesis if the p-value is less than 0.01.
The Kstest is done on 3 different representative features. In Table 9 we evaluate the CIR measurements, in Table 10 we evaluate the PDP measurements, and in Table 11 we consider the RSRP measurements. In the case of CIR and PDP the p-value provides ambiguous indications about the comparison between datasets. For instance, in Table 9 the first three rows are expected to get p-values less than 0.01, however in the last three rows we are forcing to do a comparison of different subsets of the same dataset, which means that we expect to get a p-value greater than 0.01 which is not correlated with the obtained results. In Table 10, row 6 gets a p-value of 0.00987 (less than 0.01) which indicates that the two subsets with the same distribution are not identical, which is not true.
In contrast to the ambiguous results obtained for CIR and PDP, in the case of RSRP the results are more consistent and accurate. For instance, in Table 11, the hypothesis null is confirmed or rejected according to our expectation.
[bookmark: _Ref131657246]Table 9 - Kolmogorov Smirnov Test when the analysed feature is the CIR measurement on different scenarios and conditions.
	Dataset used in Kolmogorov Smirnov Test (Kstest)
	
Null hypothesis
Z(x) is identical to H(x)
	Probability of similarity (p-value)
Note: A small p-value suggests that it is unlikely that the dataset used for training came from new dataset from new scenario.

	Dataset used for Training
Z(x)
	New Dataset from new scenario
H(x)
	
	

	Dataset 1
	Dataset 2
	Dataset 1 is identical to Dataset 2
	0.0

	Dataset 1 
	Dataset 3
	Dataset 1 is identical to Dataset 3
	0.0

	Dataset 2
	Dataset 3
	Dataset 2 is identical to Dataset 3
	1.4876e-58

	Dataset 1 (subset 1)
	Dataset 1 (subset 2)
	Dataset 1 is identical to Dataset 1
	0.005833

	Dataset 2 (subset 1)
	Dataset 2 (subset 2)
	Dataset 2 is identical to Dataset 2
	6.44706e-8

	Dataset 3 (subset 1)
	Dataset 3 (subset 2)
	Dataset 3 is identical to Dataset 3
	4.21623e-20



[bookmark: _Ref131657257]Table 10 - Kolmogorov Smirnov Test when the analysed feature is the PDP measurement on different scenarios and conditions.
	Dataset used in Kolmogorov Smirnov Test (Kstest)
	
Null hypothesis
Z(x) is identical to H(x)
	Probability of similarity (p-value)
Note: A small p-value suggests that it is unlikely that the dataset used for training came from new dataset from new scenario.

	Dataset used for Training
Z(x)
	New Dataset from new scenario
H(x)
	
	

	Dataset 1
	Dataset 2
	Dataset 1 is identical to Dataset 2
	0.0

	Dataset 1 
	Dataset 3
	Dataset 1 is identical to Dataset 3
	0.0

	Dataset 2
	Dataset 3
	Dataset 2 is identical to Dataset 3
	3.95661e-62

	Dataset 1 (subset 1)
	Dataset 1 (subset 2)
	Dataset 1 is identical to Dataset 1
	0.0611

	Dataset 2 (subset 1)
	Dataset 2 (subset 2)
	Dataset 2 is identical to Dataset 2
	0.06115

	Dataset 3 (subset 1)
	Dataset 3 (subset 2)
	Dataset 3 is identical to Dataset 3
	0.00987




[bookmark: _Ref131657264]Table 11 - Kolmogorov Smirnov Test when the analysed feature is the RSRP measurement on different scenarios and conditions.
	Dataset used in Kolmogorov Smirnov Test (Kstest)
	
Null hypothesis
Z(x) is identical to H(x)
	Probability of similarity (p-value)
Note: A small p-value suggests that it is unlikely that the dataset used for training came from new dataset from new scenario.

	New Dataset from new scenario
H(x)
	New Dataset from new scenario
H(x)
	
	

	Dataset 1
	Dataset 2
	Dataset 1 is identical to Dataset 2
	0.0

	Dataset 1 
	Dataset 3
	Dataset 1 is identical to Dataset 3
	8.83912e-168

	Dataset 2
	Dataset 3
	Dataset 2 is identical to Dataset 3
	2.8052e-16

	Dataset 1 (subset 1)
	Dataset 1 (subset 2)
	Dataset 1 is identical to Dataset 1
	0.9476

	Dataset 2 (subset 1)
	Dataset 2 (subset 2)
	Dataset 2 is identical to Dataset 2
	0.5007

	Dataset 3 (subset 1)
	Dataset 3 (subset 2)
	Dataset 3 is identical to Dataset 3
	0.51094



Observation 7: The performance monitoring based on distribution comparison of different datasets is impacted by the feature that is selected to monitor. For instance, evaluating the similarity between two distributions with Kolmogorov Smirnov Test (Kstest) method, the RSRP measurement provides accurate distribution comparison compared to CIR and PDP. 
Proposal 7: To RAN1 further evaluate the impact of at least RSRP measurement as dominant feature for performance monitoring.

monitoring based on machine learning classifier
Another potential method to identify similarities between two different datasets is using a customized ML classifier. Here, we define the hypothesis that using a well-trained ML classifier between two datasets sharing the same statistical distribution, the classification performance will be similar than a random classifier, which represents a reference of an inaccurate classification. In contrast, if two datasets have different statistical distributions, the classification performance should be represented by a curve in the direction of the upper left corner as illustrated in Figure 8. To evaluate represent graphically the binary classification we consider the receiver operating characteristic (ROC) curve and the area under the curve (AUC) to indicate numerically the classification quality, an AUC score of 0.5 indicates a very bad binary classification quality, and a value greater than 0.6 indicates a good classifier.
[image: ]
[bookmark: _Ref131749179]Figure 8 - Illustration of ROC curve. The fundamental information is indicated to differentiate the quality of binary classifiers.
The strategy is based on an arbitrarily labeling of two datasets of RSRP measurements representing two different scenarios (one is representing the InF-DH with clutter density of 40% and the other InF-DH with clutter density of 60%). For instance, dataset 1 is labeled with flag ‘1’ and dataset 2 is labeled with flag ‘2’. If the distribution of dataset 1 and dataset 2 are identical, it is expected to get a very inaccurate classifier. In contrast, if the distributions are not similar, the classifier performance could be more than acceptable. 

In Figure 9 and Figure 10 we use a ROC curve to represent graphically the performance of the ML classifier in two different scenarios. In both figures we include a blue line to indicate the reference of inaccurate classification (AUC score of 0.5). Figure 9 considers two datasets with identical distribution showing a very bad performance of the ML classifier (AUC score of 0.5069). In contrast, Figure 10 indicates that the classifier has a better ability to classify, which indicates that both datasets are not sharing the same distribution (AUC score of 0.743).
[image: ]
[bookmark: _Ref131659733]Figure 9 - ROC curve of Binary classification performance of two datasets with similar statistical distribution of the RSRP with AUC score of 0.5069.

[image: ]
[bookmark: _Ref131665791][bookmark: _Ref131659740]Figure 10 - ROC curve of Binary classification performance of two datasets with different statistical distribution of the RSRP with AUC score of 0.743.

Observation 8: For Performance monitoring purposes, using ML models as binary classification provides an easily discriminatory criteria between two different dataset distributions. However, in real scenarios it is expected to get a diverse set of distributions. Thus, an extension of a binary classification to a multi-class classification could be a potential alternative, however an extra expense of model and computational complexity could be expected. 
Proposal 8: To RAN1 further study and evaluate the monitoring performance based on AI/ML models considering the model and computational complexity of the AI/ML model used for monitoring in a common table between companies.

Performance Evaluation on Different Settings
Evaluation for direct AI/ML positioning
We consider scenario 1, defined by a clutter density of 40%, with a clutter height of 2 meters, clutter ceiling height of 10 meters, and clutter size of 2 meters. Further details of the deployment scenario and related assumptions are shown in Section 2.
Compared to our previous evaluations, here we use as input parameter the downlink time of arrival (ToA) for each link between each BS and the specific UE (18 ToAs measurement per UE) as well the ground truth of UE horizontal-2D location.

Impact of the number of TRPs measurement and IPD metric data size 
Positioning accuracy is evaluated for different cases, using 90% CDF value of the calculated position error:
· ToA is measured from a variable number of 18, 9, and 6 TRPs 
· Different IPD metric values derived from different training/test partitions: [95%, 80%, 60%, 50%, 30%]

[image: ]
[bookmark: _Ref127113966]Figure 11 - Positioning accuracy vs. IPD for 18, 9, and 6 TRPs cases.

Figure 11 presents the relation between the IPD metric and horizontal positioning accuracy on the test dataset for different TRPs cases: 18, 9, and 6. 
The main conclusions derived from the obtained results are: 
· The positioning accuracy is improved with a higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements. 
· The positioning accuracy is enhanced with a lower IPD of the training data set with around 13% improvement. This enhancement is more important in the case of a lower number of TRPs.  

Impact of clutter density percentage 
Positioning accuracy is evaluated for different clutter cases 40%, 50%, and 60% considering the ML model (Figure 12) with 18 TRPs measurements and a split of training/test data (70% & 30%). Figure 12 shows the obtained horizontal positioning accuracy at respectively 50% and 90%. As expected, the positioning accuracy is degraded with increasing clutter percentage, which corresponds to higher NLOS. 
[image: ]
[bookmark: _Ref127114015]Figure 12 -Positioning accuracy vs. clutter case.
Observation 9: The positioning accuracy improves in correlation with a higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements.
Observation 10: The positioning accuracy is enhanced with a lower IPD value of the training dataset with around 13 % improvement. This enhancement is more important in the case of a lower number of TRPs when the input parameter is ToA.
Generalization for AI/ML Assisted positioning
Different Clutter Parameters
LOS/NLOS classification
In the 3GPP RAN1-111 meeting, the following agreement was approved by participant companies:
	Agreement 
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.



	Agreement 
For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching is necessary.



The AI/ML assisted positioning methods aims to enhance specific parameters that could be used in a second instance for a legacy methodology. The metric considered in this report is the LOS/NLOS indicator. The summary of the evaluation is shared in Table 12. Here, the column related to the amount of data used in the fine-tuning is highlighted in grey shading.
In , the model is trained with dataset 2 and tuned with dataset 1. Here the performance is always over 90% in all cases. However, the F1-score is very low for all scenarios, which indicates that the generalization of a model originally trained in an unbalanced dataset (ex., NLOS rate 99% and LOS rate 1%) introduces a low-quality prediction of LOS, instead that the accuracy is high.
[bookmark: _Ref127108845]Table 12 - Training and tuning of an AI/ML assisted positioning based on LOS/NLOS classification. The model is trained in dataset 2 and tuned with a small amount of information from dataset 1. UE distribution area = 120x60 m.
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Classification indicators

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	Accuracy
	F1-score
	FPP
	FNP

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	-
	Dataset 2
	80%
	-
	20%
	130K
	0.0132G
	99.8%
	0.66
	0
	0.001

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	Dataset 1
	Dataset 1
	80%
	10%
	90%
	130K
	0.0132G
	92.8%
	0.76
	0.028
	0.0428

	PDP (Real)
	LOS/
NLOS 
	LOS/NLOS indication
	Dataset 2
	Dataset 1
	Dataset 2
	80%
	10%
	20%
	130K
	0.0132G
	94.5%
	0.056
	0.053
	0.0008





[bookmark: _Hlk127116952]Observation 11: The f1-score (quality LOS indication) is sensitive to fine-tuning generalization scenarios.
[bookmark: _Hlk127116683]Proposal 9: RAN1 to consider at least F1-score as KPI metric for LOS/NLOS classification (AI/ML assisted positioning) for unbalanced dataset scenarios to enhance the LOS indication quality. In addition, RAN1 may consider the model and computational complexity in a common agreed table between companies.

Performance Evaluation on Imperfections
Direct AI/ML positioning
Labeling errors
In the 3GPP RAN1#112 meeting the following evaluation was agreed between companies: 
	Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]



The ground truth label error was generated with the premises defined in the agreement. 
In Table 13 is shown the performance of the horizontal positioning. We use the error CDF at 90% as reference for each noise standard deviation. In the table we use the mean and the variance of the positioning error to evaluate the consistency of the AI/ML model between 20 different realizations of the same experiment. The model was trained using dataset 1, further details of the dataset are shared in Section 2.
In this scenario we used the same AI/ML model structure. Thus, the model and computational complexity remains the same in all cases. The model complexity is 300K parameters and the computational complexity is 382M flops.
[bookmark: _Ref131486136]Table 13 - Evaluation of ground truth labelling error with different noise standard deviation and their impact on the horizontal 2D error at CDF 90%. The error is indicated using the mean and the variance between 20 different realizations of the same experiment. UE distribution area = 120x60 m.
	Standard deviation of L meters.
	0.0
	0.5
	1.0
	1.5
	2.0
	2.5
	3.0

	Horizontal 2D error at CDF 90% (meters)
	5.8134
	5.8458
	5.9526
	6.0620
	6.300
	6.7307
	6.874

	Percentage of error compared to L=0
	0%
	0.55%
	2.39%
	4.28%
	8.38%
	15.77%
	17.19%



Observation 12: For Direct AI/ML positioning, the performance of the horizontal positioning is degraded after a certain standard deviation value of the truncated Gaussian distribution. For instance, in our performance evaluation the accuracy was degraded by 5% with L=1.5 meters. 
Observation 13: In the evaluation, Direct AI/ML positioning is robust to label noise with Gaussian distribution. However, modeling this error type in real-world scenarios could be a challenge.  
Proposal 10: RAN1 to further evaluate and study the impact and potential solution of labeling error on AI/ML based positioning performance using different error distribution sources. 


[bookmark: _Hlk127116787]Other Complementary Evaluations
Trade-off between complexity and performance evaluation
In the 3GPP RAN1#112 meeting, the following proposal was agreed between companies.
	Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.



The trade-off between model performance and complexity is presented in Table 14. Here, we can observe that there is an impact on the positioning accuracy when the number of N_TRPs is iterated from 4 to 18. As bigger the number of TRPs, the horizontal positioning accuracy is enhanced. Likewise, the model complexity and the computational complexity values increase. Specifically, computational complexity is affected when the number of TRPs is increased, for instance the complexity using 4 TRPs is 498M flops and using 18 TRPs, the complexity is more than double (1280M flops). The model was trained using dataset 1, further details of the dataset are shared in Section 2.
Another important aspect is the model consistency performance evaluation. To do this evaluation, we consider 50 realizations of the model training and tested in each realization the performance of each model. With this information, we obtained the mean and the variance for each scenario in Table 14. One interesting outcome is that as we increase the number of TRPs (N_TRPs), the variance is getting lower values, which indicates that when the number of TRPs is increased, the result’s consistency is getting better. 
[bookmark: _Ref131495972]Table 14 - Evaluation for different number of TRPs (N_TRPs) considering an arbitrarily TRPs selection and compared with their respective model complexity and computational complexity. The input parameter was PDP, the N’t =128. UE distribution area = 120x60 m.
	N_TRPs
	4
	8
	12
	16
	18

	Model complexity (parameters)
	462.8K
	464K
	465.2K
	466.3K
	466.9K

	computational complexity (flops)
	498M
	720M
	943M
	1170M
	1280M

	Horizontal 2D error at CDF 90% (meters)
	23.33
	10.17
	7.138
	5.79
	5.114

	Variance of Horizontal 2D error (meters)
	0.964
	0.158
	0.104
	0.063
	0.046



Observation 14: The horizontal performance is enhanced when the number of TRPs is increased at the expense of the computational complexity.
Proposal 11: To RAN1 evaluate and study the impact of TRPs selection-criteria on the positioning performance, model complexity, and computational complexity. The results should be shared in a common agreed table between companies.

Conclusion
In this contribution, we made the following observations and proposals:
Observations
Observation 1: One key challenge in AI/ML-based positioning is the availability of good quality data with sufficient diversity of positioning ground truth labels and samples with accurate information for fine tuning, updating, and monitoring.
Observation 2: It is important to note that dataset size as an indication of user area density is valid only for uniform distribution of UEs which is limited to only simulated scenarios. However, it is important to determine a realistic indicator of the data collection quality beyond the dataset size. 
Observation 3: The dataset size is not a relevant parameter to indicate the quality of data collection.
Observation 4: For UE-based positioning, a quality indicator of the collected dataset used for model update, fine tuning, and monitoring is needed to ensure optimal model performance.
Observation 5: The F1-score KPI has potential to evaluate the sensitivity of LOS prediction for AI/ML-assisted positioning.
Observation 6: Many companies are providing a diversity of results when comparing CIR and PDP as input model parameters. In some cases, CIR outperforms PDP and vice versa. However, we cannot get yet a conclusion on this comparison if companies do not define a clear and fare scenario setting to evaluate the trade-off between both input model parameters.
Observation 7: The performance monitoring based on distribution comparison of different datasets is impacted by the feature that is selected to monitor. For instance, evaluating the similarity between two distributions with Kolmogorov Smirnov Test (Kstest) method, the RSRP measurement provides accurate distribution comparison compared to CIR and PDP. 
Observation 8: For Performance monitoring purposes, using ML models as binary classification provides an easily discriminatory criteria between two different dataset distributions. However, in real scenarios it is expected to get a diverse set of distributions. Thus, an extension of a binary classification to a multi-class classification could be a potential alternative, however an extra expense of model and computational complexity could be expected. 
Observation 9: The positioning accuracy improves in correlation with a higher number of TRPs measurements: from 5m accuracy with 6TRPs measurements to less than 3m with 18 TRPs measurements.
Observation 10: The positioning accuracy is enhanced with a lower IPD value of the training dataset with around 13 % improvement. This enhancement is more important in the case of a lower number of TRPs when the input parameter is ToA.
Observation 11: The f1-score (quality LOS indication) is sensitive to fine-tuning generalization scenarios.
Observation 12: For Direct AI/ML positioning, the performance of the horizontal positioning is degraded after a certain standard deviation value of the truncated Gaussian distribution. For instance, in our performance evaluation the accuracy was degraded by 5% with L=1.5 meters. 
Observation 13: In the evaluation, Direct AI/ML positioning is robust to label noise with Gaussian distribution. However, modeling this error type in real-world scenarios could be a challenge.  
Observation 14: The horizontal performance is enhanced when the number of TRPs is increased at the expense of the model and computational complexity.

Proposals
Proposal 1: RAN1 to study and evaluate for AI/M-based positioning the inter-point distance (IPD) metric-based criteria as quality indicator for collection of label data.
Proposal 2: For evaluation of AI/ML-based positioning, consider additional UE distribution options such as sparse or clustered deployment of UEs to better represent real-world scenarios.
Proposal 3: RAN1 to consider at least F1-score as KPIs to measure the quality/sensitivity of LOS prediction for AI/ML assisted positioning.
Proposal 4: RAN1 to define a fair and clear scenario setting to evaluate the performance of CIR and PDP. The setting should consider specific model/computational complexity, CIR/PDP dimensions and reporting in a unique common table.
Proposal 5: RAN1 to define a fair and clear scenario setting to evaluate the performance of the first N’t samples. The setting should consider specific model/computational complexity, CIR/PDP dimensions and reporting in a unique common table.
Proposal 6: For multi-TRP scenarios (i.e., one model for N TRPs) evaluate the performance of LOS indication using a KPI (e.g. F1-score) indicating the TRP selection strategy and its respective model and computational complexity on a common table.
Proposal 7: To RAN1 further evaluate the impact of at least RSRP measurement as dominant feature for performance monitoring.
Proposal 8: To RAN1 further study and evaluate the monitoring performance based on AI/ML models considering the model and computational complexity of the AI/ML model used for monitoring in a common table between companies.
Proposal 9: RAN1 to consider at least F1-score as KPI metric for LOS/NLOS classification (AI/ML assisted positioning) for unbalanced dataset scenarios to enhance the LOS indication quality. In addition, RAN1 may consider the model and computational complexity in a common agreed table between companies.
Proposal 10: RAN1 to further evaluate and study the impact and potential solution of labeling error on AI/ML based positioning performance using different error distribution sources. 
Proposal 11: To RAN1 evaluate and study the impact of TRPs selection-criteria on the positioning performance, model complexity, and computational complexity. The results should be shared in a common agreed table between companies.
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Appendix A
The agreements reached on the agenda item 9.2.4.1 related to evaluation of use cases for AI/ML based positioning accuracy enhancement are indicated in each 3GPP RAN1 meeting.
Agreements reached in 3GPP RAN1#109e meeting
	Agreement
The IIoT indoor factory (InF) scenario is a prioritized scenario for evaluation of AI/ML based positioning. 
Agreement
For evaluation of AI/ML based positioning, at least the InF-DH sub-scenario is prioritized in the InF deployment scenario for FR1 and FR2.
Agreement
For InF-DH channel, the prioritized clutter parameters {density, height, size} are:
· {60%, 6m, 2m};
· {40%, 2m, 2m}. 
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.
· 
Agreement
For evaluation of AI/ML based positioning, reuse the common scenario parameters defined in Table 6-1 of TR 38.857.
Agreement
For evaluation of InF-DH scenario, the parameters are modified from TR 38.857 Table 6.1-1 as shown in the table below.
· The parameters in the table are applicable to InF-DH at least. If another InF sub-scenario is prioritized in addition to InF-DH, some parameters in the table below may be updated.

Parameters common to InF scenario (Modified from TR 38.857 Table 6.1-1)
	 
	FR1 Specific Values 
	FR2 Specific Values

	Channel model
	InF-DH
	InF-DH

	Layout 
	Hall size
	InF-DH: 
(baseline) 120x60 m
(optional) 300x150 m

	
	BS locations
	18 BSs on a square lattice with spacing D, located D/2 from the walls.
-	for the small hall (L=120m x W=60m): D=20m
-	for the big hall (L=300m x W=150m): D=50m

[image: ]

	
	Room height
	10m

	Total gNB TX power, dBm
	24dBm
	24dBm
EIRP should not exceed 58 dBm

	gNB antenna configuration
	(M, N, P, Mg, Ng) = (4, 4, 2, 1, 1), dH=dV=0.5λ – Note 1
Note: Other gNB antenna configurations are not precluded for evaluation
	(M, N, P, Mg, Ng) = (4, 8, 2, 1, 1), dH=dV=0.5λ – Note 1
One TXRU per polarization per panel is assumed

	gNB antenna radiation pattern
	Single sector – Note 1
	3-sector antenna configuration – Note 1

	Penetration loss
	0dB

	Number of floors
	1

	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- the convex hull of the horizontal BS deployment.
- the whole hall area if the CDF values for positioning accuracy is obtained from whole hall area. 
FFS: which of the above should be baseline.
FFS: if an optional evaluation area is needed

	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2=[image: ][image: ] for scenario 2 (InF-DH)  
FFS: if the optional UE antenna height is needed

	UE mobility
	3km/h 

	Min gNB-UE distance (2D), m
	0m

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,[image: ][image: ]), 8}.
FFS: if the optional gNB antenna height is needed

	Clutter parameters: {density [image: ][image: ], height [image: ][image: ],size [image: ][image: ]}
	High clutter density:
- {40%, 2m, 2m} 
- {60%, 6m, 2m}
· Note: an individual company may treat {40%, 2m, 2m} as optional in their evaluation considering their specific AI/ML design.


	Note 1:	According to Table A.2.1-7 in TR 38.802




Agreement
For AI/ML-based positioning evaluation, the baseline performance to compare against is that of existing Rel-16/Rel-17 positioning methods.
· As a starting point, each participating company report the specific existing positioning method (e.g., DL-TDOA, Multi-RTT) used as comparison.

Agreement
For all scenarios and use cases, the main KPI is the CDF percentiles of horizonal accuracy.
· Companies can optionally report vertical accuracy.

Agreement
The CDF percentiles to analyse are: {50%, 67%, 80%, 90%}.
· 90% is the baseline. {50%, 67% 80%} are optional.

Agreement
Target positioning requirements for horizonal accuracy and vertical accuracy are not defined for AI/ML-based positioning evaluation.

Agreement
For evaluation of AI/ML based positioning, the KPI include the model complexity and computational complexity.
· FFS: the details of model complexity and computational complexity

Agreement
Synthetic dataset generated according to the statistical channel models in TR38.901 is used for model training, validation, and testing.

Agreement
The dataset is generated by a system level simulator based on 3GPP simulation methodology.

Agreement
As a starting point, the training, validation and testing dataset are from the same large-scale and small-scale propagation parameters setting. Subsequent evaluation can study the performance when the training dataset and testing dataset are from different settings.

Agreement
For AI/ML-based positioning evaluation, RAN1 does not attempt to define any common AI/ML model as a baseline.

Agreement
The entry “UE horizontal drop procedure” in the simulation parameter table for InF is updated to the following.
	UE horizontal drop procedure
	Uniformly distributed over the horizontal evaluation area for obtaining the CDF values for positioning accuracy, The evaluation area should be selected from
- (baseline) the whole hall area, and the CDF values for positioning accuracy is obtained from whole hall area.
- (optional) the convex hull of the horizontal BS deployment, and the CDF values for positioning accuracy is obtained from the convex hull.


 
Agreement
The entries “UE antenna height” and “gNB antenna height” in the simulation parameter table for InF is updated to the following.
	UE antenna height
	Baseline: 1.5m
(Optional): uniformly distributed within [0.5, X2]m, where X2 = 2m for scenario 1(InF-SH) and X2= for scenario 2 (InF-DH) 

	…
	…

	gNB antenna height
	Baseline: 8m
(Optional): two fixed heights, either {4, 8} m, or {max(4,), 8}.


 
Agreement
If spatial consistency is enabled for the evaluation, companies model at least one of: large scale parameters, small scale parameters and absolute time of arrival, where
· the large scale parameters are according to Section 7.5 of TR 38.901 and correlation distance =  for InF (Section 7.6.3.1 of TR 38.901)
· the small scale parameters are according to Section 7.6.3.1 of TR 38.901
· the absolute time of arrival is according to Section 7.6.9 of TR 38.901
 
Agreement
If spatial consistency is enabled for the evaluation of AI/ML based positioning, the baseline evaluation does not incorporate spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
-         It is optional to implement spatially consistent UT/BS mobility modelling (Section 7.6.3.2 of TR 38.901).
 
Agreement
For evaluation of AI/ML based positioning, companies are encouraged to evaluate the model generalization.
· FFS: the metrics for evaluating the model generalization (e.g., model performance based on agreed KPIs under different settings)
 
Agreement
Companies are encouraged to provide evaluation results for:
· Direct AI/ML positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· AI/ML assisted positioning
· Companies are encouraged to describe at least the following implementation details for the evaluation
· details of the channel observation used as the input of the AI/ML model inference (e.g., type and size of model input), model input acquisition and pre-processing
· details of the output of the AI/ML model inference, how the AI/ML model output is used to obtain the UE’s location
 
Agreement
When reporting evaluation results with direct AI/ML positioning and/or AI/ML assisted positioning, proponent company is expected to describe if a one-sided model or a two-sided model is used.
· If one-sided model (i.e., UE-side model or network-side model), the proponent company report which side the model inference is performed (e.g. UE, network), and any details specific to the side that performs the AI/ML model inference.
· If two-sided model, the proponent company report which side (e.g., UE, network) performs the first part of interference, and which side (e.g., network, UE) performs the remaining part of the inference.
 
Agreement
For evaluation of AI/ML based positioning, the computational complexity can be reported via the metric of floating point operations (FLOPs).
· Note: For AI/ML assisted methods, computational complexity for the AI/ML model is only one component of the overall complexity for estimating the UE’s location.
· Note: Other metrics to measure the computational complexity are not precluded.
 
Agreement
For evaluation of AI/ML based positioning, details of the training dataset generation are to be reported by proponent company. The report may include (in addition to other selected settings, if applicable):
· The size of training dataset, for example, the total number of UEs in the evaluation area for generating training dataset;
· The distribution of UE location for generating the training dataset may be one of the following:
· Option 1: grid distribution, i.e., one training data is collected at the center of one small square grid, where, for example, the width of the square grid can be 0.25/0.5/1.0 m.
· Option 2: uniform distribution, i.e., the UE location is randomly and uniformly distributed in the evaluation area. 



Agreements reached in 3GPP RAN1#110 meeting
	Agreement
For AI/ML-based positioning, both approaches below are studied and evaluated by RAN1:
· Direct AI/ML positioning
· AI/ML assisted positioning

Agreement
For AI/ML-based positioning, study impact from implementation imperfections.

Agreement
For evaluation of AI/ML based positioning, the model complexity is reported via the metric of “number of model parameters”. 

Agreement
To investigate the model generalization capability, at least the following aspect(s) are considered for the evaluation for AI/ML based positioning:
1. Different drops
0. Training dataset from drops {A0, A1,…, AN-1}, test dataset from unseen drop(s) (i.e., different drop(s) than any in {A0, A1,…, AN-1}). Here N>=1.
1. Clutter parameters, e.g., training dataset from one clutter parameter (e.g., {40%, 2m, 2m}), test dataset from a different clutter parameter (e.g., {60%, 6m, 2m});
1. Network synchronization error, e.g., training dataset without network synchronization error, test dataset with network synchronization error;
· Other aspects are not excluded.
Note: It’s up to participating companies to decide whether to evaluate one aspect at a time, or evaluate multiple aspects at the same time.

Agreement
When providing evaluation results for AI/ML based positioning, participating companies are expected to describe data labelling details, including:
· Meaning of the label (e.g., UE coordinates; binary identifier of LOS/NLOS; ToA)
· Percentage of training data without label, if incomplete labeling is considered in the evaluation
· Imperfection of the ground truth labels, if any

Agreement
For evaluation of AI/ML based positioning, study the performance impact from availability of the ground truth labels (i.e., some training data may not have ground truth labels). The learning algorithm (e.g., supervised learning, semi-supervised learning, unsupervised learning) is reported by participating companies.

Agreement
For AI/ML-based positioning, for evaluation of the potential performance benefits of model finetuning, report at least the following: 
· training dataset setting (e.g., training dataset size necessary for performing model finetuning)
· horizontal positioning accuracy (in meters) before and after model finetuning.


Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, the following table is adopted for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description] 
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Training
	test
	Model complexity
	Computational complexity
	AI/ML

	
	
	
	
	
	
	
	
	



To report the following in table caption: 
· Which side the model is deployed
· Model generalization investigation, if applied
· Short model description: e.g., CNN
Further info for the columns:
· Model input: input type and size
· Model output: output type and size
· Label: meaning of ground truth label; percentage of training data set without label if data labeling issue is investigated (default = 0%)
· Clutter parameter: e.g., {60%, 6m, 2m}
· Dataset size, both the size of training/validation dataset and the size of test dataset
· AI/ML complexity: both model complexity in terms of “number of model parameters”, and computational complexity in terms of FLOPs
· Horizontal positioning accuracy: the accuracy (in meters) of the AI/ML based method
Note: To report other simulation assumptions, if any.

Agreement
For evaluation of AI/ML assisted positioning, an intermediate performance metric of model output is reported.
· FFS: Detailed definition of the intermediate performance metric of the model output

Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(d) UE/gNB RX and TX timing error. 
· The baseline non-AI/ML method may enable the Rel-17 enhancement features (e.g., UE Rx TEG, UE RxTx TEG).




Agreements reached in 3GPP RAN1#110-bis-e meeting
	Agreement
To investigate the model generalization capability, the following aspect is also considered for the evaluation of AI/ML based positioning:
(e) InF scenarios, e.g., training dataset from one InF scenario (e.g., InF-DH), test dataset from a different InF scenario (e.g., InF-HH)

Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, if fine-tuning is not evaluated, the template agreed in RAN1#110 is updated to the following for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	




Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, if fine-tuning is evaluated, the template agreed in RAN1#110 is updated to the following for reporting the evaluation results.
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Fine-tune
	Test
	Train
	Fine-tune
	test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	
	
	



Agreement
For AI/ML-assisted positioning, companies report which construction is applied in their evaluation:
(a) Single-TRP construction: the input of the ML model is the channel measurement between the target UE and a single TRP, and the output of the ML model is for the same pair of UE and TRP. 
(b) Multi-TRP construction: the input of the ML model contains N sets of channel measurements between the target UE and N (N>1) TRPs, and the output of the ML model contains N sets of values, one for each of the N TRPs.
Note: For a measurement (e.g., RSTD) which is a relative value between a given TRP and a reference TRP, the TRP in “single-TRP” and “multi-TRP” refers to the given TRP only. 
Note: For single-TRP construction, companies report whether they consider same model for all TRPs or N different models for TRPs

Conclusion
For evaluation of AI/ML based positioning, suspend the discussion on intra-site (or zone-specific) variations until concepts and channel model construction not in TR38.901 (e.g., “intra-site” or “zone”) are clarified under AI 9.2.1.
· Note: An individual company can still submit evaluation results for intra-site variation.

Conclusion
For evaluation of AI/ML based positioning, the sampling period is selected by proponent companies. Each company report the sampling period used in their evaluation. 

Agreement
For evaluation of AI/ML assisted positioning, the following intermediate performance metrics are used:
· LOS classification accuracy, if the model output includes LOS/NLOS indicator of hard values, where the LOS/NLOS indicator is generated for a link between UE and TRP;
· Timing estimation accuracy (expressed in meters), if the model output includes timing estimation (e.g., ToA, RSTD).
· Angle estimation accuracy (in degrees), if the model output includes angle estimation (e.g., AoA, AoD).
· Companies provide info on how LOS classification accuracy and timing/angle estimation accuracy are estimated, if the ML output is a soft value that represents a probability distribution (e.g., probability of LOS, probability of timing, probability of angle, mean and variance of timing/angle, etc.)

Conclusion
For evaluation of AI/ML based positioning, it’s up to each company to take into account the channel estimation error in their evaluation. Companies describe the details of their simulation assumption, e.g., realistic or ideal channel estimation, error models, receiver algorithms.

Agreement
For AI/ML assisted positioning, when single-TRP construction is used for the AI/ML model, companies report at least the AI/ML complexity (Model complexity, Computation complexity) for N TRPs, which are used to determine the position of a target UE.
Table. Model complexity and computation complexity to support N TRPs for a target UE
	
	Model complexity to support N TRPs
	Computation complexity to process N TRPs

	Single-TRP, same model for N TRPs
	
When the model is at UE-side, where  is the model complexity for the same model.
FFS: if the model is at network-side
	
Where  is the computation complexity of the same model for one TRP.

	Single-TRP, N models for N TRPs
	When the model is at UE-side,

Where  is the model complexity for the i-th AI/ML model.
FFS: if the model is at network-side
	
Where  is the computation complexity for the i-th AI/ML model.

	Multi-TRP (i.e., one model for N TRPs)
	
Where  is the model complexity for the one model.
	
Where  is the computation complexity for the one model.



Agreement
For AI/ML based positioning, if an InF scenario different from InF-DH is evaluated for the model generalization capability, the selected parameters (e.g., clutter parameters) are compliant with TR 38.901 Table 7.2-4 (Evaluation parameters for InF).
· Note: In TR 38.857 Table 6.1-1 (Parameters common to InF scenarios), InF-SH scenario uses the clutter parameter {20%, 2m, 10m} which is compliant with TR 38.901.

Agreement
For the model input used in evalutions of AI/ML based positioning, if time-domain channel impulse response (CIR) or power delay profile (PDP) is used as model input in the evaluation, companies report the input dimension NTRP * Nport * Nt, where NTRP is the number of TRPs, Nport is the number of transmit/receive antenna port pairs, Nt is the number of time domain samples. 
· Note: CIR and PDP may have different dimensions. 
· Note: Companies provide details on their assumption on how PDP is constructed and how (if applicable) it is mapped to Nt samples.




Agreements reached in 3GPP RAN1#111 meeting
	Agreement
Study how AI/ML positioning accuracy is affected by: user density/size of the training dataset.
Note: details of user density/size of training dataset to be reported in the evaluation.

Agreement
For reporting the model input dimension NTRP * Nport * Nt of CIR and PDP, Nt refers to the first Nt consecutive time domain samples.
· If N’t (N’t < Nt) samples with the strongest power are selected as model input, with remaining (Nt ‒ N’t) time domain samples set to zero, then companies report value N’t in addition to Nt. It is also assumed that timing info for the N’t samples need to be provided as model input.

Agreement
For reporting the model input dimension NTRP * Nport * Nt:
· If the model input is CIR, then each input value of CIR is a complex number, i.e. it contains two real values, either {real, imaginary} or {magnitude, phase}.
· If the model input is PDP, then each input value of PDP is a real value.

Agreement
At least for model inference of AI/ML assisted positioning, evaluate and report the AI/ML model output, including (a) the type of information (e.g., ToA, RSTD, AoD, AoA, LOS/NLOS indicator) to use as model output, (b) soft information vs hard information, (c) whether the model output can reuse existing measurement report (e.g., NRPPa, LPP). 

Agreement
For AI/ML assisted positioning, evaluate the three constructions:
· Single-TRP, same model for N TRPs
· Single-TRP, N models for N TRPs
· Multi-TRP (i.e., one model for N TRPs)
Note: Individual company may evaluate one or more of the three constructions.

Agreement
For AI/ML assisted approach, study the performance of model monitoring metrics at least where the metrics are obtained from inference accuracy of model output.

Agreement
For both direct and AI/ML assisted positioning methods, investigate at least the impact of the amount of fine-tuning data on the positioning accuracy of the fine-tuned model.
· The fine-tuning data is the training dataset from the target deployment scenario.

Agreement
For the RAN1#110bis agreement on the calculation of model complexity, the FFS are resolved with the following update:
	
	Model complexity to support N TRPs

	Single-TRP, same model for N TRPs
	
where 
 is the model complexity for one TRP and the same model is used for N TRPs.


	Single-TRP, N models for N TRPs
	
Where  is the model complexity for the i-th AI/ML model.



Note: The reported model complexity above is intended for inference and may not be directly applicable to complexity of other LCM aspects.

Observation
Direct AI/ML positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the direct AI/ML positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 

Agreement
For AI/ML based positioning, company optionally evaluate the impact of at least the following issues related to measurements on the positioning accuracy of the AI/ML model. The simulation assumptions reflecting these issues are up to companies.
· SNR mismatch (i.e., SNR when training data are collected is different from SNR when model inference is performed).
· Time varying changes (e.g., mobility of clutter objects in the environment)
· Channel estimation error

Conclusion
Companies describe how their computational complexity values are obtained. 
· It is out of 3GPP scope to consider computational complexity values that have platform-dependency and/or use implementation (hardware and software) optimization solutions.

Observation
AI/ML assisted positioning can significantly improve the positioning accuracy compared to existing RAT-dependent positioning methods when the generalization aspects are not considered.
· For InF-DH with clutter parameter setting {40%, 2m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <0.4m at CDF=90%, as compared to >9m for conventional positioning method. 
· For InF-DH with clutter parameter setting {60%, 6m, 2m}, evaluation results submitted to RAN1#111 indicate that the AI/ML assisted positioning can achieve horizontal positioning accuracy of <1m at CDF=90%, as compared to >15m for conventional positioning method. 
Note: how to capture the observation(s) into TR is separate discussion.

Agreement
· For AI/ML assisted approach, for a given AI/ML model design (e.g., input, output, single-TRP vs multi-TRP), identify the generalization aspects where model fine-tuning/mixed training dataset/model switching  is necessary.



Agreements reached in 3GPP RAN1#112 meeting
	Agreement
For both direct AI/ML positioning and AI/ML assisted positioning, companies include the evaluation area in their reporting template, assuming the same evaluation area is used for training dataset and test dataset.
Note: 
· Baseline evaluation area for InF-DH = 120x60 m.
· if different evaluation areas are used for training dataset and test dataset, they are marked out separately under “Train” and “Test” instead. 
Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [with or without] model generalization, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m]
	Model input
	Model output
	Label
	Clutter param
	Dataset size
	AI/ML complexity
	Horizontal positioning accuracy at CDF=90% (meters)

	
	
	
	
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	



Table X. Evaluation results for AI/ML model deployed on [UE or network]-side, [short model description], UE distribution area = [e.g., 120x60 m, 100x40 m] 
	Model input
	Model output
	Label
	Settings (e.g., drops, clutter param, mix)
	Dataset size
	AI/ML complexity
	Horizontal pos. accuracy at CDF=90% (m)

	
	
	
	Train
	Test
	Train
	Test
	Model complexity
	Computation complexity
	AI/ML

	
	
	
	
	
	
	
	
	
	



Agreement
The agreement made in RAN1#110 AI 9.2.4.1 is updated by adding additional note:
Note: if complex value is used in modelling process, the number of the model parameters is doubled, which is also applicable for other AIs of AI/ML


Agreement
For both the direct AI/ML positioning and AI/ML assisted positioning, study the model input, considering the tradeoff among model performance, model complexity and computational complexity.
· The type of information to use as model input. The candidates include at least: time-domain CIR, PDP.
· The dimension of model input in terms of NTRP, Nt, and Nt’.
· Note: For the direct AI/ML positioning, model input size has impact to signaling overhead for model inference.


Agreement
For direct AI/ML positioning, study the performance of model monitoring methods, including:
· Label based methods, where ground truth label (or its approximation) is provided for monitoring the accuracy of model output.
· Label-free methods, where model monitoring does not require ground truth label (or its approximation).
Agreement
For AI/ML assisted approach, study the performance of label-free model monitoring methods, which do not require ground truth label (or its approximation) for model monitoring.

Conclusion
· No dedicated evaluation is needed for the positioning accuracy performance of model switching
· It does not preclude future discussion on model switching related performance

Agreement
For direct AI/ML positioning, study the impact of labelling error to positioning accuracy  
· The ground truth label error in each dimension of x-axis and y-axis can be modeled as a truncated Gaussian distribution with zero mean and standard deviation of L meters, with truncation of the distribution to the [-2*L, 2*L] range. 
· Value L is up to sources. 
· Other models are not precluded
· [Whether/how to study the impact of labelling error to label-based model monitoring methods]
· [Whether/how to study the impact of labelling error for AI/ML assisted positioning.]

Observation
Evaluation of the following generalization aspects show that the positioning accuracy of direct AI/ML positioning deteriorates when the AI/ML model is trained with dataset of one deployment scenario, while tested with dataset of a different deployment scenario. 
· The generalization aspects include:
· Different drops 
· Different clutter parameters 
· Different InF scenarios
· Network synchronization error 
· Companies have provided evaluation results which show that the positioning accuracy on the test dataset can be improved by better training dataset construction and/or model fine-tuning/re-training.
· Better training dataset construction: The training dataset is composed of data from multiple deployment scenarios, which include data from the same deployment scenario as the test dataset. 
· Model fine-tuning/re-training: the model is re-trained/fine-tuned with a dataset from the same deployment scenario as the test dataset.
Note: ideal model training and switching may provide the upper bound of achievable performance when the AI/ML model needs to handle different deployment scenarios.
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